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Abstract

This paper studies the averaging GMM estimator that combines a conservative GMM es-

timator based on valid moment conditions and an aggressive GMM estimator based on both

valid and possibly misspeci�ed moment conditions, where the weight is the sample analog of an

infeasible optimal weight. We establish asymptotic theory on uniform approximation of the up-

per and lower bounds of the �nite-sample truncated risk di�erence between any two estimators,

which is used to compare the averaging GMM estimator and the conservative GMM estimator.

Under some su�cient conditions, we show that the asymptotic lower bound of the truncated

risk di�erence between the averaging estimator and the conservative estimator is strictly less

than zero, while the asymptotic upper bound is zero uniformly over any degree of misspeci-

�cation. Extending seminal results on the James-Stein estimator, this uniform dominance is

established in non-Gaussian semiparametric nonlinear models. The simulation results support

our theoretical �ndings.
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1 Introduction

We are interested in estimating some �nite dimensional parameter �F 2 Rd� which is uniquely

identi�ed by the moment restrictions

EF [g1(W; �F )] = 0r1�1 (1.1)

for some known vector functions g1 (�) :W ��!Rr1 , where � is a compact subset of Rd� , W is a

random vector with supportW and joint distribution F , and EF [�] denotes the expectation operator
under F . Suppose we have i.i.d. data fWigni=1, where Wi has distribution F for any i = 1; : : : ; n.

1

Let g1(�) = n
�1Pn

i=1 g1(Wi; �). One e�cient GMM estimator for �F is

b�1 = argmin
�2�

g1(�)
0(
1)

�1g1(�); (1.2)

where 
1 = n�1
Pn
i=1 g1(Wi;e�1)g1(Wi;e�1)0 � g1(e�1)g1(e�1)0 is the e�cient weighting matrix with

some preliminary consistent estimator e�1.2 In a linear instrumental variable (IV) example, Y =

X 0�F + U where the IV Z1 2 Rr1 satis�es EF [Z1U ] = 0r1�1. The moments in (1.1) hold with

g1(W; �) = Z1(Y �X 0�) and �F is uniquely identi�ed if EF [Z1X 0] has full column rank. Under cer-

tain regularity conditions, it is well-known that b�1 is consistent and achieves the lowest asymptotic
variance among GMM estimators based on the moments in (1.1), see Hansen (1982).

If one has additional moments

EF [g�(W; �F )] = 0r��1 (1.3)

for some known function g�(�) : W � �!Rr� , imposing them together with (1.1) can further

reduce the asymptotic variance of the GMM estimator. However, if these additional moments are

misspeci�ed in the sense that EF [g�(W; �F )] 6= 0r��1, imposing (1.3) may result in inconsistent

estimation. The choice of moment conditions is routinely faced by empirical researchers. Take the

linear IV model for example. One typically starts with a large number of candidate IVs but only

has con�dence that a small number of them are valid, denoted by Z1. The rest of them, denoted

by Z�, are valid only under certain economic hypothesis that yet to be tested. In this example,

g�(W; �) = Z�(Y � X 0�). In contrast to the conservative estimator b�1, an aggressive estimatorb�2 always imposes (1.3) regardless of its validity. Let g2(Wi; �) = (g1(Wi; �)
0; g�(Wi; �)

0)0 for any

1The main theory of the paper can be easily extended to time series models with dependent data, as long as the
preliminary results in Lemma A.1 hold.

2For example, e�1 could be the GMM estimator similar to b�1 but with an identity weighting matrix, see (A.5) in
the Appendix.
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Figure 1. Finite Sample (n = 500) MSEs of the Pre-test and the Averaging GMM Estimators

Note: \Pre-test(0.01)" refers to the pre-test GMM estimator based on the J test statistic ng2(
b�2)0(
2)�1g2(b�2) with

a norminal size 0.01. \Emp-opt" refers to the averaging GMM estimator de�ned in equation (4.7) of the paper. In
this simulation, we set �F = r0cn

�1=2 where c is a r� by 1 real vector. At each r0, we consider 127 di�erent values
for c and report the largest �nite sample MSEs of the estimators. Details of the simulation design for Figure 1 is
provided in Section 7.

i = 1; : : : ; n, and g2(�) = n
�1Pn

i=1 g2(Wi; �). The aggressive estimator b�2 takes the form
b�2 = argmin

�2�
g2(�)

0(
2)
�1g2(�); (1.4)

where 
2 is constructed in the same way as 
1 except that g1(Wi; �) is replaced by g2(Wi; �).
3

Because imposing EF [g�(W; �F )] = 0r��1 is a double-edged sword, a data-dependent decision

usually is made to choose between b�1 and b�2. To study such a decision and the subsequent estimator,
let

�F = EF [g�(W; �F )] 2 Rr
�
: (1.5)

The pre-testing approach tests the null hypothesis H0 : �F = 0r��1 and constructs an estimator

b�pre = 1fTn > c�gb�1 + 1fTn � c�gb�2 (1.6)

3See the �rst line of equations (C.13) in the Supplemental Appendix for the de�nition of 
2. In particular, 
2 is

constructed using e�1, the preliminary consistent estimator based on the valid moment conditions in (1.1) only.
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for some test statistic Tn with the critical value c� at the signi�cance level �. One popular test is the

J-test, see Hansen (1982), and c� is the 1�� quantile of the chi-squared distribution with degree of
freedom r2�d� where r2 = r1+r�. Because the power of this test against the �xed alternative is 1,b�pre equals b�1 with probability 1 asymptotically (n!1) for those �xed misspeci�ed model where
�F 6= 0r��1. Thus, it seems that b�pre is immune to moment misspeci�cation. However, we care
about the �nite-sample mean squared error (MSE) of b�pre in practice and this standard pointwise
asymptotic analysis (�F is �xed and n!1) provides a poor approximation to the former.4 To see
the comparison between b�pre and b�1, the dashed line in Figure 1 plots the maximum �nite-sample

(n = 500) MSE of b�pre while the MSE of b�1 is normalized to be 1. For some values of �F , the
MSE of b�pre is larger than that of b�1, sometimes by 50%. Note that the pre-test estimator exhibits
multiple peaks because the simulation design allows for multiple potentially misspeci�ed moments

and the horizontal axis only shows the main component r0 which determines the norm of the vector

that measures the degree of misspeci�cation.

The goal of this paper is twofold. First, we propose a data-dependent averaging of b�1 and b�2
that takes the form b�eo = (1� e!eo)b�1 + e!eob�2 (1.7)

where e!eo 2 [0; 1] is a data-dependent weight speci�ed in (4.7) below. The subscript in e!eo is short
for empirical optimal because this weight is an empirical analog of an infeasible optimal weight !�F

de�ned in (4.3) below. We plot the �nite-sample MSE of this averaging estimator as the solid line

in Figure 1. This averaging estimator is robust to misspeci�cation in the sense that the solid line is

below 1 for all values of �F , in contrast to the bump in the dashed line that represents the pre-test

estimator. Second, we develop a uniform asymptotic theory to justify the �nite-sample robustness

of this averaging estimator. We show that this averaging estimator dominates the conservative

estimator uniformly over a large class of models with di�erent degrees of misspeci�cation. The

uniform dominance is established under the truncated weighted loss function which is de�ned in

(3.11) below.5 Truncation at a large number is necessary for the asymptotic analysis. The standard

asymptotic theory is pointwise and fails to reveal the fragile nature of the pre-test estimator. A

stronger uniform notion of robustness is crucial for this model. Furthermore, we quantify the

upper and lower bounds of the asymptotic risk di�erences between the averaging estimator and the

conservative estimator.6

4The poor approximation of the pointwise asymptotics to the �nite sample properties of the pre-test estimator
has been noted in Shibata (1986), P�otscher (1991), Kabaila (1995, 1998) and Leeb and P�otscher (2005, 2008), among
others.

5Truncation at a large number is needed for the asymptotic analysis of the risk of general estimator without
imposing stringent conditions such as uniform integrability.

6The lower and upper bounds of asymptotic risk di�erence are de�ned in (3.12) below.
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The rest of the paper is organized as follows. Section 2 discusses the literature related to

our paper. Section 3 de�nes the parameter space over which the uniform result is established

and de�nes uniform dominance. Section 4 introduces the averaging weight. Section 5 provides an

analytical representation of the bounds of the asymptotic risk di�erences and applies it to show that

the averaging GMM estimator uniformly dominates the conservative estimator. Di�erent from the

global uniform dominance in Section 5, Section 6 studies local uniform dominance over a shrinking

parameter space. Section 7 investigates the �nite sample performance of our averaging estimator

using Monte Carlo simulations. Section 8 concludes. Proof of the main results of the paper is given

in the Appendix. Analysis of the pre-test estimator, extra simulation studies and proofs of some

auxiliary results are included in the Supplemental Appendix of the paper.

Notation. For any real matrix A, we use jjAjj to denote the Frobenius norm of A. If A

is a real square matrix, we use tr(A) denote the trace of A. If A is a real symmetric matrix,

�min(A) and �max(A) to denote the smallest and largest eigenvalues of A, respectively. For any

positive integers d1 and d2, Id1 and 0d1�d2 stand for the d1 � d1 identity matrix and d1 � d2
zero matrix, respectively. Let vec (�) denotes vectorization of a matrix and vech (�) denotes the
half vectorization of a symmetric matrix. Let R = (�1;+1), R+ = [0;+1), R1 = R [ f�1g
and R+;1 = R+[f+1g. For any positive integers d and any set S, Sd denotes the Cartesian
product of d many sets: S1� � � � � Sd with Sj = S for j = 1; : : : ; d. For any set S, int(S) denotes
the interior of S. We use fng to denote the set of natural numbers and fpng = fpn : n � 1g
denote a subsequence of fng. For any (possibly random) positive sequences fang1n=1 and fbng1n=1,
an = Op(bn) means that limc!1 limn!1 Pr (an=bn > c) = 0; an = op(bn) means that for all

" > 0, limn!1 Pr (an=bn > ") = 0. Let \!p" and \!D" stand for convergence in probability and

convergence in distribution, respectively. The notation a � b means a is de�ned as b.

2 Related Literature

In this section, we discuss the related literature. Our uniform dominance result is related to the

Stein's phenomenon (Stein, 1956) in parametric models. The James-Stein (JS) estimator (James

and Stein, 1961) is shown to dominate the maximum likelihood estimator in exact normal sampling.

Hansen (2016) considers local asymptotic analysis of the JS type averaging estimator in general

parametric models and substantially extends its application in econometrics. Many other frequen-

tist model averaging estimators are studied in the literature, including Buckland, Burnham, and

Augustin (1997), Hjort and Claeskens (2003, 2006), Hansen (2007, 2015, 2017), Claeskens and Car-

roll (2007), Hansen and Racine (2012), Cheng and Hansen (2014) and Lu and Su (2015), DiTraglia
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(2016) to name only a few. Our paper is closely related to DiTraglia (2016) and Hansen (2017).

Hansen (2017) proposes an averaging estimator that combines the ordinary least squares (OLS)

estimator and the two-stage-least-squares (2SLS) estimator in linear IV models. Under some su�-

cient conditions, he shows that the averaging estimator has smaller asymptotic risk than the OLS

estimator under any given sequence of n�1=2 local misspeci�ed data generating processes (DGPs).

DiTraglia (2016) also studies the averaging GMM estimator under given sequences of n�1=2 local

misspeci�cation DGPs, including the averaging of OLS and IV estimators. The averaging weight is

based on the focused moment selection criterion with a targeted parameter. The simulation results

in the paper show that this averaging estimator does not uniformly dominate the conservative esti-

mator. Compared to these results, our paper makes the following contributions. First, we provide

a uniform asymptotic framework, which is di�erent from pointwise asymptotic analysis for �xed

models or local asymptotic analysis along some drifting models (e.g., the given n�1=2 local misspec-

i�ed DGPs in DiTraglia (2016) and Hansen (2017)). For this purpose, this paper de�nes a large set

of drifting models and show that a uniform result on the risk of this shrinkage estimator requires

the study of all of them. In particular, this large set of models not only includes the crucial n�1=2

local misspeci�ed models that are considered by DiTraglia (2016) and Hansen (2017), but it also

includes many more severely misspeci�ed models. This uniform analysis is similar to those studied

in Andrews and Guggenberger (2010) and Andrews, Cheng, and Guggenberger (2011) for uniform

size control for inference in non-standard problems, but the present paper is for estimation rather

than inference and focuses on a misspeci�cation issue that is not studied in these papers. Second,

the present paper extends the study of the Stein's phenomenon to non-Gaussian semiparametric

nonlinear GMM models. The weight in our averaging estimator is close to those studied in Hjort

and Claeskens (2003) and Liu (2015) in the sense that we �rst consider the optimal weight and

then obtain its empirical analog.

The uniform dominance property of the averaging estimator does not contradict the unbounded

risk property of the post-model-selection estimator found in Yang (2005) and Leeb and P�otscher

(2008). Measured by the MSE, the post-model-selection estimator based on consistent model

selection procedure usually does better than the unrestricted estimator in part of the parameter

space and worse than the latter in other part of the parameter space. One standard example is

the Hodge's estimator, whose scaled maximal MSE diverges to in�nity with the growth of the

sample size (see, e.g., Lehmann and Casella, 1998). Similar unbounded risk results for other post-

model-selection estimators are established in Yang (2005) and Leeb and P�otscher (2008). The

post-model-selection estimator has unbounded (scaled) maximal MSE because it is based on a non-

smooth transition rule between the restricted and unrestricted estimators and a consistent model
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selection procedure is employed in the transition rule.7 However, the averaging estimator proposed

in this paper is based on a smooth combination of the restricted and unrestricted estimators and

no model selection procedure is used in the smooth combination. Hence our averaging estimator is

essentially di�erent from the post-model-selection estimator.

There is a large literature studying the validity of GMM moment conditions. Many methods

can be applied to detect the validity, including the over-identi�cation tests (see, e.g., Sargan, 1958;

Hansen, 1982; and Eichenbaum, Hansen and Singleton 1988), the information criteria (see, e.g.,

Andrews, 1999; Andrews and Lu, 2003; Hong, Preston and Shum, 2003), and the penalized estima-

tion methods (see, e.g., Liao, 2013 and Cheng and Liao, 2014). Recently, misspeci�ed moments and

their consequences are considered by Ashley (2009), Berkowitz, Caner, and Fang (2012), Conley,

Hansen, and Rossi (2012), Doko Tchatoka and Dufour (2008, 2014), Guggenberger (2012), Nevo

and Rosen (2012), Kolesar, Chetty, Friedman, Glaeser, Imbens (2014), Small (2007), Small, Cai,

Zhang, Kang (2015), among others. Moon and Schorfheide (2009) explore over-identifying moment

inequalities to reduce the MSE. This paper contributes to this literature by providing new uniform

results for potentially misspeci�ed semiparametric models.

There is also a large literature studying adaptive estimation in nonparametric regression model

using model averaging; see Yang (2000, 2003, 2004), Leung and Barron (2006), and the references

therein. Since the unknown function can be written as a linear combination of (possibly in�nitely

but countably many) basis functions, the nonparametric model may be well approximated by

parametric regression models in �nite samples. These papers show that the averaging estimators

which combine OLS estimators from di�erent parametric models with data dependent weights may

achieve the optimal convergence rate up to some logarithm factor (or the oracle inequalities). Our

paper is di�erent from these papers since the parameter of interests is a �nite dimensional real value,

not an unknown function, and the bias and variance trade-o� is due to the possibly misspeci�ed

moment conditions. Moreover, there is a benchmark estimator in our paper, i.e., the conservative

GMM estimator whose asymptotic properties are well-known and many model selection estimators

proposed in the literature do not uniformly improve upon this benchmark estimator in terms of risk

over di�erent degrees of moment misspeci�cation. Our goal is to propose an averaging estimator

with smaller risk than the conservative estimator uniformly.

7The post-model-selection estimator based on conservative model selection procedure (e.g., hypothesis test with
�xed critical value or Akaike information criterion) may not have unbounded (scaled) maximal MSE. However its
asymptotic maximal MSE is not guaranteed to be less than or equal to the benchmark estimator (e.g., the conservative
GMM estimator in the framework of this paper). The pre-test estimator in our simulation studies is a good example,
since it is based on the J-test with nominal size 0.01.
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3 Parameter Space and Uniform Dominance

Let g2;j(w; �) (j = 1; : : : ; r2) denote the j-th component function of g2(w; �). We assume that

g2;j(w; �) for j = 1; : : : ; r2 is twice continuously di�erentiable with respect to � for any w 2 W.
The �rst and second order derivatives of g2(w; �) with respect to � are denoted by

g2;�(w; �) �

0BBB@
@g2;1(w;�)

@�0

...
@g2;r2 (w;�)

@�0

1CCCA and g2;��(w; �) �

0BBB@
@2g2;1(w;�)

@�@�0

...
@2g2;r2 (w;�)

@�@�0

1CCCA ; (3.1)

respectively.8 Let F be a set of distribution functions ofW . For k = 1 and 2, de�ne the expectation
of the moment functions, the Jacobian matrix and the variance-covariance matrix as

Mk;F � EF [gk(W; �F )] ,

Gk;F � EF [gk;�(W; �F )] ; and


k;F � EF
�
gk(W; �F )gk(W; �F )

0��Mk;FM
0
k;F (3.2)

for any F 2 F respectively. The moments above exist by Assumption 3.2 below.

Let

QF (�) � EF [g2(W; �)]0
�12;FEF [g2(W; �)] (3.3)

for any � 2 �, which denotes the population criterion of the GMM estimation in (1.4). For any

� 2 �, de�ne Bc"(�) = f�� 2 � : jj�� � �jj � "g. We consider the risk di�erence between two
estimators uniformly over F 2 F that satis�es Assumptions 3.1-3.3 below.

Assumption 3.1 The following conditions hold:

(i) for any F 2 F , EF [g1(W; �F )] = 0r1�1 for some �F 2 int(�);
(ii) for any " > 0, inf

F2F
inf

�2Bc"(�F )
jjEF [g1(W; �)] jj > 0;

(iii) for any F 2 F , there is ��F 2 int(�) such that

inf
F2F

inf
�2Bc"(��F )

[QF (�)�QF (��F )] > 0 for any " > 0;

(iv) inf
fF2F : k�F k>0g

jjG02;F

�1
2;F �2;F jj

k�2;Fk� > 0 where �02;F = (01�r1 ; �
0
F ) and � > 0 is a �xed constant;

(v) 0r��1 2 int(��) where �� = f�F : F 2 Fg.
8By de�nition, g1;�(w; �) and g1;��(w; �) are the leading r1 � d� and (r1d�) � d� submatrices of g2;�(w; �) and

g2;��(w; �); respectively.
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Assumptions 3.1.(i)-(ii) require that the true unknown parameter �F is uniquely identi�ed by

the moment conditions EF [g1(W; �F )] = 0r1�1 for any DGP F 2 F . Assumption 3.1.(iii) implies
that for any F 2 F , a pseudo true value ��F is identi�ed by the unique minimizer of the population
GMM criterion QF (�) under possible misspeci�cation. Assumption 3.1.(iv) requires that �2;F is not

orthogonal to 
�12;FG2;F , which rules out the special case that �F may be consistently estimable

even with severely misspeci�ed moment conditions. Assumption 3.1.(v) implies that the set of

distribution functions F is rich such that it includes the distributions under which the extra moment
conditions are correctly speci�ed. Uniform dominance is of interest only if we allow for di�erent

degrees of misspeci�cation in the parameter space. If we only allow for correctly speci�ed models

or severely misspeci�ed models, the desired dominance results hold trivially following a pointwise

analysis. Assumption 3.1.(v) ensures that the extra moment conditions can be correctly speci�ed,

locally misspeci�ed or severely misspeci�ed.

Assumption 3.2 The following conditions hold:

(i) For j = 1; : : : ; r2, g2;j(w; �) is twice continuously di�erentiable with respect to � for any w 2 W;

(ii) sup
F2F

EF
�
sup
�2�

�
jjg2(W; �)jj2+
 + jjg2;�(W; �)jj2+
 + jjg2;��(W; �)jj2+


��
<1 for some 
 > 0;

(iii) infF2F �min(
2;F ) > 0;

(iv) infF2F �min(G
0
1;FG1;F ) > 0.

Assumption 3.2.(i) requires that the moment functions are smooth. Assumption 3.2.(ii) imposes

2+
 �nite moment conditions on the GMMmoment functions and their �rst and second derivatives.

Assumptions 3.2.(iii) and 3.2.(iv) are important su�cient conditions for the local identi�cation of

the unknown parameter in GMM with valid moment conditions.

The next assumption is on the nuisance parameters of the DGP F 2 F . Write

vF =
�
vec(G2;F )

0; vech(
2;F )
0; �0F

�
(3.4)

for any F 2 F . It is clear that vF includes the Jacobian matrix, the variance-covariance matrix,
and the measure of misspeci�cation of the moment conditions EF [g�(W; �F )] = 0r��1. Let

vF =
�
vec(G2;F )

0; vech(
2;F )
0� (3.5)

for any F 2 F .

Assumption 3.3 The following conditions hold:

(i) For any F 2 F with �F = 0r��1, there exists a constant "F > 0 such that for any e� 2 Rr�
with 0 � jje�jj < "F , there is eF 2 F with � eF = e� and 

v eF � vF

 � Cjje�jj� for some � > 0;
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(ii) The set � � fvF : F 2 Fg is closed.

Assumption 3.3.(i) requires that for any F 2 F such that EF [g2(W; �F )] = 0r��1 is valid, there

are many DGPs eF 2 F which are close to F . Here the closeness of any two DGPs F and eF is

measured by the distance between vF and v eF . Assumption 3.3 (i) and (ii) are useful to derive the
exact expression of the asymptotic risk of the GMM estimator.

Example 3.1 (Linear IV Model) We study a linear IV model and provide a set of low-level con-

ditions that imply Assumptions 3.1, 3.2 and 3.3. The parameters of interest �0 are the coe�cients

of the endogenous regressors X in

Y = X 0�0 + U , (3.6)

with some valid IVs Z1 2 Rr1 and some potentially misspeci�ed IVs Z� 2 Rr
�
such that

EF � [U ] = 0; EF � [Z1U ] = 0r1�1; and (3.7)

Z� = U�0 + V , with EF � [V ] = 0r��1 and EF � [V U ] = 0r��1; (3.8)

where F � denotes the joint distribution of (X 0; Z 01; V
0; U)0. In the reduced-form equation (3.8), �0

is a r� � 1 real vector which characterizes the degree of misspeci�cation. Let F� denote a class of
distributions containing F �, and let � and �� denote the parameter spaces of �0 and �0 respectively.

The joint distribution of W = (Y; Z 01; Z
�0; X 0)0 is denoted as F which is determined by �0, �0 and

F � through the linear equations in (3.6) and (3.8).

For ease of discussion, we further assume that the random vector (X 0; Z 01; V
0; U)0 follows the

normal distribution with mean � and variance-covariance matrix 	.9 Under the normal assumption,

each distribution F � corresponds to a pair of � and 	.

For notational simplicity, in Lemma 3.1 below, for any �nite dimensional random vectors a1

and a2, let �aj = EF � [aj ] for j = 1; 2, �a1a2 = EF � [a1a
0
2]; and 
a1a2 = EF � [a1a02]� �a1�

0
a2 .

Lemma 3.1 Let F� denote the set of normal distributions which satis�es:
(i) �u = 0, �z1u = 0r1�1 and �vu = 0r��1;

(ii) infF �2F� �min(�xz1�z1x) > 0, supF �2F� jj�jj2 <1 and

0 < infF �2F� �min (	) � supF �2F� �max (	) <1;
(iii) infF �2F� inffk�k�"g k�k�1 jj(�xz1��1z1z1�z1v � �xv)� � �xujj > 0 for some " > 0 that is small

enough;10

9In Section B of the Supplemental Appendix, we provide su�cient low-level conditions for Assumptions 3.1, 3.2
and 3.3 in the linear IV model without the normal assumption.
10The constant " depend on the in�mum and supremum in Condition (ii) and it is given in (A.3) in the Appendix.
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(iv) �0 2 int(�) and � is compact and large enough such that the pseudo-true value ��F 2 int(�);11

(v) �� = [c1;�; C1;�] � � � � � [cr�;�; Cr�;�] where fcj;�; Cj;�gr
�

j=1 is a set of �nite constants with

cj;� < 0 < Cj;� for j = 1; : : : ; r
�,

then Assumptions 3.1, 3.2 and 3.3 hold.

Condition (i) lists the moment conditions in (3.7) and (3.8). The inequality in Condition

(ii) rules out DGPs under which �min(�xz1�z1x) may be close to zero and (part of) the unknown

parameter �0 is weakly identi�ed. Condition (ii) also requires that the mean of the random vector

(X 0; Z 01; V
0; U)0 is uniformly bounded and the eigenvalues of its variance-covariance matrix are

uniformly �nite and bounded away from 0. Condition (iii) requires that the projection residual

of the vector �xu on the subspace spanned by the matrix �xz1�
�1
z1z1�z1v � �xv is bounded away

from zero. It is a su�cient condition for Assumption 3.1.(iv), which ensures that the aggressive

estimator is inconsistent under severe misspeci�cation. Condition (iv) is needed to derive the limit

of the aggressive estimator under misspeci�cation. The compactness assumption of � is not needed

for the linear IV model. However, it is useful to verify Assumptions 3.1, 3.2 and 3.3 which do not

assume any special structure on the model. Condition (v) speci�es that the parameter space of �0

is a product space.

Lemma 3.1 provides simple conditions on �0, �0 and F� on which uniformity results are subse-
quently established.12

Now we get back to the general set up. For a generic estimator b� of �, consider a weighted
quadratic loss function

`(b�; �) = n(b� � �)0�(b� � �); (3.9)

where � is a d� � d� pre-determined positive semi-de�nite matrix. For example, if � = Id� ;

EF [`(b�; �F )] is the MSE of b�. If � = (�1;F � �2;F )�1 where �k;F (k = 1; 2) is de�ned in (4.4), the
weighting matrix � rescales b� by the scale of variance reduction due to the additional moments. If
� = EF [XiX 0

i] for regressors Xi, EF [`(b�; �F )] is the MSE of X 0
i
b�, an estimator of X 0

i�.

Below we compare the averaging estimator b�eo and the conservative estimator b�1. We are

11Speci�c restritions on � which ensures that ��F 2 int(�) are given in (B.8) and Assumption B.1.(vi) in the
Supplemental Appendix.
12Similar results have been established in Section B of the Supplemental Appendix for the linear IV model when

the normal assumption on (X 0; Z01; V
0; U)0 is relaxed. Section B of the Supplemental Appendix also provides proof

for Lemma 3.1 with and without the normal assumption.
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interested in the bounds of the truncated �nite sample risk di�erence

RDn(
b�eo;b�1; �) � inf

F2F
EF [`�(b�eo; �F )� `�(b�1; �F )] and

RDn(b�eo;b�1; �) � sup
F2F

EF [`�(b�eo; �F )� `�(b�1; �F )]; (3.10)

where

`�(b�; �F ) � minf`(b�; �F ); �g (3.11)

denotes the truncated loss function with an arbitrarily large trimming �. The truncated loss

function is employed to facilitate the asymptotic analysis of the bounds of the risk di�erence. The

�nite-sample bounds in (3.10) are approximated by

AsyRD(b�eo;b�1) � lim inf
�!1

lim inf
n!1

RDn(
b�eo;b�1; �) and

AsyRD(b�eo;b�1) � lim sup
�!1

lim sup
n!1

RDn(b�eo;b�1; �); (3.12)

which are called lower and upper bounds of the asymptotic risk di�erence respectively in this paper.

The averaging estimator b�eo asymptotically uniformly dominates the conservative estimator b�1 if
AsyRD(b�eo;b�1) < 0 and AsyRD(b�eo;b�1) � 0: (3.13)

The bounds of the asymptotic risk di�erence build the uniformity over F 2 F into the de�nition
by taking infF2F and supF2F before lim infn!1 and lim supn!1 respectively. Uniformity is crucial

for the asymptotic results to give a good approximation to their �nite-sample counterparts. These

uniform bounds are di�erent from pointwise results which are obtained under a �xed DGP. The

sequence of DGPs fFng along which the supremum or the in�mum are approached often varies with
the sample size.13 Therefore, to determine the bounds of the asymptotic risk di�erence, one has to

derive the asymptotic distributions of these estimators under various sequences fFng. Under fFng,
the observations fWn;igni=1 form a triangular array. For notational simplicity, Wn;i is abbreviated

to Wi throughout the paper.

To study the bounds of asymptotic risk di�erence, we consider sequences of DGPs fFng such
that �Fn satis�es

14

(i) n1=2�Fn ! d 2 Rr� or (ii) jjn1=2�Fn jj ! 1: (3.14)

Case (i) models mild misspeci�cation, where �Fn is a n
�1=2-local deviation from 0r��1. Case (ii)

13In the rest of the paper, we use fFng to denote fFn 2 F : n = 1; 2; :::g.
14Since Fn 2 F , by Assumption 3.2.(ii), the sequence �Fn in (3.14) should satisfy k�Fnk � C for any n.
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includes the severe misspeci�cation where k�Fnk is bounded away from 0 as well as the intermediate
case in which �Fn ! 0 and jjn1=2�Fn jj ! 1. To obtain a uniform approximation, all of these

sequences are necessary. Once we study the bounds of asymptotic risk di�erence along each of

these sequences, we show that we can glue them together to obtain the bounds of asymptotic risk

di�erence.

4 Averaging Weight

We start by deriving the joint asymptotic distribution of b�1 and b�2 under di�erent degrees of
misspeci�cation. We consider sequences of DGPs fFng in F such that (i) n1=2�Fn ! d 2 Rr� or
jjn1=2�Fn jj ! 1; and (ii) G2;Fn , 
2;Fn andM2;Fn converges to G2;F , 
2;F andM2;F for some F 2 F .
15

For k = 1; 2 and any F 2 F , de�ne

�k;F = �
�
G0k;F


�1
k;FGk;F

��1
G0k;F


�1
k;F : (4.1)

Let Z2;F denote a zero mean normal random vector with variance-covariance matrix 
2;F and

Z1;F denote its �rst r1 components.

Lemma 4.1 Suppose Assumptions 3.1 and 3.2 hold. Consider any sequence of DGPs fFng such
that vFn ! vF for some F 2 F , and n1=2�Fn ! d for d 2 Rr�1.
(a) If d 2 Rr�, then0@ n1=2(b�1 � �Fn)

n1=2(b�2 � �Fn)
1A!D

0@ �1;F

�2;F

1A �

0@ �1;FZ1;F
�2;F (Z2;F + d0)

1A ,
where d0 = (01�r1 ; d

0)0:

(b) If jjdjj =1, then n1=2(b�1 � �Fn)!D �1;F and jjn1=2(b�2 � �Fn)jj !p 1.

Given the joint asymptotic distribution of b�1 and b�2, it is straightforward to study b�(!) =
(1� !)b�1 + !b�2 if ! is deterministic. Following Lemma 4.1.(a),

n1=2(b�(!)� �Fn)!D �F (!) � (1� !)�1;F + !�2;F (4.2)

15The requirement on the convergence of G2;Fn , 
2;Fn and M2;Fn is not restrictive. Lemma A.7 in Appendix
A.1 shows that the sequences G2;Fn , 
2;Fn and M2;Fn have subsequences that converge to G2;F , 
2;F and M2;F ;
respectively, for some F 2 F . The general result on the lower and upper bounds of the asymptotic risk di�erence,
Lemma A.14 in Appendix A.2, only requires to consider the subsequence fFpng such that G2;Fpn , 
2;Fpn andM2;Fpn

are convergent, where fpng is a subsequence of fng. The asymptotic properties of the GMM estimators established
in this section under the full sequence of DGPs fFng holds trivially for its subsequence.
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for n1=2�Fn ! d, where d 2 Rr� . In Section C of the Supplemental Appendix, a simple calculation
shows that the asymptotic risk of b�(!) is minimized at the infeasible optimal weight

!�F �
tr(� (�1;F � �2;F ))

d00

�
�2;F � ��1;F

�0
�
�
�2;F � ��1;F

�
d0 + tr(� (�1;F � �2;F ))

; (4.3)

where � is the matrix speci�ed in the loss function,

�k;F �
�
G0k;F


�1
k;FGk;F

��1
for k = 1; 2 and ��1;F � [�1;F ;0d��r� ] : (4.4)

To gain some intuition, consider the case where � = Id� such that the MSE of
b�(!) is minimized

at !�F . In this case, the infeasible optimal weight !
�
F yields the ideal bias and variance trade o�.

However, the bias depends on d, which cannot be consistently estimated. Hence, !�F cannot be

consistently estimated. Our solution to this problem follows the popular approach in the literature

which replaces d by an estimator whose asymptotic distribution is centered at d; see Liu (2015)

and Charkhi, Claeskens, and Hansen (2016) for similar estimators in the least square estimation

and maximum likelihood estimation problems, respectively. Moreover, we show that the resulting

averaging estimator reduces the MSE for any value of d.

The empirical analog of !�F is constructed as follows. First, for k = 1 and 2, replace �k;F by

its consistent estimator b�k � ( bG0kb
�1k bGk)�1,16 where
bGk � n�1 nX

i=1

gk;�(Wi;b�1) and b
k � n�1 nX
i=1

gk(Wi;b�1)gk(Wi;b�1)0 � gk(b�1)gk(b�1)0: (4.5)

Note that bGk and b
k are based on the conservative GMM estimator b�1. Hence they are consistent
regardless of the degree of misspeci�cation of the moment conditions in (1.3). Second, replace

(�2;F � ��1;F )d0 by its asymptotically unbiased estimator n1=2(b�2 � b�1) because
n1=2(b�2 � b�1)!D (�2;F � ��1;F ) (Z2;F + d0) ; (4.6)

for d0 = (01�r1 ; d
0)0 and d 2 Rr� following Lemma 4.1(a). Then the empirical optimal weight takes

the form e!eo � tr(�(b�1 � b�2))
n(b�2 � b�1)0�(b�2 � b�1) + tr(�(b�1 � b�2)) ; (4.7)

16The consistency of b�k is proved in the proof of Lemma 4.2.
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and the averaging GMM estimator takes the form

b�eo = (1� e!eo)b�1 + e!eob�2: (4.8)

Next we consider the asymptotic distribution of b�eo under di�erent degrees of misspeci�cation.
Lemma 4.2 Suppose that Assumptions 3.1-3.3 hold. Consider fFng such that vFn ! vF for some

F 2 F , and n1=2�Fn ! d for d 2 Rr�1.
(a) If d 2 Rr�, then

e!eo !D !F �
tr(�(�1;F � �2;F ))

(Z2;F + d0)0(�2;F � ��1;F )0�(�2;F � ��1;F )(Z2;F + d0) + tr(�(�1;F � �2;F ))

and

n1=2(b�eo � �Fn)!D �F � (1� !F )�1;F + !F �2;F :

(b) If jjdjj =1, then e!eo !p 0 and n
1=2(b�eo � �Fn)!D �1;F .

To study the bounds of asymptotic risk di�erence between b�eo and b�1, it is important to take
into account the data-dependent nature of e!eo. Unlike b�1 and b�2, the randomness in e!eo is non-
negligible in the mild misspeci�cation case (a) of Lemma 4.2. In consequence, b�eo does not achieve
the same bounds of asymptotic risk di�erence as the ideal averaging estimator (1� !�F )b�1 + !�Fb�2
does. Nevertheless, below we show that b�eo is insured against potentially misspeci�ed moments
because it uniformly dominates b�1.
5 Bounds of Asymptotic Risk Di�erence under Misspeci�cation

In this section, we study the bounds of the asymptotic risk di�erence de�ned in (3.12). Note that

the asymptotic distributions of b�1 and b�eo in Lemma 4.1 and 4.2 only depend on d, G2;F and 
2;F .
For notational convenience, de�ne

hF;d = (d
0; vec(G2;F )

0; vech(
2;F )
0) (5.1)

for any F 2 F and any d 2 Rr�1. For the mild misspeci�cation case, de�ne the parameter space of
hF;d as

H = fhF;d : d 2 Rr
�
and F 2 F with �F = 0r��1g (5.2)

where �F is de�ned by (1.5) for a given F .
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Theorem 5.1 Suppose that Assumptions 3.1-3.3 hold. The bounds of the asymptotic risk di�erence

satisfy

AsyRD(b�eo;b�1) = max

�
sup
h2H

[g(h)] ; 0

�
;

AsyRD(b�eo;b�1) = min

�
inf
h2H

[g(h)] ; 0

�
;

where g(h) � E[�0F��F��01;F��1;F ] and the expectation is taken under the joint normal distribution
of Z2;F .

The upper (or lower) bound of the asymptotic risk di�erence is determined by the maximum be-

tween suph2H [g(h)] and zero (or the minimum between infh2H [g(h)] and zero), where suph2H [g(h)]

(or infh2H [g(h)]) is related to the mildly misspeci�ed DGPs and the zero component is associated

with the severely misspeci�ed DGPs. Since the GMM averaging estimator has the same asymp-

totic distribution as the conservative GMM estimator b�1 under the severely misspeci�ed DGPs,
their asymptotic risk di�erence is zero.

To show that b�eo uniformly dominates b�1, Theorem 5.1 implies that it is su�cient to show that

infh2H [g(h)] < 0 and suph2H [g(h)] � 0. We can investigate infh2H g(h) and suph2H g(h) by simu-
lating g(h). In practice, we replace G2;F and 
2;F by their consistent estimators and plot g(h) as a

function of d. Even if the uniform dominance condition does not hold, min finfh2H [g(h)] ; 0g and
max fsuph2H [g(h)] ; 0g quantify the most- and least-favorable scenarios for the averaging estimator.

Theorem 5.2 Let AF � �(�1;F � �2;F ) for any F 2 F . Suppose that Assumptions 3.1-3.3 hold.
If tr(AF ) > 0 and tr(AF ) � 4�max(AF ) for any F 2 F with �F = 0, we have

AsyRD(b�eo;b�1) < 0 and AsyRD(b�eo;b�1) = 0:
Thus, b�eo uniformly dominates b�1:

Theorem 5.2 indicates that: (i) there exists "1 < 0 and some �nite integer n"1 such that the

minimum risk di�erence between b�eo and b�1 is less than "1 for any n larger than n"1 ; (ii) for any
"2 > 0, there exists a �nite integer n"2 such that the maximum risk di�erence between

b�eo and b�1 is
less than "2 for any n larger than n"2 . Pre-test estimators fail to satisfy both properties (i) and (ii)

above at the same time. Take the pre-test estimator based on the J-test for example17 and consider

three scenarios: (a) the critical value is �xed for any sample size; (b) the critical value diverges

to in�nity; and (c) the critical value converges to zero. In the pointwise asymptotic framework,

17See Section D in Supplemental Appendix for de�nition and analysis of this estimator.
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the J-test based on the critical values in (a), (b) and (c) leads to inconsistent (but conservative)

model selection, consistent model selection and no model selection results respectively. The pre-test

estimator based on the J-test violates property (ii) in scenarios (a) and (b), and violates property

(i) in scenario (c).

Di�erent from the �nite-sample results for the JS estimator established for the Gaussian location

model, our comparison of the two estimators b�eo and b�1 is based on the asymptotic bounds of the risk
di�erences. For a given sample size n, we do not provide results on this asymptotic approximation

error, and therefore our results do not state how the �nite-sample upper bound RDn(b�eo;b�1; �)
approaches to zero as n!1 and then � !1 (e.g., from above or from below). For the Gaussian

location model, the asymptotically uniform dominance here is weaker than the classical �nite-

sample results established for the JS estimator. However, this asymptotic results apply to general

nonlinear econometric models with non-normal random variables.18

To shed light on the su�cient conditions in Theorem 5.2, let us consider a scenario similar to the

JS estimator: �1;F = �
2
1;F Id� ; �2;F = �

2
2;F Id� ; and � = Id� . In this case, the su�cient conditions

become �1;F > �2;F and d� � 4: The �rst condition tr(AF ) > 0; which is reduced to �1;F > �2;F ,
requires that the additional moments EF [g�(Wi; �F )] = 0 are non-redundant in the sense that they

lead to a more e�cient estimator of �F . The second condition tr(AF ) � 4�max(AF ); which is

reduced to d� � 4; requires that we are interested in the total risk of several parameters rather

than that of a single one. In a more general case where �1;F and �2;F are not proportional to the

identity matrix, the su�cient conditions are reduced to �1;F > �2;F and d� � 4 under the choice
� = (�1;F ��2;F )�1, which rescales b� by the variance reduction �1;F ��2;F . In a simple linear IV
model (Example 3.1) where Z�i is independent of Z1;i and the regression error Ui is homoskedastic

conditional on the IVs, �1;F > �2;F requires that EF � [Z�iX 0
i] and EF � [Z�i Z�0i ] both have full rank.

Note that these conditions are su�cient but not necessary. If these su�cient conditions do

not hold, we can still simulate the upper bounds in Theorem 5.1 to check the uniform dominance

condition. In fact, simulation studies in the next session show that in many cases b�eo has a
smaller �nite-sample risk than b�1 even if these su�cient conditions are violated. Nevertheless,
these analytical su�cient conditions can be checked easily before the simulation-based methods are

adopted.

18In Section F of the Supplemental Appendix, we show that the averaging GMM estimator has similar �nite sample
dominace results in the Gaussian location model.
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6 Local Uniform Dominance

In this section, we provide a local uniform dominance result that strengthens AsyRD(b�eo;b�1) = 0
in Theorem 5.2 to

AsyRD(b�eo;b�1) < 0; (6.1)

at the cost of comparing b�eo and b�1 in a smaller parameter space that only allows for local mis-
speci�cation up to n�1=2. The result is uniform over this shrinking parameter space. Showing

AsyRD(b�eo;b�1) < 0 is desirable because it implies that the �nite sample maximum risk di�erence

between b�eo and b�1 is bounded above from zero for all large n, whereas AsyRD(b�eo;b�1) = 0 allows
this �nite samples maximum risk di�erence to be a shrinking, but positive value for large n. A

smaller parameter space is necessary for this stronger result because b�eo cannot strictly improve
upon b�1 when the additional moments are severely misspeci�ed and thus do not provide any useful
information.

Assumption 6.1 For each n let Fn denote a set of DGPs. The following conditions hold:
(i) for any n and any F 2 Fn there is �F 2 int(�) such that EF [g1(W; �F )] = 0r1�1;
(ii) for any " > 0, infn infF2Fn inf�2Bc"(�F ) jjEF [g1(W; �)] jj > 0;
(iii) for any n and any F 2 Fn there is dF 2 Rr

�
such that EF [g2(W; �F )] = n�1=2dF ;

(iv) Assumption 3.2 holds for Fn uniformly over n;
(v) � � fvF : F 2 Fn for some ng is closed;
(vi) kdF k � CL for some �xed constant CL.

Assumption 6.1.(i) and (ii) are similar to Assumptions 3.1.(i)-(ii), which ensures the unique

identi�cation of �F for any F 2 Fn and any n. Assumptions 6.1.(iii) implies that the extra moment
conditions are mildly misspeci�ed which together with Assumptions 6.1.(i) and (ii) and Assumption

3.2 ensures that the aggressive GMM estimator b�2 has a normal asymptotic distribution as shown
in Lemma 4.1.(a). As a result, Assumptions 3.1.(iii)-(iv) are not needed here. Assumption 3.2

contains some regularity conditions for showing the asymptotic properties of the GMM estimator

and it is maintained in Assumption 6.1.(iv). Assumption 6.1.(v) is a reduced version of Assumption

3.3.(i). Assumption 6.1.(vi) is an important condition to show the local uniform dominance result.

To introduce the local uniform dominance result, we de�ne

HCL = fhF;d : d 2 Rr
�
with kdk � CL and F 2 Fn for some ng: (6.2)

18



In the local misspeci�cation framework, the set of DGPs Fn may change with the sample size n.
The upper bound of the �nite sample risk di�erence between b�eo and b�1 should be de�ned as

RDn(b�eo;b�1; �) = sup
F2Fn

EF [`�(b�eo; �F )� `�(b�1; �F )]; (6.3)

which is approximated by

AsyRD(b�eo;b�1) = lim
�!1

lim sup
n!1

sup
F2Fn

EF [`�(b�eo; �F )� `�(b�1; �F )]: (6.4)

To show the local uniform dominance result, it is su�cient to study the upper bound of the risk

di�erence AsyRD(b�eo;b�1).
Lemma 6.1 Suppose that Assumption 6.1 hold. The upper bound of the asymptotic risk di�erence

satis�es

AsyRD(b�eo;b�1) � sup
h2HCL

[g(h)] ; (6.5)

where g(h) = E[�0F��F � �01;F��1;F ] is de�ned in Theorem 5.1.

Lemma 6.1 provides an upper bound to the maximum risk di�erence between b�eo and b�1. The
criterion function g(h) in (6.5) is the same as its counterpart in Theorem 5.1. To show the local

uniform dominance result in (6.1), it is su�cient to show that suph2HCL
[g(h)] is bounded away

from zero. This is proved in the following Theorem.

Theorem 6.1 Suppose that Assumption 6.1 hold. If tr(AF ) > 0 and tr(AF ) � 4�max(AF ) for any
F 2 Fn and for any n, we have suph2HCL [g(h)] < 0 for any �nite constant CL.

Combining the results in Lemma 6.1 and Theorem 6.1, we immediately obtain (6.1). The

su�cient conditions to ensure that the upper bound suph2HCL
[g(h)] is bounded away from zero

are the same as those in Theorem 5.2.

7 Simulation Studies

In this section, we investigate the �nite sample performance of our averaging GMM estimator in

linear IV models. In addition to the empirical optimal weight e!eo, we consider another averaging
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estimator based on the JS type of weight. First consider the positive part of the JS weight19:

!JS = 1�
 
1� tr( bA)� 2�max( bA)

n(b�2 � b�1)0�(b�2 � b�1)
!
+

(7.1)

where (x)+ = max f0; xg and bA is the estimator of AF using b�k for k = 1; 2. The alternative

averaging estimator uses the restricted JS weight

!R;JS = (!JS)+ : (7.2)

By construction, !JS � 1 and 0 � !R;JS � 1. We compare the �nite-sample MSEs of our proposed
averaging estimator with the empirical optimal weight, the JS type of averaging estimator with the

restricted weight in (7.2), the conservative GMM estimator b�1, and the pre-test GMM estimator

based on the J-test. The �nite-sample MSE of the conservative GMM estimator is normalized to

be 1.

We consider a linear regression model with i.i.d. observed data

Wi = (Yi; X1;i; : : : ; X6;i; Z1;i; : : : ; Z12;i; Z
�
1;i; : : : ; Z

�
6;i)

0 for i = 1; :::; n; (7.3)

where Y is the dependent variable, (X1; :::; X6) are 6 endogenous regressors, (Z1; :::; Z12) are 12

valid IVs, and (Z�1 ; :::; Z
�
6 ) are 6 invalid IVs. The data is generated as follows. The regression model

is

Y =
6X
j=1

�jXj + u; (7.4)

where Xj are generated by

Xj = (Zj + Zj+6)�j + Zj+12 + "j for j = 1; : : : ; 6: (7.5)

We �rst draw (Z1; :::; Z18; "1; : : : ; "6; u
�)0 from normal distribution with mean zero and variance-

covariance matrix diag(I18�18;�7�7) where

�7�7 =

0@ I6�6 0:25� 16�1
0:25� 11�6 1

1A . (7.6)

To show the performance of the estimator under non-Gaussian errors, we draw � from exponential

19This formula is a GMM analog of the generalized James-Stein S type shrinkage estimator in Hansen (2016)

for parametric models. The shrinkage scalar � is set to tr( bA) � 2�max(tr( bA)) in a fashion similar to the original
James-Stein estimator.
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distribution with mean 1 and � is independent of (Z1; : : : ; Z18; "1; : : : ; "6; u
�). The residual term u

in (7.4) is generated by

u = (u� + � � 1)=2; (7.7)

where � is demeaned to ensure that the mean of u is zero. The invalid IVs are generated by

Z�j = Zj+12 + n
�1=2dju, for j = 1; : : : ; 6: (7.8)

We set (�1; : : : ; �6) = 2:5� 11�6 and (�1; : : : ; �6) = 0:5� 11�6.
In the main regression equation (7.4), all regressors are endogenous because

E[Xju] = E["ju�=2] = 0:125 for j = 1; : : : ; 6: (7.9)

From the expression of Z�j above, we see that increasing the magnitude of dj will enlarge the

correlation coe�cient between Z�j and u and hence the endogeneity of Z
�
j .

Given the sample size n, we consider di�erent DGPs of the simulated data fWi : i = 1; :::; ng by
changing the values of the location parameters (d1; :::; d6). We consider the following parametriza-

tion

(d1; :::; d6) = r0(c1; :::; c6) (7.10)

where r0 is a scalar that takes values on the grid points between 0 and 25 with the grid length 0:5,

(c1; : : : ; c6) is parametrized in two di�erent ways. In the �rst one, we set cj = 0 or 1 for j = 1; : : : ; 6

and rule out the case that cj = 0 for all j (since this is the same as the case which sets r0 = 0). In

the second one, we consider the polar transformation and set

c1 = sin(�1) sin(�2) sin(�3) sin(�4) sin(�5);

c2 = cos(�1) sin(�2) sin(�3) sin(�4) sin(�5);

c3 = cos(�2) sin(�3) sin(�4) sin(�5);

c4 = cos(�3) sin(�4) sin(�5);

c5 = cos(�4) sin(�5);

c6 = cos(�5); (7.11)

where �1 2 f�=4, 3�=4, 5�=4, 7�=4g and �j 2 f�=4; 3�=4g for j = 2; : : : ; 5. Therefore, there are 127
di�erent values for (c1; : : : ; c6) which together with 51 di�erent values of r0 produces 6477 di�erent

DGPs in the simulation studies. For each DGP, we consider sample size n = 50, 100, 250, 500 and

21



Figure 2. Finite Sample MSEs of the Pre-test and Averaging GMM Estimators

Note: \Pre-test(0.01)" refers to the pre-test GMM estimator based on the J-test with nominal size 0.01; \Emp-opt"
refers to the averaging GMM estimator based on the empirical optimal weight; \ReSt-JS" refers to the averaging
estimators based on the restricted James-Stein weight, respectively. For each estimator, the upper envelop of the
shaded area is the maximum �nite sample MSE among the 127 DGPs described in Section 7, and the lower envelop
is the minimum. Both maximum and minimum are functions of r0.

use 25,000 simulation repetitions. Given the sample size and the value of r0, we report the minimum

and maximum of the 127 values of the �nite sample MSEs for each estimator.20 Therefore given

each sample size, we report a shaded area for each estimator where the upper envelope represents

the estimator's maximum �nite sample MSE and the lower envelope is its minimum �nite sample

MSE. For each estimator, both the upper envelope and lower envelope are functions of r0.

The MSEs of various estimators of the parameters in (7.4) are included in Figure 2.21 The

two panels on the top of Figure 2 present the MSEs of estimators with sample size n = 50 and

20In this simulation study, we also consider the truncated risk function with � = 1000. The simulation results are
identical to what we get without truncation. These extra simulation results are available upon request.
21The �nite sample biases and variances of the GMM estimators are reported in Subsection E.1 of the Supplemental

Appendix.
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100 respectively, while the two panels on the bottom provides their MSEs with n = 250 and 500

respectively. Our �ndings in the simulation studies are summarized as follows. First, the averaging

GMM estimator b�eo has smaller MSE than b�1 uniformly over d in all sample sizes considered,
which is predicted by our theory because the key su�cient condition is satis�ed in this model.22

Second, the pre-test GMM estimator does not dominate the conservative GMM estimator b�1 when
the sample size becomes slightly large (e.g., n � 100). For example, when n = 500 and the

location parameter r0 is close to zero, the pre-test GMM estimator has relative MSE as low as

0.35. However, its relative MSE is above 1 when r0 is between 5 and 20. Third, comparing the two

averaging estimators, we �nd that the restricted JS estimator does not reduce the MSE as much

as the averaging estimator based on e!eo for di�erent sample sizes and di�erent DGPs considered
in this simulation study.

8 Conclusion

This paper studies the averaging GMM estimator that combines the conservative estimator and

the aggressive estimator with a data-dependent weight. The averaging weight is the sample analog

of an optimal non-random weight. We provide a su�cient class of drifting DGPs under which

the pointwise asymptotic results combine to yield uniform approximations to the �nite-sample

risk di�erence between two estimators. Using this asymptotic approximation, we show that the

proposed averaging GMM estimator uniformly dominates the conservative GMM estimator.

Inference based on the averaging estimator is an interesting and challenging problem. As pointed

out in P�otscher (2006), the �nite sample density of the averaging estimator can not be consistently

estimated, which implies that directly applying an estimator of the �nite-sample density may not

yield uniformly valid inference. In addition to the uniform validity, a desirable con�dence set

should have smaller volume than that obtained from the conservative moments alone. We leave

the inference issue to future investigation.

22It is easy to show that in this simulation design, when �F = 0 we have tr(AF ) = 4 and tr(AF )�4�max(AF ) = 4=3.
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A Appendix

In Lemma 3.1, de�ne

c� � min
F �2F�

f�min(�xz1�z1x); �min (	)g ;

C� � max
F �2F�

�
jj�jj2; �max (	)

	
:

C� � sup
�02��

k�0k2 (A.1)

Let

C�;W � 2(d� + r2 + 1)C�, c�;� � minf1; c2�g and C�;� � C2�;W (2 + C
1=2
� )2: (A.2)

Then, in Lemma 3.1 (iii), the constant " is given by

" = c�;�C
�1
�;�C

�1
� ; (A.3)

i.e., we require the condition to hold on a set bounded away from 0 by ". The details of the proofs

are given in Section B of the Supplemental Appendix.

A.1 Proof of the Results in Section 4

Let �n(g2(W; �)) = n
�1=2Pn

i=1(g2(Wi; �)� EFn [g2(Wi; �)]). In the rest of the Appendix, we use C

to denote a generic �xed positive �nite constant which does not depend on any F 2 F or n.

Lemma A.1 Suppose that Assumption 3.2.(ii) holds and � is compact. Then we have

(i) sup�2� kg2(�)� EFn [g2(Wi; �)]k = op(1);
(ii) sup�2�



n�1Pn
i=1 g2(Wi; �)g2(Wi; �)

0 � EFn [g2(Wi; �)g2(Wi; �)
0]


 = op(1);

(iii) sup�2�


n�1Pn

i=1 g2;�(Wi; �)� EFn [g2;�(Wi; �)]


 = op(1);

(iv) �n(g2(W; �)) is stochastic equicontinuous over � 2 �;
(v) 


�1=2
2;Fn

�n(g2(W; �Fn))!D N(0r2�1; Ir2).

Proof of Lemma A.1. See Lemma 11.3-11.5 of Andrews and Cheng (2013).

De�ne Mk;F (�) = EF [gk(W; �)], Gk;F (�) = EF [gk;�(W; �)] and 
k;F (�) =VarF [gk(W; �)], for

any F 2 F , for any � 2 � and for k = 1; 2. The next lemma shows that M2;F (�), G2;F (�) and

2;F (�) are Lipschitz continuous uniformly over F 2 F .

Lemma A.2 Under Assumptions 3.2.(i)-(ii), for any F 2 F and any �1; �2 2 �, we have:
(i) kM2;F (�1)�M2;F (�2)k � C k�1 � �2k;
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(ii) kG2;F (�1)�G2;F (�2)k � C k�1 � �2k;
(iii) k
2;F (�1)� 
2;F (�2)k � C k�1 � �2k.

Proof of Lemma A.2 is included in Section C of the Supplemental Appendix.

Lemma A.3 Suppose that Assumptions 3.1.(i)-(ii) and 3.2.(i)-(ii) hold. Then for any sequence

of DGPs fFng, we have e�1 � �Fn = op(1) and 
2 = 
2;Fn + op(1); (A.4)

where e�1 is a preliminary estimator de�ned as
e�1 = argmin

�2�
g1(�)

0g1(�) (A.5)

and 
2 is de�ned in (C.13) of the Supplemental Appendix.

Proof of Lemma A.3 is included in Section C of the Supplemental Appendix.

Lemma A.4 Suppose that Assumptions 3.1.(i)-(ii) and 3.2 hold. Then for any sequence of DGPs

fFng, we have
n1=2(b�1 � �Fn) = �1;Fn�n(g1(W; �Fn)) + op(1); (A.6)

where �1;Fn�n(g1(W; �Fn)) � �
�
G01;Fn


�1
1;Fn

G1;Fn

��1
G01;Fn


�1
1;Fn

= Op(1).

Proof of Lemma A.4 is included in Section C of the Supplemental Appendix.

Lemma A.5 Suppose that Assumptions 3.1.(iii) and 3.2.(i)-(iii) hold. Then for any sequence of

DGPs fFng, we have b�2 � ��Fn = op(1): (A.7)

Proof of Lemma A.5 is included in Section C of the Supplemental Appendix.

Lemma A.6 Suppose that Assumptions 3.1.(i)-(ii) and 3.2.(i)-(iii) hold. Consider any sequence

of DGPs fFng such that �Fn = o(1). Then we have

b�2 � �Fn = op(1): (A.8)

If we further have Assumption 3.2.(iv), then

n1=2(b�2 � �Fn) = (�2;Fn + op(1))n�n(g2(W; �Fn)) + n1=2�2;Fno+ op(1); (A.9)

where �2;Fn = �
�
G02;Fn


�1
2;Fn

G2;Fn

��1
G02;Fn


�1
2;Fn

and �2;Fn = (01�r1 ; �
0
Fn)

0.
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Proof of Lemma A.6 is included in Section C of the Supplemental Appendix.

Lemma A.7 Under Assumptions 3.2.(ii) and 3.3.(ii), for any sequence of DGPs fFpng with Fpn 2
F where fpng is a subsequence of fng, there is a subsequence fp�ng of fpng such that vFp�n (�Fp�n )!
vF (�F ) as p

�
n !1, where F 2 F .

Proof of Lemma A.7. Recall that � = fvF : F 2 Fg. By Assumptions 3.2.(ii) and 3.3.(ii), � is
compact. Hence for any sequence

�
vFpn (�Fpn )

	
in �, it has a convergent subsequence fvFp�n (�Fp�n )g

such that vFp�n
(�Fp�n

)! vF (�F ) as p
�
n !1, where F 2 F .

Lemma A.8 Suppose that Assumptions 3.1.(i)-(ii) and 3.2 hold. Consider any sequence of DGPs

fFng such that vFn ! vF for some F 2 F , and n1=2�Fn ! d for d 2 Rr�. Then0@ n1=2(b�1 � �Fn)
n1=2(b�2 � �Fn)

1A!D

0@ �1;F

�2;F

1A �

0@ �1;FZ1;F
�2;F (Z2;F + d0)

1A ,
where d0 = (01�r1 ; d

0)0:

Proof of Lemma A.8. In the proof, we use

G2;Fn ! G2;F and 
2;Fn ! 
2;F (A.10)

for some F 2 F , which is assumed in the lemma. Under Assumptions 3.1.(i)-(ii) and 3.2, for the
sequence of DGPs fFng considered in the lemma, we can apply Lemma A.4 and Lemma A.6 to
deduce that0@ n1=2(b�1 � �Fn)

n1=2(b�2 � �Fn)
1A =

0@ �1;Fn�n(g1(W; �Fn))

(�2;Fn + op(1))
�
�n(g2(W; �Fn)) + n

1=2�2;Fn
	
1A+ op(1); (A.11)

where �2;Fn = (01�r1 ; �
0
Fn)

0. By (A.10) and Assumption 3.2, we have

�1;Fn = �1;F + o(1) and �2;Fn = �2;F + o(1) (A.12)

where �k;F = �
�
G0k;F


�1
k;FGk;F

��1
G0k;F


�1
k;F for k = 1; 2. Collecting the results in Lemma A.1.(v),

(A.11) and (A.12), and then applying the continuous mapping theorem (CMT), we have0@ n1=2(b�1 � �Fn)
n1=2(b�2 � �Fn)

1A!D

0@ ��1;F

�2;F

1A (Z2;F + d0) , (A.13)
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where Z2;F � N(0r2�1;
2;F ), �
�
1;F = (�1;F ;0d��r�) and d0 = (01�r1 ; d

0)0. The claimed result

follows from (A.13) and the de�nitions of ��1;F and Z2;F .

Proof of Lemma 4.1. The claimed result in Part (a) has been proved in Lemma A.8.

We next consider the case that n1=2�Fn ! d with jjdjj = 1. Note that the results in (A.6)
and (A.12) do not depend on jjdjj <1 or jjdjj =1. Using (A.6), (A.12), Lemma A.1.(v) and the
CMT, we have

n1=2(b�1 � �Fn)!D �1;FZ1;F : (A.14)

To study the properties of b�2, we have to consider two separate scenarios: (1) �Fn = o(1); and
(2) k�Fnk > c� for some c� > 0. In scenario (1), Assumption 3.2, Lemma A.1.(v) and Lemma A.6
imply that

n1=2(b�2 � �Fn) = (�2;Fn + op(1))n1=2�Fn +Op(1): (A.15)

By Assumption 3.1.(iv) and jjn1=2�Fn jj ! 1,

n�0Fn�
0
2;Fn�2;Fn�Fn � C

�2n�0Fn�Fn !1 (A.16)

which together with (A.15) implies that jjn1=2(b�2 � �Fn)jj !p 1.
Finally, we consider the scenario (2) where k�Fnk > c�. By Assumption 3.1.(iv),

jjG02;Fn

�1
2;Fn

�Fn jj > C�1 k�Fnk > c�C�1 (A.17)

for any n. As ��Fn is the minimizer of QFn(�), it has the following �rst order condition

0d��1 = G2;Fn(�
�
Fn)

0
�12;FnM2;Fn(�
�
Fn); (A.18)

which implies that

G02;Fn

�1
2;Fn

�Fn = G2;Fn(�Fn)
0
�12;FnM2;Fn(�Fn)�G2;Fn(��Fn)

0
�12;FnM2;Fn(�
�
Fn)

=
�
G2;Fn(�Fn)�G2;Fn(��Fn)

�0

�12;FnM2;Fn(�Fn)

+G2;Fn(�
�
Fn)

0
�12;Fn
�
M2;Fn(�Fn)�M2;Fn(�

�
Fn)
�
: (A.19)

By Lemma A.2, the Cauchy-Schwarz inequality and Assumption 3.2.(ii)-(iii), we have




�G2;Fn(�Fn)�G2;Fn(��Fn)�0
�12;FnM2;Fn(�Fn)





�


G2;Fn(�Fn)�G2;Fn(��Fn)





�12;FnM2;Fn(�Fn)




 � C 

�Fn � ��Fn

 ; (A.20)
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where C is a �xed constant. Similarly, we have




G2;Fn(��Fn)0
�12;Fn �M2;Fn(�Fn)�M2;Fn(�
�
Fn)
�




�


M2;Fn(�Fn)�M2;Fn(�

�
Fn)






�12;FnG2;Fn��Fn)


 � C 

�Fn � ��Fn

 : (A.21)

Combining the results in (A.19), (A.20) and (A.21), and using the triangle inequality, we have



�Fn � ��Fn

 � c�C (A.22)

for some �xed constant C. Using b�2 = ��Fn+op(1) (which is proved in Lemma A.5) and the triangle
inequality, we obtain




b�2 � �Fn


 � ���jjb�2 � ��Fn jj � 

��Fn � �Fn

��� = 

��Fn � �Fn

 (1 + op(1)); (A.23)

which together with (A.22) implies that n1=2jjb�2 � �Fn jj !p 1. This �nishes the proof.

Lemma A.9 (a) ��1;Fd0 = 0d��1; (b) �
�
1;F
2;F�

�0
1;F = �1;F ; (c) �

�
1;F
2;F�

0
2;F = �2;F ; (d)

�2;F
2;F�
0
2;F = �2;F .

Proof of Lemma A.9 is included in Section C of the Supplemental Appendix.

A.2 Proof of the Results in Section 5

We �rst present some generic results on the bounds of asymptotic risk di�erence between two

estimators under some high-level conditions. Then we apply these generic results to the two speci�c

estimators we consider in this paper: b�eo and b�1. The proof uses the subsequence techniques used
to show the asymptotic size of a test in Andrews, Cheng, and Guggenberger (2011) but we adapt

the proof and notations to the current setup and extend results from test to estimators.

Recall that hF;d = (d
0; vec(G2;F )

0; vech(
2;F )
0) and vF = (vec(G2;F )

0; vech(
2;F )
0) for any F 2 F

and any d 2 Rr�1. We have de�ned

H = fhF;d : d 2 Rr
�
and F 2 F with �F = 0r��1g (A.24)

where �F is de�ned by (1.5) for a given F . De�ne

H�
1 = fhF;d : d 2 Rr

�
1 with jjdjj =1 and F 2 Fg. (A.25)

Let dh = r
� + d�r2 + (r2 + 1)r2=2. It is clear that hF;d is a dh-dimensional vector.
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Condition A.1 (i) For any sequence of DGPs fFpng with Fpn 2 F where fpng is a subsequence
of fng, there exists a subsequence fp�ng of fpng and some F 2 F such that vFp�n

! vF as p
�
n !1;

(ii) M1;F (�) = 0r1�1 has a unique solution at �F 2 � for any F 2 F ;
(iii) M2;F (�) is uniform equicontinuous over F 2 F ;
(iv) for any subsequence fpng of fng, if (pn)1=2�Fpn ! d for d 2 Rr�1 and vFpn ! vF , then

lim
n!1

EFpn [`�(b�; �Fpn )] = R�(hF;d) and lim
n!1

EFpn [`�(e�; �Fpn )] = eR�(hF;d)
where R�(hF;d) and eR�(hF;d) are some non-negative functions that are bounded from above by � for

any F 2 F and any d 2 Rr�1;
(v) for any F 2 F with �F = 0r��1, there exists a constant "F > 0 such that for any e� 2 Rr� with
0 � jje�jj < "F , there is eF 2 F with � eF = e� and jjvF � v eF jj � Cjje�jj� for some � > 0;
(vi) for any hF;d 2 H�

1 and h
F;ed 2 H�

1, we have

R�(hF;d) = R�(hF;ed) and eR�(hF;d) = eR�(hF;ed)
for any � > 0.

Condition A.1.(i) requires that for any sequence of fvFpng, it has a convergent subsequence
fvFp�ng with limit being vF for some F 2 F . This condition is veri�ed under Assumptions 3.2.(ii)
and 3.3.(ii) in Lemma A.7. Condition A.1.(ii) is the unique identi�cation condition of �F which

holds under Assumptions 3.1.(i)-(ii). Condition A.1.(iii) holds under Assumption 3.2.(ii) by Lemma

A.2. Condition A.1.(iv) is a key assumption to derive an explicit upper bound of asymptotic risk.

This condition can be veri�ed by using Lemma 4.1 as we shall show in the proof of Theorem 5.1.

Condition A.1.(v) enables us to show that the upper bound we derived for the asymptotic risk is

also a lower bound. This condition is assumed in Assumption 3.3.(i). Condition A.1.(vi), in our

context, requires that the asymptotic (truncated) risk of b� (or e�) under the subsequences of DGPs
fFpng satisfying the restrictions in Condition A.1.(iv) are identical whenever (pn)1=2�Fpn ! d with

jjdjj =1. Condition A.1 is veri�ed in the proof of Theorem 5.1 below.

Lemma A.10 Under Conditions A.1.(i) - A.1.(iv), we have

AsyR�(b�) � max
(
sup
h2H

R�(h); sup
h2H�

1

R�(h)

)
; (A.26)

where AsyR�(b�) � lim sup
n!1

supF2F EF [`�(b�; �F )].
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Proof of Lemma A.10. Let fFng be a sequence such that

lim sup
n!1

EFn [`�(b�; �Fn)] = lim sup
n!1

�
sup
F2F

EF [`�(b�; �F )]� � AsyR�(b�): (A.27)

Such a sequence always exists by the de�nition of supremum. The sequence fEFn [`�(b�; �Fn)]: n � 1g
may not converge. However, by the de�nition of limsup, there exists a subsequence of fng, say
fpng, such that fEFpn [`�(b�; �Fpn )]: n � 1g converges and

lim
n!1

EFpn [`�(b�; �Fpn )] = AsyR�(b�): (A.28)

Below we show that for any subsequence fpng of fng such that fEFpn [`�(b�; �Fpn )]: n � 1g is
convergent, there exists a subsequence fp�ng of fpng such that

lim
n!1

EFp�n [`�(
b�; �Fp�n )] = R�(h) for some h 2 H or H�

1: (A.29)

Because limn!1 EFp�n [`�(
b�; �Fp�n )] = limn!1 EFpn [`�(b�; �Fpn )], which combined with (A.28) and

(A.29) implies that

AsyR�(b�) = R�(h) for some h 2 H or H�
1: (A.30)

The desired result in (A.26) follows immediately by (A.30).

To show that there exists a subsequence fp�ng of fpng such that (A.29) holds, it su�ces to show
that for any sequence fFng and any subsequence fpng of fng, there exists a subsequence fp�ng of
fpng for which we have

(p�n)
1=2�Fp�n

! d for d 2 Rr�1 and vFp�n
! vF (A.31)

for some F 2 F . If (A.31) holds, then we can use Condition A.1.(iv) to deduce that

lim
n!1

EFp�n [`�(
b�; �Fp�n )] = R�(hF;d) (A.32)

for the sequence of DGPs fFp�ng that satis�es (A.31). As d 2 Rr
�
1, we have either kdk < 1 or

kdk = 1. In the �rst case, kdk < 1 together with (p�n)
1=2�Fp�n

! d and �Fp�n
! �F (which is

implied by vFp�n
! vF ) implies that �F = 0r��1, which implies that hF;d 2 H by the de�nition of

H. In the second case, hF;d 2 H�
1 by the de�nition of H�

1. We have proved that hF;d in (A.32)

belongs either to H or H�
1 which together with (A.32) proves (A.29).

Finally, we show that for any sequence fFng and any subsequence fpng of fng, there ex-
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ists a subsequence fp�ng of fpng for which (A.31) holds. Let �pn;j denote the j-th component

of �pn and p1;n = pn for any n � 1. For j = 1, either (a) lim supn!1 jp
1=2
j;n �pj;n;j j < 1; or

(b) lim supn!1 jp
1=2
j;n �pj;n;j j = 1. If (a) holds, then for some subsequence fpj+1;ng of fpj;ng,

p
1=2
j+1;n�pj+1;n;j ! dj for some dj 2 R. If (b) holds, then for some subsequence fpj+1;ng of fpj;ng,
p
1=2
j+1;n�pj+1;n;j ! 1 or �1. As r� is a �xed positive integer, we can apply the same arguments
successively for j = 1; :::; r� to obtain a subsequence fpr�;ng of fpng such that (pr�;n)1=2�pr�;n !
d 2 Rr�1. By Condition A.1.(i), we know that there exists a subsequence fp�ng of fpr�;ng such that
vp�n ! vF for some F 2 F , which �nishes the proof of (A.31).

Lemma A.11 Suppose that Condition A.1.(v) holds. Then (i) for any hF;d 2 H, there exists a
sequence of DGPs fFng with Fn 2 F such that

n1=2�Fn ! d, G2;Fn ! G2;F and 
2;Fn ! 
2;F ; (A.33)

(ii) for any hF;d 2 H�
1, there exists a sequence of DGPs fFng with Fn 2 F such that

jjn1=2�Fn jj ! 1, G2;Fn ! G2;F ; 
2;Fn ! 
2;F and �Fn ! �F : (A.34)

Proof of Lemma A.11. (i) By the de�nition of H, we have �F = 0r��1 for any F such that

hF;d 2 H. Let N"F be the smallest n such that kdkn�1=2 < "F . By Condition A.1.(v), for any

n � N"F we can �nd a DGP Fn such that

�Fn = n
�1=2d and kvFn � vF k � n��=2Cjjdjj�: (A.35)

For any n < N"F such that kdkn�1=2 � "F , we let Fn = F . The desired properties in (A.33) holds
under the constructed sequence of DGPs fFng by (A.35), because C is a �xed constant and � > 0.

(ii) For any hF;d 2 H�
1, we have either �F = 0r��1 or jj�F jj > 0. We �rst consider the case

that �F = 0r��1. Let 1r��1 denote the r
� � 1 vector of ones. Let N"F be the smallest n such that

n�1=4(r�)1=2 < "F . By Condition A.1.(v), for any n � N"F we can �nd a DGP Fn such that

�Fn = n
�1=41r��1 and



vFpn � vF

 � Cn��=4(r�)�=2: (A.36)

For any n < N"F such that n
�1=4(r�)1=2 � "F , we let Fn = F . The desired properties in (A.34)

holds under the constructed sequence of DGPs fFng by (A.36), because C is a �xed constant and
� > 0. When jj�F jj > 0, we de�ne a trivial sequence of DGPs fFng as Fn = F for any n. It is clear
that (A.34) holds trivially in this case.
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Lemma A.12 Under Condition A.1, we have

AsyR�(b�) = max
(
sup
h2H

R�(h); sup
h2H�

1

R�(h)

)
: (A.37)

Proof of Lemma A.12. In view of the upper bound in (A.26) in Lemma A.10, it is su�cient to

show that

AsyR�(b�) � max
(
sup
h2H

R�(h); sup
h2H�

1

R�(h)

)
: (A.38)

First, we note that for any hd;F = (d0; vec(G2;F )
0; vech(
2;F )

0) 2 H, there exists a sequence
fFn 2 F : n � 1g such that

n1=2�Fn ! d 2 Rr� and vFn ! vF (A.39)

by Lemma A.11.(i). The sequence EFn [`�(b�; �Fn)] may not be convergent, but there exists a subse-
quence fpng of n such that EFpn [`�(b�; �Fpn )] is convergent and

lim
n!1

EFpn [`(b�; �Fpn )] = lim sup
n!1

EFn [`(b�; �Fn)]: (A.40)

As fpng is a subsequence of fng, by (A.39)

(pn)
1=2�Fpn ! d 2 Rr� and vFpn ! vF : (A.41)

By Condition A.1.(iv), we have that

lim
n!1

EFpn [`(b�; �Fpn )] = R�(hF;d); (A.42)

which combined with (A.40) and the de�nition of AsyR�(b�) gives
AsyR�(b�) = lim sup

n!1
sup
F2F

EF [`�(b�; �F )] � lim sup
n!1

EFn [`(b�; �Fn)] = R�(hF;d): (A.43)

Second, consider any hd;F = (d0; vec(G2;F )
0; vech(
2;F )

0) 2 H�
1. By Lemma A.11.(ii), there

exists a sequence of DGPs fFng such that

jjn1=2�Fn jj ! 1 and vFn ! vF : (A.44)

Using the same arguments in proving (A.40) to (A.42), we can show that for some subsequence

fpng of fng;
jp1=2n �Fpn jj ! 1 and vpn ! vF (A.45)
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and

lim sup
n!1

EFn [`(b�; �Fn)] = lim
n!1

EFpn [`(b�; �Fpn )] = R�(hF;d): (A.46)

for jjdjj =1 by Conditions A.1.(vi). By the de�nition of AsyR�(b�) and (A.46),
AsyR�(b�) = lim sup

n!1
sup
F2F

EF [`�(b�; �F )] � lim sup
n!1

EFn [`(b�; �Fn)] = R�(hF;d): (A.47)

Combining the results in (A.43) and (A.47), we immediately get (A.37).

Lemma A.13 Under Conditions A.1.(i) - A.1.(iv), the upper and lower bounds of the asymptotic

risk di�erence between b� and e� satisfy
AsyRD(b�;e�) � lim

�!1

 
max

(
sup
h2H

h
R�(h)� eR�(h)i ; sup

h2H�
1

h
R�(h)� eR�(h)i

)!
; (A.48)

AsyRD(b�;e�) � lim
�!1

�
min

�
inf
h2H

h
R�(h)� eR�(h)i ; inf

h2H�
1

h
R�(h)� eR�(h)i�� ; (A.49)

where

eR�(h) � E[min��01;F��1;F ; �	] and R�(h) �
8<: E

h
min

n
�
0
F��F ; �

oi
; kdk <1

E
�
min

�
�01;F��1;F ; �

	�
; kdk =1

for any h 2 H [H�
1.

Proof of Lemma A.13. De�ne

R�(H;H
�
1) � max

(
sup
h2H

h
R�(h)� eR�(h)i ; sup

h2H�
1

h
R�(h)� eR�(h)i

)
; (A.50)

R�(H;H
�
1) � min

�
inf
h2H

h
R�(h)� eR�(h)i ; inf

h2H�
1

h
R�(h)� eR�(h)i� : (A.51)

By the de�nition of AsyRD(b�;e�), to show (A.48) it is su�cient to show that for any � > 0
lim sup
n!1

sup
F2F

EF [`�(b�; �F )� `�(e�; �F )] � R�(H;H�
1); (A.52)

which can be proved using the same arguments in the proof of Lemma A.10 (but replacing `�(b�; �F )
and R�(h) by `�(b�; �F )� `�(e�; �F ) and R�(h)� eR�(h) respectively). Similarly by the de�nition of
AsyRD(b�;e�), for (A.49) it is su�cient to show that for any � > 0

lim inf
n!1

inf
F2F

EF [`�(b�; �F )� `�(e�; �F )] � R�(H;H�
1); (A.53)
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which can be proved using the same arguments in the proof of Lemma A.10 (but replacing lim supn,

supF2F , `�(b�; �F ) and R�(h) by lim infn, infF2F , `�(b�; �F ) � `�(e�; �F ) and R�(h) � eR�(h) respec-
tively).

Lemma A.14 Under Condition A.1, the upper and lower bounds of the asymptotic risk di�erence

between b� and e� have the following representations:
AsyRD(b�;e�) = lim

�!1

 
max

(
sup
h2H

h
R�(h)� eR�(h)i ; sup

h2H�
1

h
R�(h)� eR�(h)i

)!
; (A.54)

AsyRD(b�;e�) = lim
�!1

�
min

�
inf
h2H

h
R�(h)� eR�(h)i ; inf

h2H�
1

h
R�(h)� eR�(h)i�� : (A.55)

Proof of Lemma A.14. By Lemma A.13, it is su�cient to show that

lim sup
n!1

sup
F2F

EF [`�(b�; �F )� `�(e�; �F )] � R�(H;H
�
1); (A.56)

lim inf
n!1

inf
F2F

EF [`�(b�; �F )� `�(e�; �F )] � R�(H;H
�
1); (A.57)

for any � > 0. (A.56) can be proved using the same arguments in the proof of Lemma A.12 by

replacing `�(b�; �F ) and R�(h) by `�(b�; �F ) � `�(e�; �F ) and R�(h) � eR�(h) respectively. Similarly,
(A.57) can be proved using the same arguments in the proof of Lemma A.12 by replacing lim supn,

supF2F , `�(b�; �F ) and R�(h) by lim infn, infF2F , `�(b�; �F )�`�(e�; �F ) and R�(h)� eR�(h) respectively.

Lemma A.15 Under Assumptions 3.2.(ii) and 3.2.(iv), we have

sup
h2H

E[(�01;F��1;F )2] � C and sup
h2H

E[(�0F��F )2] � C: (A.58)

Lemma A.16 Let g�(h) � E
h
minf�0F��F ; �g �min

�
�01;F��1;F ; �

	i
. Under Assumptions 3.2.(ii)

and 3.2.(iv), we have

lim
�!1

sup
h2H

[jg�(h)� g(h)j] = 0 (A.59)

where suph2H [jg(h)j] � C.

Proof of Theorem 5.1. The proof consists of two steps. The �rst step is to apply Lemma A.14

to show (A.60) and (A.61) below, and the second step is to apply Lemma A.16 to show (A.75) and

(A.76) below.
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In the �rst step, we apply Lemma A.14 with b� = b�eo and e� = b�1 to show that
AsyRD(b�eo;b�1) = lim

�!1
max

�
sup
h2H

[g�(h)] ; 0

�
and (A.60)

AsyRD(b�eo;b�1) = lim
�!1

min

�
inf
h2H

[g�(h)] ; 0

�
: (A.61)

To prove (A.60) and (A.61), we now verify Condition A.1 under Assumptions 3.1-3.3. Condition

A.1.(i) is veri�ed by Lemma A.7 under Assumptions 3.2.(ii) and 3.3.(ii). Condition A.1.(ii) is

implied by Assumptions 3.1.(i) and 3.1.(ii). Condition A.1.(iii) is implied by Assumptions 3.2.(i)-

(ii) as a result of Lemma A.2. Condition A.1.(v) is assumed in Assumption 3.3.(ii). We next verify

Conditions A.1.(iv) and A.1.(vi).

Consider any sequence of DGPs fFpng with

(pn)
1=2�Fpn ! d for d 2 Rr�1 and vFpn ! vF (A.62)

for some F 2 F , where fpng is a subsequence of fng. First, we consider the case that d 2 Rr
�
. By

Lemma 4.1.(a) and 4.2.(a),

(pn)
1=2(b�1 � �Fpn )!D �1;F and (pn)

1=2(b�eo � �Fpn )!D �F (A.63)

which combined with the continuous mapping theorem implies that

`(b�1; �Fpn )!D �
0
1;F��1;F and `(

b�eo; �Fpn )!D �
0
F��F : (A.64)

Since � is positive semi-de�nite, �01;F��1;F and �
0
F��F are both non-negative. The function f�(x) =

min fx; �g is a bounded continuous function for x � 0. By (A.64) and the Portmanteau Lemma

(see Lemma 2.2 in van der Vaart (1998)),

EFpn [`�(b�eo; �Fpn )]! E
h
minf�0F��F ; �g

i
and EFpn [`�(b�1; �Fpn )]! E

�
minf�01;F��1;F ; �g

�
:

(A.65)

Second, we consider the case that kdk =1. Then under Lemma 4.1.(b) and 4.2.(b),

(pn)
1=2(b�1 � �Fpn )!D �1;F and (pn)

1=2(b�eo � �Fpn )!D �1;F : (A.66)
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Using the same arguments in showing (A.65), we get

EFpn [`�(b�eo; �Fpn )]! E
�
minf�01;F��1;F ; �g

�
and EFpn [`�(b�1; �Fpn )]! E

�
minf�01;F��1;F ; �g

�
:

(A.67)

De�ne

eR�(hF;d) = E �minf�01;F��1;F ; �g� and R�(hF;d) =
8<: E[minf�0F��F ; �g]; kdk <1
E
�
minf�01;F��1;F ; �g

�
; kdk =1

:

(A.68)

Collecting the results in (A.65) and (A.67), we deduce that under the sequence of DGPs fFpng
satisfying (A.62),

EFpn [`�(b�eo; �Fpn )]! R�(hF;d) and EFpn [`�(b�1; �Fpn )]! eR�(hF;d); (A.69)

where R�(hF;d) and eR�(hF;d) are non-negative and bounded from above by � for any d 2 Rr�1 and

any F 2 F . This veri�es Condition A.1.(iv).
By de�nition, eR�(hF;d) in (A.68) does not depend on d for any F . Moreover, for any d and ed

with jjdjj =1 and jjedjj =1, by the de�nition of R�(hF;d) in (A.69),
R�(hF;d) = E

�
minf�01;F��1;F ; �g

�
= R�(hF;ed): (A.70)

Hence, Condition A.1.(vi) is also veri�ed.

We next apply Lemma A.14 to get (A.60) and (A.61) above. By (A.68),

R�(h)� eR�(h) = E[minf�0F��F ; �g]� E[minf�01;F��1;F ; �g] for any h 2 H (A.71)

and

R�(h)� eR�(h) = E �minf�01;F��1;F ; �g�� E �minf�01;F��1;F ; �g� = 0 for any h 2 H�
1: (A.72)

By Lemma A.14, (A.71) and (A.72), we have

AsyRD(b�eo;b�1) = lim
�!1

max

(
sup
h2H

h
R�(h)� eR�(h)i ; sup

h2H�
1

h
R�(h)� eR�(h)i

)

= lim
�!1

max

�
sup
h2H

E
h
minf�0F��F ; �g �minf�01;F��1;F ; �g

i
; 0

�
(A.73)
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and

AsyRD(b�eo;b�1) = lim
�!1

min

�
inf
h2H

h
R�(h)� eR�(h)i ; inf

h2H�
1

h
R�(h)� eR�(h)i�

= lim
�!1

min

�
inf
h2H

E
h
minf�0F��F ; �g �minf�01;F��1;F ; �g

i
; 0

�
; (A.74)

which proves (A.60) and (A.61).

In the second step, we show that

lim
�!1

max

�
sup
h2H

[g�(h)] ; 0

�
= max

�
sup
h2H

[g(h)] ; 0

�
; and (A.75)

lim
�!1

min

�
inf
h2H

[g�(h)] ; 0

�
= min

�
inf
h2H

[g(h)] ; 0

�
: (A.76)

By Lemma A.16,

lim
�!1

sup
h2H

[g�(h)] = sup
h2H

[g(h)] and lim
�!1

inf
h2H

[g�(h)] = inf
h2H

[g(h)] ; (A.77)

where suph2H [g(h)] and infh2H [g(h)] are �nite real numbers. Let f(x) = max(x; 0) and f(x) =

min(x; 0). It is clear that f(x) and f(x) are continuos function on R. The asserted results in (A.75)

and (A.76) follow by (A.77), and the continuity of f(x) and f(x).

Proof of Theorem 5.2. For any F 2 F , de�ne

DF = (�2;F � ��1;F )0���1;F : (A.78)

Recall that we have de�ned

AF = �(�1;F � �2;F ) and BF = (�2;F � ��1;F )0�(�2;F � ��1;F ) (A.79)

in Theorem 5.2 and (??) respectively. By the de�nition of �F ,

E[�0F��F ] = tr(��1;F ) + 2tr(AF )J1;F + tr(AF )2J2;F (A.80)

where

J1;F = E

"
Z 0d;2;FDFZd;2;F

Z 0d;2;FBFZd;2;F + tr(AF )

#
and J2;F = E

"
Z 0d;2;FBFZd;2;F

(Z 0d;2;FBFZd;2;F + tr(AF ))2

#
: (A.81)
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We provide a upper bound for J1;F de�ned in (A.81). De�ne a function

�(x) � x

x0BFx+ tr(AF )
for any x 2 Rr2 : (A.82)

Its derivative is
@�(x)0

@x
=

1

x0BFx+ tr(AF )
Ir2 �

2BF

(x0BFx+ tr(AF ))
2xx

0: (A.83)

Then J1;F = E [�(Zd;2;F )0DFZd;2;F ]. Note that DFZd;2;F = DFZ2;F by construction because the
last r� columns of ��1;F are zeros. Applying Lemma A.9 yields

tr (DF
2;F ) = tr
�
(�2;F � ��1;F )0���1;F
2;F

�
= tr(�

�
��1;F
2;F�

0
2;F � ��1;F
2;F��1;F

�
)

= tr(� (�2;F � �1;F )) = �tr(AF ): (A.84)

By Lemma 1 of Hansen (2016), which is a matrix version of the Stein's Lemma (Stein, 1981),

J1;F = E
�
�(Zd;2;F )0DFZd;2;F

�
= E

�
tr

�
@�(Zd;2;F )0

@x
DF
2;F

��
: (A.85)

Plugging (A.82)-(A.84) into (A.85), we have

J1;F = E

"
tr (DF
2;F )

Z 0d;2;FBFZd;2;F + tr(AF )

#
� 2E

264 tr
�
BFZd;2;FZ 0d;2;FDF
2;F

�
�
Z 0d;2;FBFZd;2;F + tr(AF )

�2
375

= E

"
�tr(AF )

Z 0d;2;FBFZd;2;F + tr(AF )

#
+ 2E

264 �Z 0d;2;FDF
2;FBFZd;2;F�
Z 0d;2;FBFZd;2;F + tr(AF )

�2
375 (A.86)

where the second equality is by (A.84). By de�nition and Lemma A.9

�Z 0d;2;FDF
2;FBFZd;2;F

= �Z 0d;2;F (�2;F � ��1;F )0���1;F
2;F (�2;F � ��1;F )0�(�2;F � ��1;F )Zd;2;F

= Z 0d;2;F (�2;F � ��1;F )0�(�1;F � �2;F )�(�2;F � ��1;F )Zd;2;F

� �max(�
1=2(�1;F � �2;F )�1=2)(Z 0d;2;F (�2;F � ��1;F )0�(�2;F � ��1;F )Zd;2;F )

= �max(AF )Z 0d;2;FBFZd;2;F ; (A.87)

where the last equality is by �max(�
1=2(�1;F ��2;F )�1=2) = �max(�(�1;F ��2;F )). Combining the
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results in (A.86) and (A.87), we get

J1;F �E
"

�tr(AF )
Z 0d;2;FBFZd;2;F + tr(AF )

#
+ 2E

264 �max(AF )Z 0d;2;FBFZd;2;F�
Z 0d;2;FBFZd;2;F + tr(AF )

�2
375

=E

"
�tr(AF )

Z 0d;2;FBFZd;2;F + tr(AF )

#

+ 2E

264
h
Z 0d;2;FBFZd;2;F + tr(A)

i
�max(AF )� tr(AF )�max(AF )�

Z 0d;2;FBFZd;2;F + tr(AF )
�2

375
=E

"
2�max(AF )� tr(AF )

Z 0d;2;FBFZd;2;F + tr(AF )

#
� E

264 2�max(AF )tr(AF )�
Z 0d;2;FBFZd;2;F + tr(AF )

�2
375 : (A.88)

Next, note that

J2;F =E

264 Z 0d;2;FBFZd;2;F���Z 0d;2;FBFZd;2;F + tr(AF )���2
375

= E

264Z 0d;2;FBFZd;2;F + tr(AF )� tr(AF )���Z 0d;2;FBFZd;2;F + tr(AF )���2
375

=E

"
1

Z 0d;2;FBFZd;2;F + tr(AF )

#
� E

264 tr(AF )���Z 0d;2;FBFZd;2;F + tr(AF )���2
375 : (A.89)

Combining (A.80), (A.88), (A.89) and the de�nition of g(h) (in Theorem 5.1), we obtain that

g(hd;F )=2tr(AF )J1;F + tr(AF )
2J2;F

�2tr(AF )

0B@E" 2�max(AF )� tr(AF )
Z 0d;2;FBFZd;2;F + tr(AF )

#
� E

264 2tr(AF )�max(AF )���Z 0d;2;FBFZd;2;F + tr(AF )���2
375
1CA

+tr(A)2

0B@E" 1

Z 0d;2;FBFZd;2;F + tr(AF )

#
� E

264 tr(AF )���Z 0d;2;FBFZd;2;F + tr(AF )���2
375
1CA

=E

"
tr(AF ) (4�max(AF )� tr(AF ))
Z 0d;2;FBFZd;2;F + tr(AF )

#
� E

264tr(AF )2 (4�max(AF ) + tr(AF ))���Z 0d;2;FBFZd;2;F + tr(AF )���2
375 : (A.90)

For all G2 and 
2 such that h = (d; vec(G2)
0; vech(
2)0) 2 H, we have G2 = G2;F and 
2 =
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2;F for some F 2 F by the de�nition of H. If tr(AF ) > 0, then �max(AF ) > 0 and thus the

second term in the right-hand side of the last equality of (A.90) will be negative. If in addition

tr(AF ) � 4�max(AF ), then the �rst term in the right-hand side of the last equality of (A.90) will

be non-negative. As a result, when tr(AF ) > 0 and 4�max(AF )� tr(AF ) � 0 for 8F 2 F , we have
suph2H [g(h)] < 0. This combined with Theorem 5.1 implies the results of this theorem.

A.3 Proof of the Results in Section 6

Lemma A.17 Suppose that Assumption 6.1 holds. Consider fFng such that vFn ! vF for some

vF 2 � and n1=2�Fn ! d with kdk <1. We have

lim
�!1

lim
n!1

EFn [`�(b�eo; �Fn)� `�(b�1; �Fn)] = g(hF;d)
where g(hF;d) = E

h
�
0
F��F � �01;F��1;F

i
.

Proof of Lemma A.17. For the sequence of DGPs fFng considered in the lemma, by Assump-
tions 6.1.(i), 6.1.(ii) and 6.1.(iv), we can use Lemma A.8 to deduce that0@ n1=2(b�1 � �Fn)

n1=2(b�2 � �Fn)
1A!D

0@ �1;F

�2;F

1A (A.91)

where d0 = (01�r1 ; d
0)0. In the proof of Lemma 4.2, we have show that

b
k = 
2;F + op(1) and bGk = Gk;F + op(1) (A.92)

under vFn ! vF , Assumptions 6.1.(i), 6.1.(ii) and 6.1.(iv). By (A.92), Assumption 6.1.(iv) and the

Slutsky Theorem, b�1;F and b�2;F are consistent estimators of �1;F and �2;F respectively. By the
consistency of b�1;F and b�2;F , the weak convergence in (A.91) and the CMT, we deduce that

n1=2(b�eo � �Fn)!D �F : (A.93)

Collecting the results in (A.91) and (A.93), and then applying the CMT and the Portmanteau

Lemma, we get

lim
n!1

EFn [`�(b�eo; �Fn)� `�(b�1; �Fn)]! g�(h) (A.94)

where g�(h) = E
h
minf�0F��F ; �g �min

�
�01;F��1;F ; �

	i
. The asserted result follows by Lemma

A.16 and (A.94).
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Proof of Lemma 6.1. Let fFng be a sequence such that

lim sup
n!1

EFn [`�(b�eo; �Fn)� `�(b�1; �Fn)] = lim sup
n!1

�
sup
F2Fn

EF [`�(b�eo; �F )� `�(b�1; �F )]� : (A.95)

Such a sequence always exists by the de�nition of supremum. The sequence fEFn [`�(b�eo; �Fn) �
`�(b�1; �Fn)]: n � 1g may not converge. However, by the de�nition of limsup, there exists a subse-
quence of fng, say fpng, such that fEFpn [`�(b�eo; �Fpn )� `�(b�1; �Fpn )]: n � 1g converges and

lim
n!1

EFpn [`�(b�eo; �Fpn )� `�(b�1; �Fpn )] = lim sup
n!1

�
sup
F2Fn

EF [`�(b�eo; �F )� `�(b�1; �F )]� : (A.96)

Below we show that for any subsequence fpng of fng such that fEFpn [`�(b�eo; �Fpn )� `�(b�1; �Fpn )]:
n � 1g is convergent, there exists a subsequence fp�ng of fpng such that

lim
n!1

EFp�n [`�(
b�eo; �Fp�n )� `�(b�1; �Fp�n )] = g�(h) for some h 2 HCL (A.97)

Because limn!1 EFp�n [`�(
b�eo; �Fp�n )�`�(b�1; �Fp�n )] = limn!1 EFpn [`�(b�eo; �Fpn )�`�(b�1; �Fpn )], which

combined with (A.96) and (A.97) implies that

lim sup
n!1

�
sup
F2Fn

EF [`�(b�eo; �F )� `�(b�1; �F )]� = g�(h) for some h 2 HCL : (A.98)

The desired result in (6.5) follows immediately by (A.98).

To show that there exists a subsequence fp�ng of fpng such that (A.97) holds, it su�ces to show
that for any sequence fFng and any subsequence fpng of fng, there exists a subsequence fp�ng of
fpng for which we have

(p�n)
1=2�Fp�n

! d for kdk � CL and vFp�n ! vF (A.99)

for some F 2 F . By (A.99), we can use Lemma A.17 to deduce that

lim
n!1

EFp�n [`�(
b�eo; �Fp�n )� `�(b�1; �Fp�n )] = g�(hF;d) (A.100)

for the sequence of DGPs fFp�ng satis�es (A.99). Moreover, we have hF;d 2 HCL by the de�nition
of HCL , which together with (A.100) proves (A.97).

Finally, we show that for any sequence fFng and any subsequence fpng of fng, there exists a
subsequence fp�ng of fpng for which (A.99) holds. Let �pn;j denote the j-th component of �pn and
p1;n = pn for any n � 1. For j = 1, we have jp1=2j;n �pj;n;j j � CL for any n by Assumption 6.1.(vi).
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Hence there is some subsequence fpj+1;ng of fpj;ng, p1=2j+1;n�pj+1;n;j ! dj for some jdj j � CL. As r�

is a �xed positive integer, we can apply the same arguments successively for j = 1; : : : ; r� to obtain

a subsequence fpr�;ng of fpng such that (pr�;n)1=2�pr�;n ! d with jdj j � CL for j = 1; : : : ; r�. Since


(pr�;n)1=2�pr�;n


 � CL for any n by Assumption 6.1.(vi), we have kdk � CL. By Assumptions

3.2.(ii) and 6.1.(v), � is a compact set. Hence, there is a subsequence fp�ng of fpr�;ng such that
vFp�n

! vF , which �nishes the proof of (A.99).

Proof of Theorem 6.1. By (A.90) in the proof of Theorem 5.2

g(hd;F )�E
"
tr(AF ) (4�max(AF )� tr(AF ))
Z 0d;2;FBFZd;2;F + tr(AF )

#
� E

264tr(AF )2 (4�max(AF ) + tr(AF ))���Z 0d;2;FBFZd;2;F + tr(AF )���2
375 : (A.101)

By Jensen's inequality,

E

"
1

Z 0d;2;FBFZd;2;F + tr(AF )

#
� 1

tr(d0BFd) + 2tr(AF )
; (A.102)

and similarly

E

264 1���Z 0d;2;FBFZd;2;F + tr(AF )���2
375 � 1

jtr(d0BFd) + 2tr(AF )j2
: (A.103)

(A.102) and (A.103), combined with tr(AF ) � 4�max(AF ) and �max(AF ) > 0, imply that

g(h) � tr(AF ) (4�max(AF )� tr(AF ))
tr(d0BFd) + 2tr(AF )

� tr(AF )
2 (4�max(AF ) + tr(AF ))

jtr(d0BFd) + 2tr(AF )j2

� tr(AF ) (4�max(AF )� tr(AF ))
C2L�max(BF ) + 2tr(AF )

� tr(AF )
2 (4�max(AF ) + tr(AF ))��C2L�max(BF ) + 2tr(AF )��2 : (A.104)

Since � is positive semi-de�nite, by de�nition of BF and Assumption 6.1.(iv), 0 � �max(BF ) <1.
Moreover, by Assumptions 6.1.(iv) and 6.1.(vi), tr(AF ) < 1 and CL < 1. Therefore (A.104)
immediately implies that g(h)< 0 for any h 2 HCL .
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Supplemental Appendix of
\An Averaging GMM Estimator Robust to Misspeci�cation"

Xu Cheng, Zhipeng Liao, Ruoyao Shi

In this supplemental appendix, we present supporting materials for Cheng, Liao and Shi (2017)

(cited as CLS hereafter in this Appendix):

� Section B provides primitive conditions for Assumptions 3.1, 3.2 and 3.3 and the proof of

Lemma 3.1 of CLS.

� Section C provides the proof of (4.3) in Section 4 and the proof of some Lemmas in Appendix
A.1 of CLS.

� Section D studies the bounds of asymptotic risk di�erence of the pre-test GMM estimator

presented in Figure 2 of CLS.

� Section E includes extra simulation studies.

� Section F presents the uniform dominance result in a Gaussian location model.

B Primitive Conditions for Assumptions 3.1, 3.2 and 3.3 and

Proof of Lemma 3.1 of CLS

In this section, we provide primitive conditions for Assumption Assumptions 3.1, 3.2 and 3.3 in the

linear IV model presented in Example 3.1 of CLS.

We �rst provide a set of su�cient conditions without imposing the normal distribution assump-

tion on (X 0; Z 01; V
0; U)0 in Lemma B.1. Then, we impose the normal assumptions and show that

these conditions can be simpli�ed to those in Lemma 3.1 of CLS under normality.

For ease of notations, we de�ne �z1vu2 � EF � [Z1V 0U2], 
z1z1u2 � EF � [Z1Z 01U2] and 
vvu2 �
EF � [V V 0U2]. The Jacobian matrices are

G1;F = �EF [Z1X 0] and G2;F =

0@ �EF [Z1X 0]

�EF [Z�X 0]

1A : (B.1)

Let Z2 = (Z
0
1; Z

�0)0. The variance-covariance matrix of the moment conditions is


2;F = EF [Z2Z 02(Y �X 0�0)
2]� EF [(Y �X 0�0)Z2]EF [(Y �X 0�0)Z

0
2]: (B.2)

By de�nition, 
1;F is the leading r1 � r1 submatrix of 
2;F .
Let F denote the joint distribution of W = (Y; Z 01; Z

�0; X 0)0 induced by �0, �0 and F �. By

de�nition, we can write

�F = 
uu�0, G2;F =

0@ ��z1x
��0�ux � �vx

1A , 
2;F =
0@ 
z1z1u2 
2;1r;F


2;r1;F 
2;rr;F

1A (B.3)
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where


2;1r;F = �z1u3�
0
0 + �z1vu2 = 


0
2;r1;F , and


2;rr;F = 
u2u2�0�
0
0 + �0�u3v + �vu3�

0
0 +
vvu2 : (B.4)

Therefore, the parameter vF de�ned in (3.4) depends on F through F
� and �0, and its dependence

on F � is through v�;F � , where

v�;F � =

0@ 
u2u2 ;
uu; vec(�z1x)
0; vec(�ux)0; vec(�vx)0; vech(
z1z1u2)

0;

vec(�z1u3)
0; vec(�z1vu2)

0; vec(�u3v)
0; vech(
vvu2)

0

1A : (B.5)

De�ne

�2;max � maxf sup
F2F

�max(
2;F ); sup
F2F

�max(G2;FG
0
2;F )g;

�2;min � minf inf
F2F

�min(
2;F ); inf
F2F

�min(G2;FG
0
2;F )g;

CW � sup
F �2F�

EF � [jj(X 0; Z 01; V
0; U)jj2] and C� � sup

�02��
k�0k2 : (B.6)

In the proof of Lemma B.1 below, we show that �2;max <1 (see (B.14) and (B.18)). Moreover, we

have �2;min > 0, CW <1 and C� <1 by Assumptions B.1.(iii), B.1.(ii) and B.1.(vii) respectively.

De�ne

Bc�2 � f� 2 R
r� : k�k � �2;min��12;maxC

�1=2
� g: (B.7)

Let �0 be a non-empty set in Rd� . De�ne

B�0 � f� 2 Rd� : k� � �0k � ��42;min�
3
2;maxC�C

2
W for any �0 2 �0g: (B.8)

Let fcj;�; Cj;�gr
�

j=1 be a set of �nite constants. We next provide the low-level su�cient conditions

for Assumptions 3.1, 3.2 and 3.3.

Assumption B.1 The following conditions hold:

(i) EF � [V ] = 0, EF � [U ] = 0, EF � [Z1U ] = 0r1�1 and EF � [V U ] = 0r��1 for any F � 2 F�;
(ii) sup

F �2F�
EF � [jjXjj4+
 + jjZ1jj4+
 + jjV jj4+
 + U6] <1 for some 
 > 0;

(iii) inf
F �2F�

EF � [U2] > 0, inf
F �2F�

�min(�xz1�z1x) > 0 and inf
F2F

�min(
2;F ) > 0;

(iv) inf
F �2F�

inf
�2Bc�2

k�k�1 jj(�xz1
�1z1z1u2�z1vu2 � �xv)� + �xz1

�1
z1z1u2

�z1u3 � �xujj > 0;

(v) the set fv�;F � : F � 2 F�g is closed;
(vi) �0 2 �0, B�0 � int(�) and � is compact;

(vii) �� = [c1;�; C1;�]� � � � � [cr�;�; Cr�;�] where cj;� < 0 < Cj;� for j = 1; : : : ; r�.

Lemma B.1 Suppose that fWigni=1 are i.i.d. and generated by the linear model (3.6) and (3.8) in
CLS. Then under Assumption B.1, F satis�es Assumptions 3.1, 3.2 and 3.3.
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For the linear IV model, Lemma B.1 provides simple conditions on �0, �0 and F� on which
uniformity results are subsequently established.

Proof of Lemma B.1. By Assumption B.1.(i) and the de�nition of G1;F ,

EF [g1(W; �)] = EF � [Z1(U �X 0(� � �0))] = G1;F (� � �0); (B.9)

which together with Assumption B.1.(iii) implies that �F = �0 and hence EF [g1(W; �F )] = 0r1�1.
Also �F 2 int(�) holds by �F = �0 and Assumption B.1.(vi). This veri�es Assumption 3.1.(i).

By (B.9) for any � 2 � with jj� � �F jj � " and any F 2 F

kEF [g1(W; �)]k � �1=2min(G
0
1;FG1;F ) k�F � �k � "�

1=2
min(G

0
1;FG1;F ) (B.10)

which combined with Assumption B.1.(iii) and G1;F = ��0xz1;F � implies that

inf
F2F

inf
�2Bc"(�F )

jjEF [g1(W; �)] jj > 0: (B.11)

This veri�es Assumption 3.1.(ii).

Next, we show Assumption 3.1.(iii). Let Z2 � (Z 01; Z�0)0. By the Lyapunov inequality, Assump-
tions B.1.(i)-(ii) and B.1.(vii),

sup
F2F

EF [jjZ2jj2] � sup
F �2F�

EF � [jjZ1jj2] + 2 sup
F �2F�

EF � [jjV jj2]

+2 sup
�02��

k�0k2 sup
F �2F�

EF � [U2] <1: (B.12)

By (B.12), the H�older inequality, the Lyapunov inequality and Assumption B.1.(ii),

sup
F2F

kG2;F k = sup
F2F



EF [Z2X 0]


 � sup

F2F
(EF [jjZ2jj2])1=2 sup

F �2F�
(EF � [jjXjj2])1=2 <1; (B.13)

which together with the de�nition of G2;F and the Cauchy-Schwarz inequality implies that

sup
F2F



G02;FG2;F

 <1: (B.14)

Similarly by the Cauchy-Schwarz inequality, the Lyapunov inequality, Assumptions B.1.(ii) and

B.1.(vii), we have

sup
F2F

EF [jjZ2jj4] = sup
F2F

EF [(jjZ1jj2 + jjZ�jj2)2]

� 2 sup
F �2F�

EF � [jjZ1jj4] + 2 sup
F2F

EF [jjZ�jj4]

� 2 sup
F �2F�

EF � [jjZ1jj4] + 8 sup
F �2F�

EF � [jjV jj4]

+8 sup
�02��

k�0k4 sup
F �2F�

EF � [U4] <1: (B.15)
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By (B.12), (B.15), Assumption B.1.(ii), the Lyapunov inequality and the H�older inequality, we

have

sup
F2F



EF [Z2Z 02(Y �X 0�0)
2]




� sup
F2F

EF [jjZ2jj2(Y �X 0�0)
2]

� sup
F2F

(EF [jjZ2jj4])1=2 sup
F �2F�

(EF � [U4])1=2 <1; (B.16)

and

sup
F2F



EF [(Y �X 0�0)Z2]


 � sup

F2F
(EF [jjZ2jj2])1=2 sup

F �2F�
(EF � [U2])1=2 <1: (B.17)

By the de�nition of 
2;F , the triangle inequality, the Cauchy-Schwarz inequality and the results in

(B.16) and (B.17),

sup
F2F

k
2;F k <1: (B.18)

We then show that ��F 2 int(�). By the triangle inequality, the Cauchy-Schwarz inequality and
the H�older inequality,

kG2;F k � k�xz1k+ k�0k k�xuk+ k�xvk
� (EF � [jjXjj2])1=2(EF � [jjZ1jj2])1=2

+ k�0k (EF � [jjXjj2])1=2(EF � [U2])1=2

+(EF � [jjXjj2])1=2(EF � [jjV jj2])1=2

� CW (2 + C
1=2
� ), (B.19)

for any F 2 F , where CW < 1 by Assumptions B.1.(ii) and (vii). Since G02;F = (G01;F ; G
0
r�;F )

where Gr�;F = ��0EF � [UX 0]� EF � [V X 0], we have

G02;FG2;F = G
0
1;FG1;F +G

0
r�;FGr�;F ; (B.20)

which implies that for any F 2 F ,

�min(G
0
2;FG2;F ) � �min(G01;FG1;F ): (B.21)

To show Assumption 3.1.(iii), we write

QF (�) = EF [Z2(Y �X 0�)]0
�12;FEF [Z2(Y �X
0�)]

= �0G02;F

�1
2;FG2;F � + 2�

0G02;F

�1
2;FCF + C

0
F


�1
2;FCF ; (B.22)

where CF = EF [Z2Y ]. Since G02;F

�1
2;FG2;F is non-singular by (B.18), (B.21) and Assumption
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B.1.(iii), QF (�) is minimized at �
�
F = �(G02;F


�1
2;FG2;F )

�1G02;F

�1
2;FCF for any F 2 F . Therefore,

k��F � �0k
2 =




(G02;F
�12;FG2;F )�1G02;F
�12;FEF [Z2U ]


2
� �2max(
2;F )

�2min(G
0
2;FG2;F )

EF
�
UZ 02

�

�12;FG2;FG

0
2;F


�1
2;FEF [Z2U ]

�
�2max(
2;F )�max(G

0
2;FG2;F )�

2
uu

�2min(
2;F )�
2
min(G

0
2;FG2;F )

k�0k2

� ��42;min�
3
2;maxC�C

2
W (B.23)

for any F 2 F . By Assumption B.1.(vi), ��F 2 int(�). Moreover for any � 2 � with jj� � ��F jj � ",

QF (�)�QF (��F ) � �min(G
0
2;F


�1
2;FG2;F ) k� � �

�
F k

2

� "2�min(G
0
2;F


�1
2;FG2;F )

� "2��1max(
2;F )�min(G
0
2;FG2;F ); (B.24)

which together with (B.18), (B.21) and Assumption B.1.(iii) implies that

inf
F2F

inf
�2Bc"(��F )

[QF (�)�QF (��F )] > 0: (B.25)

This veri�es Assumption 3.1.(iii).

Next, we verify Assumption 3.1.(iv). Let 

(22)
2;F = (
2;rr;F � 
02;r1;F


�1
z1z1u2


2;1r;F )
�1, where


2;1r;F and 
2;rr;F are de�ned in (B.4). Then

G02;F

�1
2;F �2;F

= �(�xz1 ;�xv + �xu�00)

0@ �
�1
z1z1u2


2;1r;F

Ir�

1A
(22)2;F 
uu�0

= 
uu[(�xz1

�1
z1z1u2

�z1u3 � �xu)�
0
0 + �xz1


�1
z1z1u2

�z1vu2 � �xv]

(22)
2;F �0

= 
uu�
0
0


(22)
2;F �0(�xz1


�1
z1z1u2

�z1u3 � �xu)

+
uu(�xz1

�1
z1z1u2

�z1vu2 � �xv)

(22)
2;F �0; (B.26)

by the formula of the inverse of partitioned matrix. For any �0 2 �� with k�0k > 0, we have

�00(

(22)
2;F )

2�0

(�00

(22)
2;F �0)

2
�
(�min(


(22)
2;F ))

2

(�max(

(22)
2;F ))

2

1

�00�0
�

�22;min
C��22;max

(B.27)

and

�00

(22)
2;F �0 =

�00

(22)
2;F �0(�

0
0(


(22)
2;F )

2�0)
1=2

(�00(

(22)
2;F )

2�0)1=2
� k�0k
�2;max

�00

(22)
2;F �0

(�00(

(22)
2;F )

2�0)1=2
(B.28)
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where the last inequality in (B.27) and the inequality in (B.28) are due to

�min(

(22)
2;F ) � �min(


�1
2;F ) = �

�1
2;max

and

�max(

(22)
2;F ) � �max(


�1
2;F ) = �

�1
2;min:

Therefore, for any F 2 F with �2;F = 
uu(01�r1 ; �
0
0)
0 and k�0k > 0,


G02;F
�12;F �2;F




k�2;F k
=

�00

(22)
2;F �0

k�0k









(�xz1


�1
z1z1u2

�z1vu2 � �xv)


(22)
2;F �0

�00

(22)
2;F �0

+(�xz1

�1
z1z1u2

�z1u3 � �xu)









� 1

�2;max

�00

(22)
2;F �0

(�00(

(22)
2;F )

2�0)1=2









(�xz1


�1
z1z1u2

�z1vu2 � �xv)


(22)
2;F �0

�00

(22)
2;F �0

+(�xz1

�1
z1z1u2

�z1u3 � �xu)









=

1

�2;max

1

jje�0jj






 (�xz1


�1
z1z1u2

�z1vu2 � �xv)e�0
+(�xz1


�1
z1z1u2

�z1u3 � �xu)







 (B.29)

where e�0 � 
(22)2;F �0=�
0
0


(22)
2;F �0 and the inequality is by (B.28). By (B.28) and the de�nition of B

c
�2
,e�0 2 Bc�2 . Therefore, (B.29) implies that


G02;F
�12;F �2;F




k�2;F k
� 1

�2;max
inf
�2Bc�2

k�k�1






 (�xz1


�1
z1z1u2

�z1vu2 � �xv)�
+(�xz1


�1
z1z1u2

�z1u3 � �xu)







 : (B.30)

Collecting the results in (B.18) and (B.30) and then applying Assumption B.1.(iv), we get

inf
fF2F : k�F k>0g




G02;F
�12;F �2;F



k�2;F k

> 0 (B.31)

which shows Assumption 3.1.(iv) with � = 1.

Assumption 3.1.(v) is implied by Assumption B.1.(vii). This �nishes the veri�cation of As-

sumption 3.1.

To verify Assumption 3.2, note that g2(W; �) = Z2(U � X 0(� � �0)), g2;�(W; �) = �Z2X 0 and

g2;��(W; �) = 0(r2d�)�d� . Therefore, Assumption 3.2.(i) holds automatically. Moreover Assumption

3.2.(ii) is implied by Assumption B.1.(ii) and the assumption that � is bounded. Assumptions

3.2(iii)-(iv) follow from Assumption B.1.(iii).

We next verify Assumption 3.3. By de�nition,

vF =
�
vec(G2;F )

0; vech(
2;F )
0; �F

�
. (B.32)

Let �� = fv�;F � : F � 2 F�g. From the expressions in (B.3), we see that � = fvF : F 2 Fg is the
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image of �� ��� under a continuous mapping. By Assumption B.1.(ii) and the H�older inequality,
�� is bounded which together with Assumption B.1.(v) implies that �� is compact. Since �� is

also a compact set by Assumption B.1.(vii), we know that �� � �� is compact. Therefore, � is
compact and hence closed. This veri�es Assumption 3.3.(ii).

Let "F = 
uuc� where c� = min fminj�r� jcj;�j;minj�r� jCj;�jg. Below we show that for anye� 2 Rr� with 0 � jje�jj � "F , there is eF 2 F such that

e� eF = e�, jjG2; eF �G2;F jj � C1jje�F jj1=4 and jj
2; eF � 
2;F jj � C2jje�jj1=4 (B.33)

for some �xed constants C1 and C2. This veri�es Assumption 3.3.(i) with � = 1=4.

First if e� = 0r��1, then we set eF to be F which is induced by �0, �0 and F
� with �0 = 0r��1.

By de�nition G
2; eF = G2;F , 
2; eF = 
2;F and e� eF = �F = �0
uu = 0 = e� which implies that (B.33)

holds.

Second consider any e� 2 Rr� with 0 < jje�jj < "F . De�ne e�0 = e�
�1uu . Since jje�jj < "F and

"F = 
uuc�,

jje�0jj = jje�
�1uu jj = jje�jj
�1uu < c�; (B.34)

which combined with the de�nition of �� implies that e�0 2 ��. Let eF be the joint distribution

induced by e�0, �0 and F �. By the de�nition of F , we have eF 2 F . Moreover,
e� eF = e�0
uu = e� (B.35)

which veri�es the equality in (B.33). By de�nition,

G
2; eF =

0@ �EF � [Z1X 0]

�e�0EF � [UX 0]� EF � [V X 0]

1A and G2;F =

0@ �EF � [Z1X 0]

�EF � [V X 0]

1A (B.36)

which together with the Cauchy-Schwarz inequality and the H�older inequality implies that

jjG
2; eF �G2;F jj = jje�0EF � [UX 0]jj � jje�0jj(
uuEF � [jjXjj2])1=2

= jje�0jj3=4
1=4uu (EF � [jjXjj2])1=2jje�0
uujj1=4: (B.37)

By Assumption B.1.(ii),

sup
F �2F�

EF � [jjXjj2] <1 and sup
F �2F�


uu <1 (B.38)

which together with (B.34), (B.37) and the de�nition of e� implies that
jjG

2; eF �G2;F jj � C1jje�jj1=4; (B.39)

where C1 = c
3=4
� supF �2F�(EF � [jjXjj2])1=2 supF �2F� 


1=4
uu is �nite.
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To show the last inequality in (B.33), note that by de�nition � eF = �0 = �F and hence
E eF [Z1Z 01(Y �X 0� eF )2] = EF � [Z1Z 01U2] = EF [Z1Z 01(Y �X 0�F )

2]: (B.40)

Under eF ,
E eF [Z1Z�0(Y �X 0� eF )2] = EF � [Z1(Ue�0 + V )0U2] = EF � [U3Z1]e�00 + EF � [U2Z1V 0]; (B.41)

and

E eF [Z�Z�0(Y �X 0� eF )2]
= EF � [(Ue�0 + V )(Ue�0 + V )0U2]
= EF � [U4]e�0e�00 + e�0EF � [U3V 0] + EF � [U3V ]e�00 + EF � [U2V V 0]: (B.42)

Under F ,

EF [Z1Z�0(Y �X 0�F )
2] = EF � [U2Z1V 0] and EF [Z�Z�0(Y �X 0�F )

2] = EF � [U2V V 0]: (B.43)

Collecting the results in (B.40), (B.41), (B.42) and (B.43), and applying the triangle inequality, we

get



E eF [Z2Z 02(Y �X 0� eF )2]� EF [Z2Z 02(Y �X 0�F )
2]




�



EF � [U3Z1]e�00


+ 


EF � [U4]e�0e�00



+



e�0EF � [U3V 0]


+ 


EF � [U3V ]e�00


 : (B.44)

By Assumption B.1.(ii) and the Lyapunov inequality

sup
F �2F�

EF � [jU j5] <1, sup
F �2F�

EF � [jjZ1jj4] <1 and sup
F �2F�

EF � [jjV jj4] <1: (B.45)

By the H�older inequality,



EF � [U3Z1]

 � (EF � [jU jjjZ1jj2]EF � [jU j5])1=2

� (EF � [jU j5])1=2(EF � [jjZ1jj4])1=4(EF � [U2])1=4

= 
1=4uu (EF � [jU j
5])1=2(EF � [jjZ1jj4])1=4: (B.46)

Similarly, we can show that



EF � [U3V 0]

 � 
1=4uu (EF � [jU j5])1=2(EF � [jjV jj4])1=4 (B.47)
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and

EF � [U4] � (EF � [U2]EF � [U6])1=2 = 
1=4uu sup
F �2F�

(EF � [U6])1=2: (B.48)

Let C2;0 = supF �2F�f(EF � [jU j5])1=2[(EF � [jjZ1jj4])1=4+(EF � [jjV jj4])1=4]+(EF � [U6])1=2g. Combining
the results in (B.44), (B.46), (B.47) and (B.48), and applying the Cauchy-Schwarz inequality, we

get



E eF [Z2Z 02(Y �X 0� eF )2]� EF [Z2Z 02(Y �X 0�F )
2]




� 3C2;0

1=4
uu jje�0jj+ C2;0
1=4uu jje�0jj2

= (3C2;0jje�0jj3=4 + C2;0jje�0jj7=4)
1=4uu jje�0jj1=4 � C2;1jje�jj1=4 (B.49)

where C2;1 = C2;0(3c
3=4
� + c

7=4
� ), the second inequality is by (B.34) and the de�nition of e�. By

(B.45), Assumption B.1.(ii) and the de�nition of c�,

C2;1 <1: (B.50)

Next note that

E eF [Z2(Y �X 0� eF )] =
0@ EF � [Z1U ]e�0
uu

1A and EF [Z2(Y �X 0�F )] =

0@ EF � [Z1U ]

0r��1

1A (B.51)

which implies that 





 E eF [Z2(Y �X 0� eF )]E eF [Z 02(Y �X 0� eF )]
�EF [Z2(Y �X 0�F )]EF [Z 02(Y �X 0�F )]








=








0@ 0r1�r1 
uu;F �EF � [Z1U ]e�00e�0EF � [Z 01U ]
uu e�0e�00
2uu

1A






� 
uu




EF � [Z1U ]e�00


+
uu 


e�0EF � [Z1U ]


+
2uujje�0jj2
� 2
uujje�0jj kEF � [Z1U ]k+
2uujje�0jj2
� (2
5=4uu jje�0jj3=4(EF � [jjZ1jj2])1=2 +
7=4uu jje�0jj7=4)jje�jj1=4 � C2;2jje�jj1=4 (B.52)

where C2;2 = supF �2F�f2

5=4
uu (EF � [jjZ1jj2])1=2c3=4� + 


7=4
uu c

7=4
� g, the second inequality is by the

Cauchy-Schwarz inequality, the third inequality is by the H�older inequality. By Assumption B.1.(ii)

and the de�nition of c�,

C2;2 <1: (B.53)

By the de�nition of 
2;F in (B.2), we can use the triangle inequality and the results in (B.49) and

(B.52) to deduce that 



2; eF � 
2;F


 � C2jje�jj1=4 (B.54)
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where C2 = C2;1 + C2;2 and C2 < 1 by (B.50) and (B.53), which proves the second inequality in

(B.33). This veri�es Assumption 3.3.(i) with � = 1=4.

Proof of Lemma 3.1. Next, we apply Lemma B.1 to prove Lemma 3.1 in the paper. For

convenience, the conditions of Lemma 3.1 are stated here. The proof veri�es the conditions of

Lemma B.1 with the following conditions in a Gaussian model. Let F� denote the set of normal
distributions which satis�es:

(i) �u = 0, �z1u = 0r1�1 and �vu = 0r��1;

(ii) infF �2F� �min(�xz1�z1x) > 0, supF �2F� jj�jj2 <1 and

0 < infF �2F� �min (	) � supF �2F� �max (	) <1;
(iii) infF �2F� inffk�k�"g k�k�1 jj(�xz1��1z1z1�z1v � �xv)� � �xujj > 0 for some " > 0 that is small

enough (where " is given in (A.3) in the Appendix of CLS);

(iv) �0 2 int(�) and � is compact and large enough such that the pseudo-true value ��(F ) 2 int(�);
(v) �� = [c1;�; C1;�] � � � � � [cr�;�; Cr�;�] where fcj;�; Cj;�gr

�

j=1 is a set of �nite constants with

cj;� < 0 < Cj;� for j = 1; : : : ; r
�.

Speci�cally, we assume that condition (ii) of Lemma 3.1 holds with some constants c� and C�
such that c� � �min(�xz1�z1x), jj�jj2 � C� and c� � �min (	) � �max (	) � C�; condition (iii) of

Lemma 3.1 holds with

inf�2Bc" k�k
�1 jj(�xz1��1z1z1�z1v � �xv)� � �xujj � c� (B.55)

for some positive constant c� and

Bc" � f� 2 Rr
�
: k�k � c�;�C�1�;�C�1� g; (B.56)

where

C�;W � 2(d� + r2 + 1)C�, c�;� � minf1; c2�g and C�;� � C2�;W (2 + C
1=2
� )2 (B.57)

and C� � sup�02�� k�0k
2.

Assumption B.1.(i) holds under Condition (i) of Lemma 3.1. Since (X 0; Z 01; V
0; U)0 is a normal

random vector, Assumption B.1.(ii) holds by k�k2 � C� and �max (	) � C�. By �min (	) � c� and
�u = 0, we have EF � [U2] � c� for any F � 2 F� and hence infF �2F� EF � [U2] > 0. Let F denote the
distribution of W induced by F � with mean � and variance-covariance matrix 	. By de�nition,

G1;F = �EF � [Z1X 0] = �z1x. Therefore,

infF2F �min(G
0
1;FG1;F ) � c� > 0 (B.58)

holds by �min(�xz1�z1x) � c� > 0 for any F � 2 F�. Since �z1u = 0r1�1 and �vu = 0r��1 for any

F � 2 F�, U is independent with respect to (Z 01; V
0)0 under the normal assumption. Therefore, by
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Condition (i) of Lemma 3.1


2;F =

0@ 
uu�z1z1 
uu�z1v


uu�
0
z1v 2
2uu�0�

0
0 +
uu�vv

1A
= 
uu

0@ 
z1z1 
z1v


vz1 
vv

1A+
uu
0@ �z1

�v

1A0@ �z1

�v

1A0 +
0@ 0r1�r1 0r1�r�

0r��r1 2
2uu�0�
0
0

1A(B.59)
which implies that �min(
2;F ) � �2min(	) where F is the distribution of W induced by F � with

mean � and variance-covariance matrix 	. Since �min(	) � c� > 0, we have

infF2F �min(
2;F ) � c2� > 0: (B.60)

This �nishes the proof of Assumption B.1.(iii).

By (B.59), Conditions (ii) and (v) of Lemma 3.1

sup
F2F

�max(
2;F ) � �2max(	) + �max(	) k�k
2 + 2�2max(	)C� � 2C2�(1 + C�): (B.61)

By (B.19) in the proof of Lemma B.1,

kG2;F k � 2C�(d� + r2 + 1)(2 + C1=2� )

which implies that

sup
F2F

�max(G
0
2;FG2;F ) � 4C2�(d� + r2 + 1)2(2 + C

1=2
� )2: (B.62)

By (B.58) and (B.60),

min

�
inf
F2F

�min(
2;F ); inf
F2F

�min(G
0
2;FG2;F )

�
� minf1; c2�g: (B.63)

By (B.61) and (B.62),

max

�
sup
F2F

�max(
2;F ); sup
F2F

�max(G
0
2;FG2;F )

�
� 4C2�(d� + r2 + 1)2(2 + C

1=2
� )2: (B.64)

From (B.63), (B.64), the de�nitions of c�;�, C�;� and BcN;�, we have B
c
�2
� BcN;� where B

c
�2
is

de�ned in (B.7). Moreover, by �u = 0, the normal assumption and the independence between U

and (Z 01; V
0)0, we have 
z1z1u2 = 
uu�z1z1 , �z1vu2 = 
uu�z1v and �z1u3 = 0r1�1, which implies that

jj(�xz1
�1z1z1u2�z1vu2 � �xv)� + �xz1

�1
z1z1u2

�z1u3 � �xujj
= jj(�xz1��1z1z1�z1v � �xv)� � �xujj: (B.65)
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Assumption B.1.(iv) follows by Bc�2 � B
c
N;�, (B.65) and Condition (iii) of the lemma.

We next show that Assumption B.1.(v) holds. De�ne

v�;F � =

0@ 
uu; vec(�xz1)
0; vec(�xu)0; vec(�xv)0;

vec(�z1v)
0; vech(�z1z1)

0; vech(�vv)0

1A :
Under Condition (i) of Lemma 3.1 and the normal assumption, �u2u2 = 3
2uu, �z1u3 = 0r1�1,

�vu3 = 0r��1, 
z1z1u2 = 
uu�z1z1 , �z1vu2 = 
uu�z1v and 
vvu2 = 
uu�vv. Therefore to verify

Assumption B.1.(v), it is su�cient to show that the set fv�;F � : F � 2 F�g is compact because the
set fv�;F � : F � 2 F�g is the image of the set fv�;F � : F � 2 F�g under a continuous mapping. Let
f(�n;	n)gn be a convergent sequence where (�n;	n) satis�es Conditions (i)-(iii) of Lemma 3.1 for
any n. Let e� and e	 denote the limits of �n and 	n under the Euclidean norm respectively. We

�rst show that Conditions (i)-(iii) of Lemma 3.1 hold for (e�; e	). Since �u;n = 0, �z1u;n = 0r1�1
and �vu;n = 0r��1 for any n, we have e�u = 0, e�z1u = 0r1�1 and e�vu = 0r��1 which shows that

(e�; e	) satis�es Condition (i) of Lemma 3.1. Since �n ! e� and k�nk2 � C� for any n, we have

jje�jj2 � C�. By the convergence of (�n;	n), �xz1;n ! e�xz1 . Since the roots of a polynomial
continuously depends on its coe�cients, we have

�min(�xz1;n�
0
xz1;n)! �min(e�xz1e�0xz1), �min(	n)! �min(e	) and �max (	n)! �max(e	)

which together with the assumption that �xz1;n and 	n satisfy Condition (ii) of Lemma 3.1 implies

that

c� � �min(e�xz1e�0xz1) and c� � �min(e	) � �max(e	) � C�:
This shows that Condition (ii) of Lemma 3.1 holds for (e�; e	). For any � 2 BcN;�, by the triangle
inequality, the Cauchy-Schwarz inequality and k�k � c2�C�2� C�1� (1 + C�)

�12�1,

k�k�1 jj(e�xz1e��1z1z1e�z1v � e�xv)� � e�xujj
� k�k�1 jj(�xz1;n��1z1z1;n�z1v;n � �xv;n)� � �xu;njj

�jje�xz1e��1z1z1e�z1v � �xz1;n��1z1z1;n�z1v;njj
�jje�xv � �xv;njj � 2C2�C�(1 + C�)c�2� jj�xu;n � e�xujj

which together with the convergence of (�n;	n) and Conditions (ii)-(iii) of Lemma 3.1 implies that

k�k�1 jj(e�xz1e��1z1z1e�z1v � e�xv)� � e�xujj
� c� � jje�xz1e��1z1z1e�z1v � �xz1;n��1z1z1;n�z1v;njj

�jje�xv � �xv;njj � 2C2�C�(1 + C�)c�2� jj�xu;n � e�xujj
for any n. Let n go to in�nity, we get

k�k�1 jj(e�xz1e��1z1z1e�z1v � e�xv)� � e�xujj � c�
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for any � 2 Bc". This shows that Condition (iii) of Lemma 3.1 also holds for (e�; e	). Hence the set
of (�;	) which satis�es Conditions (i)-(iii) of Lemma 3.1 is closed. By Conditions (i)-(ii) of the

Lemma, we know that this set is compact because it is also bounded. Let F � denote the normal

distribution with mean � and variance-covariance matrix 	. Then v�;F � is the image of (�;	)

under a continuous mapping, which implies that fv�;F � : F � 2 F�g is compact. Therefore the set
fv�;F � : F � 2 F�g is compact and hence closed. This proves Assumption B.1.(v).

Assumption B.1.(vi) is used to show that �F 2 int(�) and ��F 2 int(�) for any F 2 F . By
�F = �0 and Condition (iv) of Lemma 3.1, we have �F 2 int(�) and ��F 2 int(�).

Finally, Assumption B.1.(vii) is the same as Condition (v) of Lemma 3.1.

C Proof of Some Auxiliary Results in Sections 4, 5 and 6 of CLS

Proof of Lemma A.2. (i) Let g2;j(w; �) denote the j-th (j = 1; : : : ; r2) component of g2(w; �).

By the mean value expansion,

g2;j(w; �1)� g2;j(w; �2) = g2;j;�(w;e�1;2)(�1 � �2) (C.1)

for any j = 1; : : : ; r2, where e�1;2 is some vector between �1 and �2. By (C.1) and the Cauchy-Schwarz
inequality

jEF [g2;j(w; �1)� g2;j(w; �2)]j � EF
�
sup
�2�

kg2;�(W; �)k
�
k�1 � �2k ; (C.2)

for any j = 1; : : : ; r2. By (C.2), we deduce that

kM2;F (�1)�M2;F (�2)k � p
r2EF

�
sup
�2�

kg2;�(W; �)k
�
k�1 � �2k

� CM;1
p
r2 k�1 � �2k (C.3)

for any F 2 F , where CM;1 � supF2F EF [sup�2� kg2;�(W; �)k] and CM;1 < 1 by Assumption

3.2.(ii). This immediately proves the claim in (i). The claim in (ii) follows by similar argument

and its proof is omitted.

(iii) By the mean value expansion,

g2;j1(w; �1)g2;j2(w; �1)� g2;j1(w; �2)g2;j2(w; �2)

=
h
g2;j1;�(w;

e�1;2)g2;j2(w;e�1;2) + g2;j1(w;e�1;2)g2;j2;�(w;e�1;2)i (�1 � �2) (C.4)

for any j1; j2 = 1; : : : ; r2, where e�1;2 is some vector between �1 and �2 and may take di�erent values
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from the e�1;2 in (C.1). By (C.4), the triangle inequality and the Cauchy-Schwarz inequality
jEF [g2;j1(w; �1)g2;j2(w; �1)� g2;j1(w; �2)g2;j2(w; �2)]j

� 2EF
�
sup
�2�

kg2(W; �)k kg2;�(W; �)k
�
k�1 � �2k

� EF
�
sup
�2�

(kg2(W; �)k2 + kg2;�(W; �)k2)
�
k�1 � �2k (C.5)

for any j1; j2 = 1; : : : ; r2, where the second inequality is by the simple inequality that jabj �
(a2 + b2)=2. By (C.5)



EF �g2(W; �1)g2(W; �1)0 � g2(W; �2)g2(W; �2)0�


� r2EF

�
sup
�2�

(kg2(W; �)k2 + kg2;�(W; �)k2)
�
k�1 � �2k

� r2CM;2 k�1 � �2k (C.6)

for any F 2 F , where CM;2 � supF2F EF
h
sup�2�(kg2(W; �)k2 + kg2;�(W; �)k2)

i
and CM;2 <1 by

Assumption 3.2.(ii). Using the triangle inequality, and the inequality in (C.2), we deduce that

jEF [g2;j1(w; �1)]EF [g2;j2(w; �1)]� EF [g2;j1(w; �2)]EF [g2;j2(w; �2)]j
� jEF [g2;j1(w; �1)� g2;j1(w; �2)]EF [g2;j2(w; �1)]j

+ jEF [g2;j1(w; �2)]EF [g2;j2(w; �2)� g2;j2(w; �1)]j

� 2EF
�
sup
�2�

kg2(W; �)k
�
EF
�
sup
�2�

kg2;�(W; �)k
�
k�1 � �2k (C.7)

for any j1; j2 = 1; : : : ; r2. By (C.7)

EF [g2(w; �1)]EF [g2(w; �1)0]� EF [g2(w; �2)]EF [g2(w; �2)0]

 � r2CM;3 k�1 � �2k (C.8)

for any F 2 F , where CM;3 � 2 supF2F EF [sup�2� kg2(W; �)k]EF [sup�2� kg2;�(W; �)k] and CM;3 <
1 by Assumption 3.2.(ii).

By the de�nition of 
2;F (�), the triangle inequality and the results in (C.6) and (C.8)

k
2;F (�1)� 
2;F (�2)k � r2(CM;2 + CM;3) k�1 � �2k ; (C.9)

which immediately proves the claim in (iii).

Proof of Lemma A.3. By Lemma A.1.(i),

g2(�) =M2;Fn(�) +

"
n�1

nX
i=1

g2(Wi; �)�M2;Fn(�)

#
=M2;Fn(�) + op(1); (C.10)
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uniformly over � 2 �. As g1(W; �) is a subvector of g2(W; �), by (C.10) and Assumption 3.2.(ii),

g1(�)
0g1(�) =M1;Fn(�)

0M1;Fn(�) + op(1) (C.11)

uniformly over � 2 �. By Assumptions 3.1.(i)-(ii) and Fn 2 F , M1;Fn(�)
0M1;Fn(�) is uniquely

minimized at �Fn , which together with the uniform convergence in (C.11) implies that

e�1 � �Fn !p 0: (C.12)

To show the consistency of 
2, note that


2 = n�1
nX
i=1

g2(Wi;e�1)g2(Wi;e�1)0 � g2(e�1)g2(e�1)0
= EFn [g2(W;e�1)g2(W;e�1)0]�M2;Fn(

e�1)0M2;Fn(
e�1) + op(1)

= 
2;Fn(
e�1) + op(1) = 
2;Fn + op(1); (C.13)

where the �rst equality is by the de�nition of 
2, the second equality holds by (C.10), Lemma

A.1.(ii) and Assumption 3.2.(ii), the third equality follows from the de�nition of 
2;Fn(�), and the

last equality holds by Lemma A.2.(iii) and (C.12). This shows the consistency of 
2.

In the rest of the Supplemental Appendix, we use C denote a generic �xed positive �nite

constant whose value does not depend on F or n.

Proof of Lemma A.4. As g1(�) is a subvector of g2(�), and 
1;n is a submatrix of 
2;n, using

(C.10), (C.13) and Assumptions 3.2.(ii)-(iii), we have

g1(�)
0(
1)

�1g1(�) =M1;Fn(�)
0
�11;FnM1;Fn(�) + op(1); (C.14)

uniformly over �. By Assumptions 3.2.(ii)-(iii),

C�1 � �min(
�11;Fn) � �max(

�1
1;Fn

) � C (C.15)

which together with Assumptions 3.1.(i)-(ii) implies that M1;Fn(�)
0
�11;FnM1;Fn(�) is uniquely min-

imized at �Fn . By the standard arguments for the consistency of an extremum estimator, we have

b�1 � �Fn = op(1): (C.16)

Using (C.16), Lemma A.1.(iv) and Assumption 3.2.(ii), we have

g1(
b�1) = g1(�Fn) +

h
M1;Fn(

b�1)�M1;Fn(�Fn)
i
+ op(n

�1=2)

= g1(�Fn) + [G1;Fn(�Fn) + op(1)] (
b�1 � �Fn) + op(n�1=2): (C.17)
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Similarly,

n�1
nX
i=1

g1;�(Wi;b�1) = G1;Fn(b�1) + op(1) = G1;Fn + op(1); (C.18)

where the �rst equality follows from Lemma A.1.(iii) and the second equality follows by (C.16) and

Lemma A.2.(ii). From the �rst order condition for the GMM estimator b�1, we deduce that
0 =

"
n�1

nX
i=1

g1;�(Wi;b�1)#0 (
1)�1g1(b�1)
= (G01;Fn


�1
1;Fn

+ op(1))
h
g1(�Fn) + (G1;Fn + op(1))(

b�1 � �Fn) + op(n�1=2)i (C.19)

where the second equality follows from Assumptions 3.2.(ii)-(iii), (C.13), (C.17) and (C.18). By

(C.19), EFn [g1(W; �Fn)] = 0 and Assumption 3.2,

n1=2(b�1 � �Fn) = (�1;Fn + op(1))�n(g1(W; �Fn)) + op(1): (C.20)

By Assumptions 3.2 and Lemma A.1.(v), �1;Fn = O(1) and �n(g1(W; �Fn)) = op(1), which together

with (C.20) implies that

n1=2(b�1 � �Fn) = �1;Fn�n(g1(W; �Fn)) +Op(1);
where �1;Fn�n(g1(W; �Fn)) = Op(1). This �nishes the proof.

Proof of Lemma A.5. By (C.10), (C.13) and Assumptions 3.2.(ii)-(iii), we have

g2(�)
0(
2)

�1g2(�) =M2;Fn(�)
0
�12;FnM2;Fn(�) + op(1) = QFn(�) + op(1) (C.21)

uniformly over �. By Assumption 3.1.(iii), QFn(�) is uniquely minimized at �
�
Fn . The consistency

result b�2���Fn !p 0 follows from standard arguments for the consistency of an extremum estimator.

Proof of Lemma A.6. By the de�nition of b�2,
g2(
b�2)0(
2)�1g2(b�2) � g2(�Fn)0(
2)�1g2(�Fn); (C.22)

which implies that

jjg2(b�2)jj2 � �max(
2)��1min(
2) kg2(�Fn)k2 : (C.23)

By (C.13) and Assumptions 3.2.(ii)-(iii),

C�1 � �min(
2) � �max(
2) � C (C.24)
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with probability approaching 1. By Lemma A.1.(i), M1;Fn(�Fn) = 0r1�1 and �Fn = o(1),

kg2(�Fn)k
2 = op(1) (C.25)

which combined with (C.23) and (C.24) implies that

jjg2(b�2)jj = op(1): (C.26)

Moreover, by (C.26), Lemma A.1.(i) and the triangle inequality,

jjM2;Fn(
b�2)jj � jjg2(b�2)�M2;Fn(

b�2)jj+ jjg2(b�2)jj = op(1) (C.27)

which immediately implies that

jjM1;Fn(
b�2)jj = op(1): (C.28)

The �rst result in Lemma A.6 follows by (C.28) and the unique identi�cation of �Fn maintained by

Assumptions 3.1.(i)-(ii).

Using b�2 � �Fn = op(1), Lemma A.1.(iv) and Assumption 3.2.(ii), we have
g2(
b�2) = g2(�Fn) +

h
M2;Fn(

b�2)�M2;Fn(�Fn)
i
+ op(n

�1=2)

= g2(�Fn) + [G2;Fn(�Fn) + op(1)] (
b�2 � �Fn) + op(n�1=2): (C.29)

Similarly,

n�1
nX
i=1

g2;�(Wi;b�2) = G2;Fn(b�2) + op(1) = G2;Fn(�Fn) + op(1); (C.30)

where the �rst equality follows from Lemma A.1.(iii) and the second equality follows by b�2� �Fn =
op(1) and Lemma A.2.(ii). From the �rst order condition for the GMM estimator b�2, we deduce
that

0 =

"
n�1

nX
i=1

g2;�(Wi;b�2)#0 (
2)�1g2(b�2)
= (G02;Fn


�1
2;Fn

+ op(1))
h
g2(�Fn) + (G2;Fn + op(1))(

b�2 � �Fn) + op(n�1=2)i (C.31)

where the second equality follows from Assumptions 3.2.(ii)-(iii), (C.13), (C.29) and (C.30). By

(C.31) and Assumption 3.2,

n1=2(b�2 � �Fn) = (�2;Fn + op(1))n�n(g2(W; �Fn)) + n1=2EFn [g2(W; �Fn)]o+ op(1); (C.32)

where �2;Fn = �
�
G02;Fn


�1
2;Fn

G2;Fn

��1
G02;Fn


�1
2;Fn

.

Proof for the claim in equation (4.3).
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Consider the case n1=2�Fn ! d 2 Rr� . By Lemma 4.1,

n1=2
hb�(!)� �Fni = n1=2(b�1 � �Fn) + ! hn1=2(b�2 � �Fn)� n1=2(b�1 � �Fn)i

!D �
�
1;FZd;2;F + !(�2;F � ��1;F )Zd;2;F ; (C.33)

where Zd;2;F has the same distribution as Z2;F + d0. This implies that

`(b�(!)) = n hb�n(!)� �Fni0� hb�n(!)� �Fni!D �F (!) (C.34)

where

�F (!) = Z 0d;2;F��01;F���1;FZd;2;F + 2!Z 0d;2;F (�2;F � ��1;F )0���1;FZd;2;F
+!2Z 0d;2;F (�2;F � ��1;F )0�(�2;F � ��1;F )Zd;2;F :

Now we consider E[�F (!)] using the equalities in Lemma A.9 below. First,

E[Z 0d;2;F��01;F���1;FZd;2;F ] = tr(��1;F ) (C.35)

because ��1Zd;2;F = �1;FZ1;F and �1;FE[Z1;FZ 01;F ]�01;F = �1;F by de�nition. Second,

E
�
Z 0d;2;F (�2;F � ��1;F )0���1;FZd;2;F

�
= tr(���1;FE

�
Zd;2;FZ 0d;2;F

�
(�2;F � ��1;F )0)

= tr(���1;F
�
d0d

0
0 +
2;F

�
(�2;F � ��1;F )0)

= tr(�(�2;F � �1;F )); (C.36)

where the last equality holds by Lemma A.9. Third,

E
�
Z 0d;2;F (�2;F � ��1;F )0�(�2;F � ��1;F )Zd;2;F

�
= tr(�(�2;F � ��1;F )

�
d0d

0
0 +
2;F

�
(�2;F � ��1;F )0)

= d00�
0
2;F��2;Fd0 � tr(�(�2;F � �1;F )) (C.37)

by Lemma A.9. Combining the results in (C.35)-(C.37), we obtain

E[�F (!)] = tr(��1;F )� 2!tr (� (�1;F � �2;F ))
+!2

�
d00�

0
2;F��2;Fd0 + tr (� (�1;F � �2;F ))

�
. (C.38)

Note that d00�
0
2;F��2;Fd0 = d

0
0(�2;F ���1;F )0�(�2;F ���1;F )d0 because ��1;Fd0 = 0d� . It is clear that

the optimal weight !�F in (4.3) minimizes the quadratic function of ! in (C.38).
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Proof of Lemma A.9. By construction, ��1;Fd0 = 0d��1. For ease of notation, we write 
2;F
and G2;F as


2;F =

0@ 
1;F 
1r�


r�1;F 
r�;F

1A and G2;F =

0@ G1;F

Gr�;F

1A : (C.39)

To prove part (b), we have

��1;F
2;F�
�
1;F = [�1;F ;0d��r� ]

0@ 
1;F 
1r�


r�1;F 
r�;F

1A [�1;F ;0d��r� ]
= �1;F
1;F�

0
1;F =

�
G01;F


�1
1;FG1;F

��1
= �1;F : (C.40)

To show part (c), note that

��1;F
2;F�
0
2;F = � [�1;F ;0d��r� ] 
2;F


�1
2;FG2;F

�
G02;F


�1
2;FG2;F

��1
= ��1;FG1;F

�
G02;F


�1
2;FG2;F

��1
=
�
G02;F


�1
2;FG2;F

��1
= �2;F (C.41)

because ��1;FG1;F = Id��d� . Part (d) follows from the de�nition of �2;F .

Proof of Lemma 4.2. We �rst prove the consistency of b
k, bGk and b�k for k = 1; 2. By Lemma
4.1, we have b�1 = �Fn + op(1). Using the same arguments in showing (C.13), we can show that

b
2 = 
2;Fn + op(1) = 
2;F + op(1); (C.42)

where the second equality is by the assumption of the lemma that vFn ! vF for some F 2 F . Asb
1 is a submatrix of b
2, by (C.42) we have
b
1 = 
1;Fn + op(1) = 
1;F + op(1): (C.43)

By the consistency of b�1 and the same arguments used to show (C.30), we have
n�1

nX
i=1

g2;�(Wi;b�1) = G2;Fn(�Fn) + op(1) = G2;F + op(1); (C.44)

where the second equality is by (A.10) which is assumed in the lemma. As n�1
Pn
i=1 g1;�(Wi;b�1) is

a submatrix of n�1
Pn
i=1 g2;�(Wi;b�1), by (C.44) we have
n�1

nX
i=1

g1;�(Wi;b�1) = G1;Fn(�Fn) + op(1) = G1;F + op(1): (C.45)

From Assumption 3.2, (C.42), (C.43), (C.44) and (C.45), we see that b
k and bGk are consistent
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estimators of 
k;F and Gk;F respectively for k = 1; 2. By the Slutsky theorem and Assumption 3.2,

we know that b�k is a consistent estimator of �k;F for k = 1; 2.
In the case where n1=2�Fn ! d 2 Rr� , the desired result follows from Lemma 4.1, the consistency

of b�1;F and b�2;F , and the CMT. In the case where jjn1=2�Fn jj ! 1, e!eo !p 0 because n
1=2jjb�2 �b�1jj !p 1 and

n1=2(b�eo � �Fn) = n1=2(b�1 � �Fn) + e!eon1=2(b�2 � b�1)
= n1=2(b�1 � �Fn) + n1=2(b�2 � b�1)tr h�(b�1 � b�2)i

n(b�2 � b�1)0�(b�2 � b�1) + tr h�(b�1 � b�2)i !D �1;F (C.46)

by Lemma 4.1.

Proof of Lemma A.15. By de�nition,

�01;F��1;F = Z 01;F�01;F��1;FZ1;F = Z 01

1=2
1;F�

0
1;F��1;F


1=2
1;FZ1 (C.47)

where Z1 � N(0r1 ; Ir1�r1). By Assumptions 3.2.(ii) and 3.2.(iv), and the fact that � is a �xed

matrix,

sup
F2F

�max(

1=2
1;F�

0
1;F��1;F


1=2
1;F ) � C: (C.48)

By (C.48),

sup
h2H

E[(�01;F��1;F )2] � sup
h2H

�2max(

1=2
1;F�

0
1;F��1;F


1=2
1;F )E[(Z

0
1Z1)2] � 3r1C (C.49)

where the second inequality is by E[(Z 01Z1)2] � 3r1 + r1(r1 � 1) = r21 + 2r1 which is implied by

the assumption that Z1 is a r1-dimensional standard normal random vector. The �rst inequality

of this lemma follows as the upper bound in (C.49) does not depend on F .

For any F 2 F , de�ne
BF � (�2;F � ��1;F )0�(�2;F � ��1;F ):

By the Cauchy-Schwarz inequality and the simple inequality jabj � (a2+b2)=2 (for any real numbers
a and b),

�
0
F��F � 2

�
Z 0d;2;F��01;F���1;FZd;2;F + !2FZ 0d;2;FBFZd;2;F

�
= 2

�
Z 01;F�01;F��1;FZ1;F + !2FZ 0d;2;FBFZd;2;F

�
(C.50)

where the equality is by ��1;Fd0 = 0d��1 (which is proved in Lemma A.9). By (C.50) and the simple

inequality (a+ b)2 � 2(a2 + b2) (for any real numbers a and b),

(�
0
F��F )

2 � 8(Z 01;F�01;F��1;FZ1;F )2 + 8(!2FZ 0d;2;FBFZd;2;F )2: (C.51)

By the �rst inequality of this lemma, we have suph2H E[(�01;F��1;F )2] � C. Hence by (C.51), to
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show the second inequality of this lemma, it is su�cient to prove that

sup
h2H

E[(!2FZ 0d;2;FBFZd;2;F )2] � C: (C.52)

Recall that we have de�ned AF = �(�1;F � �2;F ) in Theorem 5.2. By the de�nition,

!2FZ 0d;2;FBFZd;2;F =
(tr(AF ))

2Z 0d;2;FBFZd;2;F
(Z 0d;2;FBFZd;2;F + tr(AF ))2

= tr(AF )
tr(AF )

Z 0d;2;FBFZd;2;F + tr(AF )
Z 0d;2;FBFZd;2;F

Z 0d;2;FBFZd;2;F + tr(AF )
: (C.53)

By Lemma 2.1 in Cheng and Liao (2015), tr(AF ) � 0 for any F 2 F . This together with

Z 0d;2;FBFZd;2;F � 0 implies that

tr(AF )

Z 0d;2;FBFZd;2;F + tr(AF )
� 1 and

Z 0d;2;FBFZd;2;F
Z 0d;2;FBFZd;2;F + tr(AF )

� 1: (C.54)

By (C.54) and tr(AF ) � 0,

!2FZ 0d;2;FBFZd;2;F � tr(AF ) = tr(��1;F )� tr(��2;F ); (C.55)

where the equality is by AF = �(�1;F � �2;F ). By (C.55) and the simple inequality (a + b)2 �
2(a2 + b2),

E[(!2FZ 0d;2;FBFZd;2;F )2] � 2(tr(��1;F ))2 + 2(tr(��2;F ))2: (C.56)

By Assumptions 3.2.(ii) and 3.2.(iv),

�min(G
0
k;F


�1
k;FGk;F ) � �min(


�1
k;F )�min(G

0
k;FGk;F ) = �min(G

0
k;FGk;F )=�max(
k;F ) � C�1 (C.57)

for any F 2 F and for k = 1; 2. By (C.57) and the de�nition of �k;F (k = 1; 2),

�max(�k;F ) = �
�1
min(G

0
k;F


�1
k;FGk;F ) � C (C.58)

for any F 2 F . As � and �k;F are positive de�nite symmetric matrix, by the standard trace

inequality (tr(AB) � tr(A)�max(B) for Hermitian matrices A � 0 and B � 0),

tr(��k;F ) � tr(�)�max(�k;F ) � C for k = 1; 2; (C.59)

for any F 2 F . Collecting the results in (C.56) and (C.59), we immediately get (C.52). This
�nishes the proof.
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Proof of Lemma A.16. First note that

minfx; �g � x = (� � x)Ifx > �g: (C.60)

Hence we have

sup
h2H

���E hminf�0F��F ; �g � �0F��F i���
� sup

h2H
E
h���� � �0F��F ��� If�0F��F > �gi

� � sup
h2H

E
h
If�0F��F > �g

i
+ sup
h2H

E
h
�
0
F��F If��1 > (�

0
F��F )

�1g
i

� 2��1 sup
h2H

E
h
(�
0
F��F )

2
i
� 2C��1 (C.61)

where the �rst inequality is by the Jensen's inequality, the second inequality is by the Markov

inequality, the third inequality is by the monotonicity of expectation and the last inequality is by

Lemma A.15. Using the same arguments, we can show that

sup
h2H

��E �minf�01;F��1;F ; �g � �01;F��1;F ��� � 2C��1: (C.62)

Collecting the results in (C.61) and (C.62), and applying the triangle inequality, we deduce that

sup
h2H

[jg�(h)� g(h)j] � 4C��1: (C.63)

The claimed result of this lemma follows by (C.63) as C is a �xed constant.

By the triangle inequality, the Jensen's inequality and Lemma A.15,

sup
h2H

jg(h)j = sup
h2H

���E[�0F��F � �01;F��1;F ]���
� sup

h2H
E[�0F��F ] + sup

h2H
E[�01;F��1;F ] � C

which �nishes the proof of the lemma.

D Asymptotic Risk of the Pre-test GMM Estimator

In this section, we establish similar results in Theorem 5.1 for the pre-test GMM estimator based

on the J-test statistic. The pre-test estimator is de�ned as

b�pre = 1fJn > c�gb�1 + 1fJn � c�gb�2; (D.1)

where Jn= ng2(
b�2)0(b
2)�1g2(b�2) and c� is the 100(1��)th quantile of the chi-squared distribution

with degree of freedom r2 � d�.
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Theorem D.1 Suppose that Assumptions 3.1-3.3 hold. The bounds of the asymptotic risk di�er-

ence satisfy

AsyRD(b�pre;b�1)= min� inf
h2H

[gp(h)] ; 0

�
;

AsyRD(b�pre;b�1)= max�sup
h2H

[gp(h)] ; 0

�
;

where gp(h) � E[�
0
p;F��p;F � �01;F��1;F ] and �p;F is de�ned in (D.3) below.

Proof of Theorem D.1. The two equalities and inequalities in the theorem follow by the same

arguments in the proof of Theorem 5.1 with Lemma 4.2 for b�eo replaced by Lemma D.1 for b�pre,
Lemma A.15 replaced by Lemma D.2, and Lemma A.16 replaced by Lemma D.3. Its proof is hence

omitted.

By De�nition,

E[�0p;F��p;F ] = E[Z 0d;2;F��01;F���1;FZd;2;F ] + 2E[!p;FZ 0d;2;F (�2;F � ��1;F )0���1;FZd;2;F ]
+E[!2p;FZ 0d;2;F (�2;F � ��1;F )0�(�2;F � ��1;F )Zd;2;F ]

= tr(��1;F ) + 2E[!p;FZ 0d;2;F (�2;F � ��1;F )0���1;FZd;2;F ]
+E[!2p;FZ 0d;2;F (�2;F � ��1;F )0�(�2;F � ��1;F )Zd;2;F ] (D.2)

The asymptotic risk of the pre-test estimator b�p in Figure 2 is simulated based on the formula in
(D.2).

The following lemma provides the asymptotic distribution of the pre-test GMM estimator under

various sequence of DGPs, which is used to show Theorem D.1.

Lemma D.1 Suppose that Assumptions 3.1-3.3 hold. Consider fFng such that vFn ! vF for some

F 2 F .
(a) If n1=2�Fn ! d for some d 2 Rr�, then

Jn!D J1(hd;F ) � (Z2;F + d0)0LF (Z2;F + d0);

where LF � 
�12;F � 

�1
2;FG2;F

�
G02;F


�1
2;FG2;F

��1
G02;F


�1
2;F and d0 = (01�r1 ; d

0)0, and

n1=2(b�pre � �Fn)!D �p;F � (1� !p;F )�1;F + !p;F �2;F (D.3)

where !p;F = 1fJ1(hd;F ) � c�g.
(b) If jjn1=2�Fn jj ! 1, then !p;F !p 0 and n

1=2(b�pre � �Fn)!D �1;F .
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Proof of Lemma D.1. (a) By Assumption 3.2.(ii), (C.29) and (C.32),

g2(
b�2) = g2(�Fn) + [G2;Fn(�Fn) + op(1)] (

b�2 � �Fn) + op(n�1=2)
= g2(�Fn) +G2;Fn�2;Fng2(�Fn) + op(n

�1=2)

= (Ir2 +G2;Fn�2;Fn)g2(�Fn) + op(n
�1=2); (D.4)

which implies that

Jn = ng2(�Fn)
0LFng2(�Fn) + op(1) (D.5)

where LFn � 
�12;Fn � 

�1
2;Fn

G2;Fn(G
0
2;Fn


�12;FnG2;Fn)
�1G02;Fn


�1
2;Fn

.

By n1=2�Fn ! d and Lemma A.1.(v),

n1=2

�1=2
2;Fn

g2(�Fn) = 

�1=2
2;Fn

�n(g2(W; �Fn)) + 

�1=2
2;Fn

n1=2�Fn !D Z+
�1=22;F d0 (D.6)

where d00 = (01�r1 ; d
0) and Z is a r2 � 1 standard normal random vector. By vFn ! vF , (D.5),

(D.6) and the CMT,

Jn !D (Z2;F + d0)0LF (Z2;F + d0): (D.7)

Recall that Lemma 4.1.(a) implies that

n1=2(b�1 � �Fn)!D �1;F and n
1=2(b�2 � �Fn)!D �2;F ; (D.8)

which together with (D.7) and the CMT implies that

n1=2(b�pre � �Fn) = 1fJn > c�gn1=2(b�1 � �Fn) + 1fJn � c�gn1=2(b�2 � �Fn)
! D(1� !p;F )�1;F + !p;F �2;F ; (D.9)

which �nishes the proof of the claim in (a).

(b) There are two cases to consider: (i) jj�Fn jj > C�1; and (ii) jj�Fn jj ! 0. We �rst consider

case (i). As g1(
b�2) is a subvector of g2(b�2),

Jn = ng2(
b�2)0(b
2)�1g2(b�2)

� n��1max(b
2)g2(b�2)0g2(b�2)
� n��1max(b
2)g1(b�2)0g1(b�2): (D.10)

By (A.22) and (A.23) in the Appendix of CLS


b�2 � �Fn


 � C�1 with probability approaching 1, (D.11)

which together with Assumption 3.1.(ii) and Lemma A.1.(i) implies that

g1(
b�2) =M1;F (b�2) + op(1) � C (D.12)
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with probability approaching 1. By (C.42) and Assumption 3.2.(ii), we have

�max(b
2) � C with probability approaching 1. (D.13)

Combining the results in (D.10), (D.12) and (D.13), we deduce that

Jn � nC�1 with probability approaching 1, (D.14)

which immediately implies that

!p;F = 1fJn � c�g = 0 (D.15)

with probability approaching 1, as c� is a �xed constant. By Lemma 4.1.(b), (D.15) and the

assumption that � is bounded, we have

n1=2(b�pre � �Fn) = 1fJn > c�gn1=2(b�1 � �Fn) + 1fJn � c�gn1=2(b�2 � �Fn)
= 1fJn > c�gn1=2(b�1 � �Fn) + op(1)!D �1;F (D.16)

where the convergence in distribution is by the CMT.

We next consider the case that jj�Fn jj ! 0 and jjn1=2�Fn jj ! 1. In the proof of Lemma 4.1,
we have shown that b�2 � �Fn = op(1), and that (D.4) and (D.5) hold in this case. It is clear that

n1=2g2(�Fn) = �n(g2(W; �Fn) +

0@ 0r1�1

n1=2�Fn

1A (D.17)

which implies that

ng2(�Fn)
0LFng2(�Fn) = [�n(g2(W; �Fn)]

0LFn [�n(g2(W; �Fn)]

+2
�
01�r1 n1=2�0Fn

�
LFn [�n(g2(W; �Fn)]

+
�
01�r1 n1=2�0Fn

�
LFn

�
01�r1 n1=2�0Fn

�0
: (D.18)

By Lemma A.1.(v) and Assumptions 3.2.(ii)-(iii),

[�n(g2(W; �Fn)]
0LFn [�n(g2(W; �Fn)] = Op(1): (D.19)

In order to bound the third term in (D.18) from below, we shall show that for any d0 = (01�r1 ; d
0)0

for d 2 Rr� with kdk = 1,
d00LFnd0 � C�1 (D.20)

By de�nition, LFn has d� many zero eigenvalues and r2 � d� many of eigenvalues of ones. The
matrix G2;Fn contains the d� many eigenvectors of the zero eigenvalues of LFn , because

LFnG2;Fn = 0r2�d� and �min(G
0
2;FnG2;Fn) � C

�1. (D.21)
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Let G?;Fn denote the orthogonal complement of G2;Fn with G
0
?;FnG?;Fn = Ir2�d� . Then we have0@ G1;Fn

Gr�;Fn

1A a1 +
0@ G1;?;Fn

Gr�;?;Fn

1A a2 =
0@ 0r1�1

d

1A (D.22)

for some constant vectors a1 2 Rd� and a2 2 Rr2�d� . As �min(G01;FnG1;Fn) � C
�1 by Assumption

3.2, we have

a1 = �(G01;FnG1;Fn)
�1G01;FnG1;?;Fna2 (D.23)

and

(Gr�;?;Fn �Gr�;Fn(G01;FnG1;Fn)
�1G01;FnG1;?;Fn)a2 = d: (D.24)

Let HFn = Gr�;?;Fn � Gr�;Fn(G01;FnG1;Fn)
�1G01;FnG1;?;Fn . By �min(G

0
1;Fn

G1;Fn) � C�1, Assump-

tions 3.2.(ii), (D.24) and the Cauchy-Schwarz inequality,

kdk2 = a02HFnH 0
Fna2 � C ka2k

2 (D.25)

which together with kdk = 1 implies that

ka2k2 � C�1: (D.26)

Using (D.21), (D.22) and (D.26), we deduce that

d00LFnd0 = (G2;Fna1 +G?;Fna2)
0LFn(G2;Fna1 +G?;Fna2)

= a02G
0
?;FnLFnG?;Fna2 = ka2k

2 � C�1 (D.27)

which proves (D.20). By (D.20),

�
01�r1 n1=2�0Fn

�
LFn

�
01�r1 n1=2�0Fn

�0
� C�1njj�Fn jj2 (D.28)

which together with njj�Fn jj2 !1 implies that

�
01�r1 n1=2�0Fn

�
LFn

�
01�r1 n1=2�0Fn

�0
!1: (D.29)

Collecting the results in (D.18), (D.19) and (D.19),and by the Cauchy-Schwarz inequality, we deduce

that ng2(�Fn)
0LFng2(�Fn)!p 1, which together with (D.5) implies that

Jn !p 1: (D.30)

Using the same arguments in showing (D.16), we deduce that

n1=2(b�pre � �Fn)!D �1;F : (D.31)
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This �nishes the proof.

Lemma D.2 Under Assumptions 3.2, we have

sup
h2H

E[(�0p;F��p;F )2] � C: (D.32)

Proof of Lemma D.2. By the same arguments in showing (C.51), we have

(�
0
p;F��p;F )

2 � 8(Z 01;F�01;F��1;FZ1;F )2 + 8(!2p;FZ 0d;2;FBFZd;2;F )2: (D.33)

By the �rst inequality in (A.58) in the Appendix of CLS, we have suph2H E[(�01;F��1;F )2] � C.

Hence by (D.33), to show the inequality in (D.32), it is su�cient to prove that

sup
h2H

E[(!2p;FZ 0d;2;FBFZd;2;F )2] � C: (D.34)

By de�nition,

!p;F = IfJ1(hd;F ) � c�g = IfZ 0d;2;FLFZd;2;F � c�g: (D.35)

By the simple inequality (a+ b)2 � a2=2� 2b2,

(z + d0)
0LF (z + d0) � d00LFd0=2� 2z0LF z (D.36)

for any z 2 R, which together with Assumption 3.2 and (D.20) implies that

(z + d0)
0LF (z + d0) � kdk2 =C � 2z0LF z � kdk2 =C � C kzk2 : (D.37)

Under Assumption 3.2, kBF k � C for any F 2 F which together with the simple inequality

(a+ b)2 � 2(a2 + b2) implies that

(z + d0)
0BF (z + d0) � 2C(kdk2 + kzk2) (D.38)

for any z 2 R. Collecting the results in (D.36) and (D.38), we get

If(z + d0)0LF (z + d0) � c�gz0BF z
� 2CIfkdk2 � c�C + C2 kzk2g(kdk2 + kzk2)
� 2C(c�C + (C

2 + 1) kzk2) (D.39)
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which implies that

sup
h2H

E[(!2p;FZ 0d;2;FBFZd;2;F )2]

� 4C2E[(c�C + (C2 + 1)Z 02;FZ2;F )
2]

� C(c� + E[
�
Z 02;FZ2;F

�2
]) = C(c� + 3�

2
max(
2)r2): (D.40)

This �nishes the proof.

Lemma D.3 Let gp;�(h) � E
h
minf�0p;F��p;F ; �g �minf�01;F��1;F ; �g

i
. Under Assumptions 3.2,

we have

lim
�!1

sup
h2H

[jgp;�(h)� gp(h)j] = 0 (D.41)

where suph2H [jgp(h)j] � C.

Proof of Lemma D.3. The proof follows the same arguments of the proof of Lemma A.16 with

the second inequality in (A.58) in the Appendix of CLS replaced by (D.32).

E Extra Simulation Studies

E.1 Finite sample bias and variance of the GMM estimators in Section 7 of

CLS

In this subsection, we report the �nite sample biases and variances of the pre-test and averaging

GMM estimators in the simulation design in Section 7 of CLS.

Suppose b�n is a generic estimator of �0 with sample size n. The mean square error (MSE) of
the estimator b�n is

MSEn = E

�


b�n � �0


2� ;
which is a measure of the distance between the estimator and the true value. The bias and variance

of b�n are de�ned as
Bn = E

�


E[b�n]� �0


2� and V arn = E �


b�n � E[b�n]


2� :
Then it is easy to see that

MSEn = Bn + V arn:

The MSEs of the pre-test and averaging GMM estimators are reported in Figure 2 of CLS. The

�nite sample biases Bn and variances V arn of these estimator (together with the conservative GMM

estimator b�1;n) are reported in Figure E.1 and Figure E.2 respectively.
In Figure E.1 and Figure E.2, the blue area, light blue area and the red line represent the pre-test

GMM estimator, the averaging GMM estimator and the conservative GMM estimator respectively.
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For each shaded area, the upper and lower envelopes are the maximum and minimum bias/variance

of the GMM estimator respectively. For di�erent values of r0, the maximum and minimum bias

(or variance) of the conservative GMM estimator are very close to each other. Therefore, we only

present its minimum bias (and variance) in Figure E.1 (and Figure E.2 respectively).

From Figure E.1, we see the that the pre-test GMM estimator and the averaging GMM estimator

have larger �nite sample biases than the conservative GMM estimator. As sample size increases,

the �nite sample biases of the averaging and the conservative GMM estimators go to zero fast.

However, the �nite sample bias of the pre-test GMM estimator goes to zero very slowly which leads

to larger �nite sample MSE than the conservative GMM estimator as we can see from Figure 2

in Section 7 of CLS. From Figure E.2, we see that the pre-test GMM estimator has smaller �nite

sample variance than the conservative GMM estimator when the sample size is small (e.g., n = 50,

100), but it may have slightly larger variance in some area of r0 when the sample size is slightly

larger (e.g., n = 250, 500). In contrast, the averaging GMM estimator has smaller �nite sample

variances than the conservative GMM estimator for all sample sizes.

Figure E.1. Finite Sample Biases of the Pre-test and Averaging GMM Estimators
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Figure E.2. Finite Sample Variances of the Pre-test and Averaging GMM Estimators

E.2 Simulation under the normal distribution

In this subsection, we report the simulation results on the �nite sample properties of the pre-test

and averaging GMM estimators, when the residual term u in the structure equation (7.4) of CLS

follows normal distribution, that is, (7.7) in CLS is replaced by

u = u�:

In this simulation study, we consider r0 to be a scalar that takes values on the grid points between

0 and 20 with the grid length 0:5. The rest of the simulation design is the same as what is used in

Section 7 of CLS.

The simulation results are reported in Figure E.3 - E.5. For di�erent values of r0, the maxi-

mum and minimum bias (or variance) of the conservative GMM estimator are very close to each

other. Therefore, we only present its minimum bias (and variance) in Figure E.4 (and Figure E.5

respectively). As we can see from Figure E.3 - E.5, the simulation results are quite similar to what

we get in the simulation design of Section 7 of CLS.
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Figure E.3. Finite Sample MSEs of the Pre-test and Averaging GMM Estimators
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Figure E.4. Finite Sample Biases of the Pre-test and Averaging GMM Estimators
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Figure E.5. Finite Sample Variances of the Pre-test and Averaging GMM Estimators

E.3 Simulation under the Student-t distribution

In this subsection, we report the simulation results on the �nite sample properties of the pre-test

and averaging GMM estimators, when the residual term u in the structure equation (7.4) of CLS

is a student-t random variable with degree of freedom 2. We draw the latent random variables

(Z1; : : : ; Z18; "1; : : : ; "6; u
�) from the student-t distribution with degree of freedom 2 and correlation

matrix diag(I18�18;�7�7) (where �7�7 is de�ned in (7.6) of CLS), and then replace (7.7) in CLS

by u = u�.23 In this simulation study, we consider r0 to be a scalar that takes values on the grid

points between 0 and 20 with the grid length 0:5. The rest of the simulation design is the same as

what is used in Section 7 of CLS.

The �nite sample MSEs, biases and variances of the GMM estimators are reported in Figures

23We use the matlab to perform all the simulation studies in this paper. Let C
 � diag(I18�18;�7�7), the matlab
function mvtrnd(C
, 2, n) will draw n such student-t random vectors independently. Each vector is constructed in
the following way. First, a random vector, say (N1; : : : ;N25), will be simulated from the joint normal distribution
with mean zero and variance-covariance matrix C
. Then a vector of Chi-square random variables with degree of
freedom 2, say (�21(2); : : : ; �

2
25(2)), will be simulated independently. The Chi-square random variables are independent

with each other. The student-t random vector is de�ned as

(t1(2); : : : ; t25(2)) =
�
N1=(�

2
1(2)=2)

1=2; : : : ;N25=(�
2
1(25)=2)

1=2
�
:
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E.6 - E.8. For di�erent values of r0, the maximum and minimum MSE of the restricted JS estimator

in this simulation study are very close to each other. Therefore, we only present its minimum MSE

in Figure E.6. For di�erent values of r0, the maximum and minimum bias (or variance) of the

conservative GMM estimator in this simulation study are di�erent from each other. Therefore, we

present both its minimum and maximum bias (and minimum and maximum variance) in Figure

E.7 (and Figure E.8 respectively).

It is interesting to see that in this simulation design, both the pre-test GMM estimator and the

averaging GMM estimator has smaller �nite sample MSEs than the conservative GMM estimator.

The main reason for this phenomenon is that the residual term u in the structural equation is

Student-t distributed with degree of freedom 2, which implies that u has in�nite variance and

hence the conservative GMM estimator has large variance in �nite samples. This can be clearly

seen from Figure E.8. When the extra IVs Z�j (j = 1; : : : ; 6) are used in the GMM estimation, the

�nite sample variances of the GMM estimator is greatly reduced. Therefore, the �nite samples

biases of the pre-testing estimator and the averaging GMM estimator introduced by the extra IVs

Z�j (j = 1; : : : ; 6) are more than o�set by the reduced �nite sample variances, which enables both

estimator have smaller �nite sample MSEs.

Figure E.6. Finite Sample MSEs of the Pre-test and Averaging GMM Estimators
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Figure E.7. Finite Sample Biases of the Pre-test and Averaging GMM Estimators
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Figure E.8. Finite Sample Variances of the Pre-test and Averaging GMM Estimators

F Illustration in Gaussian Location Model

This section shows that in a Gaussian location model, the averaging GMM estimator dominates

the conservative GMM estimator in �nite samples, i.e., it exhibits JS phenomenon.

Suppose that we have one observation (X 0; Y 0)0 from the normal distribution0@ X

Y

1A � N

0@0@ �

� + d

1A ; I2k
1A (F.1)

where � and d are k�1 vectors and I2k is a 2k�2k identity matrix. We are interested in estimating
�.

Let � be the k�k identity matrix. The conservative GMM estimator b�1 = X has risk tr(�Ik) =

k. On the other hand, the aggressive GMM estimator is b�2 = (X+Y )=2, which has risk k=2+kdk2 =4.
The empirical optimal weight de�ned in (4.7) becomes

e!eo = 2k

2k + (Y �X)0(Y �X) ; (F.2)
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which together with the conservative and aggressive GMM estimators leads to the averaging esti-

mator b�eo = X +
k

2k + (Y �X)0(Y �X)(Y �X): (F.3)

Lemma F.1 The averaging estimator b�eo de�ned in (F.3) satis�es
E
h
jjb�eo � �jj2 � jjb�1 � �jj2i < 0 (F.4)

for any k � 4.

The inequality (F.4) shows that the risk of the averaging estimator is strictly smaller than the

conservative estimator if k � 4, for any � and any d.
Proof of Lemma F.1. By de�nition

E
h
jjb�eo � �jj2i� E hjjb�1 � �jj2i

= E
�

k2(Y �X)0(Y �X)
(2k + (Y �X)0(Y �X))2

�
+2E

�
k(X � �)0(Y �X)

2k + (Y �X)0(Y �X)

�
: (F.5)

Let J1 � E
h

(X��)0(Y�X)
2k+(Y�X)0(Y�X)

i
and J2 � E

h
(Y�X)0(Y�X)

(2k+(Y�X)0(Y�X))2
i
. Let X� = X � �, Y � = Y � � and

Z� = (X�0; Y �0)0. Then we can write

J1 = E
�

(X � �)0(Y �X)
2k + (Y �X)0(Y �X)

�
= E

�
X�0(Y � �X�)

2k + (Y � �X�)0(Y � �X�)

�
= E

�
Z�0D1Z�

2k + Z�0D2Z�

�
(F.6)

where

D1 =

0@ �Ik 0k

Ik 0k

1A and D2 =

0@ Ik �Ik
�Ik Ik

1A : (F.7)

Note that

E
�
D1Z

�Z�0D01
�
= D2 (F.8)

by de�nition and the Gaussian assumption. Let �(x) = x=(x0D2x+ 2k). Then its derivative is

@�(x)0

@x
=

1

x0D2x+ 2k
Ik �

2

(x0D2x+ 2k)
2D2xx

0: (F.9)
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By Lemma 1 of Hansen (2016), which is a matrix version of the Stein's Lemma (Stein, 1981),

J1 = E
�
�(Z�)0D1Z

�� = E �tr�@�(Z�)0
@x

D1

��
= E

�
tr (D1)

2k + Z�0D2Z�

�
�2E

�
tr (D2Z

�Z�0D1)

(2k + Z�0D2Z�)2

�
= E

�
�k

2k + Z�0D2Z�

�
�2E

�
Z�0D1D2Z�

(2k + Z�0D2Z�)2

�
= E

�
�k

2k + Z�0D2Z�

�
+ 2E

�
Z�0D2Z�

(2k + Z�0D2Z�)2

�
= E

�
2� k

2k + Z�0D2Z�

�
+ E

�
�4k

(2k + Z�0D2Z�)2

�
(F.10)

where fourth equality is by the following result

D1D2 =

0@ �Ik Ik

Ik �Ik

1A = �D2:

Moreover,

k2J2 = E
�

k2(Y �X)0(Y �X)
(2k + (Y �X)0(Y �X))2

�
= E

�
k2

2k + Z�0D2Z�

�
� E

�
2k3

(2k + Z�0D2Z�)2

�
(F.11)

which together with (F.10) implies that

E
h
jjb�eo � �jj2i� E hjjb�1 � �jj2i

= E
�
2k(2� k) + k2
2k + Z�0D2Z�

�
� E

�
2k3 + 8k2

(2k + Z�0D2Z�)2

�
= E

�
k(4� k)

2k + Z�0D2Z�

�
� E

�
2k2(k + 4)

(2k + Z�0D2Z�)2

�
: (F.12)

The asserted result follows by the fact that D2 is positive semi-de�nite and the second term in the

right-hand side of the second equality of (F.12) is always negative.
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