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Abstract

Based largely on the analysis of the same underlying data, recently published papers have
presented estimates that the association between economic growth and child undernutrition in
developing countries is either strong and robust, or weak to nonexistent. We provide clarity on
both the magnitude of the association and the underlying econometric problem. Focusing on
child growth faltering as a process that unfolds over the first several years of life, we provide
new evidence tracing out the relationship between macroeconomic trends and the trajectory
of child growth through age 5. Using two novel regression models that each harness different
kinds of within- and between-country variation, and data on over 600,000 children from 38
countries over more than 20 years, our estimates of the association are small but precise, and
are consistent across both estimators. We estimate that a 10% increase in GDP around the
time of a child’s birth is associated with a decrease in the rate of loss of HAZ of about 0.002sd
per month over the first two years of life. This generates a cumulative effect of around 0.04sd
by a child’s third birthday and the magnitude of the correlation largely persists through age 5.
Our models are derived from both economic and biological theory and provide a new empirical
framework for researchers interested in investigating the ecological-level determinants of child

growth.
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1 Introduction

Economic growth is valuable insofar as it improves human wellbeing, and long-term economic
development has clearly generated incredible benefits for millions of people. Yet even with
steady growth in the global economy over the last several decades, child physical growth
stunting induced by chronic under-nutrition and heavy disease burden still affects over 150
million children worldwide!. Stunted growth in childhood leads to decreased wages and
worsened health outcomes in later life, and contributes to the inter-generational persistence
of poverty (Behrman et al., 2009; Hoddinott et al., 2008). Stunted growth is both a marker of
the cumulative effects of chronic nutrient deficiency and poor health on physical development

and a physical manifestation of stunted human potential.

Despite the major differences in stunting rates and mean height-for-age z-score (HAZ) be-
tween children in developed and developing countries, several recent papers have argued
that there is a surprisingly weak correlation between medium-term economic growth and
nutritional status within less-developed countries (Subramanyam et al., 2011; Vollmer et al.,
2014). These papers stand in contrast to previous work that estimated relatively robust
effects of macroeconomic conditions on child anthropometric outcomes (Smith and Haddad,
2002; Haddad et al., 2003; Klasen, 2008; Harttgen et al., 2013). A number of both critical
and positive follow-up comments demonstrated that minor modeling or weighting choices
or effect size re-scalings can create the appearance of either agreement or disagreement be-
tween the various estimates (Alderman et al., 2014; O’Connell and Smith, 2016; Bershteyn
et al., 2015; Singh, 2014)%. The overall weight of the evidence appears to indicate substantial
heterogeneity in the relationship across countries and years and a relatively small average
effect that requires more precise estimators to statistically differentiate from zero. Our anal-

ysis provides a step forward on precision and our models constitute a toolkit for researchers

L'UNICEF data, Date Accessed: 07/12/2016: http://data.unicef.org/nutrition /malnutrition.html
2 Appendix Table 1 lists previous papers estimating the association between economic growth and various
measures of child nutritional status



interested in investigating heterogeneity.

We argue that the conflicting empirical evidence is explained in part by failures of previous
empirical strategies to properly model the underlying relationship in the data and the under-
lying economic-biological age-dynamics of child growth. We provide two empirical strategies
derived from human capital accumulation theory that overcome these limitations. First,
we employ a newly developed framework of survey-level graphical and regression analysis
focused on the rate of loss of HAZ over the first two years of a child’s life that allows us to
directly estimate relative growth trajectories. Second, we derive a set of fixed-effects regres-
sions from household dynamic human capital accumulation theory that specifically address
the process of growth faltering. Both models identify the coefficients of interest exploiting
both within- and between-country variation in GDP and HAZ, and our coefficients are inter-
pretable in the framework of general spatio-temporal fixed effects models (e.g. linear models

with year and region fixed effects).

The two models, though conceptually and statistically quite distinct, produce similar esti-
mates. Using our survey-level outcome and regression model, we estimate that exposure to
a 10% increase in GDP during early childhood is associated with a decrease in the rate of
loss of HAZ relative to the World Health Organization (WHO) reference median by 0.002
sd/month. This adds up to an effect of around 0.04 - 0.05sd by the child’s third birthday.
Similarly, our age-profile fixed-effect model estimates a statistically, biologically and eco-
nomically insignificant association before a child’s first birthday, but that by a child’s third
birthday a 10% increase in GDP is associated with a cumulative effect of 0.03-0.04sd, which

then persists through age 5.

Beyond their desirable econometric properties, our models are inspired by, and interpretable
within, the framework of dynamic health capital accumulation theory. We interpret HAZ, a
measure of cumulative health inputs since birth, as carrying information on the entire history

of an optimally chosen stream of inputs up to the moment the child is measured. We model



changes in GDP as altering the optimal stream of investments in child health inputs, thus
affecting a child’s physical growth trajectory. The age-profile models we develop are fully
capable of identifying the entire set of potential age-heterogeneities across child development

predicted by the abstract model.

Our goals in this work are two-fold. First, we argue that we provide more meaningful
and interpretable estimates of the relationship between medium-term economic growth and
child nutritional status than have previously been available. Our point estimates are small,
but our confidence intervals exclude both zero and extremely large effects. Our estimates
can also be understood not simply as an average treatment effect over a non-stationary
population (as with previous estimates) but as the reduced-form net-effects of an early life
change to the stream of child health inputs propagating over a child’s development. Second,
we demonstrate how an econometric framework focused on the HAZ-age profile, instead
of simply mean HAZ or stunting probability, can allow for both more precise and more
nuanced estimates, regardless of the covariate of interest. Models such as those developed
here may allow researchers to better trace out how inputs and investments at different ages

differentially affect child development.

2 Background

2.1 Data

Any attempt to quantify a meaningful correlation between macroeconomic factors and child
development outcomes requires two independent sources of information: a sample of health
outcome measurements from children, and a series of measurements of the macroeconomic
conditions experience by the child as they grew up. Table Al, which summarizes recent
papers estimating correlations of GDP and child height, shows that two sources dominate

for supplying GDP time-series data: the Penn World Tables and the World Bank Indicators.



One source, the DHS, dominates as choice of source for child anthropometric data.

2.1.1 The Demographic and Health Surveys

Our child-level dataset of outcomes and covariates was generated by appending data from
126 demographic health surveys (DHS) from 38 countries surveyed between the years 1986
and 2013 (I C F, 2011). This constitutes all of the DHS surveys meeting our basic require-
ment that a country had at least 2 rounds of DHS collected that included HAZ data on
children from ages 0-5 years. Each individual DHS round is a large-scale, multi-stage cluster
sample survey used to gather health, demographic and socioeconomic information on women
(aged 15-49 years), children (aged 0-5 years) and their households. The surveys are generally
conducted every few years in a given country, generating a continuity in child cohorts given
the 5-year age-cutoff in the sample. The surveys can be weighted to be nationally represen-
tative. DHS data is originally designed to be aggregated up to country or region levels, and
much of the previous literature takes that approach and regresses country-level indicators on
country level economic indicators (Smith and Haddad, 2002; Haddad et al., 2003; Headey,
2013). Detailed information on DHS sampling design and implementation can be found on

the DHS website and varies minority from country to country and year to year®.

Our estimation sample includes children between the ages of 0 to 60 months with valid
HAZ scores, a measure of GDP and all included covariates. Height-for-age Z-score (HAZ)
is an age- and gender-normalized measure of child height relative to the median height of
a population of well-nourished and healthy children. The anthropometric standards against
which children in the DHS are compared is provided by the WHO?*. As per the WHO
recommendations, anthropometry scores between -6 and 6 are considered valid and only

children with valid scores have been included in the analysis (World Health Organization,

3https://dhsprogram.com/data/data-collection.cfm
4The 2005 WHO standards reflect the highest potential for physical growth and human development for
children living both in developed and developing countries.



2006)°. Our regressions also include only those children with complete information on GDP
per capita, sex and age, their mother’s education level and age and type of residence (urban
or rural). After following this inclusion criteria, our estimation sample consists of a total
of 685,075 children in 38 countries. Figure 1 shows the sample selection criteria and loss of
sample size at each stage. Relatively few observations (1.4%) are lost to lack of GDP data

or covariates.

2.1.2 World Bank Indicators

GDP per capita time-series data for individual countries is available in the World Develop-
ment Indicators Series of the World Bank®. We use GDP per capita in purchasing power
parity (PPP) terms comparable to 2005 U.S dollars for the analysis. We use World Bank
data instead of the Penn World Tables data favored by Vollmer et al. (2014) for reasons
explicated in O’Connell and Smith (2016) to do with comparability within countries over

time.

A time-series of (In) GDP is a canonical example of serially-correlated outcomes. Leaving
a detailed discussion of the econometric ramifications of this reality to later sections, it is
important to assuage two obvious concerns. First, the variation used to identify the mag-
nitude of any particular coefficient in our regression models does not come from comparing
children born in the same country one year apart. Our method compares only children of
the same age. Since the DHS is only conducted every several years within one country, our
(age-specific) within-country variation in GDP covers 3 or 4 semi-evenly spaced observations
covering 5 to 20 years worth of economic growth. Second, our appending of multiple country’s
GDP turns the individual country time-series data into a panel, allowing for non-parametric

adjustments for arbitrary time-trends common across the world.

5The DHS multiplies standard WHO scores by 100, and we maintain this convention to make coefficients
more easily interpretable, so in practice our analysis includes those that range from -600 to 600 in the DHS
surveys

baccessed from http://databank.worldbank.org/; Dec 2014



2.1.3 Sample Summary

Summary information on the countries used, the survey years, characteristics of the house-
holds and children and the outcome and GDP measure can be found in Table 1, which
contains the entire (small) set of covariates used in our analysis. The mean age of the chil-
dren is about 29 months and the sample is evenly split by gender. 36% of the children live
in urban areas. Mothers are on average 29 years old, 36% of them have no education and
35% of them have at least primary education. The average GDP per capita experienced by
children in our sample is around 721 USD. The average HAZ score for all children in the
sample is -144, meaning the average child in our sample is 1.4 standard deviations below the

WHO reference for the median healthy and well-nourished child of that age and gender”.

We limited the number of covariates in order to maximize the final sample size and limit
the potential for bias induced by differential omission from the analysis set. Our analysis
files make it possible to easily add or remove covariates in order to test the robustness of
the estimates, but in general we find that covariates do not strongly influence the estimated

strength of the association conditional on the fixed-effects specification®.

2.2 Previous Estimates and Empirical Strategies

Previous estimates of associations between economic growth and child undernutrition differ
from our analysis, and each other, in four inter-connected ways: choice of outcome variable,
level of aggregation, sources of identifying variation, and timing of GDP merging relative
to a child’s survey or cohort. In Table Al, we provide a summary of the similarities and

differences between the various approaches used in recently published papers.

Regarding timing, every previous study (though not ours) examines the relationship between

an anthropometric measures of child nutritional status and values of GDP contemporaneous

"Following the DHS, we multiply HAZ by 100 to make units easier to display and read.
8Replication code can be found on the Open Science Framework: https://osf.io/829ny/



to the year in which the children were measured. This choice of merging strategy leads
naturally to the choice of outcome measures based on child weight, since weight is capable

of short-term fluctuation whereas height is not.

In the (World Health Organization, 1995) report, an expert committee on child health ar-
gued that height—for—age (HAZ), weight—for-age (WAZ), weight—for—height (WHZ) z-scores
best reflected the interaction between social determinants of health and the physical devel-
opment of children. They determined that indicators that use weight can accurately predict
malnourishment within a population at a given time. However, since weight is highly respon-
sive to food and nutrition availability in the short-term, weight measures cannot be used to
measure the effect of past input streams on the current or future health and productivity of
an individual. HAZ scores, on the other hand, can be interpreted as capturing the cumu-
lative effects of the stream of biological inputs over the course of the child’s development.
Other work has shown that child HAZ predicts lower productivity in adults (Glewwe and
Miguel, 2007; Hoddinott et al., 2008) and can predict two year future mortality risk in young
children (World Health Organization, 1995)°. Building on these arguments, in our model,
we use HAZ to model the impact of changing biological inputs on a long term measure of

child’s health and productivity.

2.2.1 Statistically Significant Estimates

One way to estimate the association between economic growth and undernutrition is simply
to compare mean HAZ and GDP in survey year from a cross-section of countries. These cross-
country studies exploit “between country” variation and implicitly compare the GDP levels of
countries J and J’ with their average anthropometric outcomes of interest. These regressions
tell us how countries that have grown differently in the past have experienced different health

improvement trajectories, but they cannot tell us how growth in some particular country

9The authors of the WHO report also cautioned that any study that used HAZ as an outcome would be
confounded by its relationship with age if this relationship was not accounted for properly.



affects the nutritional status of children. The model will pick up any effect of GDP on
HAZ, but also any effects of anything else that is more conducive to child physical growth
in richer as compared to poorer countries. In order to address this problem, the most
common strategy in recent work has been to difference-out the time-invariant country-level
unobservable characteristics by de-meaning the data within each country using a fixed-effects

estimator.

Three previous papers have aggregated survey-level data from panel of country-years to
generate within-country estimates, and these studies have estimated relatively strong as-
sociations between contemporary GDP and child wasting or undernutrition. The largest
estimates are from Smith and Haddad (2002), which finds that a 10% increase in GDP per
capita is associated with decreases in wasting rates of 6.3%. Using country and decade fixed
effects, Haddad et al. (2003) interpret the effect size as indicating that a 10% increase in
GDP per capita is associated with decreases in wasting rates of 1.5pp. Using stunting a
dichotomized HAZ measure, Headey (2013) finds that a a 10% increase in GDP per capita

is associated with 1.8pp reduction in child stunting.

Only one paper prior to Vollmer et al. (2014) analyzed DHS data at the individual child level
to estimate correlations of GDP with HAZ, allowing for both country-level fixed-effects (and
thus within-country variation) and for the inclusion of individual-level control variables in
the regression equations. That work, Harttgen et al. (2013), estimates that a 10% increase

in GDP is associated with a large, 1.5-1.7 log odds ratio reduction in stunting.

Instead of directly replicating these findings, here we provide a graphical representation of
the empirical strategy and estimate a best-fit line that approximates these methods. Figure 2
graphs survey-round mean HAZ across survey-time log GDP /capita, with each survey round
mean HAZ (now a single observation) weighted to be nationally representative. The upper
panel of Figure 2 shows how mean HAZ for a country correlates with the level of GDP in the

survey year. The correlation in the raw data is statistically significant and the coefficient is of



a similar magnitude to our final estimates - a 0.1 log point change in GDP is associated with
a 0.03 sd increase in HAZ. The bottom panel in the graph shows changes in HAZ against

changes in GDP, and the point estimates are similarly sized and also precisely estimated.

While these estimates seem relatively congruous with the previous literature, there is reason
to be concerned about the comparisons made to identify the coefficients of interest. Ex-
ploiting “within country” variation helps rid regressions of certain kinds of bias arising from
non-GDP related differences across countries, but comes with a different set of concerns. If
we consider only country-level macro-economic conditions, then within a country the only
variation in GDP comes from across birth cohorts - from children born in different years and
thus exposed to the stream of GDP realizations at different points in their development. The
sacrifice to be made to estimate within-country effects is that one must choose a parametric
specification for the effects of secular improvement over time, and with only a few survey
rounds this becomes a potentially insurmountable econometric problem. Fitting even a linear
trend through 3 or 4 values of GDP per fixed-effect (the sample size of the age-country-cohort
group) can lead to over-fitting and the loss of a large fraction of meaningful variation in GDP.
Similarly, ignoring the age structure of the outcome variable and the non-linear effects of
secular improvements on health across age-time leads to model-misspecification that can

potentially generate the bias described in Cummins (2013).

2.2.2 The Vollmer et al. Estimates

Two recent papers provided important reasons to worry that some of those within-country
estimates may be misleading. Subramanyam et al. (2011) finds that province level per
capita GDP does not have any impact on the nutritional status of children in India. Vollmer
et al. (2014) uses cross country height and weight scores from 126 DHS surveys and find for
the most part statistically, economically and biologically insignificant associations. These

estimates comprise two of the three studies in Table A1 that employed individual level data,
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and they are the only ones the include both country and time (survey year) fixed effects.

The impact of Subramanyam et al. (2011) and Vollmer et al. (2014) on the academic debate
was large, sparking a series of both positive and less positive responses in various journals
(Singh, 2014; Alderman et al., 2014; Bershteyn et al., 2015; Joe et al., 2016; O’Connell and
Smith, 2016; Lange and Vollmer, 2017). This was not simply because their estimates were
somewhat out of line with previous research, but because these out-of-line estimates were the
first to apply fixed-effect models that could identify the effect of within-country changes in
GDP while still controlling non-parametrically for secular time trends. These models make
assumptions about the effects of place and time that allow for group/region level effects that
are persistent across time, and simultaneously allow for arbitrary secular “time” trends that
are common across groups. Whereas pure within-country models compare changes in GDP
to changes in HAZ, country-year fixed-effect models compare how much more (or less) change
in HAZ occurred in high growth countries relative to low growth countries. Unlike in pure
within-country models, differential changes in HAZ that are uncorrelated with differential
changes in GDP are then ascribed to the unobserved time effect and not to GDP growth

itself.

3 The Age-Profile Framework

While weighting, scaling, sample selection and a number of other modeling choices explain
some of the variation in published estimates, we argue these are secondary concerns to a
more foundational problem. That foundational problem is the econometric modeling of child
nutritional status as an age-invariant condition, inherently ignoring the biological process of
growth faltering that unfolds over the first years of a child’s life. This conceals from the
analyst potential insights into the economics of health capital accumulation by aggregating
over the underlying age-dynamics of interest. Our argument is not that the Vollmer et al

methods, or any of the other methods employed in previous work, are wrong. Our argument
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is that those estimates are both difficult to interpret in relation to the world and insufficiently

precise to answer the question at hand.

3.1 Empirical Motivation

To represent the population-level association between HAZ and GDP in a manner more true
to the process of growth faltering, we present the HAZ-age profiles from our sample countries
in Figure 3, graphing mean HAZ across child age in months. In the top panel, we aggregate
countries based on being above or below median GDP for countries in our sample!®. A very
clear pattern emerges. Children in both groups of countries start at similar HAZ at birth
(just below 0) and then grow more slowly than the children in the well nourished, healthy
WHO reference group. Mean child HAZ is then essentially constant from age 2 up to a

child’s fifth birthday (Rieger and Trommlerové, 2016; Victora et al., 2010).'!

The second key insight is taken from the bottom panel of Figure 3, which graphs HAZ-age
profiles by individual country, color coded from highest decile (magenta) to lowest (cyan)
GDP /cap. This country-level graph demonstrates the stability of a key aspect of the rela-
tionship between HAZ and GDP - it is the rate of loss of HAZ, and not HAZ at birth, that
primarily drives the differences in the HAZ-age profiles across GDP levels. At the left edge
of the graph, poorer and richer countries are intermingled, with a slight tendency for poorer
countries to have a lower intercept (interpretable as projected length-at-birth z-score). How-
ever, by the age of 4, the HAZ-age profiles have essentially sorted themselves along GDP
rank. This is the result of increased severity of growth faltering in the poorer countries. De-
spite the fact that children in relatively richer and poorer countries were born with similar

length, the children in the poorer countries grow much more slowly.

If the defining characteristic of the association between economic conditions and child height

10We use average GDP over the study period to divide countries into the two groups
HThere is some visual evidence of population-level “catch-up” growth, where the gap in HAZ between
richer and poorer countries may close slightly before age 5,
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is the process of growth faltering, then clearly the use of mean HAZ or stunting as a measure,
as compared to age-specific HAZ, is averaging across the exact effect it is hoping to capture.
Mean HAZ and the probability of stunting are non-linear and strongly increasing over the
first two years of life, and any effect of GDP growth on HAZ or stunting by age 3 is being
averaged with much smaller effects for an otherwise similar child measured at 4 months.
Limiting the sample to younger children, as done in Subramanyam et al., 2011 and Vollmer

et al.; 2014, exacerbates the problem.

3.2 The Health Capital Accumulation Perspective

Our perspective conceives the biological process of growth faltering as the output from a
dynamic health capital production function with input levels determined by a household-level
utility maximization problem, drawing from health capital models such as Grossman (1972)
and Becker (1962). Household decision makers optimize over time and have preferences
for their own consumption (C;) and for their children’s health (H/'). Household’s maximize
Uy(Cy, H*) subject to a budget constraint where consumption and health inputs are positively
priced. The evolution of child height is modeled by an age-specific human capital production
function (f“()) that takes inputs from calendar-time health purchases and public goods

availability (broadly conceived).

Differences across countries in GDP, and changes within a country, are likely to generate
changes in 3 elements of the optimal child health investment decision. First, increases in
GDP lead to improvements in the labor market. During times of GDP growth, households
are more likely to find employment, and conditional on finding employment, likely to receive
more income (Topel, 1999). Second, increases in GDP are likely to increase the provision of
public goods. Public goods, broadly construed, work here as a sort of in-kind transfer from
the government that pays in child health. Finally, economic growth is strongly correlated

with demographic change in a mutually reinforcing causal loop. Increases in economic growth
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can affect both the number of children in the household and thus the distribution of the
limited household resources to each child, and the availability of maternal energy during
pregnancy and lactation that can be transferred to the fetus or breast-feeding child (Walker
et al., 2008; Kramer et al., 2016).

The process of optimal input choice and health production iterates continuously over a child’s
development and throughout their adult lives. In each period the child’s height from the
previous period enters into the height production function and thus naturally persists to a
large extent from period to period; our height last month is the basis for our height today.
This insight from health capital theory provides the economic underpinning for interpreting
average attained height of children in a population as resulting from the stream of biological
inputs experienced over a child’s life. It also serves to link the biological conception of
human development (Nutrition, Disease, Cellular and Neurological Development, etc.) with
the economic conception of dynamic human capital accumulation theory (inputs, shocks to

health, health production functions).

The discussion so far highlights model predictions across age-at-measure, while conceptually
holding age-of-exposure fixed. But the model makes predictions across as second dimension
of child age as well. For a 4 year old, the (contemporary) effect of an input received at age 2
compared to the same input received at age 3 has two different components. First,there are
fundamental differences in the human capital production function over child age. Secondly,
re-optimization of household decision making in each period means that if unexpected ex-
ternal forces increase child health, households may have incentives to invest differently than
they previously would have because the child is already healthier than they anticipated
it being. For the purposes of this paper, we focus primarily on tracing out the corre-
lations between GDP at birth as children age, and not on the relative impacts of GDP
growth occurring at different points in a child’s development. In theory, we would be able to
separately, non-parametrically identify changes in GDP at each age-at-exposure by age-at-

measurement permutation. However, the serial correlation in GDP (and growth rates) makes
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unconstrained /non-regularized estimation of so many parameters impossible in practice. We
do, though, present estimates of these parameters and discuss we can be learned and what

can be done going forward.

4 Survey-Level Aggregate Model: Rate of Loss of HAZ

The defining feature of the HAZ-age profiles presented in Figure 3 is the rapid and relatively
linear decrease of HAZ over the first two years of life. The age profile then becomes essentially
flat (or slightly positively inclined) from ages 2 through 5. We define two parameters to
characterize this empirical regularity: a) we define « as the intercept of the HAZ-age profile
on the Y-axis, that is, the implied length-for-age Z-score (LAZ) at birth; b) we define 5 as
the rate of loss of HAZ from birth to age 2, that is, how much more slowly children are
growing relative to the WHO reference median child (in units of standard deviations of the
reference population). As simple as they are, these summary measures provide a relatively

complete characterization of the HAZ-age profile over the first two years of life.

4.1 Modeling Rate of Loss of HAZ

We estimate «a & [ separately for each survey round in each country as an OLS regression

of HAZ for child i measured at age A.

HAZ} = o’ + B, * Ageja + uiy Vs e S (1)

Equation 1 allows us to estimate &°, a country by survey specific estimate of the LAZ at birth
and (3%, an estimate of the rate of loss from that initial birth LAZ over the first two years
of life. We then take the estimates &° and BS and turn them into a, and fj,, observations

from country J in survey year Y, for a second stage regression on the determinants of the
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shape of the HAZ-age profile over the first two years of life. We merge this constructed
outcome data with a panel of (In) per capita GDP measures from the World Bank, generating
an unbalanced panel of observations at the country-year level that include the parameter

estimates of the first-stage regressions and the GDP data from the World Bank panel'2.

The second stage regression takes a form involving some or all of the elements of the fully sat-
urated regression model below, for country J in survey year Y. While each parameter in the
first stage regression is estimated from a regression weighted by the probability weights pro-
vided by the DHS, the second stage regressions of the parameters on GDP are not weighted,

and each survey is thus given an implicit total weight of 1.

Pjy = 5'GDPJ'y + 5+ )‘y + Njy (2)

5 is the estimate of the effect of GDP on the outcome P, either o or 5. We interpret )
divided by 1,000 as the effect of a 10% change in GDP on HAZ'3. Variants of this equation,
keeping or dropping different elements, allow us to estimate the effect of GDP growth on
the parameters of the HAZ-age profile using fundamentally different types of identifying
variation. Without v; and A, the equation reduces to the OLS estimate of the association
between economic growth and the parameters of the HAZ-age profile (a&3). This version of
the regression model treats every observation as independent from the others, as though an
observation from Armenia in 2000 can be naively compared to an observation from Zimbabwe
in 2010. In that sense, the equation fully exploits both within- and across-country variation,
but does not do so in ways that are not immediately interpretable relative to actual changes

in macroeconomic conditions in the world.

12Tn this specification, we merge GDP from the survey year with the outcome data. This means that
children who are infants in our regressions are being given a measure of GDP associated with their year of
birth, but children who are two years old are being given GDPs that they experience at age 2. In the next
section we more strictly link GDP measure to year of birth for all children, but in this section we simply note
that, given both the relatively small changes in GDP across one or two years, and the high serial-correlation
in GDP growth over time within a country, this should make little difference to our estimates.

13The calculation above is based on a change of 0.1 in the log of GDP, given that our measure of HAZ is
the WHO measure multiplied by 100.
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We then specify a country level fixed effects model. By including 7; and thus de-meaning the
outcome variable and the GDP time-series within a country, § now estimates how changes
in GDP within a country over time affect LAZ at birth and the rate of loss of GDP over
the first two years. Our identifying variation within a country comes not from one calendar
year to the next, but from one survey year to the next, an average time difference of about 6
years. Symmetrically, we might want to focus only on the across-country differences, even if
only to understand any potential differences between the OLS results and the within-country
estimates. We show this by including A, while dropping v;. Our temporal fixed-effects here
bin surveys into 3 year survey-time bins, leading our between country model to identify 5 by

averaging correlations across countries at each point in time. 4.

The single fixed-effects estimates in the preceding paragraph are regression analogues of
single-difference estimators. Exploiting both across- and within-country variation allows us
to partially address the problems of omitted variables (across-country) and secular trends
(within-country). With the inclusion of both A\, and 7;, the model now implicitly compares
changes in the HAZ-age profile in a country with low growth to changes in the profile in a

country with high growth.

4.1.1 Inference

We offer two strategies for estimation of standard errors for 5. First, we provide analytic
standard errors clustered by country, following standard practice for spatio-temporal fixed-
effects models. These standard errors are likely biased towards 0 relative to the true sampling
distribution of , since they do not account for the uncertainty in the left-hand side variables
which are themselves just estimates (Elbers et al., 2005). To account for this, we provide

a second set of standard errors estimated from a 2-stage bootstrap procedure. In that

1 Technically, it is possible to include individual survey year dummies into the regression. However, since
surveys for different countries occur at different times, this forces the year dummies to identify off a small
set of countries in each potential survey year. We thus bin time into 3 calendar-year bins, chosen so that no
country appears in the same temporal bin twice. Results are generally robust to the use of individual year
dummies.
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procedure, we first choose (with replacement) 38 countries, and give each observation a
new ID number. We then bootstrap sample, within each ID number, by the interaction
of primary sampling unit (PSU) and survey round, and jointly estimate & and B for each
survey, replacing country based fixed effects with ID based fixed effects. We repeat the
double bootstrap sampling 500 times and report the standard deviation of the estimates as
the bootstrap standard error estimate of 5. Empirically, the large sample sizes from each
survey seem to make this secondary source of variation rather small, and the two standard

error estimates are similar.

4.2 Results from Rate of Loss Estimates

Table 2 presents results from estimating Equation 2 on the parameter estimates from Equa-
tion 1. The a columns show the coefficient estimates of GDP on the implied length-for-age z
scores (LAZ) estimates, and the 5 columns show the coefficients on the estimates of the rate
of loss of HAZ. The first specification provides the OLS estimate, the “within” specification
(columns 3 & 4), includes v;, the “between” specification ((columns 5 & 6) includes A,, and

the “DnD” specification (columns 7 & 8) present estimates when both are included.

The coefficient estimates on « are generally small, highly variable across specifications and
imprecisely estimated. Taken at face value to assess potential magnitude, the point estimate
on the OLS coefficient implies that a 10% increase in GDP is associated with an approx-
imately 0.1sd increase in length-at-birth z-score. The coefficient magnitude increases to
almost 0.4sd for the within estimate (with a confidence interval approximately that wide),
but the preferred fixed-effects estimates (columns 7 and 8) puts the magnitude around 0.02sd,

again with a relatively wide confidence interval.

The coefficient estimates on 3, on the other hand, are robust across specifications and fairly
precise. A 10% increase in GDP is associated with around a 0.002 sd decrease in the rate

of loss of HAZ. In a country whose median child becomes exactly stunted on their second
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birthday after being born 0.25sd below the reference children (reasonable given Figure 3),
the rate of loss would be around 0.07 sd/month, meaning a 10% change in GDP is associated
with approximately a 3% change in the base rate of loss. Cumulatively, a change in the rate
of loss of HAZ of 0.002sd would generate a 0.04-0.05sd effect by the time the child reached
their 3rd birthday.

5 Individual-Level Estimates

Our individual-level estimates come from a series fixed effects specifications that isolate
the effect of inputs at various ages on the entire HAZ-age profile. The intuition for the
fixed-effects models we estimate below can be motivated by a simple thought experiment.
Suppose a researcher has a set of cross-sectional surveys with HAZ measurements from
different countries covering a number of survey rounds in each country. Merging this data
with country-year observations of GDP generates a country-year pseudo-panel dataset. The
first insight we exploit is simply that this same procedure can apply even if we keep only the
observations from each survey that are children of age A. The second insight is that there
are potential gains to precision by estimating the model with all ages simultaneously, and
we flesh out the corresponding fixed-effects model to allow for simultaneous estimation of all

of the parameters of interest.

5.1 Single Exposure Age-Profile Fixed-Effects Models

The following equation represents the regression analogue of the initial thought-experiment,

containing observations for only children aged A born into cohort year C:

HAZA

icj

= X[, B+ 0%« GDPj + pt + N+ ¢ (3)
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This equation reduces to the standard panel fixed-effects model, but estimates the coefficients
only on children of age A. There is no reason this regression cannot then be repeated for
children aged A+1, A-1, A+2... etc. A two year old child in country J born in 2000 is
compared to a two year old born in Country J in 1995. Simultaneously, the same 2 year
old born in 2000 in Country J is compared to a 2 year old born in 2000 in Country J’. By
merging GDP to cohort (birth year) instead of survey year, each age-group is identified off
different (though correlated) variation because each cohort was born into the GDP stream
experienced by their country at a different point in calendar time. If the coefficient off 2
year olds is identified off the GDP values from 1995 and 2000, the coefficient on 3 year olds
is identified off GDP values from 1994 and 1999.

We then generalize the above thought experiment and regression equation into a multi-age
framework where we can estimate the entire vector of §4 simultaneously for children of all
ages. We alter the preceding equation by allowing u;‘ and A to become fj, and )\, that
is, we make the country and cohort fixed-effects age-specific. We interpret these fixed-effects
as controlling for country-specific HAZ-age profiles (11;,) and for a child’s “lifespan”, their

growing up from birth to age A over the years T to T-+A (A.).

HAZjjoo = Xjjea + Y 6" % GDPic+ tja + Ao + €ijea (4)
A

This regression again has both within- and between-country comparison analogs, but these
comparisons are now made only within a particular country’s children of the same age, or
across children who have lived the same “lifespan”. Our “within” variation comes from
comparing children of age A in country J and born in cohort C, with children of the same
age A and same country J but born in cohort C’. That is, we difference out the average effect
(over the whole sample period) of growing up to age A in Country J. The remaining variation
in GDP and HAZ for a cohort in Country J then contains three components: exogenous noise

(by assumption), any effect of GDP, and the secular improvement in HAZ that would have
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occurred for children who grew up over this period even absent any within-country economic

growth.

Since HAZ is not an instantaneous outcome, the calendar date on which one is measured
can only affect HAZ by, in combination with cohort, fixing the calendar time through which
an individual child grows; that is, by being a proxy for the time into which you were born
and through which you grew up. Our “between” variation (\.,) then comes from comparing
children who were born at the same time and measured at the same age (who lived the
same “lifespan” over calendar time), but in different countries. All children who lived the
same lifespan experienced secular changes in life-improving technologies over the exact same
points in their human development. Given the remaining variation in GDP after de-meaning
by country-age, the component of the secular time trend that is common across countries
for children of that cohort measured at that age can be purged from the remaining variation
by simultaneously estimating indicator variables for each lifespan permutation (age-cohort-
period) realized in the data. Interpreted in terms of allowing for idiosyncratic time trends,
controlling for child lifespan allows the non-parametric secular time trends to themselves

vary non-parametrically by age.!®

5.2 Results from Single Exposure Models

Figure 4 graphs, across child age, the coefficients and confidence intervals from the regressions
outlined in Equation 3 and Equation 4. The estimates from age-disaggregated regressions
on children at each age in years are graphed in black, the estimates from simultaneous
estimation are graphed in blue, and both estimates are of similar magnitude and precision.
The coefficient estimates on children under age 1 are small and statistically indistinguishable

from zero. However, as the child reaches their third birthday, the magnitude of the correlation

15A graphical representation of both the within- and between-country variation in the age-profile fixed-
effects models is presented in Figure A1, which plots the HAZ and GDP time series for three countries over
several survey rounds.
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grows and the confidence intervals remains of similar magnitude. By age 3, a 10% increase in
birth year GDP is associated with a 0.04sd increase in HAZ. The point estimates for children
age 4 (48 to 60 months of age) is somewhat smaller, around a 0.025sd, but is not statistically

differentiable from the estimate for 36 to 48 month olds.

Table 3 provides the regression estimates from the simultaneous estimation strategy described
in Equation 4 and graphed in Figure 4, along with several alternative/traditional fixed-effects

estimates that also include flexible controls for child age'®.

The specification in column 1
has only country and survey fixed effects, adjusting for child age with a series of indicator
variables for age in months. Column 2 includes country-specific age indiactors, along with
survey fixed effects, and column 3 includes country fixed effects with lifespan (cohort-by-
survey) fixed effects. The specification in column 4 includes both the country-age and lifespan
fixed effects and is our preferred, saturated model. After controlling non-parametrically for

child age, all of the point estimates are similar, and standard errors for all models are of

similar size.

5.3 Pseudo-Replication of Vollmer et al.: Aggregation and Stunt-
ing

In order to provide insights into why our estimates differ from Vollmer et al. (2014) and
what elements of our analytic perspective drive the differences, we provide several alternative
estimates more in the flavor of those provided in Vollmer et al. (2014). First, we provide a set
of regression results that estimate a single coefficient across children of all ages, doing so with
both HAZ and stunting (an indicator variable defined as more than 2sd below the reference
population) as outcome variables in Table 4. The first and fourth columns of Table 4 ignore
age-profile effects, though they control non-parametrically for child age by including a vector

of indicator variables for child age in months. These replicate the statistically insignificant

16 The simultaneous and age-specific estimates are also provided side-by-side in Table A5 to facilitate
comparisons.
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findings in Vollmer et al. (2014) and the point estimates are generally smaller than those in
our age-specific estimates for older children, as would be excepted from averaging across a
heterogeneous effect. The inclusion of lifespan fixed-effects and country-specific age-profiles
(columns 2 and 3) improves precision (standard errors are approximately 5 — 10% smaller)

and the coefficient becomes marginally statistically significant.

Columns 4, 5 & 6 of Table 4 employ the stunting variable as an outcome instead of HAZ
and are the regressions most similar to those in Vollmer et al. (2014), though we continue
to merge GDP with cohort and not survey year. In no specification does the effect on
stunting become statistically significant, and the point-estimates can be interpreted to be
rather small, a 10% increase in GDP being associated with a 0.4 —0.6pp decrease in stunting
rates. Since stunting is a binary measure, and changes in stunting status only occur as
children cross the -2sd HAZ threshold, it is a generally less sensitive measure of health and
thus harder to detect statistically. However, our age-profile estimates are powerful enough
to statistically differentiate the correlation from 0. These results are provided in Table 5 and
our estimates on stunting rates are statistically significant for most children over age 1 and
the magnitude of the association increases roughly 50% relative to the aggregate regression.
By a child’s fifth birthday, though, the relationship has weakened sufficiently such that our

preferred model (column 4) does not estimate a statistically significant association.

6 Extensions and Limitations

6.1 Alternative Exposure Timing and Serial-Correlation in GDP

We have focused our analysis on estimating the correlation between GDP at the time of
birth and HAZ as the child grows. However, the theoretical human capital models from
which we derive our estimating equations makes predictions across a second dimension of

child age as well. For a 4 year old, the effect of an input at age 2 compared to age 3 has
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two different components. First, there are the fundamental differences in the human capital
production function over child age (f%()). Secondly, re-optimization of household decision
making in each period means that households experiencing economic growth early in their
child’s lives may have incentives to invest differently than they previously would have absent

that growth.

The serial correlation in GDP makes it difficult to disentangle when the timing of GDP
growth matters relative to a child’s development or if the timing matters much at all. The
classic time-series serial-correlation problem is less of a concern for us since any given coef-
ficient is estimated using GDP measures from 4-5 years apart, but there are two additional

issues that arise from the serial-correlation in the country-level GDP time-series.

First, fixing GDP to birth year, the variation that identifies the coefficient on GDP for
3 year olds will be highly correlated with the variation that identifies the coefficients for
2 year olds, because the GDP values in those regressions come from shifting the (highly
serially-correlated across time) panel GDP data back one period. That means there is lack
of independence in our estimates across age-at-measure. Second, while we do not have
strong problems with serial-correlation in calendar-time, we do have strong serial-correlation
problems in “age-time”, in the vector of lagged (relative to age-at-measure) GDP realizations
that constitute the “stream of inputs” that were provided the the child as they aged. This
makes disentangling the effects of GDP at birth from the effects of GDP growth during a
child’s life very difficult, at least without imposing significant structure on the underlying

statistical machinery.

This is clear in Figure 5, which graphs coefficient estimates from a series of regressions on
4-year old children that shift the timing of GDP relative to the child’s cohort. Each point
on the graph represents the estimate of § from a regression where the GDP exposure is tied
to a particular point in the child’s development, from three years before their birth up to

two or three years after they were measured. The strong serial correlation in GDP (and in
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changes in GDP) means that many of the estimates are statistically significant. However,
estimates from merges of the GDP stream to years between the birth of the child and the
date they were measured generate the largest coefficient estimates and have lower bounds
much further above the estimates those from estimates based on years before the child was

born or after they were measured.

6.2 Estimation of Full Exposure Stream

In this section we present estimates of the full stream of exposures to GDP on HAZ by age.
We use the following empirical strategy. We first define A as the age at which child i of
cohort ¢ and country j are measured and appear in our data. Let a refer to the age at which
a child was exposed to a GDP value of interest. For example, if @ = 0 then GDP from the

year of birth (c, the child’s cohort year) will be assigned.

For children measured at age A, we define the following regression equation with GDP; ..,
being defined as the level of GDP experienced by a child from country J and cohort C at
age a (in year ¢ + a). §7, then, is defined as the parameter representing “exposure at age a
on a child measured at age A”.

ijc

HAZj, = X} + Y 0, % GDPjeva + i + A+ €, )

Figure 6 presents estimates, separately for each age-at-measure, of the association between
GDP exposure at each period from a child’s birth until the age at which they were measured.
First, we see that the estimates are incredibly noisy and they have overly large coefficients
that tend to cancel one another out. This is due in large part to the serial-correlation in GDP
over time, but that may be less of a problem in other empirical contexts. Second, for every
age group, the contemporary, survey-time coefficient dominates the other input periods.

Since the regressions are run separately by age, it could simply be an improbable “draw”
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on the joint HAZ/GDP distribution in that particular set of calendar years and countries.
However, we leave it to future researchers to determine whether this result is meaningful
or informative, or simply the result of contemporary GDP being the only exposure-year for

which each cohort experiences it in the same calendar year.

7 Conclusion

Prior studies that have estimated the relationship between economic growth and child health
have often assumed away the actual process of child development and growth faltering,
preferring instead static measures of population average health. In this paper we set out to
develop new conceptual and methodological tools to capture the dynamic effects of health
inputs on children’s growth trajectory. We parametrically model the HAZ-age profiles from
126 DHS surveys and interpret our results as evidence that the relationship between economic
growth and child health is more apparent in the rate of loss of HAZ than in length at birth.
In the aggregate, richer countries, and countries that grow richer, raise children that grow

faster than those in poorer countries and those that did not experience recent growth.

We also make strides towards separately identifying differences across permutations of “age
at measure” and “age at exposure” relevant to estimating the age-dynamic parameters of
an optimal health investment model. We introduce age-profile fixed-effects models that
exploit variation within and across countries and cohorts to capture the impact of medium
term economic growth on child growth trajectory. Similar to the magnitudes from the
aggregate regressions, we find that a 10% increase in medium term GDP is associated with
an almost 0.04sd increase in HAZ by the time a child reaches the age of 3. Though the least-
squares estimation we use in this paper is insufficiently structured to identify all the potential
exposure-by-measurement age permutations in the presence of strong serial-correlation in
GDP, we believe the econometric framework we lay out here can be greatly improved upon

in terms of variance for the willingness to trade off small amounts of bias by placing prior
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restrictions on the coefficient dynamics across age (at exposure and measurement).

Finally, we hope that our demonstration convinces readers of the value of such an age-profile
perspective in empirical contexts such as this where cohort-panel outcome data is merged to
aggregate spatio-temporal variation and an age-determined outcome of interest. Averaging
effects across age can generate misleading estimates that are not as directly interpretable
relative to the world as they may seem, and failure to account for the age-cohort relationship
can lead to bias as seen in Cummins (2013). Such age-aggregated models also needlessly
obscure nuances in human development that are revealed in our analysis without losses
in statistical precision. We hope that more researchers will consider making the HAZ-age

profile, and not simply mean HAZ or stunting rates, their object of investigation.
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8 Figures & Tables

Consort Flowchart

Total Sample of Individuals (n= 689,811)

l

Age between 0 to 60 months (n= 689,811)
Missing (n = 0)

l

Valid HAZ information (n=689,811)
Missing (n = 48)

l

Valid GDP information (n=685,099)
Missing (n = 9,943)

l

Valid Covariate information (n= 685,075)
Missing (n = 24)

Cross Country Regs
Final Sample (n= 685,075)
Number of Countries = 38
Number of Surveys = 126

Adapted from: www.consort-statement.org/consort-statement/flow-diagram

Figure 1: CONSORT Diagram
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Figure 5: Results: Age-Specific Inputs of GDP on HAZ
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Figure 6: Simultaneous Estimation Across Age-at-Exposure, by Age-at-Measure
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Table 1: Sample Summary Statistics

Variable Mean SD
HAZwho -143.89 168.16
Child age (months) 28.40  17.17
GDP per capita (log) 6.58 0.92

Survey Year Gap (years) 5.98 2.28
Covariates

female (%) 0.50 0.50
Maternal Age (years) 28.80  6.83
Maternal Education

No Education (%) 0.36 0.48

Primary Education (%) 0.35 0.48
Secondary Education (%)  0.24 0.42
urban (%) 0.36 0.48

N 685075
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Table 2: Results: Rate of HAZ Loss and LAZ

OLS Between Within DnD

Alpha Beta Alpha Beta Alpha Beta Alpha Beta
b/se/bse b/se/bse b/se/bse b/se/bse b/se/bse b/se/bse b/se/bse b/se/bse

GDP 9.00 1.68*** 10.0" 1.65*** 36.4* 2.21* 2.08 2.34*
(5.54) (0.33) (5.33) (0.33) (17.8) (0.93) (15.7) (0.90)
[5.60] [0.35] [5.40] [0.36] [18.4] [0.99] [20.6] [1.15]

Mean -19.7 -7.6

Survey FE v v v v

Country FE v v v v

2 0.04 0.36 0.15 0.37 0.08 0.08 0.23 0.10

N 126 126 126 126 126 126 126 126

+0.10, * 0.05, ** 0.01, *** 0.001; Robust standard errors clustered at the country level for 41 countries;
For each specification columns represent results for children under 2, the first column presents values of
the average LAZ scores (a) and the second column presents values for the rates of loss of HAZ () from
Equation 2; Analytic cluster standard errors in ( ), 2-stage Bootstrap SE in [ ].



Table 3: Age-Profile Regressions: HAZ and GDP at Birth

(1) (2) (3) (4)

HAZ HAZ HAZ HAZ
b/se b/se b/se b/se
Age 0 8.8 3.2 12.8 14.5
(105)  (10.4)  (9.6) (9.3)
Age 1 28.8™*  30.3**  32.5™ 28.9**
(10.5)  (13.4)  (10.0) (14.1)
Age 2 33.6™*  38.8"*  36.7" 36.2%**
(10.7)  (13.1)  (10.0) (12.6)
Age 3 31.37*  38.6™*  34.2" 38.2%**
(10.6)  (11.0)  (9.9) (12.6)
Age 4 28.8"*  24.8"  31.9"** 25.9**
(105) (9.5  (9.6) (10.0)
Urban 3197  32.0"™* 31.9"* 32.0"**
(2.0) (2.1) (2.0) (2.1)
Mat. Age 0.8 0.8 0.8 0.8
0.1)  (0.1)  (0.1) (0.1)
Female 14.3**  14.3**  14.3*** 14.3***
(1.2) (1.2) (1.2) (1.2)
Sample Mean -143.91 -143.91 -143.91 -143.91
Age Dummy (Yrs) v
Survey FE v v
Country v v
Country-Age v v
Lifespan v v
r2 0.119 0.049 0.120 0.049
Obs 685075 685075 685075 685075

+0.10, * 0.05, ** 0.01, *** 0.001; Ordinary Least Squares regressions in-
clude listed covariates and fixed-effects, along with dummies for maternal
education group and DHS regions. HAZ is measured in SD and multi-
plied by 100. Clustered robust standard errors allow for heteroskedas-
ticity and serial-correlation at the country level.
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Table 4: Results: Aggregate Correlations of GDP with HAZ and Stunting

(1) (2) (3) (4) (5) (6)
HAZ HAZ HAZ  Stunted Stunted Stunted
b/se b/se b/se b/se b/se b/se

GDP at Birth  22.6 26.6* 25.4* -0.04 -0.06 -0.05
(11.7) ~ (10.9) (11.1) (0.03) (0.03) (0.03)

Urban 32.6*  32.6**  32.6™* -0.09"*  -0.09"*  -0.09***
(2.3) (2.3) (2.3) (0.008)  (0.008)  (0.008)

Mat. Age 0.8 0.8  0.8%* -0.002** -0.002*** -0.002***
(0.1) (0.1) (0.1)  (0.0003) (0.0003) (0.0003)

Female 14.3***  14.3** 14.3** -0.04**  -0.04***  -0.04***
(1.2) (1.2) (1.2) (0.003)  (0.003)  (0.003)

Mean -143.91 -143.91 -143.91 .36 .36 .36

Age v v

Survey v v

Country v v v v

Country_Age v v

Lifespan v v v v

r2 0.16 0.16 0.05 0.13 0.13 0.04

N 685075 685075 685075 685075 685075 685075

+0.10, * 0.05, ** 0.01, *** 0.001; Ordinary Least Squares regressions include listed co-
variates and fixed-effects, along with dummies for maternal education group and DHS
regions. HAZ is measured in sd and multiplied by 100, and stunting is an indicator
variable for HAZ < —2. Clustered robust standard errors allow for heteroskedasticity
and serial-correlation at the country level.
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Table 5: Age-Profile Regressions: Stunting and GDP at Birth

0 2 ® @
Stunted  Stunted Stunted Stunted
b/se b/se b/se b/se
Age 0 0.005 0.06* -0.008 -0.008
(0.03) (0.03) (0.03) (0.02)
Age 1 -0.06* -0.06* -0.07* -0.06**
(0.03) (0.03) (0.03) (0.03)
Age 2 -0.08*  -0.10"**  -0.09*** -0.09**
(0.03) (0.03) (0.03) (0.04)
Age 3 -0.07  -0.10"*  -0.08*** -0.08**
(0.03) (0.03) (0.03) (0.04)
Age 4 -0.06* -0.06 -0.07** -0.05
(0.03) (0.04) (0.03) (0.04)
Urban -0.09**  -0.09***  -0.09*** -0.09***
(0.007)  (0.007)  (0.007) (0.007)
Mat. Age -0.002***  -0.002*** -0.002*** -0.002***
(0.0003)  (0.0003) (0.0003) (0.0003)
Female -0.04***  -0.04™*  -0.04*** -0.04***
(0.003)  (0.003)  (0.003) (0.003)
Sample Mean 0.36 0.36 0.36 0.36
Survey FE v v
Country FE v v
Country-Age v v
Lifespan v v
2 0.081 0.040 0.082 0.041
Obs 685075 685075 685075 685075

T0.10, * 0.05, ** 0.01, *** 0.001; Ordinary Least Squares regressions in-
clude listed covariates and fixed-effects, along with dummies for maternal
education group and DHS regions. Stunting is an indicator variable for
HAZ < —2. Cluster robust standard errors allow for heteroskedasticity

and serial-correlation at the country level.
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Table Al: Cross Country Studies

Cross (No.) Yrs Data Agg** N Outcomes Child Vol Timing® Method Effect
Country Spanned* Age*** Size®
Smith and 63 1970-1996  DHS Country 179 WAZ 0to5  GDPpc- survey CountryFE  6.3%  re-
Haddad /  Survey WDI  year duction
(2002) Year in  under-
nutrition
Haddad 61 1970-1995 WHO  Country 175 WAZ 0to5  GDPpc survey Country 32pp in-
et al. /  Survey - WB  year FE, crease in
(2003) Year Decade WAZ
FE
Headey 89 1977-2007  DHS Country 160 Stunting 0to5  GDPpc- survey Country 1.8pp de-
(2013) /  Survey WDI  year FE crease  in
Year stunting
Harttgen 28 1991-2009  DHS Child / 380,000 Wasting , 0to5 GDPpc survey Country 1.5-1.7
et al. Survey Stunting, - year FE, Survey LOR  re-
(2013) Year Under- PWT Year FE, duction in
weight Linear Age stunting
Vollmer 36 1990-2011  DHS Child/ 460,000 Wasting , 0to3  GDPpc survey  Country No / weak
et al. (127 Survey Stunting, - year FE, Survey association
(2014) sur- Year Under- PWT Year FE,
veys) weight Linear Age
Subramanyanindia 1992, 1998, DHS Child/ 77,000  Stunting 0to3  GDPpc survey State and No Associ-
et al. 2004 Survey (state), year survey ation
(2011) on Year linear year FE
India age,

No. - Number of countries, *Years Spanned, not necessarily included. **Agg - Level of Aggregation, ***Age in years (Unless specified),

Vol - Variable of Interest, P - Timing of exposure, ® - Effect Size in relation to a 10% increase in GDP, DHS - Demographic Health Surveys,

WHO - World Health Organization, WDI - World Development Indicators, GDPpc - GDP per capita, FE - Fixed Effects, LOR - log odds ratio



B Summary Statistics by Country

Table A2: Summary Statistics: Asia

Country Name Survey BirthYears N HAZ Birth Year

Years GDP pc
(USD 2005)
1. Armenia 3 1996-2010 4,074  -73.08 1356.94
2. Bangladesh 5 1992-2011 22,391 -190.37 391.141
3. Cambodia 3 1995-2010 10,803 -181.53 420.29
4. Jordan 5 1986-2012 27,806 -67.39 2183.46
5. Pakistan 2 1986-2012 7,114 -202.13 611.84
6. Turkey 3 1989-2003 9,943  -81.47 5605.791
Table A3: Summary Statistics: South America
Country Name Survey BirthYears N HAZ Birth Year
Years GDP pc
(USD 2005)
7. Bolivia 3 1993-2007 23,032 -135.51 971.06
8. Brazil 2 1982-1995 5234  -80.06 4035.81
9. Colombia 5 1984-2009 38,430 -91.91 3321.21
10. DominicanRepublic 3 1987-2013 10,109 -75.47 3081.81
11. Guatemala 2 1991-1998 12,420 -232.49 3081.80
12. Haiti 3 1997-2011 9,217 -111.84 472.59
13. Peru 4 1987-2000 34,168 -148.99 2183.584
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Table A4: Summary Statistics: Africa

Country Name Survey BirthYears N HAZ Birth Year
Years GDP pc
(USD 2005)
14. Benin 3 1997-2011 23,748 -167.17 535.46
15. BurkinaFaso 4 1988-2010 22,319 -149.18 358.81
16. Cameroon 3 1986-2010 10,548 -127.84 963.09
17. Congo 2 2001-2011 8,368 -109.47 1746.24
18. CoteDlIvoire 2 1994-2011 4,689 -123.17 1013.27
19. Egypt 5 1988-2013 53,200 -96.21 1195.76
20. Ethiopia 3 1988-2002 22,035 -181.96 138.30
21. Ghana 3 1994-2008 8,099 -130.72 463.35
22. Guinea 3 1995-2012 8,645 -121.63 292.66
23. Kenya 3 1988-2008 14,647 -141.86 529.37
24. Liberia 2 1981-2013 7,495 -140.04 207.41
25. Madagascar 3 1988-2008 13,277  -196.03 289.29
26. Malawi 4 1988-2009 25,037 -194.54 215.22
27. Mali 3 1996-2012 24,450 -150.38 420.92
28. Morocco 3 1982-2003 14,203 -111.99 1458.99
29. Mozambique 2 1999-2011 17,372 -170.48 317.04
30. Namibia 4 1988-2012 10,675 -122.68 3317.52
31. Niger 3 1987-2011 12,579 -173.03 280.13
32. Nigeria 4 1986-2012 53,293 -148.08 855.14
33. Rwanda 4 1988-2010 18,045 -184.38 254.15
34. Senegal 3 1988-2010 10,271 -114.48 731.27
35. Tanzania 5 1987-2009 27,852 -181.88 329.15
36. Uganda 5 1984-2011 17,784 -167.55 251.265
37. Zambia 4 1987-2006 20,978 -189.17 647.78
38. Zimbabwe 4 1984-2010 13,302 -134.20 539.93
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C Representation of Identifying Variation

Within— and Between—Country Variation
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Figure A1l: Identifying Variation

This figure provides a graphical representation of the identifying variation used in Equation 4.
The 3 panels that plot HAZ and GDP against time (x axis) represent 3 different countries
in the DHS surveys. The blue line represents the GDP trend in those countries. Each red
line represents a DHS survey year and the black lines represent the HAZ age profiles of that
country generated from that survey year and averaged by cohort (which, fixing survey time,
is perfectly negatively correlated with age). The within country variation compares each red
dot (in this case, 2 year olds) growing up in country J at different points in time. The cross
country variation compares the blue observations, the effect of growing up in country J or
J” at age 2 in the same time period. The green observation represents the child that is both
2 years old in Country J and grew up between the years of 1998 and 2000. Our empirical
strategy differences out these two effects for any given child, and estimate the association of
changes in GDP with changes in HAZ from this doubly de-meaned identifying variation.
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D GDP HAZ Disaggregated vs Simultaneous Estima-
tion

Table A5: HAZ and GDP at Birth: Simultaneous and Disaggregated Estimates

(1) (2) (3) (4) (5) (6)
HAZ HAZ HAZ HAZ HAZ HAZ
b/se b/se b/se b/se b/se b/se

Age 0 145 171
9.3)  (9.9)
Age 1 28.9** 28.4*
(14.1) (13.8)
Age 2 362 36.17*
(12.6) (12.6)
Age 3 38.2%* 36.8%*
(12.6) (12.7)
Age 4 25.9%* 23.8"
(10.0) (10.1)
Urban 32,07 22.8% 298 364t 377U 3647
(2.1)  (21)  (25)  (24)  (25)  (25)
Mat. Age 0.8 05" 0.6%  1.1% 117 1.0
(0.1)  (0.1)  (0.09) (0.1)  (0.1)  (0.1)
Female 14.3*% 21.9%* 259" 149" 3.1 1.2

(1.2) (1.4) (1.7) (1.0) (1.4) (1.4)
Sample Mean -143.91 -66.79 -159.26 -178.86 -171.22 -160.86

Survey FE v v v v v
Country v v v v v
Country-Age v

Lifespan v

2 0.049  0.024  0.052 0.064  0.069 0.074
Obs 685075 161657 142736 133959 132635 114088

+0.10, * 0.05, ** 0.01, *** 0.001; Ordinary Least Squares, Regressions
clustered by country. Controls also include dummies for maternal edu-
cation and regions. HAZ is in 100s, Stunting is a 0/1 dummy.
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