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Abstract. We provide sufficient conditions on the information structure for implement-

ing actions in a moral hazard setting when Agent has non-probabilistic uncertainty. We

show that under three different formulations of Agent’s ambiguity attitude, contracts that

partition the outcome space in two parts, and are piecewise constant on each part, are

enough to implement an action.
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1. Introduction

This paper aims to characterize conditions for a two-part, piecewise-constant contract (‘flat

payment plus bonus’, FPB henceforth) to be used to implement actions in moral hazard

problems with non-additive uncertainty. Lopomo et al. (2011) provide sufficient conditions

for FPB contracts to be uniquely optimal under Bewley-type preferences on a finite out-

come space, when Principal has more precise information than Agent. We consider three

different formulations of ambiguity-sensitive preferences on a continuum of outcomes, and

identify sufficient conditions for FPB contracts to solve the implementation problem for any

action other than the least costly one, regardless of whether Agent knows more or less than

Principal.

Section 2 lays out the preliminaries, Section 3 presents the implementation results and we

conclude with a discussion of our sufficient conditions in relation to the literature.
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2. Preliminaries

Let Y = [0, Y ] be the set of outcomes. Let B(Y) denote the Borel σ-algebra on Y , ∆(Y)

denote the set of Borel distributions on Y with the weak topology and K∆(Y) denote the

class of non-empty, compact, convex subsets of ∆(Y). Agent chooses an unobservable

action a from a finite set A. Let g : A 7→ R+ be a bounded, nonnegative function that

describes the cost of effort to Agent, and denote g(ak) = gk. Principal’s information about

technology is characterized as a set-valued mapping from set of actions A to K∆(Y) given by

QP (·) : A 7→ K∆(Y). Similarly, Agent’s information is characterized by another set-valued

mapping, QA(·) : A 7→ K∆(Y). Furthermore, for all actions the associated set of probability

distributions have a common support: for all {a, a′} ∈ A, suppQA(a) = suppQP (a) =

suppQA(a′) = suppQP (a′) = Y .

Remark 1. Our formal set up can accommodate asymmetry of uncertainty, in particular

both of the following cases: (I) Agent has (weakly) more precise knowledge about technology

than Principal: QA(a) ⊂ QP (a) for each a ∈ A, and (II) Principal has (weakly) more precise

knowledge about technology: QP (a) ⊂ QA(a) for each a ∈ A. However, since we focus on

implementation alone, and not Principal’s profit maximization, Agent’s information sets are

all that matter. Our results are interesting when Agent’s information sets are sufficiently

rich, in that they are not singletons (i.e. when Agent is not a standard expected utility

maximizer). We will maintain that assumption. Both cases I and II can then be thought

of as generalizations of Ghirardato (1994) and case II is also a generalization of the setting

in Lopomo et al. (2011). At the contracting stage, both parties have common knowledge of

QP and QA.1

2.1. Convex Capacities. We assume that for each action a, the set of induced probability

distributions QA(a) is the core of a regular convex capacity Ca
2:

Assumption 1. For each a ∈ Y , ∃Ca, a convex capacity, such that Q(a) = core (Ca) =

{q ∈ ∆(Y) : q(E) ≥ Ca(E), ∀E ∈ B(Y)}

Following Dyckerhoff and Mosler (1993), we define stochastic dominance of capacities.

1 Dumav and Khan (2017) show that linear contracts provide a solution when Principal does not know
Agent’s information sets.
2 A capacity on a measurable space (Ω,B) is a mapping C : B → [0, 1] such that C(∅) = 0, C(Ω) = 1
and A ⊂ B ⇒ C(A) ≤ C(B). Capacity C is coherent (or a lower probability) if for some set of probability
measures P, C(A) = infP∈P P (A) for every A ∈ B. A capacity is convex if for any A,B ∈ B, C(A)+C(B) ≤
C(A∩B)+C(A∪B). A capacity is regular if C(A) = inf{C(B) : A ⊂ B, B ∈ B, B compact} ((Molchanov,
2005, Ch. 1)). Cores of convex capacities are well-defined (Schmeidler (1986)).
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Definition 1. C1 dominates C2 with respect to a family of Borel measurable functions F ,

denoted C1 %F C2, if∫ Ch

fdC1 ≥
∫ Ch

fdC2 ∀f ∈ F (1)

where
∫ Ch

is the Choquet integral (Choquet (1954)). Let F = {f : Y → R, f increasing, B−
measurable}. Then we have the following characterization of stochastic dominance (Propo-

sition 1 in Dyckerhoff and Mosler (1993), proof omitted):

Proposition 1. C1 %F C2 if and only if C1[t,∞[≥ C2[t,∞[ ∀t ∈ R.

We also use the following result (Proposition 3 in Schmeidler (1986), proof omitted).

Proposition 2. For a convex capacity C, the Choquet integral is given by
∫ Ch

fdC =

minq∈core (C)

∫
fdq.

Let q
a

denote the distribution in Q(a) = core (Ca) that attains the minimum (for a regular

capacity this is well defined (Huber and Strassen (1973))).

2.2. Payoffs and Timing. We consider three alternative representations of ambiguity-

sensitive preferences that evaluate a contract according to :

1. worst-case expected payoff, i.e., ‘max-min’ or MEU criterion (Gilboa and Schmeidler

(1989));

2. ‘α-max-min’ or Hurwicz criterion (Hurwicz (1951));

3. probability-set-dominance criteria (Bewley (2002)).

We assume that Agent is risk-neutral over monetary payoffs.

A contract is a bounded, non-negative, B -measurable function w : Y → R+ that specifies

output contingent payments and protects Agent with limited liability (i.e. w(y) ≥ 0).

The timing of the contracting game is as follows:

(i) Principal offers a contract w;

(ii) Agent, knowing QA, chooses action a ∈ A;

(iii) output y is realized;

(iv) payoffs are received: y − w(y) to Principal and w(y)− g(a) to Agent.
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3. Implementation

Let a ∈ A be the action that Principal wants to implement. If a is the least cost action, then

a flat payment of g(a) would implement it for any of the three kinds of objective functions

under consideration. For any other action, we have three sets of individual rationality (IR)

and incentive compatibility (IC) conditions, one set for each case. These implementation

conditions, (2) - (3), (7) - (8), (12) - (13), depend only on the payment scheme w(y) and

Agent’s perception QA but neither on Principal’s perceived ambiguity nor her ambiguity

attitude.3

3.1. Implementation with MEU Preferences. Action a ∈ A is implemented if it sat-

isfies Agent’s IR and IC, respectively:

min
q∈QA(a)

∫
w(y)dq − g(a) ≥ 0 (2)

and

min
q∈QA(a)

∫
w(y)dq − g(a) ≥ min

p∈QA(a′)

∫
w(y)dp− g(a′) ∀a′ ∈ A. (3)

Proposition 3. With MEU preferences, if ak ∈ A is implementable, then ∀aj ∈ A, j 6= k

and gj < gk, we have QA(aj) \QA(ak) 6= ∅.

Proof. Suppose not. Let w(y) implement ak and let QA(aj) ⊂ QA(ak) for some aj ∈ A such

that gj < gk. Combining the IR and IC conditions together with the fact that QA(aj) ⊂
QA(ak) yields the following chain of inequalities that shows that Agent chooses aj rather

than ak:

min
q∈QA(aj)

∫
w(y)dq − gj ≥ min

p∈QA(ak)

∫
w(y)dp− gj > min

p∈QA(ak)

∫
w(y)dp− gk ≥ 0.

Here the last inequality shows that aj is rational for Agent, while the strict inequality,

which follows from gk > gj, together with the first inequality, which follows from the fact

QA(aj) ⊂ QA(ak) and that minimum of a non-negative-valued function does not get smaller

over a larger set, establishes that Agent would prefer aj rather than ak. �

3In QA, the ‘best-case’ and ‘worst-case’ distributions are endogenously determined for a given contract;
Principal and Agent can disagree on these cases. Furthermore, since all these implementability conditions
depend on QA, but not on QP , whether Principal has more or less precise knowledge of technology than
Agent does not bear on implementability of an action.
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The next Proposition shows that strengthening the necessary condition to stochastic domi-

nance, and imposing bounds on the rate at which costlier actions improve outcomes becomes

sufficient for implementation.

Assumption 2. ∀aj, ak ∈ A, j 6= k and gj < gk, Ck %F Cj and Ck 6= Cj.

Let M be the collection of all upper tail events in B : M = {M ∈ B,M = [y, Y ], y ∈ Y}.
The next two assumptions impose bounds on the rates of increase in upper tail capacities

relative to the increase in costs.

Assumption 3. ∀ak, aj ∈ A, j 6= k and gj < gk, we have

gk − gj
gk

≥ Ck(M)− Cj(M)

Ck(M)

Assumption 4. ∀al, ak, aj ∈ A, l 6= k 6= j and gk < gl < gj we have, for all upper tail

events M,

gl − gk
Cl(M)− Ck(M)

≥ gk − gj
Ck(M)− Cj(M)

(4)

Proposition 4. With MEU preferences, ak ∈ A is implementable if Assumptions 2-4 hold.

Proof. Let y
k

= minp∈QA(ak)

∫
ydp and let M be the particular event {y ∈ Y : y ∈ [yk, Y ]}.

Consider contracts that reward Agent with a constant non-zero payment only above a certain

performance level. For instance, consider a contract of the form:

w(y) =

{
b if y ∈M
0 if y ∈ Y \M

Such a contract implements ak against a lower cost action aj if

b min
q∈QA(ak)

q(M)− gk ≥ 0, (5)

and

b min
q∈QA(ak)

q(M)− gk ≥ b min
q∈QA(aj)

q(M)− gj (6)

The IR condition (5) holds if

b ≥ gk/qk(M)

The iIC condition (6) holds if

b ≥ gk − gj/(qk(M)− q
j
(M))
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where q
k
(M) = minq∈Q(ak) q(M);

Taken together, deviation to a lower cost action aj can be prevented if we can find b for

M = [yk, Y ] such that

b ≥ max{gk − gj/(qk(M)− q
j
(M)), gk/qk(M)} = gk − gj/(qk(M)− q

j
(M)) (∗1)

The second equality follows from Assumption 3.

From Proposition 1 we have a characterization of stochastic dominance for convex capacities

so that Ck %F Cj if and only if Ck([y, Y ]) ≥ Cj([y, Y ]) for all y ∈ Y and the inequality holds

as strict for Ck 6= Cj.

From Proposition 2, Ca([y, Y ]) =
∫ Ch

1[y,Y ]dCa = minq∈Q(a)

∫
1[y,Y ]dq, and from Assump-

tion 2, Ck([y, Y ]) > Cj([y, y]). Letting y = y
k

andM = [y
k
, Y ], we have (q

k
(M)−q

j
(M)) >

0.

To prevent a deviation to a costlier action al that (by Assumption 2) stochastically dominates

ak, IC (6) holds if

b ≤ gl − gk/(ql(M)− q
k
(M)) (∗2)

It is straightforward to see that Assumption 4 ensures that ICs only need to be checked

locally, against only the actions adjacent to ak on either side, ranked in terms of cost.

With (∗1) and (∗2) the IC for action ak then reduces to finding b such that

gk − gj
q
k
(M)− q

j
(M)

≤ b ≤ gl − gk
q
l
(M)− q

k
(M)

(∗)

Assumption 4 then ensures that such b in (∗) is well-defined. �

3.2. Implementation under α−MEU Preferences. Agent evaluates a contract accord-

ing to a convex combination of worst-case and best-case scenarios, the former getting weight

α and the latter 1−α. Action a ∈ A is implementable by w(y) if it satisfies Agent’s IR and

IC, respectively:

α max
q∈QA(a)

∫
w(y)dq + (1− α) min

q∈QA(a)

∫
w(y)dq − g(a) ≥ 0 (7)
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and

α max
q∈QA(a)

∫
w(y)dq + (1− α) min

q∈QA(a)

∫
w(y)dq − g(a) ≥

α max
p∈QA(a′)

∫
w(y)dp + (1− α) min

p∈QA(a′)

∫
w(y)dq − g(a′) ∀a′ ∈ A (8)

Take the conjugate capacity, C(E) = 1− C(Ec). We have C(E) = maxq∈core (C)

∫
1Edq :=

q(E).4 For a convex capacity Ck its conjugate Ck is concave, and Ck %F Cj implies Ck %F

Cj. So we have qk(E) > qj(E) for sets of the form E = [y, Y ].

With the above observations, the same stochastic dominance condition as the one we used

for MEU is also sufficient for α-MEU preferences.

For any α ∈ [0, 1] let Cα(M) = αC(M) + (1− α)C(M).

Assumption 5. ∀ak, aj ∈ A, j 6= k and gj < gk, and for all α ∈ [0, 1], we have

gk − gj
gk

≥
Cα
k (M)− Cα

j (M)

Cα
k (M)

Assumption 6. ∀al, ak, aj ∈ A, l 6= k 6= j and gk < gl < gj we have, for all upper tail

events M = [y, Y ], y ∈ Y and for all α ∈ [0, 1]

g(al)− gk
Cα
l (M)− Cα

k (M)
≥ g(ak)− gj
Cα
k (M)− Cα

j (M)
(9)

Proposition 5. With α-MEU preferences, ak ∈ A is implementable if Assumptions 2, 5

and 6 hold.

Proof. Consider an FPB contract of the form given in Proposition 4. Such a contract

prevents a downward deviation from ak to aj if

b

(
α min
q∈Q(ak)

q(M) + (1− α) max
q∈Q(ak)

q(M)

)
− gk ≥ 0. (10)

and

b

(
α min
q∈QA(ak)

q(M) + (1− α) max
q∈QA(ak)

q(M)

)
− gk ≥

b

(
α min
q∈QA(aj)

q(M) + (1− α) max
q∈QA(aj)

q(M)

)
− gj (11)

4C(Ec) =
∫ Ch

1EcdC = minq∈core (C)

∫
1Ecdq = minq∈core (C)

∫
(1− 1E)dq = 1−maxq∈core (C)

∫
(1E)dq.
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Rewriting and rearranging, condition (11) holds if

b ≥ gk − gj/
(
α(q

k
(M)− q

j
(M)) + (1− α)(qk(M)− qj(M))

)
where q

k
(M) = minq∈Q(ak) q(M); qk(M) = maxq∈Q(ak) q(M);

and condition (10) holds if

b ≥ gk/
(
αq

k
(M) + (1− α)qk(M)

)
Incentive compatibility for downward deviation to aj reduces to finding b for M = [y

k
, Y ]

such that

b ≥ max
{
gk − gj

/(
α(q

k
(M)− q

j
(M)) + (1− α)(qk(M)− qj(M))

)
,

gk/
(
αq

k
(M) + (1− α)qk(M)

)}
= gk − gj

/(
α(q

k
(M)− q

j
(M)) + (1− α)(qk(M)− qj(M))

)
(∗ ∗ 1)

Assumption 2 ensures (q
k
(M)− q

j
(M)) > 0 and (qk(M)− qj(M)) > 0, for M = [y

k
, Y ].

The IC to deter an upward deviation to a costlier action al is

b ≤ gl − gk/
(
α(q

l
(M)− q

k
(M)) + (1− α)(ql(M)− qk(M))

)
(∗ ∗ 2)

Again, it is enough to check the ICs locally due to Assumption 6. With (∗ ∗ 1) and (∗ ∗ 2)

the incentive compatibility for action ak reduces to finding b such that

gk − gj
α(q

k
(M)− q

j
(M)) + (1− α)(qk(M)− qj(M))

≤ b

≤ gl − gk
α(q

l
(M)− q

k
(M)) + (1− α)(ql(M)− qk(M))

(∗∗)

Condition (9) then ensures that such b in (∗∗) is well-defined. �

3.3. Implementation under Bewley-type Preferences. With Bewley-type preferences,

the IR and IC conditions, respectively, become∫
w(y)dq − g(a) ≥ 0 ∀q ∈ QA(a) (12)

and ∫
w(y)dq− g(a) ≥

∫
w(y)dp− g(a′) ∀q ∈ QA(a), ∀p ∈ QA(a′), ∀a′ ∈ A
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(13)

Proposition 6. With Bewley-type preferences, ak ∈ A is implementable only if, ∀aj ∈ A,

j 6= k and gj < gk, we have QA(aj) ∩QA(ak) = ∅

Proof. Suppose not, i.e. suppose that ak is implementable with w(y), but there is a cheaper

action aj such that QA(aj) ∩ QA(ak) 6= ∅. Consider q ∈ QA(ak) ∩ QA(aj). For all such q,∫
w(y)dq − gj >

∫
w(y)dq − gk and hence the IC condition (13) for implementation ak is

violated. �

Remark 2. This is a sharper version of Proposition 1 in Lopomo et al. (2011).

Assumption 7. ∀ak, aj ∈ A, j 6= k and gj < gk, for all upper tail events M = [y, Y ],

y ∈ Y , we have

gk − gj
gk

≥ Ck(M)− Cj(M)

Ck(M)

and

Assumption 8. ∀al, ak, aj ∈ A, l 6= k 6= j and gj < gk < gl we have, for all upper tail

events M = [y, Y ], y ∈ Y ,

g(al)− gk
C l(M)− Ck(M)

>
g(ak)− gj

Ck(M)− Cj(M)
(14)

Proposition 7. With Bewley-type preferences, ak ∈ A is implementable if Assumptions 2,

8 and 7 hold.

Proof. Consider the same kind of FPB contract as in the MEU case. Note that IC boils

down to

min
q∈Qk

∫
w(y)dq − gk ≥ max

p∈Qj

∫
w(y)dp− gj ∀aj ∈ A (15)

The rest of the proof is analogous to the MEU case, if we replace Cj with Cj. �

4. Conclusion

We provide conditions for two-part, piecewise-constant contracts to implement actions in

a moral hazard setting with non-additive uncertainty, under three different formulations of

ambiguity attitude for Agent. Our necessary conditions for implementation are comparable

to the one in Hermalin and Katz (1991) for the standard Bayesian model, and those in
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Ghirardato (1994) and Lopomo et al. (2011) for non-additive models. All these conditions

stipulate a necessary amount of ‘disjointedness’ between the sets of probabilities generated

by different actions.

Our sufficiency conditions turn out to be very similar in all three cases, and also shares

some substantive similarities to those in Lopomo et al. (2011). Our stochastic dominance

assumption is comparable to the MLRP condition on extreme points in Lopomo et al.

(2011), and helps make downward deviations unattractive enough. Our other substantive

assumption entails that any upward deviation does not increase the probability of upper

sets by more than the proportionate increase in effort costs. Again, the role played by this

assumption is very similar to the ‘concavity of distribution’ assumption in Grossman and

Hart (1983) and Lopomo et al. (2011). Given that these contracts provide just the minimum

level of variability needed for implementation, our results suggest they could be robustly

optimal across different formulations of ambiguity attitude.
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