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Abstract

This paper studies the averaging GMM estimator that combines a conservative GMM es-
timator based on valid moment conditions and an aggressive GMM estimator based on both
valid and possibly misspecified moment conditions, where the weight is the sample analog of an
infeasible optimal weight. We establish asymptotic theory on uniform approximation of the up-
per and lower bounds of the finite-sample truncated risk difference between any two estimators,
which is used to compare the averaging GMM estimator and the conservative GMM estimator.
Under some sufficient conditions, we show that the asymptotic lower bound of the truncated
risk difference between the averaging estimator and the conservative estimator is strictly less
than zero, while the asymptotic upper bound is zero uniformly over any degree of misspeci-
fication. Extending seminal results on the James-Stein estimator, this uniform dominance is
established in non-Gaussian semiparametric nonlinear models. The simulation results support

our theoretical findings.
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1 Introduction

We are interested in estimating some finite dimensional parameter 8 € R% which is uniquely

identified by the moment restrictions

Eplgi(W,0r)] = 0 x1 (1.1)

for some known vector functions g; () : W x ©—R", where O is a compact subset of R% W is a
random vector with support W and joint distribution F', and Ep|[-] denotes the expectation operator
under F. Suppose we have i.i.d. data {W;};" |, where W; has distribution F for any i = 1,..., n[|
Let g,(0) =n1 Y | g1(W;,0). One efficient GMM estimator for 0 is

61 = arg min g, (8)'(Q)"g,(9), (1.2)
0cO

where Oy = n7 1Y g1(Wi, 01)g1 (Wi, 61) — §,(01)g,(61)' is the efficient weighting matrix with
some preliminary consistent estimator 51 In a linear instrumental variable (IV) example, Y =
X'0p + U where the IV Z; € R™ satisfies Ep[Z1U] = 0,,x1. The moments in hold with
g1(W,0) = Z1(Y — X'6) and 0 is uniquely identified if Ex[Z; X'] has full column rank. Under cer-
tain regularity conditions, it is well-known that 51 is consistent and achieves the lowest asymptotic
variance among GMM estimators based on the moments in , see Hansen (1982).

If one has additional moments
Ep[g*(W,0F)] = 0pxx1 (1.3)

for some known function ¢g*(-) : W x ©—R"", imposing them together with can further
reduce the asymptotic variance of the GMM estimator. However, if these additional moments are
misspecified in the sense that Ep[g*(W,0p)] # 0p+x1, imposing may result in inconsistent
estimation. The choice of moment conditions is routinely faced by empirical researchers. Take the
linear IV model for example. One typically starts with a large number of candidate IVs but only
has confidence that a small number of them are valid, denoted by Z;. The rest of them, denoted
by Z*, are valid only under certain economic hypothesis that yet to be tested. In this example,
g*(W,0) = Z*(Y — X'0). In contrast to the conservative estimator 01, an aggressive estimator

0, always imposes (1.3) regardless of its validity. Let go(Wi,0) = (g1(W;,0), g* (Wi, 0)') for any

!The main theory of the paper can be easily extended to time series models with dependent data, as long as the
preliminary results in Lemma hold.

2For example, 01 could be the GMM estimator similar to f; but with an identity weighting matrix, see in
the Appendix.



Figure 1. Finite Sample (n = 500) MSEs of the Pre-test and the Averaging GMM Estimators
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Note: “Pre-test(0.01)” refers to the pre-test GMM estimator based on the J test statistic ng,(62)'(Q2)g,(02) with
a norminal size 0.01. “Emp-opt” refers to the averaging GMM estimator defined in equation (4.7) of the paper. In
this simulation, we set dp = roen”'? where c is a r* by 1 real vector. At each rg, we consider 127 different values
for ¢ and report the largest finite sample MSEs of the estimators. Details of the simulation design for Figure 1 is
provided in Section 7.

i=1,...,n,and go(0) = n "t 31 | g2(W;,0). The aggressive estimator B takes the form

0 = arg mingy(9)(22) ~'52(0), (1.4)
where (s is constructed in the same way as ; except that g1(W;, 0) is replaced by go(W;, 0)
Because imposing Ep[¢* (W, 0F)] = 0,+x1 is a double-edged sword, a data-dependent decision
usually is made to choose between 51 and 52. To study such a decision and the subsequent estimator,
let
5p =Ep[g"(W,0r)] € R (1.5)

The pre-testing approach tests the null hypothesis Hy : p = 0,+x1 and constructs an estimator

/épre = l{Tn > Ca}/él + 1{Tn < Ca}/éQ (1'6)

3See the first line of equations (C.13) in the Supplemental Appendix for the definition of Q». In particular, Qs is
constructed using 61, the preliminary consistent estimator based on the valid moment conditions in () only.



for some test statistic T, with the critical value ¢, at the significance level a. One popular test is the
J-test, see Hansen (1982), and ¢, is the 1 —a quantile of the chi-squared distribution with degree of
freedom ro — dy where ro = 71 +7r*. Because the power of this test against the fixed alternative is 1,
/9\1,7«6 equals 0, with probability 1 asymptotically (n — oo) for those fixed misspecified model where
0p # 0p+x1. Thus, it seems that @m is immune to moment misspecification. However, we care
about the finite-sample mean squared error (MSE) of gpre in practice and this standard pointwise
asymptotic analysis (dp is fixed and n — o) provides a poor approximation to the formerﬂ To see
the comparison between gpre and 51, the dashed line in Figure 1 plots the maximum finite-sample
(n = 500) MSE of gpre while the MSE of @1 is normalized to be 1. For some values of dp, the
MSE of gpre is larger than that of 51, sometimes by 50%. Note that the pre-test estimator exhibits
multiple peaks because the simulation design allows for multiple potentially misspecified moments
and the horizontal axis only shows the main component rg which determines the norm of the vector
that measures the degree of misspecification.

The goal of this paper is twofold. First, we propose a data-dependent averaging of 51 and @2
that takes the form

o~

Oeo = (1 — Geo)01 + Weob2 (1.7)

where we, € [0, 1] is a data-dependent weight specified in below. The subscript in we, is short
for empirical optimal because this weight is an empirical analog of an infeasible optimal weight w7
defined in below. We plot the finite-sample MSE of this averaging estimator as the solid line
in Figure 1. This averaging estimator is robust to misspecification in the sense that the solid line is
below 1 for all values of d 7, in contrast to the bump in the dashed line that represents the pre-test
estimator. Second, we develop a uniform asymptotic theory to justify the finite-sample robustness
of this averaging estimator. We show that this averaging estimator dominates the conservative
estimator uniformly over a large class of models with different degrees of misspecification. The
uniform dominance is established under the truncated weighted loss function which is defined in
belowﬁ Truncation at a large number is necessary for the asymptotic analysis. The standard
asymptotic theory is pointwise and fails to reveal the fragile nature of the pre-test estimator. A
stronger uniform notion of robustness is crucial for this model. Furthermore, we quantify the
upper and lower bounds of the asymptotic risk differences between the averaging estimator and the

conservative estimatorﬂ

4The poor approximation of the pointwise asymptotics to the finite sample properties of the pre-test estimator
has been noted in Shibata (1986), Pétscher (1991), Kabaila (1995, 1998) and Leeb and Pétscher (2005, 2008), among
others.

STruncation at a large number is needed for the asymptotic analysis of the risk of general estimator without
imposing stringent conditions such as uniform integrability.

5The lower and upper bounds of asymptotic risk difference are defined in lb below.



The rest of the paper is organized as follows. Section [2] discusses the literature related to
our paper. Section [3] defines the parameter space over which the uniform result is established
and defines uniform dominance. Section [4] introduces the averaging weight. Section [§] provides an
analytical representation of the bounds of the asymptotic risk differences and applies it to show that
the averaging GMM estimator uniformly dominates the conservative estimator. Different from the
global uniform dominance in Section [f] Section [6] studies local uniform dominance over a shrinking
parameter space. Section [7] investigates the finite sample performance of our averaging estimator
using Monte Carlo simulations. Section [8|concludes. Proof of the main results of the paper is given
in the Appendix. Analysis of the pre-test estimator, extra simulation studies and proofs of some
auxiliary results are included in the Supplemental Appendix of the paper.

Notation. For any real matrix A, we use ||A|| to denote the Frobenius norm of A. If A
is a real square matrix, we use tr(A) denote the trace of A. If A is a real symmetric matrix,
Pmin(A) and p .. (A) to denote the smallest and largest eigenvalues of A, respectively. For any
positive integers dy and da, Iz, and 04, x4, stand for the d; x d; identity matrix and d; X dg
zero matrix, respectively. Let vec () denotes vectorization of a matrix and vech (-) denotes the
half vectorization of a symmetric matrix. Let R = (—o0,400), Ry = [0,400), Reo = RU {£o00}
and Ry o = Ry U{+oc}. For any positive integers d and any set S, S? denotes the Cartesian
product of d many sets: Six--- xSy with S; =S for j = 1,...,d. For any set S, int(S) denotes
the interior of S. We use {n} to denote the set of natural numbers and {p,} = {p, : n > 1}
denote a subsequence of {n}. For any (possibly random) positive sequences {a,}5° ; and {b,}°°,
an, = Op(b,) means that lim. o limy, oo Pr(a,/by, >¢) = 0; a, = op(b,) means that for all
e >0, limy, o Pr(a,/b, >¢) =0. Let “—,” and “—p” stand for convergence in probability and

convergence in distribution, respectively. The notation ¢ = b means « is defined as b.

2 Related Literature

In this section, we discuss the related literature. Our uniform dominance result is related to the
Stein’s phenomenon (Stein, 1956) in parametric models. The James-Stein (JS) estimator (James
and Stein, 1961) is shown to dominate the maximum likelihood estimator in exact normal sampling.
Hansen (2016) considers local asymptotic analysis of the JS type averaging estimator in general
parametric models and substantially extends its application in econometrics. Many other frequen-
tist model averaging estimators are studied in the literature, including Buckland, Burnham, and
Augustin (1997), Hjort and Claeskens (2003, 2006), Hansen (2007, 2015, 2017), Claeskens and Car-
roll (2007), Hansen and Racine (2012), Cheng and Hansen (2014) and Lu and Su (2015), DiTraglia



(2016) to name only a few. Our paper is closely related to DiTraglia (2016) and Hansen (2017).
Hansen (2017) proposes an averaging estimator that combines the ordinary least squares (OLS)
estimator and the two-stage-least-squares (2SLS) estimator in linear IV models. Under some suffi-
cient conditions, he shows that the averaging estimator has smaller asymptotic risk than the OLS

—-1/2

estimator under any given sequence of n local misspecified data generating processes (DGPs).

1/2 1pcal

DiTraglia (2016) also studies the averaging GMM estimator under given sequences of 1~
misspecification DGPs, including the averaging of OLS and IV estimators. The averaging weight is
based on the focused moment selection criterion with a targeted parameter. The simulation results
in the paper show that this averaging estimator does not uniformly dominate the conservative esti-
mator. Compared to these results, our paper makes the following contributions. First, we provide
a uniform asymptotic framework, which is different from pointwise asymptotic analysis for fixed
models or local asymptotic analysis along some drifting models (e.g., the given n~1/2 local misspec-
ified DGPs in DiTraglia (2016) and Hansen (2017)). For this purpose, this paper defines a large set
of drifting models and show that a uniform result on the risk of this shrinkage estimator requires
the study of all of them. In particular, this large set of models not only includes the crucial n—1/2
local misspecified models that are considered by DiTraglia (2016) and Hansen (2017), but it also
includes many more severely misspecified models. This uniform analysis is similar to those studied
in Andrews and Guggenberger (2010) and Andrews, Cheng, and Guggenberger (2011) for uniform
size control for inference in non-standard problems, but the present paper is for estimation rather
than inference and focuses on a misspecification issue that is not studied in these papers. Second,
the present paper extends the study of the Stein’s phenomenon to non-Gaussian semiparametric
nonlinear GMM models. The weight in our averaging estimator is close to those studied in Hjort
and Claeskens (2003) and Liu (2015) in the sense that we first consider the optimal weight and
then obtain its empirical analog.

The uniform dominance property of the averaging estimator does not contradict the unbounded
risk property of the post-model-selection estimator found in Yang (2005) and Leeb and Pd&tscher
(2008). Measured by the MSE, the post-model-selection estimator based on consistent model
selection procedure usually does better than the unrestricted estimator in part of the parameter
space and worse than the latter in other part of the parameter space. One standard example is
the Hodge’s estimator, whose scaled maximal MSE diverges to infinity with the growth of the
sample size (see, e.g., Lehmann and Casella, 1998). Similar unbounded risk results for other post-
model-selection estimators are established in Yang (2005) and Leeb and Pé&tscher (2008). The
post-model-selection estimator has unbounded (scaled) maximal MSE because it is based on a non-

smooth transition rule between the restricted and unrestricted estimators and a consistent model



selection procedure is employed in the transition rulem However, the averaging estimator proposed
in this paper is based on a smooth combination of the restricted and unrestricted estimators and
no model selection procedure is used in the smooth combination. Hence our averaging estimator is
essentially different from the post-model-selection estimator.

There is a large literature studying the validity of GMM moment conditions. Many methods
can be applied to detect the validity, including the over-identification tests (see, e.g., Sargan, 1958;
Hansen, 1982; and Eichenbaum, Hansen and Singleton 1988), the information criteria (see, e.g.,
Andrews, 1999; Andrews and Lu, 2003; Hong, Preston and Shum, 2003), and the penalized estima-
tion methods (see, e.g., Liao, 2013 and Cheng and Liao, 2014). Recently, misspecified moments and
their consequences are considered by Ashley (2009), Berkowitz, Caner, and Fang (2012), Conley,
Hansen, and Rossi (2012), Doko Tchatoka and Dufour (2008, 2014), Guggenberger (2012), Nevo
and Rosen (2012), Kolesar, Chetty, Friedman, Glaeser, Imbens (2014), Small (2007), Small, Cai,
Zhang, Kang (2015), among others. Moon and Schorfheide (2009) explore over-identifying moment
inequalities to reduce the MSE. This paper contributes to this literature by providing new uniform
results for potentially misspecified semiparametric models.

There is also a large literature studying adaptive estimation in nonparametric regression model
using model averaging; see Yang (2000, 2003, 2004), Leung and Barron (2006), and the references
therein. Since the unknown function can be written as a linear combination of (possibly infinitely
but countably many) basis functions, the nonparametric model may be well approximated by
parametric regression models in finite samples. These papers show that the averaging estimators
which combine OLS estimators from different parametric models with data dependent weights may
achieve the optimal convergence rate up to some logarithm factor (or the oracle inequalities). Our
paper is different from these papers since the parameter of interests is a finite dimensional real value,
not an unknown function, and the bias and variance trade-off is due to the possibly misspecified
moment conditions. Moreover, there is a benchmark estimator in our paper, i.e., the conservative
GMM estimator whose asymptotic properties are well-known and many model selection estimators
proposed in the literature do not uniformly improve upon this benchmark estimator in terms of risk
over different degrees of moment misspecification. Our goal is to propose an averaging estimator

with smaller risk than the conservative estimator uniformly.

"The post-model-selection estimator based on conservative model selection procedure (e.g., hypothesis test with
fixed critical value or Akaike information criterion) may not have unbounded (scaled) maximal MSE. However its
asymptotic maximal MSE is not guaranteed to be less than or equal to the benchmark estimator (e.g., the conservative
GMM estimator in the framework of this paper). The pre-test estimator in our simulation studies is a good example,
since it is based on the J-test with nominal size 0.01.



3 Parameter Space and Uniform Dominance

Let g2j(w,0) (j = 1,...,r2) denote the j-th component function of gs(w,6). We assume that
g2,j(w,0) for j = 1,...,ry is twice continuously differentiable with respect to 6 for any w € W.

The first and second order derivatives of go(w, ) with respect to 6 are denoted by

0g2,1(w,0) 02921 (w,0)
06’ 0006’
g2.0(w,0) = : and go gg(w, ) = : , (3.1)
0g2,ro (w,0) 9%g2,ry (w,0)
06’ 0000’

respectivelyﬁ Let F be a set of distribution functions of W. For k = 1 and 2, define the expectation

of the moment functions, the Jacobian matrix and the variance-covariance matrix as

Myr = Eplgp(W,0F)],
Grr = Erplgre(W,0F)], and

)

Qr = Br [ge(W,0p)9(W,0p)'| — My Mj, 1 (3.2)

for any F' € F respectively. The moments above exist by Assumption below.
Let

Qr(0) = Brlg2(W,0)]'Q; pEr[g2(W, 6)] (33)

for any @ € ©, which denotes the population criterion of the GMM estimation in ([1.4). For any
0 € O, define BS(0) = {6* € © : [|0* — 0|] > €}. We consider the risk difference between two
estimators uniformly over F' € F that satisfies Assumptions below.

Assumption 3.1 The following conditions hold:
(i) for any F € F, Ep [g1(W,0F)] = 0r,x1 for some Op € int(©);

i inf i |[Bp (g2 (W, 0 :
(ii) for any e >0, }}“Ielfeeé?(ﬁp)” Flg1(W,0)] || > 0;

(iii) for any F € F, there is 6} € int(©) such that

et B . ,
R [Qr(0) — Qr(0%)] > 0 for any € > 0;

\|G'2,FQQ_}52,F||

in Kb 2 Gt ¥ el L
(rer: lopl>0y  [|52.r]]

(V) Opxx1 € int(As) where As = {dp : F € F}.

(iv) > 0 where 0% p = (O1x7y,0F) and 7 > 0 is a fived constant;

8By definition, g1,0(w,6) and g1,00(w,0) are the leading r1 x dg and (ridp) x dp submatrices of g2 g(w,8) and
g2,00(w, 0), respectively.



Assumptions (i)—(ii) require that the true unknown parameter 6 is uniquely identified by
the moment conditions Ep (g1 (W, 0F)] = Or,x1 for any DGP F € F. Assumption [3.1}(iii) implies
that for any F' € F, a pseudo true value 0% is identified by the unique minimizer of the population
GMM criterion @ () under possible misspecification. Assumption(iv) requires that da F is not
orthogonal to Q; };\G27 r, which rules out the special case that 8 may be consistently estimable
even with severely misspecified moment conditions. Assumption (v) implies that the set of
distribution functions F is rich such that it includes the distributions under which the extra moment
conditions are correctly specified. Uniform dominance is of interest only if we allow for different
degrees of misspecification in the parameter space. If we only allow for correctly specified models
or severely misspecified models, the desired dominance results hold trivially following a pointwise
analysis. Assumption (V) ensures that the extra moment conditions can be correctly specified,

locally misspecified or severely misspecified.

Assumption 3.2 The following conditions hold:

(i) Forj=1,...,72, g2.j(w,0) is twice continuously differentiable with respect to 6 for any w € W;
(i) sup B [sup (a2 V. )7+ lgwo0:6)[P47 + lgaan . 6)7+7) | < o0 for some 5 > 0

(ill) inf per pmin(Q2,r) > 0;
(

iV) infper pmin(Gll,FGLF) > 0.

Assumption 3.2} (i) requires that the moment functions are smooth. Assumption [3.2](ii) imposes
2+ finite moment conditions on the GMM moment functions and their first and second derivatives.
Assumptions [3.2}(iii) and [3.2}(iv) are important sufficient conditions for the local identification of
the unknown parameter in GMM with valid moment conditions.

The next assumption is on the nuisance parameters of the DGP F € F. Write
VF = (VeC(GQ,F)I7 VeCh(QQ,F)/7 5/F) (34)

for any F' € F. It is clear that vg includes the Jacobian matrix, the variance-covariance matrix,

and the measure of misspecification of the moment conditions Ep[¢g*(W,0F)] = 0,«x1. Let
UVp = (vec(Gg,F)',Vech(Qg,F)’) (3.5)

for any F' € F.

Assumption 3.3 The following conditions hold:
(i) For any F € F with §p = Op+x1, there exists a constant ep > 0 such that for any S ER”
with 0 < ||8]] < e, there is F € F with 0 = 5 and vz — EFH < C||8||F for some k> 0;



(i1) The set A = {vp: F € F} is closed.

Assumption [3.3] (i) requires that for any F' € F such that Ep[ga(W,0F)] = Op«x1 is valid, there
are many DGPs F € F which are close to F. Here the closeness of any two DGPs F' and F is
measured by the distance between vp and vz. Assumption (i) and (ii) are useful to derive the

exact expression of the asymptotic risk of the GMM estimator.

Example 3.1 (Linear IV Model) We study a linear IV model and provide a set of low-level con-
ditions that imply Assumptions and The parameters of interest 6y are the coefficients
of the endogenous regressors X in

Y = X0+ U, (3.6)

with some valid IVs Z; € R™ and some potentially misspecified IVs Z* € R™" such that
Ep«[U] =0, Ep«[Z1U] = 0,,x1, and (3.7)

Z* = Uy + V, with Ep[V] = 0+ 1 and Ep«[VU] = 0+ x1, (3.8)

where F* denotes the joint distribution of (X', Z{,V’,U)". In the reduced-form equation , do
is a r* x 1 real vector which characterizes the degree of misspecification. Let F* denote a class of
distributions containing £, and let © and A denote the parameter spaces of 6y and dg respectively.
The joint distribution of W = (Y, Z1, Z*, X’)" is denoted as F' which is determined by 6, dp and
F* through the linear equations in and .

For ease of discussion, we further assume that the random vector (X', Z1, V', U)" follows the
normal distribution with mean ¢ and variance-covariance matrix \IJH Under the normal assumption,
each distribution F* corresponds to a pair of ¢ and W.

For notational simplicity, in Lemma below, for any finite dimensional random vectors a;

/
ag*

and as, let g/)aj = Ep«[aj] for j = 1,2, Tyya, = Bp+[a1as], and Q4 a0, = Bp<[a1a)] — ¢, ¢

Lemma 3.1 Let F* denote the set of normal distributions which satisfies:

(1) ¢ = 0, Tzyu = Oy 1 and Ty = Oprxa;

(i) inf pr e 7x prin(Tazy Tayz) > 0, SUppecr« ||0]|? < 00 and

0 < infpecrs pmin (¥) < SUPpscr+ Pmax (V) < 00;

(i11) inf pr e inf )51 >2) 6] |(Taz, T2L Toiw — Taw)d — Taul| > 0 for some e > 0 that is small
enough[I|

In Section [B| of the Supplemental Appendix, we provide sufficient low-level conditions for Assumptions
and in the linear IV model without the normal assumption.
10The constant € depend on the infimum and supremum in Condition (ii) and it is given in 1) in the Appendix.

10



(iv) Og € int(O) and O is compact and large enough such that the pseudo-true value 0% € int(@)E
(v) As = [c1,a,C1A] X -+ X [crx A, Cre Al where {CJ}A’OJ}A};; is a set of finite constants with
ciA<0<Cja forj=1,...,r%,

then Assumptions and[3.3 hold.

Condition (i) lists the moment conditions in and . The inequality in Condition
(ii) rules out DGPs under which p,;,(I'z2,I'2,») may be close to zero and (part of) the unknown
parameter 0y is weakly identified. Condition (ii) also requires that the mean of the random vector
(X', Z1,V',U)" is uniformly bounded and the eigenvalues of its variance-covariance matrix are
uniformly finite and bounded away from 0. Condition (iii) requires that the projection residual
of the vector I'y, on the subspace spanned by the matrix szlfz_llzllev — I'yy is bounded away
from zero. It is a sufficient condition for Assumption (iv), which ensures that the aggressive
estimator is inconsistent under severe misspecification. Condition (iv) is needed to derive the limit
of the aggressive estimator under misspecification. The compactness assumption of © is not needed
for the linear IV model. However, it is useful to verify Assumptions and which do not
assume any special structure on the model. Condition (v) specifies that the parameter space of dg
is a product space.

Lemma |3. 1] provides simple conditions on g, dg and F* on which uniformity results are subse-

quently established ]
]

Now we get back to the general set up. For a generic estimator 0 of 0, consider a weighted

quadratic loss function

00,0) = n(@ — 0y — 9), (3.9)

where T is a dy X dp pre-determined positive semi-definite matrix. For example, if T = I,
EF[E(g, 0r)] is the MSE of 0. If T = (Z1,p — Xo,p) ! where Xy p (k= 1,2) is defined in , the
weighting matrix T rescales [ by the scale of variance reduction due to the additional moments. If
T = Ep[X;X]] for regressors X;, Ep [0(6,05)] is the MSE of X{@, an estimator of X/6.

Below we compare the averaging estimator 6., and the conservative estimator ¢;. We are

"Specific restritions on © which ensures that 05 € int(0) are given in and Assumption (vi) in the
Supplemental Appendix.

12Gimilar results have been established in Section [B| of the Supplemental Appendix for the linear IV model when
the normal assumption on (X', Z1, V', U)’ is relaxed. Section |B|of the Supplemental Appendix also provides proof
for Lemma with and without the normal assumption.

11



interested in the bounds of the truncated finite sample risk difference

RD,,(0c0,01;¢) = I;IelgtEF[fg(aem@F) — £c(61,05)] and

RDyy(0e0, 015¢) = sup B[l (Beo, 0r) — Lc(61,0r)), (3.10)
FeF
where
0:(0,6) = min{€(8,0r), ¢} (3.11)

denotes the truncated loss function with an arbitrarily large trimming (. The truncated loss
function is employed to facilitate the asymptotic analysis of the bounds of the risk difference. The

finite-sample bounds in (3.10]) are approximated by

Asy@(@eo,/ﬂ\l) = liminf liminf @n@o,@l;g) and

C—)oo n—oo
Asyﬁ(@eo,gl) = limsup lim supRTn(geo,gl; () (3.12)
C—»oo n—oo
which are called lower and upper bounds of the asymptotic risk difference respectively in this paper.

The averaging estimator /0\60 asymptotically uniformly dominates the conservative estimator 51 if
Asy@(@eo,gl) < 0 and Asyﬁ(@eo,gl) <0. (3.13)

The bounds of the asymptotic risk difference build the uniformity over F' € F into the definition
by taking inf pe 7 and sup p¢ 7 before lim inf,, . and lim sup,,_, ., respectively. Uniformity is crucial
for the asymptotic results to give a good approximation to their finite-sample counterparts. These
uniform bounds are different from pointwise results which are obtained under a fixed DGP. The
sequence of DGPs { F}, } along which the supremum or the infimum are approached often varies with
the sample SiZGE Therefore, to determine the bounds of the asymptotic risk difference, one has to
derive the asymptotic distributions of these estimators under various sequences {F}, }. Under {F),},
the observations {W,, ;}7 ; form a triangular array. For notational simplicity, W, ; is abbreviated
to W; throughout the paper.

To study the bounds of asymptotic risk difference, we consider sequences of DGPs {F,,} such
that 0p, satisﬁeﬁ

(i) n'/26p, — deR"™ or (i) [|n'/26p, || — oco. (3.14)

Case (i) models mild misspecification, where §f, is a n=1/2-local deviation from 0,+x;. Case (ii)

13In the rest of the paper, we use {F,} to denote {F,, € F:n=1,2,..}.
14q; - . . .
Since F,, € F, by Assumption (ii), the sequence ¢, in l) should satisfy |07, || < C for any n.
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includes the severe misspecification where ||df, || is bounded away from 0 as well as the intermediate
case in which 6, — 0 and ||n'/265,|| — co. To obtain a uniform approximation, all of these
sequences are necessary. Once we study the bounds of asymptotic risk difference along each of
these sequences, we show that we can glue them together to obtain the bounds of asymptotic risk

difference.

4 Averaging Weight

We start by deriving the joint asymptotic distribution of /9\1 and /9\2 under different degrees of
misspecification. We consider sequences of DGPs {F,} in F such that (i) n'/26p, — d € R or
||n1/25FnH — o00; and (ii) Go.,, Q2,F, and Ms g, converges to G r, Qo  and Ms  for some F' € F.
[

For £k = 1,2 and any F € F, define
/ -1 -1 -1
T = = (GrrkGrr)  Grrh. (4.1)

Let Z5 r denote a zero mean normal random vector with variance-covariance matrix €2s r and

Z1,r denote its first r1 components.

Lemma 4.1 Suppose Assumptions and hold. Consider any sequence of DGPs {F,} such
that vy, — vp for some F € F, and n'/?6p, — d for d € R7,.
(a) If d € R™", then

n/2(01 — 0r,) Sip | I'rZir
~ —D =
n'/2(0; — 0p,) So.F Io r (22,7 + do)

where dy = (01xr,,d').
(b) If ||| = oo, then n'/2(81 — 0r,) —p &1 p and [[n/2(02 — 5, )|| —p co.

Given the joint asymptotic distribution of 0, and 52, it is straightforward to study g(w) =
(1- w)@l + whs if w is deterministic. Following Lemma (a),

n?(@(w) — 05,) —p Ep(w) = (1 — )y p +wéy p (4.2)

5 he requirement on the convergence of Ga r,, Q2,r, and M2 r, is not restrictive. Lemma in Appendix
shows that the sequences Ga,r,, Q2,r, and Ms r, have subsequences that converge to Ga,r, Q2,r and M2 F,
respectively, for some F' € F. The general result on the lower and upper bounds of the asymptotic risk difference,
Lemmain Appendix only requires to consider the subsequence {F},, } such that Gg,ppn R QQ,FPH and ngppn
are convergent, where {p,} is a subsequence of {n}. The asymptotic properties of the GMM estimators established
in this section under the full sequence of DGPs {F,} holds trivially for its subsequence.
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for n'/2§ r, — d, where d € R™". In Section |C| of the Supplemental Appendix, a simple calculation

shows that the asymptotic risk of 5(w) is minimized at the infeasible optimal weight

tI‘(T (EI,F — 227]:'))

wh = : , (4.3)
dy (T = T4 ) T (Top = T o) do + (T (S0 — Ta,p))
where T is the matrix specified in the loss function,
-1
Ek,F = (GZ:,FQ]:}?GIQF> for k = 1, 2 and FT,F = [FLF, Odgxr*] . (44)

To gain some intuition, consider the case where T = I, such that the MSE of 5(w) is minimized
at w}. In this case, the infeasible optimal weight w}. yields the ideal bias and variance trade off.
However, the bias depends on d, which cannot be consistently estimated. Hence, w} cannot be
consistently estimated. Our solution to this problem follows the popular approach in the literature
which replaces d by an estimator whose asymptotic distribution is centered at d, see Liu (2015)
and Charkhi, Claeskens, and Hansen (2016) for similar estimators in the least square estimation
and maximum likelihood estimation problems, respectively. Moreover, we show that the resulting
averaging estimator reduces the MSE for any value of d.

The empirical analog of w¥ is constructed as follows. First, for £ = 1 and 2, replace X r by
its consistent estimator &, = (@;Cﬁ,;l@k)—l where

n n
-~ ~

Gr=n""Y gro(Wi,01) and Qp =01~ ge (W3, 01) gk (Wi, 01)' — 53, (01)7(01)'. (4.5)
=1 =1

Note that @k and (Alk are based on the conservative GMM estimator 51. Hence they are consistent

regardless of the degree of misspecification of the moment conditions in ((1.3). Second, replace

(I'2,r — I'] p)do by its asymptotically unbiased estimator n'/2(65 — 61) because
n!2(02 = 01) —p (Pop = T1p) (Zop + o), (4.6)

for dy = (01xs,,d')" and d € R"" following Lemma (a). Then the empirical optimal weight takes

the form N R
o tr(T(El — EQ))

T 0y — 00y — 0y) + tr(T(S; — 59))

w

(4.7)

16The consistency of S is proved in the proof of Lemma
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and the averaging GMM estimator takes the form
Oeo = (1 = @eo)b1 + Deobo. (4.8)

Next we consider the asymptotic distribution of 560 under different degrees of misspecification.

Lemma 4.2 Suppose that Assumptions hold. Consider {F,} such that vy, — vp for some
FeF, andn'?6p, — d for d € RY,.
(a) Ifd € R"", then

tI’(T(ZLF - 227}7))
(ZgyF + do)’(Fg}F - PT,F),T(FZF - FT,F)(ZZF + do) + tr(T(ELF - 227}7))

and

1%Oco — 0F,) —p Ep = (1 — Wp)Ey g + TrEsp.
(b) If ||d|| = 00, then Geo —p 0 and n'/2(feo — 05,) —p &y p-

To study the bounds of asymptotic risk difference between 560 and 51, it is important to take
into account the data-dependent nature of we,. Unlike f]l and 5\32, the randomness in W, is non-
negligible in the mild misspecification case (a) of Lemma In consequence, /9\60 does not achieve
the same bounds of asymptotic risk difference as the ideal averaging estimator (1 — w})@l + w}@\g
does. Nevertheless, below we show that /0\60 is insured against potentially misspecified moments

because it uniformly dominates 51.

5 Bounds of Asymptotic Risk Difference under Misspecification

In this section, we study the bounds of the asymptotic risk difference defined in (3.12). Note that
the asymptotic distributions of /0\1 and 560 in Lemma and M only depend on d, G2 r and Q9 .

For notational convenience, define
hpa = (d,vec(Ge,r)', vech(Qa r)") (5.1)

for any F' € F and any d € R’;. For the mild misspecification case, define the parameter space of

hpg as

H={hpg:d€R" and F € F with 6p = 0px1} (5.2)
where dp is defined by (1.5) for a given F'.
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Theorem 5.1 Suppose that Assumptions[3.1H3.3 hold. The bounds of the asymptotic risk difference
satisfy

AsyRD (o, B1) — max {sup l9(h) ,0} |
heH

AsyRD@.0sBh) = min { jut fg00] 0}

where g(h) = E[E;;TEF —§’LFT§17F] and the expectation is taken under the joint normal distribution
Of ZQ7F.

The upper (or lower) bound of the asymptotic risk difference is determined by the maximum be-
tween supy,c g [g(h)] and zero (or the minimum between infyc i [g(h)] and zero), where supy,c g [g(h)]
(or infpepr [g(h)]) is related to the mildly misspecified DGPs and the zero component is associated
with the severely misspecified DGPs. Since the GMM averaging estimator has the same asymp-
totic distribution as the conservative GMM estimator 51 under the severely misspecified DGPs,
their asymptotic risk difference is zero.

To show that 560 uniformly dominates 51, Theorem implies that it is sufficient to show that
infrepr [g(h)] < 0 and supyep [g(R)] < 0. We can investigate infyep g(h) and supyep g(h) by simu-
lating g(h). In practice, we replace Go p and Qy p by their consistent estimators and plot g(h) as a
function of d. Even if the uniform dominance condition does not hold, min {infycz [g(h)],0} and

max {sup,cg [9(h)], 0} quantify the most- and least-favorable scenarios for the averaging estimator.

Theorem 5.2 Let Ap =Y (X1, p — Xo ) for any F € F. Suppose that Assumptions hold.
If tr(Ap) > 0 and tr(Ar) > 4pmax(Ar) for any F € F with §p = 0, we have

AsyRD(8,01) < 0 and AsyRD (6.0, 61) = 0.

Thus, 5@0 uniformly dominates 51.

Theorem indicates that: (i) there exists 1 < 0 and some finite integer n., such that the
minimum risk difference between 560 and 07 is less than &; for any n larger than n.,; (ii) for any
€9 > 0, there exists a finite integer n., such that the maximum risk difference between /H\eo and /0\1 is
less than ey for any n larger than n.,. Pre-test estimators fail to satisfy both properties (i) and (ii)
above at the same time. Take the pre-test estimator based on the J-test for exampldﬂ and consider
three scenarios: (a) the critical value is fixed for any sample size; (b) the critical value diverges

to infinity; and (c) the critical value converges to zero. In the pointwise asymptotic framework,

17See Section |§| in Supplemental Appendix for definition and analysis of this estimator.
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the J-test based on the critical values in (a), (b) and (c) leads to inconsistent (but conservative)
model selection, consistent model selection and no model selection results respectively. The pre-test
estimator based on the J-test violates property (ii) in scenarios (a) and (b), and violates property
(i) in scenario (c).

Different from the finite-sample results for the JS estimator established for the Gaussian location
model, our comparison of the two estimators @eo and 51 is based on the asymptotic bounds of the risk
differences. For a given sample size n, we do not provide results on this asymptotic approximation
error, and therefore our results do not state how the finite-sample upper bound ﬁn(ﬁeo,ﬁl;g)
approaches to zero as n — oo and then ( — oo (e.g., from above or from below). For the Gaussian
location model, the asymptotically uniform dominance here is weaker than the classical finite-
sample results established for the JS estimator. However, this asymptotic results apply to general
nonlinear econometric models with non-normal random variables[™]

To shed light on the sufficient conditions in Theorem[5.2] let us consider a scenario similar to the
JS estimator: ¥ p = O%,Fjdm Yor = O‘%yFIdG, and T = I,. In this case, the sufficient conditions
become o1 > o2 F and dy > 4. The first condition tr(Ap) > 0, which is reduced to o1 p > O2,F,
requires that the additional moments Er[¢* (W, 0F)] = 0 are non-redundant in the sense that they
lead to a more efficient estimator of #p. The second condition tr(Apr) > 4p,.x(Ar), which is
reduced to dy > 4, requires that we are interested in the total risk of several parameters rather
than that of a single one. In a more general case where X1  and ¥y r are not proportional to the
identity matrix, the sufficient conditions are reduced to 31 7 > Y2 r and dy > 4 under the choice
T = (X1,r — X9 r)~ 1, which rescales [ by the variance reduction ¥ p — ¥ p. In a simple linear IV
model (Example 3.1) where Z; is independent of Z; ; and the regression error U; is homoskedastic
conditional on the IVs, 31 g > X9 p requires that Bp«[ZX/] and Ep-[Z}Z}'] both have full rank.

Note that these conditions are sufficient but not necessary. If these sufficient conditions do
not hold, we can still simulate the upper bounds in Theorem to check the uniform dominance
condition. In fact, simulation studies in the next session show that in many cases /9\60 has a
smaller finite-sample risk than 51 even if these sufficient conditions are violated. Nevertheless,
these analytical sufficient conditions can be checked easily before the simulation-based methods are

adopted.

181n Sectionof the Supplemental Appendix, we show that the averaging GMM estimator has similar finite sample
dominace results in the Gaussian location model.
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6 Local Uniform Dominance

In this section, we provide a local uniform dominance result that strengthens Asyﬁ(@eo,gl) =0
in Theorem 5.2 to
AsyRD(8.,,01) < 0, (6.1)

at the cost of comparing 560 and 51 in a smaller parameter space that only allows for local mis-

/2 The result is uniform over this shrinking parameter space. Showing

specification up to n~
Asy@(@eo,gl) < 0 is desirable because it implies that the finite sample maximum risk difference
between /9\60 and 51 is bounded above from zero for all large n, whereas Asyﬁ(@eo,gl) = 0 allows
this finite samples maximum risk difference to be a shrinking, but positive value for large n. A
smaller parameter space is necessary for this stronger result because /9\60 cannot strictly improve

upon 51 when the additional moments are severely misspecified and thus do not provide any useful

information.

Assumption 6.1 For each n let F,, denote a set of DGPs. The following conditions hold:
i) for any n and any F € F, there is O € int(©) such that BEp [g1(W,0F)] = 0, x1;

ii) for any € > 0, inf, infreg, infoepe (o) |EF [91(W,0)]]] > 0;

iii) for any n and any F € F, there is dp € R”" such that B [go(W,0F)] = n~V2dp;

iv) Assumption holds for F,, uniformly over n;

v) A = {vp: F € F, for some n} is closed;

vi) ||dr|| < Cr for some fized constant Cr,.

~~ I~ N

Assumption [6.1} (i) and (ii) are similar to Assumptions [3.1}(i)-(ii), which ensures the unique
identification of 0 for any F' € F,, and any n. Assumptions (iii) implies that the extra moment
conditions are mildly misspecified which together with Assumptions (1) and (ii) and Assumption
ensures that the aggressive GMM estimator 52 has a normal asymptotic distribution as shown
in Lemma [4.1](a). As a result, Assumptions [3.1}(iii)-(iv) are not needed here. Assumption
contains some regularity conditions for showing the asymptotic properties of the GMM estimator
and it is maintained in Assumption[6.1] (iv). Assumption[6.1](v) is a reduced version of Assumption
(i). Assumption [6.1](vi) is an important condition to show the local uniform dominance result.

To introduce the local uniform dominance result, we define

He, = {hpq:d €R" with ||d| < Cf and F € F, for some n}. (6.2)
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In the local misspecification framework, the set of DGPs F,, may change with the sample size n.

The upper bound of the finite sample risk difference between 560 and 51 should be defined as

RDp(0e0,01:¢) = sup Er[lc(Beo, Or) — £c(01,0F)], (6.3)
cFn

which is approximated by

AsyRT(geo,gl) lim limsup sup EF[Q(@@O,HF) - fc(/él,'gp)]. (6.4)

(—00 n—oo FeF,

To show the local uniform dominance result, it is sufficient to study the upper bound of the risk

difference AsyRT(@eo, 51)

Lemma 6.1 Suppose that Assumption[6.1] hold. The upper bound of the asymptotic risk difference
satisfies

AsyRD(0e0,61) < sup [g(h)], (6.5)
hGHcL

where g(h) = E[E;;TEF — &1 pY&, p) is defined in Theorem .

Lemma provides an upper bound to the maximum risk difference between 5@0 and 51. The
criterion function g(h) in (6.5)) is the same as its counterpart in Theorem [5.1} To show the local
uniform dominance result in 1D it is sufficient to show that supycp, [g(h)] is bounded away

from zero. This is proved in the following Theorem.

Theorem 6.1 Suppose that Assumption [6.1] hold. If tr(Ap) > 0 and tr(Ap) > 4ppax(AF) for any

F € F, and for any n, we have SUDperi, [g(h)] <O for any finite constant Cf,.

Combining the results in Lemma and Theorem we immediately obtain (6.1). The
sufficient conditions to ensure that the upper bound sup,c He, [g(h)] is bounded away from zero

are the same as those in Theorem [5.2

7 Simulation Studies

In this section, we investigate the finite sample performance of our averaging GMM estimator in

linear IV models. In addition to the empirical optimal weight @W,,, we consider another averaging
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estimator based on the JS type of weight. First consider the positive part of the JS weigh@

(4 ) 2D
@ =1 (1 n@_mr@—m>>+ "y

where (), = max{0,z} and A is the estimator of A using Sy for k = 1,2. The alternative

averaging estimator uses the restricted JS weight

wR,Js = (W), - (7.2)

By construction, wjs <1 and 0 <wpg j5 < 1. We compare the finite-sample MSEs of our proposed
averaging estimator with the empirical optimal weight, the JS type of averaging estimator with the
restricted weight in , the conservative GMM estimator /9\1, and the pre-test GMM estimator
based on the J-test. The finite-sample MSE of the conservative GMM estimator is normalized to
be 1.

We consider a linear regression model with i.i.d. observed data
Wi = (Y;, X17i7 e ,X6,i7 Zl,i7 ceey Z127i, Zii’ ey Zg,i), fOI" Z = 1, ey 10, (73)

where Y is the dependent variable, (X1,..., Xg) are 6 endogenous regressors, (Z1,..., Z12) are 12

valid IVs, and (Z7, ..., Z§) are 6 invalid IVs. The data is generated as follows. The regression model

is
6
Y =) 0;X;+u, (7.4)
j=1
where X are generated by
X = (Zj+Zj+6),8j+Zj+12+€j forj=1,...,6. (7.5)
We first draw (Z1, ..., Z18,€1, - - -, €6, u*)" from normal distribution with mean zero and variance-

covariance matrix diag(/1gx1s, 27x7) Where

I 025 x1
E7><7 _ 6x6 6x1 ' (7.6)
0.25 x 1146 1

To show the performance of the estimator under non-Gaussian errors, we draw 7 from exponential

'9This formula is a GMM analog of the generalized James-Stein S type shrinkage estimator in Hansen (2016)

for parametric models. The shrinkage scalar 7 is set to tr(A) — 2p,,..(tr(A)) in a fashion similar to the original
James-Stein estimator.
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distribution with mean 1 and 7 is independent of (Z1,..., Z1g,€1,...,£6,u*). The residual term u

in ((7.4) is generated by
w= (- 1)/2, (7.7)

where 7 is demeaned to ensure that the mean of u is zero. The invalid IVs are generated by
Zr = Zipra +n Y Pdju, for j=1,...,6. (7.8)

We set (01, e 706) = 2.5 X 11x¢ and (51, e ,66) = 0.5 X 11x¢-

In the main regression equation ((7.4)), all regressors are endogenous because
E[X,u] = E[e;u*/2] = 0.125 for j =1,...,6. (7.9)

From the expression of Z} above, we see that increasing the magnitude of d; will enlarge the
correlation coefficient between Z 7 and u and hence the endogeneity of Z3.

Given the sample size n, we consider different DGPs of the simulated data {W; : i = 1,...,n} by
changing the values of the location parameters (dy, ..., dg). We consider the following parametriza-
tion

(dl,...,d@) :7’0(61,...,06) (710)

where r¢ is a scalar that takes values on the grid points between 0 and 25 with the grid length 0.5,
(c1,...,ce) is parametrized in two different ways. In the first one, we set ¢; =0or 1 forj=1,...,6
and rule out the case that ¢; = 0 for all j (since this is the same as the case which sets o = 0). In

the second one, we consider the polar transformation and set

c1 = sin(an)sin(as) sin(as) sin(as) sin(as),

ca = cos(ay)sin(az) sin(as) sin(ay) sin(as),

3 = cos(as)sin(as) sin(ay)sin(as),

ci = cos(as)sin(as)sin(as),

cs = cos(as)sin(as),

cg = cos(as), (7.11)

where oy € {7/4, 3w /4, 57 /4, Tn/4} and «; € {7 /4, 3w /4} for j = 2,...,5. Therefore, there are 127
different values for (cy, ..., cg) which together with 51 different values of 7y produces 6477 different
DGPs in the simulation studies. For each DGP, we consider sample size n = 50, 100, 250, 500 and
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Figure 2. Finite Sample MSEs of the Pre-test and Averaging GMM Estimators
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Note: “Pre-test(0.01)” refers to the pre-test GMM estimator based on the J-test with nominal size 0.01; “Emp-opt”
refers to the averaging GMM estimator based on the empirical optimal weight; “ReSt-JS” refers to the averaging
estimators based on the restricted James-Stein weight, respectively. For each estimator, the upper envelop of the
shaded area is the maximum finite sample MSE among the 127 DGPs described in Section 7, and the lower envelop
is the minimum. Both maximum and minimum are functions of rg.

use 25,000 simulation repetitions. Given the sample size and the value of ¢, we report the minimum
and maximum of the 127 values of the finite sample MSEs for each estimatorm Therefore given
each sample size, we report a shaded area for each estimator where the upper envelope represents
the estimator’s maximum finite sample MSE and the lower envelope is its minimum finite sample
MSE. For each estimator, both the upper envelope and lower envelope are functions of rg.

The MSEs of various estimators of the parameters in are included in Figure QE The

two panels on the top of Figure 2 present the MSEs of estimators with sample size n = 50 and

2%In this simulation study, we also consider the truncated risk function with ¢ = 1000. The simulation results are
identical to what we get without truncation. These extra simulation results are available upon request.

21The finite sample biases and variances of the GMM estimators are reported in Subsection E.1 of the Supplemental
Appendix.
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100 respectively, while the two panels on the bottom provides their MSEs with n = 250 and 500
respectively. Our findings in the simulation studies are summarized as follows. First, the averaging
GMM estimator 560 has smaller MSE than /9\1 uniformly over d in all sample sizes considered,
which is predicted by our theory because the key sufficient condition is satisfied in this modelF_ZI
Second, the pre-test GMM estimator does not dominate the conservative GMM estimator 51 when
the sample size becomes slightly large (e.g., n > 100). For example, when n = 500 and the
location parameter rg is close to zero, the pre-test GMM estimator has relative MSE as low as
0.35. However, its relative MSE is above 1 when rg is between 5 and 20. Third, comparing the two
averaging estimators, we find that the restricted JS estimator does not reduce the MSE as much
as the averaging estimator based on W, for different sample sizes and different DGPs considered

in this simulation study.

8 Conclusion

This paper studies the averaging GMM estimator that combines the conservative estimator and
the aggressive estimator with a data-dependent weight. The averaging weight is the sample analog
of an optimal non-random weight. We provide a sufficient class of drifting DGPs under which
the pointwise asymptotic results combine to yield uniform approximations to the finite-sample
risk difference between two estimators. Using this asymptotic approximation, we show that the
proposed averaging GMM estimator uniformly dominates the conservative GMM estimator.
Inference based on the averaging estimator is an interesting and challenging problem. As pointed
out in Pétscher (2006), the finite sample density of the averaging estimator can not be consistently
estimated, which implies that directly applying an estimator of the finite-sample density may not
yield uniformly valid inference. In addition to the uniform validity, a desirable confidence set
should have smaller volume than that obtained from the conservative moments alone. We leave

the inference issue to future investigation.

221t is easy to show that in this simulation design, when §7 = 0 we have tr(Ar) = 4 and tr(Ar) —4p,,.. (Ar) = 4/3.
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A Appendix

In Lemma define

C,D = FIPGI.I% {pmln(FﬂCZlPZlI) Pmin (‘Il)}’
c, = 2 )b,
P max {11, pumax () }
Ca = sup ||50|| (A.1)
S0EAs
Let
Ciw =2(dg + 12+ 1)C)p, ¢y p = min{l, Ci} and Ci p = Ci (2+ 01/2) (A.2)

Then, in Lemma (iii), the constant ¢ is given by
€ = pCi ) CAY, (A.3)

i.e., we require the condition to hold on a set bounded away from 0 by €. The details of the proofs

are given in Section [B] of the Supplemental Appendix.

A.1 Proof of the Results in Section 4

Let j1,,(ga(W,0)) = n= V23" (g2(Wi,0) — B, [g2(Wi,6)]). In the rest of the Appendix, we use C

to denote a generic fixed positive finite constant which does not depend on any F' € F or n.

Lemma A.1 Suppose that Assumption[3.3. (i) holds and © is compact. Then we have

(i) supgee [192(0) — B, [92(Wi, 0)]]| = 0p(1);

(i) supgee ||[n" Yoisy 92(Wi, 0)g2(Wi, 0) — B, [g2(Wi, 0)g2 (Wi, 0)]|| = 0p(1);
(iii) supgee ||t Yoy 92,0(Wi, 0) — B, [g2,0(Ws, 0)]|| = 0p(1);

(iv) p,(g2(W,0)) is stochastic equicontinuous over 6 € ©;

(

V) 2}7/TL2M7L(92(I/V? an)) —D N(O'I‘QleIT‘Q)-
Proof of Lemma See Lemma 11.3-11.5 of Andrews and Cheng (2013). =

Define My p(0) = Ep [gx(W,0)], Gr,r(0) = Ep [gro(W,0)] and Qy r(0) =Varp [gx(W,0)], for
any F' € F, for any § € © and for £ = 1,2. The next lemma shows that M r(-), G2 r(-) and

Q9 p(-) are Lipschitz continuous uniformly over F' € F.

Lemma A.2 Under Assumptions , (i)-(ii), for any F € F and any 01,02 € ©, we have:
(i) [[M2,p(01) — Ma,p(02)]| < C'[|61 — b2]|;
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(ii) [|Ge,r(61) — Go,r(62)|| < C|01 — 02|,
(ili) [|Q2,7(01) — Q2. r(02)] < C |01 — 62|

Proof of Lemma [A.2] is included in Section [C] of the Supplemental Appendix.

Lemma A.3 Suppose that Assumptions [3.1)(i)-(ii) and [3.2 (i)-(ii) hold. Then for any sequence
of DGPs {F,}, we have
51 — '9Fn = Op(l) and 52 = Q2,Fn + Op(l), (A4)

where 51 s a preliminary estimator defined as

9 = argmin 3, (60)'5, (0) (A.5)
0cO

and Qy is defined in of the Supplemental Appendiz.
Proof of Lemma, is included in Section [C] of the Supplemental Appendix.

Lemma A.4 Suppose that Assumptions[3.1] (i)-(ii) and[3.4 hold. Then for any sequence of DGPs
{F,}, we have
n!2(01 = 05,) = T rpia (91 (W, 0R,)) + 0p(1), (A.6)

-1
where I't, g, i, (1 (W, 0F,)) = — ( /l,anl_,}E’nGl,Fn> S, = Op(1).
Proof of Lemma is included in Section [C] of the Supplemental Appendix.

Lemma A.5 Suppose that Assumptions . (#i) and . (i)-(iii) hold. Then for any sequence of
DGPs {F,}, we have
Oy — 05 = 0p(1). (A7)

Proof of Lemma, is included in Section [C] of the Supplemental Appendix.

Lemma A.6 Suppose that Assumptions[3.1] (i)-(ii) and[3.3 (i)-(iii) hold. Consider any sequence
of DGPs {F,} such that 0, = o(1). Then we have

~

92 - QF,L = Op(l). (AS)
If we further have Assumption[3.3 (iv), then

n2(0s — 05,) = (., + 0p(1)) {Mn(g2(W7 0r,)) + nl/252,Fn} + op(1), (A.9)

1
! -1 i -1 Y
where FQ,Fn = — (GZ,FnQZFnGQan) GQ,FnQQ,Fn and 527Fn = (01><7”1?5Fn) .
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Proof of Lemma [A76] is included in Section [C] of the Supplemental Appendix.

Lemma A.7 Under Assumptions|3.9 (ii) and[3.5, (ii), for any sequence of DGPs {F,,} with F,, €
F where {pn} is a subsequence of {n}, there is a subsequence {p},} of {pn} such that vg . (0F,.) —
vr(0F) as p} — oo, where F € F.

Proof of Lemma[A.7} Recall that A = {vp : F € F}. By Assumptions [3.2}(ii) and [3.3](ii)
compact. Hence for any sequence {vppn (OF,, } in A, it has a convergent subsequence {vpp* (9 Fe )}

such that v, (0F . ) — vp(0F) as p;, — oo, where ' € F. =

Lemma A.8 Suppose that Assumptions[3.1 (1)-(i1) and[3.9 hold. Consider any sequence of DGPs
{F,} such that vg, — Tp for some F' € F, and nl/z(spn —d ford € R™". Then

”1/2(51 —0F,) Sip | ' rZiF
~ —D =
n'/2(05 — 0p,) So.r Tor (22,7 + do)

where dy = (01xr,,d’)".
Proof of Lemma In the proof, we use

Gor, — Gor and Qo 5, — o (A.10)

for some F' € F, which is assumed in the lemma. Under Assumptions |3.]] . (ii) and [3.2] . for the
sequence of DGPs {F,} considered in the lemma, we can apply Lemma and Lemma to
deduce that

120, _p r W, 0
n ( 1 Fn) _ 1,F7L/’1/7’l(gl( Fn)) +0p(1), (All)

n'/%(9; - 0r,) (T2, + 0p(1) { i (92 (W, 0F,)) +n' /%62 p, }
where 2 5, = (01xry, 0%, ). By (A.10) and Assumption we have

Fl,Fn = Fl,F + 0(1) and FQ}F,’L = FQ}F + 0(1) (A.12)

-1
where I'y p = — (G;~C FQI;%Gk,F) G, FQ;}, for k = 1,2. Collecting the results in LemmalA.1}(v),
(A.11) and (A.12)), and then applying the continuous mapping theorem (CMT), we have

nl/2(0; — 0 r*
(Al Fu) —p | V) (Zor +do), (A.13)
n'/2(0; — 0p,) Py

)
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where Z3 p ~ N(0p,x1,Q2.F), I p = (T'1,F,0gyxr+) and do = (01xr,,d’)’. The claimed result
follows from 1) and the definitions of I'] p and Zy p. =

Proof of Lemma The claimed result in Part (a) has been proved in Lemma
We next consider the case that n'/26p, — d with ||d|| = co. Note that the results in (A.6)

and (A.12) do not depend on ||d|| < co or ||d|| = cc. Using (A.6), (A.12), Lemma[A.1](v) and the
CMT, we have

n'2(01 - 0p,) —p T1.pZ1 p. (A.14)

To study the properties of 52, we have to consider two separate scenarios: (1) 0p, = o(1); and

(2) ||0F, || > ¢s for some ¢5 > 0. In scenario (1), Assumption Lemma [A.1](v) and Lemma
imply that

n!2(0; — 0F,) = (Ta5, + 0,(1))n'/25 5, + Op(1). (A.15)

By Assumption (iv) and ||n'/26p, || — oo,
ndp, I 5 Ta.p,05, = C*ndy 6, — 00 (A.16)

which together with (A.15) implies that In'/2(6, — 65,)|| —p 00.
Finally, we consider the scenario (2) where |45, || > ¢5s. By Assumption [3.1}(iv),

1G5, 5, ., 07, || > CTH[10F, || > csC (A.17)

for any n. As 0% is the minimizer of QF, (), it has the following first order condition

Odgx1 = G2, (05,)' % . Mo 1, (0F,), (A.18)
which implies that
b m S5, 08, = Gar,(05,) Q% Mo, (0r,) — Ga.r, (05,) Q% M2 1, (0F,)
= [Gor,(05,) — Gor, (03,)) Qu , Mar, (OF,)
+Gar, (05,) 3, (M2, (0F,) — Ma 5, (0F,)] - (A.19)

By Lemma the Cauchy-Schwarz inequality and Assumption [3.2] (ii)-(iii), we have

‘ < C|og, — 0% |, (A.20)

|[Go.r, (O8,) = G, (05, 3k, Mar, (601,)

< ||Gor. (05,) — Go,r, (6%, || HQQ_}anFn (OF,)
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where C is a fixed constant. Similarly, we have

Ham( 7 )k [Mag, (05,) — Mg, (07,)] H

< ||Mar, (0F,) — Ma g, (0F,)|| || 5, G2. 7. 0%,)

| <Cor, o5,

: (A.21)
Combining the results in (A.19), (A.20) and (A.21)), and using the triangle inequality, we have
0k, — 0%, || > csC (A.22)

for some fixed constant C. Using 0y = 0%, +op(1) (which is proved in Lemma ) and the triangle

inequality, we obtain

02— 05, = [182 - 05,11 |16, — 0.

= [|0F, = 0r. || (1 +0p(1)), (A.23)
which together with 1} implies that n1/2||§2 — 0F, || —p oo. This finishes the proof. m
Lemma A-g (a) FT,FdO — OdQXI; (b) FT7FQQ7FF){:F — El,F}. (C) PT,FQ27FF,2,F - 227}7‘; (d)
Do pQo ply = Yo p.

Proof of Lemma [A9]is included in Section [C] of the Supplemental Appendix.

A.2 Proof of the Results in Section [5l

We first present some generic results on the bounds of asymptotic risk difference between two
estimators under some high-level conditions. Then we apply these generic results to the two specific
estimators we consider in this paper: /9\60 and 51. The proof uses the subsequence techniques used
to show the asymptotic size of a test in Andrews, Cheng, and Guggenberger (2011) but we adapt
the proof and notations to the current setup and extend results from test to estimators.

Recall that hpg = (d', vec(Ga,r)’, vech(Q r)’") and Tp = (vec(Ga,r)’, vech(Qg, r)’) for any F € F
and any d € R7.. We have defined

H={hpg:d€R" and F € F with 6p = 0px1} (A.24)

where dp is defined by (1.5) for a given F'. Define
H: = {hpg:dec R, with ||d|| =00 and F € F}. (A.25)

Let dj, = r* 4 dgra + (12 + 1)r2/2. It is clear that hpq is a dj-dimensional vector.
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Condition A.1 (i) For any sequence of DGPs {F,,} with F),, € F where {p,} is a subsequence
of {n}, there exists a subsequence {p}} of {pn} and some F € F such that UF,. — UF as Py, — 00;
(ii) My, p(0) = 0r,x1 has a unique solution at 0 € © for any F € F;

(iii) Mo r(-) is uniform equicontinuous over F € F;

(iv) for any subsequence {p,} of {n}, if (pn)l/Qéppn —d for d € R, and vg, — vp, then

lim Ep, [0c(6,0r, )] = Re(hia) and lim B, [6c(0,0F, )] = Re(hra)

n—oo

where R¢(hpq) and Rc(hpd) are some non-negative functions that are bounded from above by C for
any F € F and any d € R, ;

(v) for any F € F with §p = Op+x1, there exists a constant ep > 0 such that for any 5 €R™ with
0<||d]| < ep, there is F € F with 0p =0 and |[vp —vg| < C||8||F for some k > 0;

(vi) for any hpq € HX, and hp g € HS,, we have
Re(hra) = Re(hpg) and Re(hra) = Re(hpg)

for any ¢ > 0.

Condition (1) requires that for any sequence of {vp, }, it has a convergent subsequence
{vpp;} with limit being vp for some F' € F. This condition is verified under Assumptions (ii)
and [3.3](ii) in Lemma Condition [A.1] (i) is the unique identification condition of 6 which
holds under Assumptions[3.1}(i)-(ii). Condition[A.1](iii) holds under Assumption[3.2}(ii) by Lemma
Condition (iv) is a key assumption to derive an explicit upper bound of asymptotic risk.
This condition can be verified by using Lemma as we shall show in the proof of Theorem
Condition (V) enables us to show that the upper bound we derived for the asymptotic risk is
also a lower bound. This condition is assumed in Assumption [3.3](i). Condition [A.1}(vi), in our
context, requires that the asymptotic (truncated) risk of 0 (or §) under the subsequences of DGPs
{Fp, } satisfying the restrictions in Condition (iv) are identical whenever (p,)Y/25p, — d with
||d|| = co. Condition is verified in the proof of Theorem below.

Lemma A.10 Under Conditions[A.1] (i) - [A.1] (iv), we have

AsyRC(g) < max {sup R¢(h), sup Rc(h)} , (A.26)
heH heHY,

where AsyR¢ (6) = lim sup supper Erlle (6,65)].
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Proof of Lemma Let {F,,} be a sequence such that

limsupEp, [64(5, 0r,)] = limsup <sup EF[EC@, 0F)]> = AsyRC(E). (A.27)

n—oo n—oo FeF

Such a sequence always exists by the definition of supremum. The sequence {Ep, [{¢ (0,05,)]: n> 1}
may not converge. However, by the definition of limsup, there exists a subsequence of {n}, say

Pn}, such that {Eg [£ /0\, O0r )]: n > 1} converges and
Pn C Pn
nh_%loEFpn [€< (/é, ern )] = AS:{/RC (5) (A28)

Below we show that for any subsequence {p,} of {n} such that {Ef, [Eg(g, 0r, ): n > 1} is

convergent, there exists a subsequence {p}} of {p,} such that

lim Ep . [64(/0\, 0r,. )] = R¢(h) for some h € H or HZ,. (A.29)

Because lim,,—,o0 Epp* [Eg(b\, QFp* )] = lim, o Bp, [Eg(b\, 0r,, )], which combined with (A.28) and

(A.29)) implies that

AsyR¢(0) = R¢(h) for some h € H or H,. (A.30)

The desired result in (A.26]) follows immediately by ([A.30]).
To show that there exists a subsequence {p} } of {p,} such that (A.29)) holds, it suffices to show

that for any sequence {F,,} and any subsequence {p,} of {n}, there exists a subsequence {p}} of

{pn} for which we have
(p;';)lﬂéppz —dforde RZ;Z and VF,, — UF (A.31)
for some F € F. If holds, then we can use Condition (iv) to deduce that
Jlim B, (69,0, )] = Re(hra) (A.32)

for the sequence of DGPs {F}:} that satisfies . As d € R7,, we have either ||d| < oo or
||d|| = oo. In the first case, ||d| < oo together with (p:;)l/z&FpE — d and 0p, — oF (which is
implied by VE, — vp) implies that 0p = 0,+x1, which implies that hr4 € H by the definition of
H. In the second case, hpq € H} by the definition of H}. We have proved that hrg in (A.32))
belongs either to H or H} which together with proves .

Finally, we show that for any sequence {F,} and any subsequence {p,} of {n}, there ex-
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ists a subsequence {p;} of {p,} for which (A.31)) holds. Let J,, ; denote the j-th component

of ¢,, and p1, = p, for any n > 1. For j = 1, either (a) limsup,,_, |p§f(5pjmj| < 00; or
(b) limsup,, ]pjl-v/fépj_’mﬂ = oo. If (a) holds, then for some subsequence {pj+1,} of {pjn},
pjlfl wOpjs1mj — dj for some d; € R. If (b) holds, then for some subsequence {p;i1,,} of {pjn},

1/2 . o
pjil nOpii1n,g — 00 or —00. As r* is a fixed positive integer, we can apply the same arguments

successively for j = 1,...,r* to obtain a subsequence {p,+ ,} of {p,} such that (pr*yn)l/Qépr* L=
d € R”,. By Condition (i), we know that there exists a subsequence {p}} of {p,+ ,} such that
vpx — vp for some F' € F, which finishes the proof of (A.31). m

Lemma A.11 Suppose that Condition . (v) holds. Then (i) for any hpq € H, there exists a
sequence of DGPs {F,} with F,, € F such that

n1/25Fn —d, Ga.p, = G and Qo 5, — Qo F; (A.33)
(i) for any hpq € HY,, there exists a sequence of DGPs {F,,} with F,, € F such that
|n265, || — oo, Go.r, — Gaor, Qop, = Qar and dp, — OF. (A.34)

Proof of Lemma [A.11, (i) By the definition of H, we have dp = 0,=x; for any F' such that
hrq € H. Let N, be the smallest n such that ||d| n~'/2 < er. By Condition (v), for any
n > N, we can find a DGP F), such that

6p, =n Y2d and |[vp, —vF| < n2C||d||". (A.35)

For any n < N, such that ||d|| n Y2 > ¢ep, welet F, = F. The desired properties in (A.33) holds
under the constructed sequence of DGPs {F},} by , because C is a fixed constant and x > 0.

(ii) For any hpgq € HJ,, we have either 0p = 0,+x1 or [|dp|| > 0. We first consider the case
that 0p = Opxx1. Let 1,+x; denote the r* x 1 vector of ones. Let N, be the smallest n such that

n~Y4(r*)1/2 < ep. By Condition (v), for any n > N., we can find a DGP F,, such that
op, = n~ 41,1 and H@Fpn —EF” < Cn_“/4(r*)”/2. (A.36)

For any n < N, such that n_1/4(7‘*)1/2 > ep, we let F,, = F. The desired properties in (|A.34)
holds under the constructed sequence of DGPs {F},} by , because C' is a fixed constant and
k > 0. When ||dp|| > 0, we define a trivial sequence of DGPs {F,,} as F,, = F for any n. It is clear
that holds trivially in this case. m
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Lemma A.12 Under Condition[A.1], we have

Asng(g) = max {sup R¢(h), sup Rg(h)} . (A.37)
heH heHz,

Proof of Lemma In view of the upper bound in (A.26]) in Lemma it is sufficient to
show that

AsyRC(a) > max {sup R¢(h), sup Rc(h)} . (A.38)
heH heHY,

First, we note that for any hqr = (d',vec(Ga r)’,vech(Q,r)) € H, there exists a sequence
{F, € F :n > 1} such that
n1/25Fn —deR"” and VE, — UR (A.39)

by Lemma (i). The sequence Ef, [¢, (6,605, )] may not be convergent, but there exists a subse-
quence {p,} of n such that Er, [/, (0,6 F,, )] is convergent and

lim Bg, [0(6,0F, )] = limsupEg, [£(8, 05, )] (A.40)

n—0o0 n—o0

As {p,} is a subsequence of {n}, by
(pn)l/Q(SFpn —deR" and VF, — UF. (A.41)
By Condition [A.1](iv), we have that
Jim Bp,, [6(0,05,,)] = Re(hr.a), (A.42)
which combined with and the definition of AsyR (/0\) gives
Asng(/O\) = limsup sup Ep [64(@, 0r)] > limsupEp, [E(/H\, 0r,)] = Re(hra). (A.43)

n—oo FeF n—00

Second, consider any hqp = (d’,vec(Go,r)’,vech(Qa r)’) € Hi. By Lemma (ii), there
exists a sequence of DGPs {F},} such that

In*265. || — oo and ve, — vp. (A.44)

Using the same arguments in proving (A.40) to (A.42), we can show that for some subsequence

{pn} of {n},

|p71L/25FM|| — 00 and vy, — vp (A.45)
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and

lim supEr, [£(0, 0,)] = lim B, [(0,0F,, )] = Re(hpa)- (A.46)

n—oo n—oo

for ||d|| = oo by Conditions (Vi). By the definition of AsyRC@) and 1)

AsyRC(g) = limsup sup Ep [64(5, 0r)] > limsupEp, (0, 0r,)] = Rc(hra)- (A.47)

n—oo FeF n—o00

Combining the results in (A.43) and (A.47), we immediately get (A.37). m

Lemma A.13 Under Conditions . (i) - . (iv), the upper and lower bounds of the asymptotic

risk difference between 0 and 0 satisfy

AsyRD(0,60) < Clirn (max {sup [Rg(h) — fig(h)] , sup [Rg(h) — fig(h)] }) , (A.48)
—00 heH heH%,

{—o0 heH}

¢S]

AsyRD(8,0) > lim (min{ inf [Rc(h)—ég(h)], inf {Rdh)—ég(h)]}), (A.49)
where

B [min {€TEr,Cf| . ld] <o

R(h) = Blmin {¢} z Y& 5, C}] and Re(h) =
C v ‘ {Emm&nmm«mdm

forany h e HU HZ,.

Proof of Lemma [A.13l Define

Re(H HY) = max{sgg [Rc(h) —Ec(h)} s [Rc(h) —Rc(h)} } (A.50)
R.(H,H%) = min { inf [Rg(h) - Rg(h)} inf [Rg(h) - Rc(h)} } (A51)

By the definition of AsyRD(0, 5), to show (A.48) it is sufficient to show that for any ¢ > 0

lim sup sup EF[KC(/G\, Or) — Kc(g, 0r)] < Re(H,HZ,), (A.52)

n—oo FeF

which can be proved using the same arguments in the proof of Lemma (but replacing £, (5, Or)
and R¢(h) by EC(/G\, Or) — EC(E, 0r) and R¢(h) — Eg(h) respectively). Similarly by the definition of
Asy@(@, 6), for (A.49) it is sufficient to show that for any ¢ > 0

lim inf inf Ep [6:(0,0F) — £c(0,0F)] > Re(H, HZ,), (A.53)
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which can be proved using the same arguments in the proof of Lemma (but replacing lim sup,,,
supper, Le(0,0r) and Re(h) by limint,, infrez, £e(0,0F) — £c(0,0r) and Re(h) — Re(h) respec-
tively). m

Lemma A.14 Under Condition[A.1], the upper and lower bounds of the asymptotic risk difference

between 0 and 0 have the following representations:

AsyRD(0,0) = Jim, (max{slelg {Rg(h)—fig(h)],hsgﬁ {Rg(h)—fig(h)]}), (A.54)

AsyRD(0,0) = lim (min { inf [Rc(h)—ﬁg(h)],hgg* {Rdh)—édh)]}). (A.55)

{—o0 oo

Proof of Lemma By Lemma [A-T3] it is sufficient to show that

lim sup sup Ep[lc(0,0F) — £c(0,0r)] > Re(H,HZ), (A.56)
n—oo FeF
lim inf inf_ Erll(0,0F) — €:(0,0F)] < R.(H,HZ), (A.57)
n—oo =

for any ¢ > 0. can be proved using the same arguments in the proof of Lemma by
replacing £¢(0,0r) and R¢(h) by €c(0,0F) — £c(0,0F) and Re(h) — Re(h) respectively. Similarly,
can be proved using the same arguments in the proof of Lemma by replacing lim sup,,,
SUPper, Eg(b\, 0r) and R (h) by liminf,,, inf per, Eg(g, HF)fEC(AHJ, Or) and Rg(h)fég(h) respectively.

Lemma A.15 Under Assumptions[3.4 (ii) and[3.4 (iv), we have

sup B[(€) Y€, )% < C and sup B[(E;TER)? < C. (A.58)
heH heH

Lemma A.16 Letg:(h) =E min{€pYép, ¢} — min {€ Y& F, C}] . Under Assumptions . (i1)

and [3.3 (iv), we have

Jim_ sup [lg¢(h) — g(h)[] =0 (A.59)
—XheH

where supy,c [lg(h)]] < C.

Proof of Theorem [5.1l The proof consists of two steps. The first step is to apply Lemma

to show ([A.60|) and (A.61) below, and the second step is to apply Lemma to show (A.75)) and
(A.76]) below.
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In the first step, we apply Lemma with 0 = 560 and 0 = 51 to show that

AsyRD(0eo,61) = lim max {sup [g¢(h)] ,O} and (A.60)
(—oo heH
AsyRD(0co,01) = clggo min {}iglf{ [9¢(R)] ,0} . (A.61)

To prove ([A.60) and (A.61)), we now verify Condition[A.T]under Assumptions[3.1}f3.3] Condition
(i) is verified by Lemma under Assumptions [3.2}(ii) and [3.3](ii). Condition [A.1](ii) is
implied by Assumptions [.1}(i) and [3.1]}(ii). Condition [A.1](iii) is implied by Assumptions [3.2](i)-
(i) as a result of Lemma[A.2] Condition [A.1}(v) is assumed in Assumption [3.3](ii). We next verify

Condltlonsm iv and- vi)

Consider any sequence of DGPs {F}, } with

(pn)"/?6F,, — d for d € RY, and vp, — vp (A.62)

for some F' € F, where {p,} is a subsequence of {n}. First, we consider the case that d € R . By

Lemma {4.1] “ ) and [4.2] .
(pn) 201 — 0F,,) —p &.p and (pp)Y*(0co — OF,,) —p Ep (A.63)
which combined with the continuous mapping theorem implies that
E(@l, 0r,,) —p fll,FTfLF and 6(@607 0r,,) —p E%TEF (A.64)

Since T is positive semi-definite, 537 r Y& pand EIFTE r are both non-negative. The function f¢(z) =
min {z, (} is a bounded continuous function for x > 0. By (A.64) and the Portmanteau Lemma
(see Lemma 2.2 in van der Vaart (1998)),

Er,, [lc(0co,0F,,)] — B |min{€x Y€, C}| and Br, [(:(01,0p, )] — E [min{¢] pT¢ p,C}] .
(A.65)

Second, we consider the case that ||d|| = co. Then under Lemma [4.1](b) and [4.2}(b)

(pn)l/z(gl - 9Fpn) —D €1,F and (pn)1/2 (560 - 9Fpn) —D 51,F' (A-66)
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Using the same arguments in showing (A.65)), we get

Eg,, W@eoﬂFpn)] — B [min{¢} » Y& p, ¢} and Bp, [54(517 0r,, )] — B [min{¢| p Y& 7, C}].
(A.67)
Define

Emin{€xYEp, ¢}, [ld] < oo

E [min{&} p Y& p, ¢}, ld]] = oo '
(A.68)

Collecting the results in (A.65) and (A.67), we deduce that under the sequence of DGPs {F}, }
satisfying (A-62),

Re(hpa) = B [min{€} pY&; p, (Y] and Re(hpa) = {

Er, [lc(8eo,0r, )] — Re(hpa) and By, (061,05, )] — Re(hra), (A.69)

where R¢(hpq) and Rg(h F.4) are non-negative and bounded from above by ¢ for any d € R, and
any F € F. This verifies Condition [A.1](iv).

By definition, ég(hp’d) in does not depend on d for any F. Moreover, for any d and d
with ||d|| = oo and ||d|| = oo, by the definition of Re(hpq) in (A.69),

Re(hpa) = B [min{&} Y& . 3] = Re(hy - (A.70)

Hence, Condition [A.1] (vi) is also verified.
We next apply Lemma to get (A.60) and (A.61)) above. By (A.68]),

R¢(h) — Re(h) = Blmin{€ Y€, ¢}] — Bmin{¢] zT¢, p.C}] for any h € H (A.71)
and

Re(h) = Re(h) = B [min{¢} z Y&, g, ¢}] — B [min{&] p & 1, ¢} = 0 for any h € Hy,.  (A.72)

By Lemma |A.14] (A.71)) and (A.72), we have

AsyRD(0eo,01) = gh—{go max {}slgg [Rc(h) - ég(h)] 7hse%{e [Rc(h) - ég(h)] }

— lim max {sup B [min{€p 18, ¢} — min{€h p 1€ 5, CH| ,0} (A.73)
(—o0 heH ’ ’
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and

AsyRD(00,01) = lim min{ inf [Rc(h)—ég(h)], inf [Rg(h)—ég(h)]}

{—o0 heH¥,

— lim min { inf B [min{E;TEF,g} — min{€, 2 TE, F,g}] ,o}, (A.74)
heH ’ ’

(—o0

which proves (A.60) and (A.61]).

In the second step, we show that

CIHI;O max {:1612 [g¢(h)] ,O} = max {:1612 [g(h)] ,0} , and (A.75)
glggo min {}%glf{ [9¢(R)] ,O} = min {ﬁgﬁl [g(h)] ,0} . (A.76)

By Lemma [A-T6]
Jim, sup [9¢(h)] = sup [9(R)] and Jim nf lgc(W)] = inf [g(R)], (A.77)

where supy,cy [g(h)] and infrepq [g(h)] are finite real numbers. Let f(z) = max(z,0) and f(z) =

min(z,0). It is clear that f(z) and f(z) are continuos function on R. The asserted results in (A.75)

and 1D follow by 1) and the continuity of f(z) and f(z). =

Proof of Theorem For any F' € F, define
Dp = (Do p — I p)'YTT p. (A.78)
Recall that we have defined
Ap =Y (31,r —¥or) and Bp = (To,p — T] p) T(Top — 7 ) (A.79)

in Theorem and (?7?) respectively. By the definition of &,

E[€pYEp] = tr(YS1p) + 2t0(Ap)J1,p + t1(Ap) o (A.80)
where
J _E Ztli,Q,FDFZd’2’F and J _E Zin,Q,FBFZdQ,F (A 81)
o 240 pBrZaar + tr(Ar) Q’F (29 rBrZasr +tr(Ap))? | '
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We provide a upper bound for J; ¢ defined in (A.81). Define a function

x
= R"™. A.82
n(z) v Bra 1 t(Ap) for any = € (A.82)

Its derivative is
on(z) 1 2Br ,

= I, — T
ox :C/BFJ? + tI“(AF) 2 (l'/BF:E + tI‘(AF))2

(A.83)

Then Jip = E[n(Z242,Fr) DrZ42r]. Note that DpZg9 p = DpZs r by construction because the
last r* columns of I'] 5 are zeros. Applying Lemma yields

tr (DFQ2,F) =tr ((FZF - T,F),TI“{,FQQ,F)
= tr(T (T} p Qo rl% p — 7 Qo rT] 1))
= tI‘(T (227}7 - ELF)) = —tI‘(AF). (A84)

By Lemma 1 of Hansen (2016), which is a matrix version of the Stein’s Lemma (Stein, 1981),

_ / _ on(Za2,r)
Ji,r =B (n(Za2,r) DrZapr) =E |tr TDFQQ,F ) (A.85)

Plugging (A.82))-(A.84) into ([A.85), we have

[ e (DpQep) ] tr (BrZas,r 2 pDrar )
= g BrZaar +ulAr) | :
| #d,2,FPFZd2F T W(AF) | (z&szBFZd,QyF +tr(AF)>
[ —tr(A | -z DpQ) ,FBFZd ,
=Bz 5 Zr( = w(Ap | T T 2 (A.86)
| Td2,F F d,27F+ rAar i (Z&’ZFBFZCI,?,F—i_tr(AF))
where the second equality is by (A.84]). By definition and Lemma
—Z49 D pBrZya F
= —Zyop(Tor =T p) YT p Qo r(Tor —T7 p) Y(Tor — T7 p)Za2,F
= Zop(Tor —T1p)Y(E1r — Yo p)Y (T2 r — ] p)Za2F
< Paax(Y2 (S0, = Do p) YY) (20 p(Top — T p) Y(Tap — T p) Za2,r)
= pmax(AF)Zél,ZFBFZd,Q,F, (A87)

where the last equality is by prax(YY2(31.F — Y2.7)TY?) = por (Y (Z1,F — Xo r)). Combining the
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results in (A.86]) and (A.87)), we get

—tr(AF) pmaX(AF)Zél,ZFBFZvavF

Jl,F SE / + 2K 2
_Zd,Q,FBFZd&F + tl“(AF)_ (Z(/LQ’FBFZd,2,F + tI‘(AF))

—tI‘(AF)
_Zél,2,FBFZd727F + tr(AF)_

(20,0 Br Zan.r + 0(A)] prnax(Ar) = 0(AF) o (AF)

+ 2 5
(Zzli,2,FBFZd727F + tT(AF))

) 2pmax(AF) — tr(AF) _E 2pmax(AF)tr(AF) (A 88)
= - 5 .

Zi2,pBrZazF +tr(Ap) <Zc/l,2,FBFZd’2’F + tr(AF)>

Next, note that
2" »BrZ,
J2,F R d2,FPF<d2F S

‘2372, #BrZiap + tr(A F)‘
B Z&’QyFBFZd,QJJ + tr(AF) — tI‘(AF)
= 2

1 tI‘(AF)

=E | = 5 (A.89)

Z o pBrZagr + tr(Ap) ‘ZQQ,FBFZM,F 4 tI‘(AF)‘

Combining (A.80), (A.88), (A.89) and the definition of g(h) (in Theorem [5.1]), we obtain that

g(hd,F) = 2tr(AF)J17F + tI‘(AF)QJZF

2 Ap) —tr(A 2tr(A
SQtI‘(AF) E = Iomaé((ZF) I“( FX I‘( F pmax 5
d2,F°F d727F+tr( F) ‘ZdZFBFZdzp—I—tI' AF ‘
1 tr(Ar
+tr(A)? | E
chi,2,FBFZd72’F +tr(Ar) ‘ZdQFBFZdQF—i—tr AF 2

tr(Ar) (4pmax(Ar) — tr(AF))
Z 0 rBrZaar + tr(Ap)

tr(Ar)? (4pmax (AF) + tr(AF))

=E
2
‘Z&,Q,FBFZM,F + tr(AF)‘

—-E

(A.90)

For all G2 and Q5 such that h = (d, vec(G2)’, vech(€)") € H, we have G2 = Go p and Qy =
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Qo p for some F' € F by the definition of H. If tr(Ar) > 0, then p, .. (Ar) > 0 and thus the
second term in the right-hand side of the last equality of will be negative. If in addition
tr(Ap) > 4ppax(Ar), then the first term in the right-hand side of the last equality of will
be non-negative. As a result, when tr(Ar) > 0 and 4p,,.(Ar) — tr(Ar) < 0 for VF € F, we have
supyerlg(h)] < 0. This combined with Theorem [5.1| implies the results of this theorem. m

A.3 Proof of the Results in Section

Lemma A.17 Suppose that Assumption holds. Consider {F,} such that U, — Tp for some

Tp € A and n'/?6p, — d with ||d| < co. We have

lim lim Er, [l (8eo, 0, ) — £c(01,0F,)] = g(hpa)

(—oon—

where g(hpq) =B [EIFTEF - 5’1,FT51,F} .

Proof of Lemma [A.17. For the sequence of DGPs {F},} considered in the lemma, by Assump-

tions [6.1} (i), [6.1} (ii) and [6.1] (iv), we can use Lemma to deduce that

n1/2(51 —0r,) fl,F
—D

~ (A.91)
n1/2(02 —0r,) 52,F
where dy = (01xs,,d")’. In the proof of Lemma we have show that
Qp = Qo r + 0p(1) and Gr = Gr,r + op(1) (A.92)

under U, — Up, Assumptions [6.1} (i), [6.1] (ii) and [6.1] (iv). By (A.92), Assumption [6.1}(iv) and the

Slutsky Theorem, f]l, F and 227 F are consistent estimators of X1 p and Yo r respectively. By the

consistency of f]l, r and ig’ F, the weak convergence in 1) and the CMT, we deduce that
n1/2(§eo — Hpn) —p EF- (A.93)

Collecting the results in (A.91) and (A.93), and then applying the CMT and the Portmanteau
Lemma, we get

where g¢(h) = E [min{aﬂTEF,C } — min {5’1 A EINS }} The asserted result follows by Lemma
and (597). m
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Proof of Lemma Let {F,} be a sequence such that

lim SupEFn [54(550, 9Fn) — 64(/9\1, QFn)] = lim sup < sup EF[EC(/éeOu QF) — 64(51, HF)]> . (A95)

n—oo n—oo FeFn

Such a sequence always exists by the definition of supremum. The sequence {Ef, [EC(/Q\eO, Or,) —
1% (61,05,)]: m > 1} may not converge. However, by the definition of limsup, there exists a subse-

quence of {n}, say {p,}, such that {Eg, [64(/0\60, Or,, ) — Q(@l, 0r,, )]: n > 1} converges and

nlLIEOEFP" [éc(@eo, ern) — gg(/él, ern)] = lim sup ( sup Ep[eg(geo, 9F) — 64(51, HF)]) . (A.96)

n—00 FeF,

Below we show that for any subsequence {p,} of {n} such that {Ef, [{, (/0\60, 0r,, ) — ¢ (51, 0r,, )l

n > 1} is convergent, there exists a subsequence {p}} of {p,} such that

lim B, (¢ (Bco, OF,. ) — L (01,05, )] = gc(h) for some h € He, (A.97)

n—oo
Because lim,,_,c E Fr [€¢ (580, 0 Fe )—L¢ (51 ,0 Fe )] = limy, o0 Bp, [€¢ (560, Or,, )—L¢ (51 ,0F, )], which
combined with (A.96]) and (A.97)) implies that

lim sup < sup EF[EC(/O\QO,HF) - EC(/O\l, HF)]> = g¢(h) for some h € He, . (A.98)

n—00 FeF,

The desired result in (6.5 follows immediately by (A.98)).
To show that there exists a subsequence {p} } of {p,} such that (A.97)) holds, it suffices to show

that for any sequence {F,,} and any subsequence {p,} of {n}, there exists a subsequence {p}} of

{pn} for which we have
(p;)"/?6p,, — d for ||d|| < Cy, and Tp,, — D (A.99)
for some F' € F. By (A.99), we can use Lemma to deduce that

lim EFP; [EC(geoa 9FP71> - EC(aly QFPZ )] = gC(h‘F,d) (AlOO)

n—oo

for the sequence of DGPs {F: } satisfies (A.99). Moreover, we have hry € Hc, by the definition
of Hc, , which together with (A.100]) proves (A.97)).

Finally, we show that for any sequence {F,,} and any subsequence {p,} of {n}, there exists a
subsequence {p}} of {p,} for which (A.99) holds. Let d,,, ; denote the j-th component of d,, and
pP1n = pp for any n > 1. For j = 1, we have |pjl-7/n2(5pj,n,j] < Cy, for any n by Assumption (Vi).
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2 s

Hence there is some subsequence {pj11,n} of {pjn}, P;\7 ,0p;11..,; — dj for some |d;| < Cp. Asr*
is a fixed positive integer, we can apply the same arguments successively for 7 = 1,...,r* to obtain
a subsequence {p,« n} of {p,} such that (pT*yn)l/Q(Spr*,n — d with |d;| < Cf for j =1,...,r* Since
H(pT*,n)l/Z‘spT*,nH < Cy, for any n by Assumption (vi), we have ||d|| < Cr. By Assumptions
(ii) and (v), A is a compact set. Hence, there is a subsequence {p}} of {p,+,} such that

UF,. — UF, which finishes the proof of 1| |

Proof of Theorem [6.1} By (A.90) in the proof of Theorem

g | AR (4pmax(AR) + tr(AR)) | (A.101)

2
|2 BrZa,p + tr(Ap)

tr(AF) (4pmax(Ar) — tr(AF))

h <E
g(har) < Zz/i,2,FBFZd’2’F + tr(Ap)

By Jensen’s inequality,

1 1
B > : A.102
Z(/LQ?FBFZd,Q,F +tr(Ap) | — tr(d’Brd) 4 2tr(Ap) ( )
and similarly .
1 1
B 3| 2 » 5. (A.103)
’Z&,Z oBrZiap+ tr(Ap) |te(d’ Brd) + 2tr(Ap)|
(A.102) and (A.103), combined with tr(Ar) > 4p.<(Ar) and pp.(Ar) > 0, imply that
o(h) < tr(AF) (4pmax (Ar) — tr(Ap))  tr(AF)® (4pmax (AF) + t1(AF))
- tr(d'Bpd) + 2tr(Ap) ltr(d’ Bpd) + 2tr(Ap)|®
(H(Ar) (4an(Ar) = (AF) (AR (s Ar) +15(AR) 4 100
C%pmax(BF) + 2tr(AF) ‘C%pmax(BF) + QtF(AF)|2

Since T is positive semi-definite, by definition of Br and Assumption [6.1}(iv), 0 < pp.(Br) < oo.

Moreover, by Assumptions [6.1}(iv) and [6.1](vi), tr(Ap) < oo and Cp, < co. Therefore (A.104)
immediately implies that g(h)< 0 for any h € Ho,. ®
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Supplemental Appendix of

“An Averaging GMM Estimator Robust to Misspecification”
Xu Cheng, Zhipeng Liao, Ruoyao Shi

In this supplemental appendix, we present supporting materials for Cheng, Liao and Shi (2017)
(cited as CLS hereafter in this Appendix):

e Section [B] provides primitive conditions for Assumptions and and the proof of
Lemma [3.1] of CLS.

e Section |C| provides the proof of (4.3) in Section |4 and the proof of some Lemmas in Appendix
[Adl of CLS.

e Section [D| studies the bounds of asymptotic risk difference of the pre-test GMM estimator
presented in Figure 2 of CLS.

e Section [F] includes extra simulation studies.

e Section [F] presents the uniform dominance result in a Gaussian location model.

B Primitive Conditions for Assumptions [3.1], and and
Proof of Lemma [3.1] of CLS

In this section, we provide primitive conditions for Assumption Assumptions [3.1] [3.2] and [3:3]in the
linear IV model presented in Example 3.1 of CLS.

We first provide a set of sufficient conditions without imposing the normal distribution assump-
tion on (X', Z],V',U)" in Lemma Then, we impose the normal assumptions and show that
these conditions can be simplified to those in Lemma [3.1] of CLS under normality.

For ease of notations, we define I', 2 = Ep+[Z1V'U?], Q... 2 = Ep-[Z1Z{U?] and Q2 =
Ep«[VV'U?). The Jacobian matrices are

, “Ep|Z:1X]
GI,F = *EF[ZlX] and G27F = (Bl)
~Ep|Z*X]
Let Zy = (Z], Z*)'. The variance-covariance matrix of the moment conditions is
Oop = Bp[ZoZ)(Y — X'00)%] — Bp[(Y — X'00)Z]Er[(Y — X'00)Z}). (B.2)

By definition, )y r is the leading 71 X 71 submatrix of {25 p.
Let F denote the joint distribution of W = (Y, Z], Z*, X’)" induced by 6o, dp and F*. By

definition, we can write

I, Q 2
1T z121U 2,1rF
0F = Quudo, Gop = y op =

(B.3)
—00luz — Lo Qo1 Qoprr
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where

Qoarr = Fz1u356 + Iz = QlZ,rl,Fa and
Qg,rnp = Qu2u2(5056 + (50Pu3v + Fvu356 + viuz. (B.4)

Therefore, the parameter vp defined in (3.4]) depends on F' through F* and ¢, and its dependence
on F* is through v, p+, where

Q22 Quu, vee(T212)' vee(Tue ), vee(Ty, ), vech (2, 4, 42)'
Vs F* = . (B5)
vec(I',, 43), vec(I', yu2)’s vec(T'ys,), vech(€2yyy2)

Define
P2 max = max{ Sup pmax(QQ,F)> sup pmax(GQ,FGIQ,F)}v
FeF FeF
P2.min = mln{};Ielf}_ pmin(QZF)? El’Ielg-' pmin(G2 FG/2 F)}’
Cw = sup Ep[|(X,Z;,V',U)]|?] and Ca = sup ||do|?. (B.6)
F*eF* S0EAs

In the proof of Lemmabelow, we show that py .. < 0o (see (B.14) and 'B.Ig)). Moreover, we
have pg yin > 0, Cw < 00 and Ca < 00 by Assumptions(iii), (ii) and (vii) respectively.
Define

= {0 € R |I6]l > pyminPz haxCa ) (B.7)

Let ©g be a non-empty set in R%. Define
Bo, = {0 € R% : || — 6| < pif‘ninp;maxCACgv for any 6y € O¢}. (B.8)

Let {¢j A, Cj,A};; be a set of finite constants. We next provide the low-level sufficient conditions

for Assumptions and

Assumption B.1 The following conditions hold:

(i) Ep«[V] =0, Ep=[U] =0, Ep+ [Z1U] = 0;,x1 and Bp«[VU] = 0,=x1 for any F* € F*;
(ii) sup Ep (|| X4 + || Z1||4H7 + ||V ||#HY 4+ U®] < 0o for some v > 0;

(iii) Firelg-' Ep+[U?] > 0, 1nf Prmin(Tzz,z12) > 0 and mf pmm(Qgp) > 0;

(iv) Firelg__ ) 55155 18] ~" H(rm Qz1121u2rmu2 —T0)d + rleleZluQrzlug —Tpul| > 0;

(v) the set {v* e F* € F*}ois closed;

(vi) 00 € 09, Be, C mt(@) and © is compact;

(vii) As = [e1,a,Cra] X -+ X [epx A, Cpx A] where cja <0< Cya forj=1,...,1%

Lemma B.1 Suppose that {W;}!_| are i.i.d. and generated by the linear model (@ and (@ m
CLS. Then under Assumption F satisfies Assumptions and [33]
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For the linear IV model, Lemma provides simple conditions on 6y, dg and F* on which

uniformity results are subsequently established.

Proof of Lemma By Assumption [B.1}(i) and the definition of Gy,
Er [g1(W,0)] = Ep-[Z1(U — X'(0 — 60))] = G1,7(0 — bo), (B.9)

which together with Assumption [B.]](iii) implies that p = 6y and hence Ep [g1(W,0F)] = 0y, x1.
Also 0 € int(©) holds by 6 = 0y and Assumption [B.1](vi). This verifies Assumption [3.1](i).
By for any 0 € © with ||§ — 0p|| > ¢ and any F € F

I (g1 (W, 0)]|| > prl2(Gh rGrr) [0F — 0l > ept/2(Gh G r) (B.10)

min min
which combined with Assumption (iii) and Gi,p = —I", | p. implies that

inf inf ||E W,0)]|| > 0. B.11
b;gmeggwﬂllﬂgl( ) (B.11)

This verifies Assumption [3.1] (ii).
Next, we show Assumption(iii). Let Zy = (Z1,Z*')'. By the Lyapunov inequality, Assump-
tions [B. 1} (i)-(ii) and [B. 1} (vii),
sup Br[|Ze|’] < sup Bp[||Z1]|*) +2 sup Bp-[||V]]?]
FeF FreF FreF-

+2 sup ||6o]* sup Ep-[U?] < co. (B.12)
IITAY) F*eF*

By (B.12), the Holder inequality, the Lyapunov inequality and Assumption (ii),
1/2

sup ||Ga,r|l = sup |[Er[ZeX']|| < sup (Br[||Z2][*)"? sup (Br-[||X|*)"/? < oo, (B.13)
FeF FreF FeF FxeF*

which together with the definition of G2 r and the Cauchy-Schwarz inequality implies that
sup HGIZFGZFH < 0. (B.14)
FeF

Similarly by the Cauchy-Schwarz inequality, the Lyapunov inequality, Assumptions (ii) and
(vii), we have

?EII}EF[H%W] = EEI;EF[(HleFwL||Z*\|2)2]
< 2 sw EF*[HZ1H4]+2;u1}EF[HZ*H4]
*eF* €
< 2 sup Ep||Z1]|") +8 sup Ep[|[V]]
FreFr FreF
+8 sup ||6o]|* sup Ep«[U?% < cc. (B.15)
00€EAS F*eF*
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By (B.12), (B.15), Assumption (ii), the Lyapunov inequality and the Holder inequality, we

have

sup |[Br[Z2Z5(Y — X'60)?||
FeF

< EUI}EF[HZz!P(Y — X'60)?]
S
< sup (Ep[||Zs|[*)Y? sup (Ep-[UY])Y? < 0, (B.16)
FeF F*eF*
and
sup ||[Ep((Y — X'00)Zs]|| < sup (Ep[||Z2|*])"/? sup (Ep[U%])"? < occ. (B.17)
FeF FeF F*eF*

By the definition of {23 , the triangle inequality, the Cauchy-Schwarz inequality and the results in

and (BT7).

sup [|Q | < oo. (B.18)
FeF

We then show that 6% € int(©). By the triangle inequality, the Cauchy-Schwarz inequality and
the Holder inequality,

1G2, | Tz [ + 160 [HTzul| + T

B (11X )2 e[| Z21P))/

+ 1160l (Ep-[1X[12) "2 (Bp-[U%) /2
+Br-(1XIP) V2 Ep-[1IVI[P)?

Cw(2+CY), (B.19)

IA A

IN

for any F' € F, where Cyy < oo by Assumptions (ii) and (vii). Since G p = (G} p, Gl )
where G+« p = —00Ep+«[UX'] — Ep«[VX'], we have

G4 pGor = G| pG1r + Gre pGre (B.20)
which implies that for any F' € F,

Prnin (G £ G2.F) > Proin (G G F).- (B.21)
To show Assumption [3.1}(iii), we write

Qr(0) = Ep[Za(Y — X'0)' Q5 pBr[Za(Y — X'0)]
= 0'GY 1y 1 Ga p0 + 20'Gh 5, . Cr + CpQy 1O, (B.22)

where Cp = Ep[Z2Y]. Since G’27 <, }er,F is non-singular by 1) 1} and Assumption
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B.1}(iii), Qr(0) is minimized at 0} = —(Gh zQ . Go,p) ' GY Q5 ,Cp for any F € F. Therefore,

2
16— 60l> = (b9 1Gap) Gl p 05 b ER (U]
2

Pm X(QQ,F) _1 .
P2, (aG'2 e F)EF (U Z5) Q3 1:Ga,p G 1 p B [Z2U]
pr2nax(QQ,F)pmax(GIQ’FGzyF)F%u H(S H2

0
pIZHin(QQ7F>pI2nin<G/27FG27F)
S piilinp%,maXCAC[%V (B23)

for any F' € F. By Assumption (Vi), 0% € int(©). Moreover for any § € © with ||0 — 0%|| > e,

Qr(0) = Qr(0%) > Puin(GhpQ pGar) 16 — 07|
> €2pmin(G/2,FQQ_}7G2,F)
> €2pr:ulax(QQ,F)pmin(G/Q,FGQ,F)7 (B24)

which together with (B.18), (B.21)) and Assumption [B.1](iii) implies that

inf  inf 0) — 0%)] > 0. B.25
Jnb e inf, [@r(0) = Qr(0r)] (B.25)
This verifies Assumption [3.1} (iii).
Next, we verify Assumption (iv). Let Qg? = (Qoprr — Q’ZTLFQ;IZWQQQJT,F)A, where
Q1 r and Qo ., p are defined in (B.4). Then

! -1
Gy Sl poo,F

—Q Qo1 F

= —(Tusy, Tow + L) Q82 Q0
I ’
= Quul(Tan 2 T = Taa)0p 4 Ty Q0L LT, e — D052 60
= QoS0 (Taz, 021 2Torus — o)
Q0 (T Q2L Tz — Do) 257 60, (B.26)

by the formula of the inverse of partitioned matrix. For any dg € As with ||dp]| > 0, we have

Q)00 _ (P 1 527
(560776002 (panac(A7))2 9090~ CaP3 e
and (22) (22) (22)
6/9 5 5, Q 26 1/2 5/9 5
50025, = 202 000D ) 00) 7 idol] 363 525

((QT200)1/2 T Pamax (5H(Q57)280)1/?
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where the last inequality in (B.27) and the inequality in (B.28]) are due to
22 _ .
pmin(Qé,F)) 2 pmin(QZ}U‘) = 102,r1nax

and
22 — —
pmax<Q§,F)) < pmax(QZ}?) = 102,1111111‘

Therefore, for any F' € F with da p = Quu(01xr,00)" and [|do > 0,

HG’Q’FQE}(&FH B 56Q(2?12;)50 (Tazy Qz_llzlu2rz1vu2 - Fmv);é%j;
[62,r 180l (0L T~ T
N 1 569&?}2;)50 (Pzz Q;llzlu2rz1vu2 - Ffw)52252232;)520
T Prax (55(QFF)%60)'/ oz QT L)
_1 1 e R AL (B.29)
Pamas [100l] || +(Taey 071 2 Tay — L)

where Jp = Qg?éo/é{)ﬂf?éo and the inequality is by (B.28). By (B.28) and the definition of By ,
go € By . Therefore, 1) implies that

-1
HG/2,FQ2,F627FH (Cos 01 2T puz — D)0

5 > inf 6] ;L (B.30)
|| 27F|| P2.max 9€Bg, +(szl Q;ZWQFZW?, — qu)
Collecting the results in (B.18) and (B.30) and then applying Assumption [B.1}(iv), we get
HGlz,FQ;,}v‘SZFH
>0 (B.31)

1
{FeF: ||5p]>0} |02, 7|

which shows Assumption 3.1} (iv) with 7 = 1.

Assumption [.1}(v) is implied by Assumption [B.1}(vii). This finishes the verification of As-
sumption [3.1]

To verify Assumption note that go(W,0) = Zo(U — X'(0 — 6)), g2.0(W,0) = —Z> X" and
92,00(W,0) = 0(rpd,)xd,- Therefore, Assumption (1) holds automatically. Moreover Assumption
(i) is implied by Assumption [B.1}(ii) and the assumption that © is bounded. Assumptions
3-2(iii)-(iv) follow from Assumption [B.1](iii).

We next verify Assumption [3.3] By definition,
Vp = (VGC(GZF),,VeCh(QZF),,&F) . (B.32)

Let Ay = {vyp+ : F* € F*}. From the expressions in (B.3]), we see that A = {vp: F' € F} is the
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image of A, x As under a continuous mapping. By Assumption (ii) and the Holder inequality,
A, is bounded which together with Assumption (v) implies that A, is compact. Since Ay is
also a compact set by Assumption (Vii), we know that A, x Ay is compact. Therefore, A is
compact and hence closed. This verifies Assumption (ii).

Let er = Quuca where ca = min {minj<, [¢j A|, minj<,» |C; a|}. Below we show that for any
5 € R™ with 0 < ||0]| < e, there is F € F such that

05 =0, |Gy — Gapll < Cul[op][/* and [|Q, 7 — Q5] < Ca[3]|"/* (B.33)

for some fixed constants Cy and Cy. This verifies Assumption [3.3(i) with x = 1/4.

First if 0 = 0,+x1, then we set F to be F which is induced by dg, 0p and F* with dg = Opxx1.
By definition G2J~7 = GoF, 9271:“ = (o r and 5}; =0 = 60y =0 = § which implies that (B.33
holds.

Second consider any 6 € R™ with 0 < |[d]] < ep. Define dp = 6Q;L. Since ||5|| < ep and
er = Quuca,

130l = [10%u1| = 1131125 < ca, (B.34)

which combined with the definition of Ay implies that 50 € As. Let F be the joint distribution
induced by dg, g and F*. By the definition of F, we have F' € F. Moreover,

05 =00 =0 (B.35)

which verifies the equality in (B.33). By definition,

—Epe |21 X B [Z: X
G,z= B o2 X] and G = rAX] (B.36)
’ — 0B [UX'] — Bp-[VX'] —Ep-[VX']

which together with the Cauchy-Schwarz inequality and the Holder inequality implies that

1Gy = Gopll = [[00Br-[UX']]] < |[00]|(QuuBr[|| X))/
= 1100l P42 - 11X 1PD 2100wl 4. (B.37)
By Assumption [B.1}(ii),
sup Ep[||X||?] < 0o and sup Qy, < 00 (B.38)
FreF FreF

which together with (B.34)), (B.37) and the definition of 0 implies that

1G5 = Ga.rll < Clld][M%, (B.39)

where C = (:?’A/4 sup e (B [[| X [12]) Y2 sup s ¢ Q! is finite.
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To show the last inequality in (B.33), note that by definition 0z = 6 = 6 and hence

Ba[Z1Z{(Y — X'07)%] = Bp=[21Z{U%] = Bp[Z1 Z{(Y — X'0r)?]. (B.40)
Under ﬁ,
BA(Z1Z27(Y — X'02)%] = Bp-[21(Udo + V)'U?] = Bpe[U3 Z1]80 + B [U2 21 V7], (B.41)
and
Ex[Z*Z* (Y — X'05)]
= Ep[(Udo+V)(Udo+V)U?|
= Ep-[UY0000 + 80Ep-[U3V'] + Ep- [U3V]dy + Ep- [UXVV]. (B.42)
Under F,

Er[Z1Z7(Y — X'0r)?] = Bp«[U?Z1V'] and Bp[Z*Z7(Y — X'0F)?] = Bp[U?VV'].  (B.43)

Collecting the results in (B.40)), (B.41), (B.42) and (B.43), and applying the triangle inequality, we
get

[EG[2225(Y — X'05)%] - Br[ZaZ5(Y — X'05)7|
< HEF*[UE"Zl]%‘ + HEF*[U‘*]’SO%H

n HSOEF* [U3V]

+ HEF [U3V]56H . (B.44)
By Assumption (ii) and the Lyapunov inequality
sup Bp-[[U["] < oo, sup Bp:[||Z1||"] < oo and sup Ep-[||[V|*] < oo, (B.45)
F*eF* F*ecF* F*ecF*

By the Holder inequality,

[Ep-[UP21]| < (Er-[UIIZIPEF-(U)?
< Ep-JUPDYV2Er-[l| 20| (Bp- [UPDY*
= QU B ([UPDY2 B[l 2011 (B.46)
Similarly, we can show that
[Er-[UV']|| < QU Er-[UPDY2 Bp- [V (B.47)
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and
Ep-[UY] < (Bp-[UHEp- [US))Y/2 = QL4 Sup (Ep-[US)Y/2. (B.48)
*6 *
Let Co = suppec - {(Ep=[[U]P)Y2[(Bp-[|| Z1|[*) VA + (Ep-[||V|[*]) V4] + (Ep+ [U])/2}. Combining

the results in (B.44)), (B.46)), (B.47)) and (B.48), and applying the Cauchy-Schwarz inequality, we
get

|Ez[Z2Z5(Y — X'057)%] — Ep|ZoZ5(Y — X'0p)?]||
3C2,000H[00]| + Ca,024, |00 |
= (3C20|[00][>* + Ca0l[d0] /)L 50l [1/* < Conl[8)|V/4 (B.49)

IN

where Cy; = 02,0(302/4 + 02/4), the second inequality is by {D and the definition of 4. By

(B.45)), Assumption [B.1}(ii) and the definition of ca,
Cy1 < oo. (B.50)
Next note that

Br AU g Ep[Za(Y — X'0p)] = B[] (B.51)

E=[Z2(Y — X'05)] = ~
F F 50Quu 0r*><1

which implies that
BpZa(Y = X'05)|Ep(Z5(Y — X'05)]
—Ep(Z:(Y — X'0p)|Ep[Z5(Y — X'0p)]

~
07‘1 X1 Quu,F* EF* [Zl U]60
SoB g+ [Z, U] 500,02,

0B+ (211 + 22,130l

IN

QU’LL

~1
By [Z,U]0, ‘

+ Quy

2l100l| B+ [Z1U]I] + 23,100l
(295 H1100] P4 (B 1120 D2 + QU160 )10 < Call6]]* (B.52)

VAR VAN

where Cho = supF*E]_—*{QQZ{f(EF*[ Zl||2])1/202/4 + QZ{:LCZ/‘I}, the second inequality is by the

Cauchy-Schwarz inequality, the third inequality is by the Holder inequality. By Assumption [B.1] (i)
and the definition of ca,

Coo < 00. (B.53)

By the definition of Q9  in (B.2]), we can use the triangle inequality and the results in (B.49) and

to deduce that
|2, 7 = 92.r]| < Calldl (B.54)
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where Cy = Cy1 + (a2 and Cy < oo by (B.50) and (B.53|), which proves the second inequality in
(B.33). This verifies Assumption [3.3](i) with x = 1/4. =

Proof of Lemma Next, we apply Lemma to prove Lemma [3.I] in the paper. For
convenience, the conditions of Lemma [3.1] are stated here. The proof verifies the conditions of
Lemma with the following conditions in a Gaussian model. Let F* denote the set of normal
distributions which satisfies:
(1) ¢, =0, leu = 0y x1 and L'y, = 0px1;
(ii) inf prers Prmin(Tazy Layz) > 0, SUPpec v ||6]]? < 00 and
0 < infpecrs Pmin (V) < SUPprcr+ Pmax (V) < 005
(iii) infpeer infgssa 107 [|(Tes D5, Torw — Daw)d — Tyul| > 0 for some € > 0 that is small
enough (where ¢ is given in in the Appendix of CLS);
(iv) Oy € int(©) and © is compact and large enough such that the pseudo-true value 6*(F') € int(0);
(v) As = [c1.a,Cra] X -+ X [ep= A, Cpx A] where {Cj,Avcj,A};'; is a set of finite constants with
A <0< Cjaforj=1,...,r"

Specifically, we assume that condition (ii) of Lemma holds with some constants ¢, and C),
such that ¢, < ppin(TzzLaiz), 1912 < Cp and ¢, < prin (¥) < prax (¥) < C,; condition (iii) of
Lemma [3.7] holds with

inf&eBg ||5H_1 ||(F I} Lopw — sz)6 - qu” > cr (B'55)

Tz1+ 2121

for some positive constant cp and
BE={6 €R" 1 [|8]| > pCi pCA'}, (B.56)

where
Cew = 2(dg + 12+ 1)C), ¢4 p = min{l, ci} and Cy , = C’f’W(Q + 6’2/2)2 (B.57)

and Ca = supg,ca, 10012

Assumption [B.1](i) holds under Condition (i) of Lemma Since (X', Z1,V',U)" is a normal
random vector, Assumption (ii) holds by [|¢]|* < C, and pyax (¥) < Cy. By prin (¥) > ¢, and
¢, = 0, we have Ep«[U?] > ¢, for any F* € F* and hence infp+cz+ Ep-[U?] > 0. Let F denote the
distribution of W induced by F* with mean ¢ and variance-covariance matrix V. By definition,
Gir = —Ep-[Z1X'] =T.,;. Therefore,

ianE]: pmin(Gll,FGlyF) > Cp > 0 (B58)

holds by ppin(FeziT22) > ¢, > 0 for any F* € F*. Since I';;y, = 0p,x1 and I'y, = 0,5 for any
F* € F*, U is independent with respect to (Z1, V') under the normal assumption. Therefore, by

56



Condition (i) of Lemma

Quurzlzl Quurzlv
92’F - ! 2 !
Quul™ s 202,000 + Quuls
/
_ Quu Qzlzl Qzlv i Quu ¢z1 ¢z1 + 0T1><T1 01;1 Xr* , (B59)
sz1 Qo ¢v ¢v 07‘*><1“1 2Quu6060

which implies that py,(Q2,r) > p2,. (V) where F is the distribution of W induced by F* with
mean ¢ and variance-covariance matrix W. Since p i, (¥) > ¢, > 0, we have

inf peF pruin(Qo,7) > ¢ > 0. (B.60)

This finishes the proof of Assumption [B.1](iii).
By (B.59), Conditions (ii) and (v) of Lemma [3.1]

2ugpmax(QQ7F) < p?nax(\p) + pmax<\Ij) H¢H2 + 2p1?nax(\lj)c’A < 203(1 + CA) (B61)
€

By (B.19) in the proof of Lemma
|Ga.r|| < 2C,(dg + 72+ 1)(2 + C¥/?)

which implies that

SUD P (G G ) < 4C2(dg + 12 + 1)2(2 + CY%)2. (B.62)
FeF
By (B-58) and (B-60),
min {I},Ielf}_ pmin(QQ,F)v I;Iel_f}_pmin(Gé,FGQ,F)} 2 min{L Ci} (B63)
By (B-61) and (B-62),
max { SUD Pryax (Qa,7), SUP pmax(Ga,FGm} < 4C2(dg + 12+ 122+ CXP)2. (B.64)
FeF FeF

From Qmj B.64), the definitions of ¢, ,, Cs, and BY ,, we have Bj C B , where By is
defined in (B.7). Moreover, by ¢, = 0, the normal assumption and the independence between U
and (Z1,V'), we have Q, , 2 = Quul'z21, T2 = Qual 20 and T, 3 = 0, 1, which implies that

H(szlﬂz_llzluzrzlvu? - va)5 + Loz Qz_llzlu2rz1u3 - quH
= [|(Toxy 125, Tayo — Ta)d — T (B.65)
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Assumption (iv) follows by B; C By and Condition (iii) of the lemma.
We next show that Assumption [B.1](v) holds. Define

Quu, vec(Tyzy ), vee(Tyy ), vee(Tyy ),

o vec(T,,0), vech(T,, 2, ), vech(Tyy )

Under Condition (i) of Lemma and the normal assumption, T'yz,2 = 3Q2,, T, 3 = 0 x1,
Loz = Oty Qp02 = Qualzizy, Topwz = Qual’ze and Q2 = Q4. Therefore to verify
Assumption [B.1}(v), it is sufficient to show that the set {7, g« : F* € F*} is compact because the
set {vy p= 1 F* € F*} is the image of the set {v, p+ : F* € F*} under a continuous mapping. Let
{(¢,, ¥n)}, be a convergent sequence where (¢,,, ¥y,) satisfies Conditions (i)-(iii) of Lemma [3.1] for
any n. Let ¢ and ¥ denote the limits of ¢,, and ¥,, under the Euclidean norm respectively. We
first show that Conditions (i)-(iii) of Lemma hold for (¢, ¥). Since Gy = 0, Ty = Opyx1
and I'yyn = Op+x1 for any n, we have 511 =0, I';;u = 0pyx1 and fvu = 0,+x1 which shows that
(¢, W) satisfies Condition (i) of Lemma Since ¢, — ¢ and ||, |? < C, for any n, we have
|o|2 < C,. By the convergence of (¢,,¥y), I'pzin — T,.,. Since the roots of a polynomial
continuously depends on its coefficients, we have

pmin(rﬂﬁzl,nr‘{rzl,n) - pmin(rﬂﬁzlrlmzl)v pmin(an) - pmin(\p) and Pmax (\Iln) - pmax(‘lj)

which together with the assumption that Iy, , and ¥, satisfy Condition (ii) of Lemma [3.1]implies
that
CP S pmin(rﬂﬂzlrlzzl) and Cp S pmin(q]) S pmax(\ll) S Cp‘

This shows that Condition (ii) of Lemma holds for (¢, ¥). For any & € By ,, by the triangle
inequality, the Cauchy-Schwarz inequality and ||0] > C%CP_QC';l(l +Ca)71271,

1617 (s T2, Tayo = Taw)d = Tl

1017 (T2, T2, %, T evvm = Tavn)8 = Caul|

_‘ |Fw21 F,;llzl Fzru - Fzm,nr;lzl,nrzwmu

~[IT0 = Tavmll = 2C2CA(1 + Ca)e, ?|Taun — Trall
p P

Y

which together with the convergence of (¢,,, ¥;,) and Conditions (ii)-(iii) of Lemma [3.1]implies that

H5||71 ”(f fil lev - fccv)(s - fxu”

Tz1+ 2121

> er — |[Tany Dot Toyo — Doz T2 o]

TZ1+ 2121 TZ1n* 2121,N

~|Ta0 = Tovnl| = 2CCA(1L + Ca)e, | IPaun — Laull
P 2

for any n. Let n go to infinity, we get

H5H_1 H(f Tt oo — f:w>5 - wa 2> cr

Tz1+ 2121
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for any § € BS. This shows that Condition (iii) of Lemma also holds for (¢, ¥). Hence the set
of (¢, V) which satisfies Conditions (i)-(iii) of Lemma is closed. By Conditions (i)-(ii) of the
Lemma, we know that this set is compact because it is also bounded. Let F* denote the normal
distribution with mean ¢ and variance-covariance matrix W. Then ¥, g+ is the image of (¢, V)
under a continuous mapping, which implies that {v, g+ : F* € F*} is compact. Therefore the set
{vsp+ : F* € F*} is compact and hence closed. This proves Assumption [B.1}(v).

Assumption [B.1}(vi) is used to show that 6 € int(©) and 0} € int(©) for any F € F. By
fr = 6y and Condition (iv) of Lemma we have 0 € int(©) and 0% € int(O).

Finally, Assumption [B.1}(vii) is the same as Condition (v) of Lemma [

C Proof of Some Auxiliary Results in Sections [4], [5| and [6] of CLS

Proof of Lemma [A.2, (i) Let g2 j(w, ) denote the j-th (j = 1,...,72) component of ga(w,8).
By the mean value expansion,

92,5(w,01) — g2, (w,02) = g2 j,0(w, 012) (01 — 02) (C.1)

forany j =1,...,r9, where 51,2 is some vector between 6 and 0. By 1) and the Cauchy-Schwarz
inequality

B 2 (0,01) ~ 9250, 00)] < B [sup gwa- )] 161~ 6] (©2)
€
for any j = 1,...,79. By (C.2), we deduce that
I3 61) = M @a)]| < VAR [sup gz (W.6)]| 161 — 62|
€
< Cupayre |01 — 02 (C.3)
for any F' € F, where Cyr1 = supper Er [supgeg [|92,0(W,0)||] and Cpn < oo by Assumption
3.2 (ii). This immediately proves the claim in (i). The claim in (ii) follows by similar argument

and its proof is omitted.
(iii) By the mean value expansion,

92,j: (W, 01) 92,4, (w, 01) — g2.j, (w, 02) g2 j, (w, 02)
= |g21.0(w,019)g2.4 (w,012) + go.jy (w75172)92,j2,9(w751,2)] (61— 02) (C.4)

for any ji,j2 = 1,...,r2, where 5172 is some vector between 61 and 65 and may take different values
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from the 5172 in 1) By lb the triangle inequality and the Cauchy-Schwarz inequality

IEF 92,5, (W, 01)g2,j,(w, 01) — g2.5, (w, 02) g2 5, (w, 02)]|
280 sup 92 0) | oo .01 161 = ]
(S

IN

IN

B sup(loa(1V:0) | + Laza(W.0)1%)| 61— ] (©5)
€
for any ji,j2 = 1,...,7re, where the second inequality is by the simple inequality that |ab] <

(a® +%)/2. By (C.5)

|Ep [g2(W, 01)g2(W, 01) — g2(W, 02)g2(W, 02)'] ||
roEir [;ugwgz(vv,e)u? T lgso(W, 9>|r2>] 161 — 6a]
c
r2Ch2 ||61 — 62| (C.6)

IN

A

for any F' € F, where Cpr2 = supper Ep [supgee(Hgg(VV, N>+ llg2.0(W, 9)H2)} and Chr2 < oo by
Assumption (ii). Using the triangle inequality, and the inequality in (C.2)), we deduce that

[Er[g2,j: (w, 01)]Er[g2,j,(w, 01)] — EFp[g2,5, (w, 02)|EF|[g2,5, (w, 02)]|
Er(g2,: (w,01) — 92,5, (w, 02)|EF[g2,5, (w, 61)]|
+Er[g2,j (w, 02)|Er[g2,j, (W, 02) — ga,5, (w, 01)]|

< 2B sup o2, 0)| 2 [sup lgna(:0)1| 161 - 62) (1)
0cO 6ce

IN

for any j17j2 = 17 -, T2 By "

|Eplg2(w, 61)]Er([g2(w, 61)] — Eplga(w, 02)|Er[g2(w, 62)']|| < r2Chr3 (|61 — 62]] (C.8)

for any F' € F, where Cyr3 = 2supper Er [supgee ||g2(W, 0)||] EF [supgee [lg2,0(W, 8)]|]] and Cpr 3 <
0o by Assumption [3.2}(ii).
By the definition of Q5 r(#), the triangle inequality and the results in (C.6) and (C.8))
1922,7(01) — Q2,7 (02)[] < 72(Car2 + Cars) 161 — 02, (C.9)

which immediately proves the claim in (iii). m

Proof of Lemma [A.3] By Lemma [A.1] (i),

G2(0) = Mo g, (0) + (071 g2(Wi,0) — My, (0) | = Ma,p, (0) + 0p(1), (C.10)
i=1
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uniformly over § € ©. As g1(W,6) is a subvector of go(W,6), by (C.10) and Assumption [3.2}(ii),
91(0)'9:(0) = My, (6) My p, (0) + 0p(1) (C.11)

uniformly over § € ©. By Assumptions (i)—(ii) and F,, € F, My p,(0) M r,(0) is uniquely
minimized at 0p,, which together with the uniform convergence in (C.11]) implies that

01 — 05, — 0. (C.12)

To show the consistency of s, note that

Qo = n 1) ga(Wi, 01)g2(Wi, 01) — G2(01)72(61)

=1
= Ep,[92(W,01)g2(W,01)] — Mo, g, (61) Mo, (61) + 0,(1)
= QQ,Fn(Hl) + Op(l) = 927}7” + Op(l), (C.13)

where the first equality is by the definition of Qs, the second equality holds by (C.10), Lemma
[A.1](ii) and Assumption [B.2](ii), the third equality follows from the definition of Q3 g, (f), and the
last equality holds by Lemma (iii) and (C.12). This shows the consistency of Q5. =

In the rest of the Supplemental Appendix, we use C denote a generic fixed positive finite
constant whose value does not depend on F' or n.
Proof of Lemma As g,(0) is a subvector of gy(6), and Qy ,, is a submatrix of Qo ,,, using

(C.10)), and Assumptions [3.2] (ii)-(iii), we have
91(0) () 71g1(0) = Mu,p,,(0)'Q 1, My F, (0) + 0p(1), (C.14)
uniformly over ©. By Assumptions [3.2} (ii)-(iii),
C™ < puin( ) < Punax (N p,) < C (C.15)

which together with Assumptions (i)—(ii) implies that M f, (9)’9;}%]\41,1:” (0) is uniquely min-
imized at 0F,. By the standard arguments for the consistency of an extremum estimator, we have

51 — an = Op(l). (C.lﬁ)

Using (C.16]), Lemma[A 1] (iv) and Assumption [3.2}(ii), we have

~

91(01) = 91(0r,) + [Ml,Fn(/él) — Ml,Fn(an)] + op(n~?)
51(05,) + [GLE, (0F,) + 0p(1)] (01 — 05,) + 0,(n""/2). (C.17)
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Similarly,
n_l 29179(WZ’,51) = GLFn (51) + Op(l) = Gl,Fn + Op(1>, (C.18)
=1

where the first equality follows from Lemma[A.1] (iii) and the second equality follows by (C.16) and
Lemma (ii). From the first order condition for the GMM estimator 6, we deduce that

!/

0= (1) 'g,(61)

n
n > g16(Wi, 61)
i=1

= (Gl Uk, +0p(1) [3108) + (C1p, + 0 (1)B1 — 1) + 0y (n™?) (C.19)

where the second equality follows from Assumptions [3.2](ii)-(iii), (C.13)), (C.17) and (C.18). By
(IC.19), Ep, [g1(W,0F,)] = 0 and Assumption

0201 - 0F,) = (P15, + 0p(1)n (91(W, 0p,)) + 0p(1). (C.20)

By Assumptions 3.2 and Lemmal[A.1}(v), I'1 g, = O(1) and p,,(91(W, 0F,)) = 0,(1), which together
with (C.20) implies that

w201 = 08,) = T1p, (91 (W, 05,)) + Op(1),
where I't g, 11, (g1(W,0F,)) = Op(1). This finishes the proof. m

Proof of Lemma By (C.10), (C.13) and Assumptions [3.2](ii)-(iii), we have

92(0)'(92)'92(0) = Mo 1, (0)' Q5 1z Ma , (0) + 0,(1) = Qr,, (0) + 0,(1) (C.21)

uniformly over ©. By Assumption (iii), QF,(0) is uniquely minimized at 0% . The consistency
result 02 — 67— 0 follows from standard arguments for the consistency of an extremum estimator.
[

Proof of Lemma By the definition of 52,

~ —_

?2(92)/(92)_1%(9\2) < 92(0r,) () ' 92(0F,), (C.22)

which implies that
15201 < Pmax () ppaia (22) 15205, I (C.23)

By (C.13)) and Assumptions [3.2} (ii)-(iii),

C_l < pmin(§2) < pmax(§2) <C (024)
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with probability approaching 1. By Lemma [A1}(i), M1 s, (0F,) = Or,x1 and 05, = o(1),

152(8r,)1* = 0p(1) (C.25)

which combined with (C.23)) and (C.24)) implies that

192(02)]] = 0p(1). (C.26)
Moreover, by , Lemma (1) and the triangle inequality,
1M, @2)]] < [[52(02) = Mo, (62)]| + [[32(02)]| = 0p(1) (C27)
which immediately implies that

1M1, 5, (8)]] = 0p(1). (C.28)

The first result in Lemma follows by (C.28]) and the unique identification of 6, maintained by
Assumptions [3.1} (1)-(ii).
Using 02 — O0F, = 0,(1), Lemma(iv) and Assumption (ii), we have

~

G2(02) = 92(0F,) + [MQ,Fn (62) — Mo f, (9Fn)] + 0p(n~?)
G2(0r,) + [Go,p, (0F,) + 0p(1)] (B2 — O5,) + 0p(n /). (C.29)

Similarly,

0" g20(Wi, 02) = Ga g, (02) + 0p(1) = Ga,p, (05, ) + 0p(1), (C.30)
=1

where the first equality follows from Lemma (iii) and the second equality follows by 52 —0F, =
op(1) and Lemma (ii). From the first order condition for the GMM estimator 62, we deduce
that

0:

n”! 292,9(Wi752)
i=1

— (Ghr, Ok, + 0p(D) [52(08,) + (Gar, + 0p(1) (B2 = 05, ) + 0p(n™"/2)] (C.31)

where the second equality follows from Assumptions [3.2}(ii)-(iii), (C.13), (C.29) and (C.30). By
(C.31)) and Assumption

nV2 (B = 0,) = (Tap, + 0p(1) {1a(92(W,05,)) + 0/ B, [g2(W, 08, )]} +0pl(1),  (C:32)

—1
_ ! -1 / -1
where T, = = (Gl 05k Gop, ) Gl Ok, @

Proof for the claim in equation (4.3).
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Consider the case n'/2§p, — d € R”". By Lemma
w12 [0(w) = 0, = 0201~ 0r,) + @ [02(02 — Or,) — (@1 — 05, )]
—p Il pZaor +w(ler —T71p)Za2F, (C.33)
where Z;9 r has the same distribution as Z;  + do. This implies that
0(0(w)) = n [nw) - an]'T [0n(w) = 05, —p Ar() (C.34)
where

Ar(w) = 245 I p YT p2agp + 20250 (Lo p =TT p) YT p2a2F
+w? 2}y p(Tor — 5 p)' Yo — I p) Za2,p-

Now we consider E[Ar(w)] using the equalities in Lemma below. First,
B2 pTT p YT p2Za2,r] = tr(TE1 F) (C.35)

because F’{Zdyzp = FLFZLF and FLFE[ZLFZLF]FILF = ZI,F by definition. Second,
E[202,p(T2r — 7 p) YT pZa2,F]
= (YT} pE [Za2p 20 ) Tor — T p))

= tr(YT7 f [dody + Qa,r] (P2 — 7 1))
=tr(Y (X2, r — Z1,r)), (C.36)

where the last equality holds by Lemma Third,

E[Z)9rTor —T1p)T(Cor — I p)Za2r)
= tr(T(To,r — 7 p) [dody + Qo,r] (P2p — T3 1))
= d{)F,27FTF2,FdO — tr(T(ZQ’F — ZI,F)) (037)

by Lemma Combining the results in ((C.35)-(C.37)), we obtain

E[)\F(w)] = tI‘(TELF) — 2wtr (T (El,F — 227F))
+w? [yl p YT pdo + tr (Y (S1,r — So.r))] - (C.38)

Note that d{)I"Q,FTFZFdO =dy(Ta,r — FT}F)/T(FZF — FT}F)CZ() because I'] pdo = 04,. It is clear that
the optimal weight w3, in (4.3) minimizes the quadratic function of w in (C.38)). m
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Proof of Lemma By construction, I'f dy = 04,x1. For ease of notation, we write Qg p
and G  as

Q Qs G
Qop = BECTT ) and Gop = bR (C.39)
Q7"*1,F Qr*,F Gr*,F
To prove part (b), we have
. . Mr Qe
F1,FQ2,FF1,F = [Fl,F7 Odgw*] ' [Fl,Fv Odng*]

Q'I‘*I,F Q'r‘*,F

-1
=T1r rl) p = ( ﬁ,FQf}Gl,F> = X1.F. (C.40)
To show part (c), note that
-1
FT,FQQ,FFIQ,F = - [Fl,Fa Odgxr*] QQ,FQ;,}:'GQ,F (G/27FQQ_7}:‘G2,F)
—1 -1
= -T1rG1F (G'Q,FQE}GZF) = (Gé,pﬁi}szF) =Ygp (C.41)

because —I'1 pG1,F = Igyxd,- Part (d) follows from the definition of I'y . m

Proof of Lemma We first prove the consistency of @k, @k and f‘,k for k = 1,2. By Lemma
we have 01 = 0p, + 0p(1). Using the same arguments in showing 1} we can show that

Qo = Qo5 +0p(1) = Qo p 4 0,(1), (C.42)

where the second equality is by the assumption of the lemma that vp, — vp for some F' € F. As
Q1 is a submatrix of {3, by 1’ we have

O = Y, +0p(1) = Qur 4 0p(1). (C.43)

By the consistency of 51 and the same arguments used to show 1) we have

nt ZQQ,H(Whgl) = Go,F,(0R,) + 0p(1) = G2.r + 0p(1), (C.44)
i=1

where the second equality is by 1) which is assumed in the lemma. As n=t>" " | 9179(Wi,51) is
a submatrix of n=1 327 gy o(W;, 01), by (C.44) we have

nY " g1e(Wi,01) = Gup, (05,) + 0p(1) = G1r + 0p(1). (C.45)
=1

From Assumption (C.42), (C.43), (C.44) and , we see that QO and G} are consistent
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estimators of )y, p and Gy, r respectively for £ = 1,2. By the Slutsky theorem and Assumption @,
we know that X, is a consistent estimator of X r for k = 1,2.

In the case where n'/2§ F, — d € R™", the desired result follows from Lemma the consistency
of iLF and f]g,F, and the CMT. In the case where ||[n'/25g, || — 00, Teo —p 0 because n'/2||6y —
/9\1H —p 00 and

1200 — 05,) = 0?01 — 0F,) + Beon'/* (02 — 01)

nM2(8y — )t [1(5 — )]

= ”1/2(/9\1 —0F,) + } —p&1F (C.46)

Tl(/g\g —/9\1)’T(/9\2 — /0\1) +tr [T(il — iz)
by Lemma [£.1] m

Proof of Lemma By definition,

éll,FTgl,F = Z{,Frll,FTFLFZLF = ZiQ}gFﬁ,FTFLFQ}{;ZI (C.47)

where Zy ~ N(0,,, I, xr,). By Assumptions [3.2}(ii) and 3.2(iv), and the fact that T is a fixed

matrix,

sSup pmax(Q},/Izrll,FTrl,FQi,/la) <C. (048)
FeF
By (C43),
sup B[(€] 7 T6, 7)%] < sup P (0 2TY XDy p QY PE(2]21)?] < 3110 (C.49)

where the second inequality is by E[(Z]21)?] < 371 + 71(r1 — 1) = r} + 2ry which is implied by
the assumption that Z; is a ri-dimensional standard normal random vector. The first inequality
of this lemma follows as the upper bound in does not depend on F'.

For any F' € F, define

Bp = (Top —T1 p) T(T2p — 1 ).

By the Cauchy-Schwarz inequality and the simple inequality |ab| < (a?+4b?)/2 (for any real numbers
a and b),

E;WTEF < 2(Zo pTV P YT p 2400 + w%?zél,z,FBFZd&F)
= 2(Z1pT p YT R 21 r + WhZ s pBrZaar) (C.50)

where the equality is by F’{’ pdo = 0g,x1 (which is proved in Lemma . By 1' and the simple
inequality (a + b)? < 2(a? + b%) (for any real numbers a and b),

(EFYER)? < 8(2] pl) p Y1 p217)? + 8(@% 20 pBrZasr)*. (C.51)
By the first inequality of this lemma, we have sup;cy E[(f’l,FTELF)Q] < C. Hence by 1' to
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show the second inequality of this lemma, it is sufficient to prove that

sup B[} 242 rBrZizr)’] < C. (C.52)
cH

Recall that we have defined Ap = Y (31 r — 32 ) in Theorem By the definition,

(tr(Ap))?2) 5 pBrZap,F
(Z2rBrZasr+ tr(Ap))?
tr(Af) 29 pBr2aar
2, 1BrZagr + (Ar) Zhy pBrZasr + t(Ar)

—2 ~l
WFZd,z,FBFZd,ZF =

= tr(Ap) (C.53)

By Lemma 2.1 in Cheng and Liao (2015), tr(Ar) > 0 for any F' € F. This together with
Zé,Q,FBFZd,ZF > 0 implies that

tr{Ar) <1 and o ZaarBreiar (C.54)
ZyorBrZasr +tr(Ap) — 2o rBrZagr +tr(Ap)
By (C.54) and tr(Ar) >0,
Q%ZQ,ZFBFZCI,Q,F < tI‘(AF) = tI‘(TELF) — tI‘(TEZF), (055)

where the equality is by Ap = Y(X1r — X2 r). By (C.55) and the simple inequality (a + b)? <
2(a? + v?),
El@F 2} rBrZaa2r)?] < 2(tr(TE1r))? + 2(tr(TE2,5))>. (C.56)

By Assumptions [3.2](ii) and [3.2}(iv),
Punin(Grp Y pGr.F) > Panin (2 1) Punin (G G, F) = punin (G pGh, )/ Prnax(Qep) = C71 (C.57)
for any F' € F and for k = 1,2. By and the definition of ¥; r (k =1, 2),
Prma (B, F) = Prain (Gl p 2 G ) < C (C.58)

for any F € F. As T and X p are positive definite symmetric matrix, by the standard trace
inequality (tr(AB) < tr(A)py.(B) for Hermitian matrices A > 0 and B > 0),

tr(TEk,F) < tr(T)pmax(Zk,F) <C for k= 1,2, (059)

for any F' € F. Collecting the results in (C.56) and (C.59), we immediately get (C.52)). This
finishes the proof. m
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Proof of Lemma [A.16l First note that
min{z,(} —z = (( — z)I{z > (}. (C.60)
Hence we have

sup [B [min{€p T8, ¢}~ Ep0Ep ]|
heH

< supE [|¢ — & TEp| HERTER > ¢}
heH

< Cowp B [HETER > ¢} + sup B [EpTERI{C > (€6 TER) 1
heH heH

< 27w B (€08 < 20¢7 (C.61)
heH

where the first inequality is by the Jensen’s inequality, the second inequality is by the Markov
inequality, the third inequality is by the monotonicity of expectation and the last inequality is by
Lemma Using the same arguments, we can show that

sup |B [min{¢} pT& p, (} —€1pTE p]| < 20¢7T (C.62)

Collecting the results in (C.61]) and (C.62]), and applying the triangle inequality, we deduce that

sup [lgc () — g(h)[] < 4CC . (C.63)
heH

The claimed result of this lemma follows by (C.63) as C is a fixed constant.
By the triangle inequality, the Jensen’s inequality and Lemma

sup [g(h)] = sup |BIERTEp — €1 # 16 £]|
heH heH
< sup B[EpYEp] + sup B¢ p Y& p] < C
heH heH

which finishes the proof of the lemma. =

D Asymptotic Risk of the Pre-test GMM Estimator

In this section, we establish similar results in Theorem for the pre-test GMM estimator based
on the J-test statistic. The pre-test estimator is defined as

/épre = 1{Jn > Ca}b\l + l{Jn < Ca}/é% (Dl)

where J,, = ngy(02)(Q2) 17 (02) and cq is the 100(1 — a)th quantile of the chi-squared distribution
with degree of freedom 719 — dy.

68



Theorem D.1 Suppose that Assumptions[3.1{3.3 hold. The bounds of the asymptotic risk differ-
ence satisfy

AsyRD By, B1) = min { inf [0 (1)].0}.

Asy D (B0, Br) = max {sup 001 ,o} |
heH

where gp(h) = E[g;,FTEEF — & pYE ) and €, p is defined in below.

Proof of Theorem The two equalities and inequalities in the theorem follow by the same
arguments in the proof of Theorem with Lemma, for 6., replaced by Lemma for Opre,

Lemma, replaced by Lemma and Lemma[A.T6| replaced by Lemma[D.3] Its proof is hence
omitted. m

By Definition,

E[g;,FTEp,F] = B[Z4o pTTp YT pZa2.F) + 2B[6),r 2 p(To,r — 1 p) YT] p2a2,F]
+E[@, p 20 p(Cor = T5 p)' T (Cor — T 7) Zaz,r]
= tr(Y3y,p) + 2BW), r 2y p(Lor — T ) YT] p 242, 7]
+B[@, 2} (Lo p =TT p) T(Top — T} £)Za2,r] (D.2)

The asymptotic risk of the pre-test estimator gp in Figure 2 is simulated based on the formula in

bE)
The following lemma provides the asymptotic distribution of the pre-test GMM estimator under
various sequence of DGPs, which is used to show Theorem [D.I]

Lemma D.1 Suppose that Assumptions hold. Consider {F,} such that vy, — vp for some
FeF.
(a) If n'/26p, — d for some d € R™, then

Jn—D Joo(har) = (Z2,F + do) Lr(Z2,r + do),

-1
where Ly = Q;} — Q;}GQ,F (G’ZFQ;’}?GQ,F) G/2,FQ27,1 and dg = (01xr,,d’)’, and

n1/2(5pre —0F,) =D Ep,F =(1-wpr)é1r+Wpréar (D.3)

where Wy p = 1{Jso(ha,r) < ca}-
(b) If Hn1/25pn|| — 00, then Wy p —p 0 and n1/2(9p7~e —0r,) —D $1p
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Proof of Lemma [D.1} (a) By Assumption [3.2}(ii), (C.29) and (C.32),

G2(02) = Ga(0p5,) + [Gap, (OF,) + 0p(1)] (B2 — 05, ) + 0p(n~1/?)
= §3(05,) + G2, D25, 02(0r,) + 0p(n~'/?)
= (Ir, + G2.1,, 2,1, )52(0R,) + 0p(n~"/?), (D.4)

which implies that
Jn = nGy(0F,) Lr,G2(0F,) + 0p(1) (D.5)

where L, = Q1 — Q1 Gor, (Gy g Q3 Gar,) ' Gl p Q-
By n'/25p, — d and Lemma (v),

nX0, 12 9,(0m,) = Qg 1 (92(W, 0F,)) + Q0 1202205, —p 2405 dy (D.6)
where dfj = (O1xr,,d’) and Z is a 79 x 1 standard normal random vector. By vg, — vp, (D.5),

and the CMT,
Jn —p (Zap +do) Lp(Zar + do). (D.7)

Recall that Lemma [4.1}(a) implies that
n2(0; — 0r,) —p & p and 0203 — 0p,) —p Eo ps (D.8)
which together with (D.7]) and the CMT implies that

n1/2(§pr6 —0p,) = WHJ,> ca}n1/2(§1 —0p,)+ 1{J, < ca}n1/2(52 —0r,)
— p(1 =wpr)é1p+wprésp, (D.9)

which finishes the proof of the claim in (a).
(b) There are two cases to consider: (i) ||0f, || > C~; and (ii) ||6F, || — 0. We first consider
case (1). Asg;(f2) is a subvector of gy(62),

Jn = 1g5(02) Q) 'G(02)

> i 22)5(62)'95 (62)
> NPmax(22)71(02) 71 (02).- (D.10)
By (A.22) and (A.23) in the Appendix of CLS
H@g —0F, H > C~! with probability approaching 1, (D.11)

which together with Assumption [3.1] (ii) and Lemma [A.1] (i) implies that

~

71(02) = My p(02) + 0p(1) > C (D.12)
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with probability approaching 1. By (C.42)) and Assumption (ii), we have

P (Q2) < C with probability approaching 1. (D.13)

Combining the results in (D.10), (D.12) and (D.13), we deduce that
Jn > nC~! with probability approaching 1, (D.14)

which immediately implies that
wpr=1{J, <ca} =0 (D.15)

with probability approaching 1, as ¢, is a fixed constant. By Lemma (b), (D.15) and the
assumption that © is bounded, we have

' 2Ope —0p,) = {Ju> caln'?0) —0p,) + 1{J, < catn'/?02 — 05,)
= 1{Jp > ca}n2(01 — 0p,) + 0p(1) —p &1 p (D.16)

where the convergence in distribution is by the CMT.
We next consider the case that ||6p, || — 0 and |[nY/26f, || — co. In the proof of Lemma
we have shown that 62 — 0F, = 0p(1), and that (D.4) and (D.5) hold in this case. It is clear that

0r
n!2G,(05,) = ma(g2(W,0m,) + [ 27 (D-17)
n /26Fn

which implies that

2 ( 01r, 0285, ) L[ (92(W, 05,)]

/

+< Oty Y207, >LFn < Oty Y205, ) . (D1g)

By Lemma[A.1](v) and Assumptions [3.2} (ii)-(iii),

In order to bound the third term in (D.18]) from below, we shall show that for any dy = (01x,,,d’)’
for d € R™ with ||d|| =1,
dyLp, dy > C™1 (D.20)

By definition, Lg, has dyp many zero eigenvalues and ry — dg many of eigenvalues of ones. The
matrix Go g, contains the dy many eigenvectors of the zero eigenvalues of L, , because

LFnG27Fn = 0r2><d9 and pmin(GlanGan) > Cfl. (D.Ql)

71



Let G| F, denote the orthogonal complement of G2 r, with G’L F, G r, = Ir,—q,- Then we have

G G 0
1,F, ar + 1,L1.F, 4y — rx1 (D.22)

G+ R, G 1R, d

for some constant vectors a; € R% and ay € R™7%, As pmm(G'l, rG1E,) > C~! by Assumption
[3.2] we have
a1 = (G, p,GLFR,) G R, G1,1,F, 0 (D.23)

and

(Gre 1.7, = Gre 1, (G, GrE,) T G R, G LR, a2 = d (D.24)

Let Hp, = Gy 1.5, — Gro 1, (G G11,) T G G1 LBy BY pmin(GY 5, Grp,) > C1, Assump-
tions [3.2] (ii), (D.24) and the Cauchy-Schwarz inequality,

ld|* = ayHp, Hps, a2 < C|az® (D.25)
which together with ||d|| = 1 implies that
ag]|® > C~1. (D.26)
Using , and , we deduce that

doLp,dy = (Ga,p,a1 + GL,Fn@)/LFn(Gz,Fnal + G p,a2)
= ayG'| g Lp, Gl p,a0 = ag|® > C~1 (D.27)

which proves (D:20). By (D.20),
!/
(Ouers 0128, ) L, ((O1ery, 02265, ) = C7'nllog, |12 (D.28)

|2 — oo implies that

which together with n||dp,

!/

Collecting the results in (D.18), (D.19) and (D.19),and by the Cauchy-Schwarz inequality, we deduce
that ng,(0F,) LE,g2(0F,) —p 0o, which together with (D.5) implies that

Ty —p 00 (D.30)
Using the same arguments in showing ([D.16[), we deduce that

n1/2(5pre —0r,) —pD 51,F- (D.31)
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This finishes the proof. m

Lemma D.2 Under Assumptions[3.9, we have

sup B[(&, »YE, r)?] < C. (D.32)
heH

Proof of Lemma [D.2l By the same arguments in showing (C.51]), we have
(E;J,FTE;:,F)Q < 8(Zi,FF,1,FTFLFZLF)2 + 8(w§,FZQ,2,FBFZd,2,F)2' (D-33)

By the first inequality in (A.58) in the Appendix of CLS, we have supy,cg E[(&] p Y& p)?] < C.
Hence by (D.33)), to show the inequality in (D.32)), it is sufficient to prove that

sup B[(@), p 2y, rBrZa2,r)?] < C. (D.34)
heH
By definition,
Wp,F = I{Joo(hd7p) < Ca} = I{ZZlQ,FLFZd,ZF < Ca}. (D.35)

By the simple inequality (a + b)? > a?/2 — 2b2,
(2 +do) Lp(z + do) > dyLpdy/2 — 22/ Lz (D.36)
for any z € R, which together with Assumption and implies that
(z+do)' Lp(z+do) > ||d||? /C — 22'Lpz > ||d||* /C — C ||2|1?. (D.37)

Under Assumption |Br|| < C for any F' € F which together with the simple inequality
(a +b)? < 2(a® + b?) implies that

(2 + do)' Br(z + do) < 2C(|ld||* + [1[1*) (D.38)
for any z € R. Collecting the results in (D.36)) and (D.38]), we get

I{(z 4 do)' Lr(z + do) < co}2'Brz
2CI{[[d]|* < caC + C?||2|*}(IdII* + ||1I)
20(caC + (C? + 1) ||2]1?) (D.39)

IN A
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which implies that

sup B((@) p 25 pBrZaz2.r)’]

heH
< 4c%m@hc+402+1y%£ziﬂﬂ
< Clca +E[(25 pZ01)?]) = Cla + 3pPax(Qa)12). (D.40)

This finishes the proof. m

Lemma D.3 Let g,¢(h) = E [min{E;FTEp’F, ¢} —min{&} pTE; p, C}] Under Assumptions
we have

lim sup {|g, ¢ (h) = gp(h)|] = 0 (D.41)
(=00 heH

where supy.c [lgp()[] < C.

Proof of Lemma The proof follows the same arguments of the proof of Lemma with
the second inequality in (A.58) in the Appendix of CLS replaced by (D.32)). m

E Extra Simulation Studies

E.1 Finite sample bias and variance of the GMM estimators in Section [7] of
CLS

In this subsection, we report the finite sample biases and variances of the pre-test and averaging
GMM estimators in the simulation design in Section [7] of CLS.

Suppose @n is a generic estimator of 6y with sample size n. The mean square error (MSE) of
the estimator /ﬁ\n is

MSE, = E U

~ 2
0 — 00| ]

which is a measure of the distance between the estimator and the true value. The bias and variance

1

of @n are defined as

~

0, — E[0,]

~ 2
B,=F {HE[GH] - HOH ] and Var, = FE U

Then it is easy to see that
MSE, = B, +Var,.

The MSEs of the pre-test and averaging GMM estimators are reported in Figure 2 of CLS. The
finite sample biases B,, and variances Var,, of these estimator (together with the conservative GMM
estimator 51,,1) are reported in Figure E.1 and Figure E.2 respectively.

In Figure E.1 and Figure E.2, the blue area, light blue area and the red line represent the pre-test
GMM estimator, the averaging GMM estimator and the conservative GMM estimator respectively.
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For each shaded area, the upper and lower envelopes are the maximum and minimum bias/variance
of the GMM estimator respectively. For different values of rg, the maximum and minimum bias
(or variance) of the conservative GMM estimator are very close to each other. Therefore, we only
present its minimum bias (and variance) in Figure E.1 (and Figure E.2 respectively).

From Figure E.1, we see the that the pre-test GMM estimator and the averaging GMM estimator
have larger finite sample biases than the conservative GMM estimator. As sample size increases,
the finite sample biases of the averaging and the conservative GMM estimators go to zero fast.
However, the finite sample bias of the pre-test GMM estimator goes to zero very slowly which leads
to larger finite sample MSE than the conservative GMM estimator as we can see from Figure 2
in Section [7] of CLS. From Figure E.2, we see that the pre-test GMM estimator has smaller finite
sample variance than the conservative GMM estimator when the sample size is small (e.g., n = 50,
100), but it may have slightly larger variance in some area of 19 when the sample size is slightly
larger (e.g., n = 250, 500). In contrast, the averaging GMM estimator has smaller finite sample
variances than the conservative GMM estimator for all sample sizes.

Figure E.1. Finite Sample Biases of the Pre-test and Averaging GMM Estimators
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Figure E.2. Finite Sample Variances of the Pre-test and Averaging GMM Estimators
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E.2 Simulation under the normal distribution

In this subsection, we report the simulation results on the finite sample properties of the pre-test
and averaging GMM estimators, when the residual term u in the structure equation (|7.4)) of CLS
follows normal distribution, that is, (7.7)) in CLS is replaced by

In this simulation study, we consider ry to be a scalar that takes values on the grid points between
0 and 20 with the grid length 0.5. The rest of the simulation design is the same as what is used in
Section [0 of CLS.

The simulation results are reported in Figure E.3 - E.5. For different values of rg, the maxi-
mum and minimum bias (or variance) of the conservative GMM estimator are very close to each
other. Therefore, we only present its minimum bias (and variance) in Figure E.4 (and Figure E.5
respectively). As we can see from Figure E.3 - E.5, the simulation results are quite similar to what
we get in the simulation design of Section [7] of CLS.
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Figure E.3.
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Figure E.4. Finite Sample Biases of the Pre-test and Averaging GMM Estimators
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Figure E.5. Finite Sample Variances of the Pre-test and Averaging GMM Estimators
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E.3 Simulation under the Student-t distribution

In this subsection, we report the simulation results on the finite sample properties of the pre-test
and averaging GMM estimators, when the residual term w in the structure equation of CLS
is a student-t random variable with degree of freedom 2. We draw the latent random variables
(Z1,...,218,€1, - .,€6,u*) from the student-t distribution with degree of freedom 2 and correlation
matrix diag(l1gx1s, X7x7) (Where ¥7x7 is defined in of CLS), and then replace in CLS
by u = u*F_gl In this simulation study, we consider rg to be a scalar that takes values on the grid
points between 0 and 20 with the grid length 0.5. The rest of the simulation design is the same as
what is used in Section [T of CLS.

The finite sample MSEs, biases and variances of the GMM estimators are reported in Figures

23We use the matlab to perform all the simulation studies in this paper. Let Cq = diag(lisx1s, X7x7), the matlab
function mvtrnd(Cgq, 2, n) will draw n such student-t random vectors independently. Each vector is constructed in
the following way. First, a random vector, say (NVi,...,N25), will be simulated from the joint normal distribution
with mean zero and variance-covariance matrix Co. Then a vector of Chi-square random variables with degree of
freedom 2, say (x3(2), ..., X35(2)), will be simulated independently. The Chi-square random variables are independent
with each other. The student-t random vector is defined as

(112, t25(2)) = (NL/OG(2)/2)2, . Nas/ (0F(25)/2)/2)
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E.6 - E.8. For different values of rg, the maximum and minimum MSE of the restricted JS estimator
in this simulation study are very close to each other. Therefore, we only present its minimum MSE
in Figure E.6. For different values of 79, the maximum and minimum bias (or variance) of the
conservative GMM estimator in this simulation study are different from each other. Therefore, we
present both its minimum and maximum bias (and minimum and maximum variance) in Figure
E.7 (and Figure E.8 respectively).

It is interesting to see that in this simulation design, both the pre-test GMM estimator and the
averaging GMM estimator has smaller finite sample MSEs than the conservative GMM estimator.
The main reason for this phenomenon is that the residual term w in the structural equation is
Student-t distributed with degree of freedom 2, which implies that w has infinite variance and
hence the conservative GMM estimator has large variance in finite samples. This can be clearly
seen from Figure E.8. When the extra IVs Z;f (j =1,...,6) are used in the GMM estimation, the
finite sample variances of the GMM estimator is greatly reduced. Therefore, the finite samples
biases of the pre-testing estimator and the averaging GMM estimator introduced by the extra I'Vs
Z; (j =1,...,6) are more than offset by the reduced finite sample variances, which enables both
estimator have smaller finite sample MSEs.

Figure E.6. Finite Sample MSEs of the Pre-test and Averaging GMM Estimators
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Figure E.7. Finite Sample Biases of the Pre-test and Averaging GMM Estimators
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Figure E.8. Finite Sample Variances of the Pre-test and Averaging GMM Estimators
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F Illustration in Gaussian Location Model

This section shows that in a Gaussian location model, the averaging GMM estimator dominates
the conservative GMM estimator in finite samples, i.e., it exhibits JS phenomenon.
Suppose that we have one observation (X', Y’)’ from the normal distribution

X 0
~ N Loy, (F.1)
Y 0+d

where 0 and d are k x 1 vectors and Iy is a 2k X 2k identity matrix. We are interested in estimating
6.

Let T be the k x k identity matrix. The conservative GMM estimator 6; = X has risk tr(Y1y) =
k. On the other hand, the aggressive GMM estimator is 6y = (X+Y')/2, which has risk k/2+||d||* /4.
The empirical optimal weight defined in (@ becomes

2k
2% + (Y — XY (Y — X)’

(F.2)

Weo =
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which together with the conservative and aggressive GMM estimators leads to the averaging esti-
mator

k
T XYY = X)

)

o =X Y = X). (F.3)

Lemma F.1 The averaging estimator E’\eo defined in satisfies
B I16eo — 0117 = 1101 — 01%) <0 (F.4)

for any k > 4.

The inequality (F.4]) shows that the risk of the averaging estimator is strictly smaller than the
conservative estimator if k£ > 4, for any 6 and any d.
Proof of Lemma By definition

B (@0 — 0117 — E |16 - 61?]

L[ R XY -X)
- [@wuy—xwy—xw]

+2E[ EX-0)(Y -X) ] .

%+ (V — X)(V — X) (F-5)

_ X-0)(Y-X _ Y-X)(Y-X * *
Let Ji = B | 50528570 | and o = B | 205 |- Let X7 = X — 6, " = v — 6 and

Z* = (X*,Y*). Then we can write

L (X -0y -X) | _ X (YV* — X*) B Z*' D\ Z* (F6)
U2k (Y= X)(Y = X) | 2+ (V= XY (Y — XN | 2k + 2Dy '
where
~I; 0 I -1,
Dy = R ) andDy=| F TP (F.7)
Iy O —Iy Iy
Note that
E [D12*Z*D}| = D, (F.8)

by definition and the Gaussian assumption. Let n(x) = x/(2' Dox + 2k). Then its derivative is

on(z)’ 1 2 ,
= I, — D . F.9
ox ' Dox + 2k k (Q:‘/D2Qj‘ + 2k)2 2 ( )
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By Lemma 1 of Hansen (2016), which is a matrix version of the Stein’s Lemma (Stein, 1981),

J1

E (7(Z*) D1 Z*) = B [tr <677((92*)1D1ﬂ

tr (D1 tr DQZ*Z*,Dl)
2l<:+Z*’DgZ* (2k + Z*' Dy Z*)?
_ */ *
- k oE Z¥D1DoZ
2k+Z*’DgZ*_ (2k + Z*' Dy Z*)?
—k 1 Z¥ Do Z*
E|l——+—| +2E
| 2k + Z*' Dy Z* | + [ 2k+Z*’DgZ*)2}
- ok .
El———|+E F.1
| 2k + Z*' Dy Z* | + [(2k+Z*’DgZ*)2} (F.10)
where fourth equality is by the following result
I I
DDy = PR =D,
I, —1Iy
Moreover,
2y - X)(Y - X 2 2k3
k2Jy =E Gl J( ) g%  |_g k (F.11)
2k + (Y — X)(Y — X))? 2k + Z¥ Do Z* (2k + Z*' Dy Z*)?

which together with (F.10) implies that

B (100 — 01?]
]

E

B |61 - 0]?]
[2k(2 — k) + k2 E 2k3 + 8k?
| 2k + Z¥' Dy Z* (2k + Z* Dy Z*)2

[ k(4—k) 2k2(k + 4)
— | - : F.12
| 2k + Z*’DQZ*} {(% + Z¥ Dy Z*)? (F.12)

The asserted result follows by the fact that D is positive semi-definite and the second term in the
right-hand side of the second equality of (F.12)) is always negative. m
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