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GLORIA GONZÁLEZ-RIVERA

Department of Economics
University of California, Riverside, USA

1We are grateful to the participants at the International Symposium in Forecasting, Riverside, 2015,
Tsinghua International Conference on Econometrics, Beijing, 2015, and the 1st International Symposium
on Interval Data Modeling, Beijing, 2015, and seminar participants at Guanghua School of Management at
Peking University, School of Economics at Zhejiang University, School of Economics at Shandong University,
Universidad Carlos III de Madrid (UC3M), CEMFI, Universidad Autonoma de Madrid, Universidad de Alcalá
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Abstract

Asymmetric information models of market microstructure claim that variables like trading
intensity are proxies for latent information on the value of financial assets. We consider the
interval-valued time series (ITS) of low/high returns and explore the relationship between these
extreme returns and the intensity of trading. We assume that the returns (or prices) are generated
by a latent process with some unknown conditional density. At each period of time, from this
density, we have some random draws (trades) and the lowest and highest returns are the realized
extreme observations of the latent process over the sample of draws. In this context, we propose
a semiparametric model of extreme returns that exploits the results provided by extreme value
theory. If properly centered and standardized extremes have well defined limiting distributions, the
conditional mean of extreme returns is a highly nonlinear function of conditional moments of the
latent process and of the conditional intensity of the process that governs the number of draws.
We implement a two-step estimation procedure. First, we estimate parametrically the regressors
that will enter into the nonlinear function, and in a second step, we estimate nonparametrically the
conditional mean of extreme returns as a function of the generated regressors. Unlike current models
for ITS, the proposed semiparametric model is robust to misspecification of the conditional density
of the latent process. We fit several nonlinear and linear models to the 5-min and 1-min low/high
returns to seven major banks and technology stocks, and find that the nonlinear specification is
superior to the current linear models and that the conditional volatility of the latent process and the
conditional intensity of the trading process are major drivers of the dynamics of extreme returns.

Key Words: Trading intensity, Interval-valued Time Series, Generalized Extreme Value Distribution,
Nonparametric regression, Generated Regressor.
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1 Introduction

Most of the financial literature has focused on the dynamics of average returns and other moments

of the return distribution. We have numerous empirical studies of volatility dynamics as well as

information models of market microstructure that claim that variables like trading volume (or

trading intensity) are proxies for latent information on the value of financial assets (see Easley and

O’Hara, 1992). Much less attention has been paid to the dynamics of extreme returns and to the

links between information, proxied by trading intensity, and extreme returns.

We explore the modelling of interval-valued time series (ITS) of extreme returns, which is defined

as the collection of the intervals formed by the highest and the lowest returns in a given period

of time. We propose a semiparametric model that explains the generation of extreme returns as a

function of volatility and trading intensity. Though a link between trading volume and volatility

has already been established, the link between trading volume and extreme returns has not been

analyzed in much detail. A sample of most representative results on volume and volatility follows

in historical order. Lamoureux and Lastrapes (1990) find that identical latent factors drive trade

volume and return volatility. Andersen (1996) proposes a model in which informational asymmetries

and liquidity needs motivate trading, which in turn, drives the dynamics of a stochastic volatility

model. Engle (2000) analyzes an Autoregressive Conditional Duration model and a GARCH model

to conclude that the absence of trading means either bad news or no news and translates into low

volatility regimes. With high frequency data (5-min intraday data), Darrat, Rahman, and Zhong

(2003) find evidence of significant lead-lag relations between volume and volatility in agreement

with the sequential information arrival hypothesis. Fleming and Kirby (2011) analyze the joint

dynamics of trading volume and realized volatility and find that there is strong correlation between

the innovations to volume and volatility. Sita and Westerholm (2011) find that trade durations

(inversely related to trade volume in equity markets) have forecasting power for returns but only

within the trading day. One can argue that the range of the interval of extreme returns is a very

good volatility estimator (Parkinson, 1980) and in this sense, the result of the aforementioned studies

may apply. However, the dynamics of the low/high interval are richer than those of the range itself

because the modeling of the interval captures not only variability but also the dynamics of the bounds
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themselves. For instance, Ning and Wirjanto (2009) find that there is a significant and asymmetric

return-volume dependence at the extremes. The largest returns tend to be associated with extremely

large trading volumes but the lowest returns tend not to be related to either large or small volumes.

In this context, our work offers a joint modeling of volatility, trading intensity and extreme returns

with high frequency data that combines parametric and non-parametric specifications. We proceed

by building up on the statistical framework that we proposed in our previous work.

The intervals formed by extreme returns have statistical properties that can be exploited. This

is in contrast to the modeling of a classical time series of returns, for which it is very difficult to

find any time-dependence in the average return. For instance, in González-Rivera and Lin (2013),

the authors estimate a constrained bivariate linear system for the daily lowest/highest returns of

the SP500 index and find that there is statistically significant dependence with adjusted R-squared

(in-sample) of about 50%. Though this work generalizes specifications of previous regression models

on lower/upper bounds or center/radius of intervals (see the references herein), it relies on the

assumption of bivariate normality. In a subsequent analysis, unlike the regression-type models just

mentioned, Lin and González-Rivera (2016) propose an alternative modeling approach by pondering

how interval-valued data are generated. They consider the lower and upper bounds of the interval as

the realizations of minimal and maximal order statistics coming from a sample of Nt random draws

from the conditional density (at time t) of a latent random process {Yt}. Through the statistical

implementation of this approach to prices of agricultural commodities, they also find that their

models provide a very good fit for extreme returns with average coverage rates (percentage overlap

of the actual low/high interval with the fitted interval) of 83%. However, there are also some

disadvantages of this approach. First, the joint probability density function of minimal and maximal

order statistics degenerates as the number of random draws goes to infinity. Second, the normality

assumption on the latent random process {Yt} may be too restrictive.

To overcome these drawbacks and, in particular, the restrictions imposed by the distributional

assumptions, we propose a new two-step semiparametric model that exploits the extreme property

of the lower and upper bounds of the interval. We maintain the general setup of Lin and González-

Rivera (2016) by assuming that there is a latent process {Yt} with conditional density fYt(.), from

which, at every moment of time, there are Nt random draws and the lower and upper bounds of the
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interval are the realized extreme observations of Yt over the sample of draws. However, we will not

assume any particular functional form of fYt , so that the estimation procedure is robust to density

misspecification of the underlying stochastic process. We will only need conditional moments of the

latent process and we will rely on limiting results provided by extreme value theory to estimate the

conditional mean of the lower and upper bounds of the interval. The proposed estimation procedure

consists of two steps. First, we obtain parametric estimates of the conditional mean and conditional

variance of the latent process {Yt} and estimates of the conditional trading intensity of the process

{Nt}. Second, with the generated conditional moments of the first step as the regressors, we specify

a nonparametric model for the conditional means of the lower and upper bounds. We propose a

nonparametric function because, according to extreme value theory, the conditional mean of an

extreme value is often a highly nonlinear function that is difficult to estimate parametrically. Thus,

this semiparametric approach is a natural vehicle to analyze the role of trading intensity jointly

with the statistical properties of the latent return process on the generation of extreme returns.

We fit the proposed semiparametric model to the time series of intervals of low/high returns at

the 5-minute and 1-minute frequencies in the trading days of June 2017 for seven very liquid stocks:

three major banks, Wells Fargo, Bank of America, and J.P. Morgan and four giant technology stocks,

Amazon, Apple, Google and Intel. We find that the proposed semiparametric model is superior to

the current linear specifications and there is a nonlinear relationship between extreme returns and

intensity of trading with a somehow more intense response from the low returns.

The organization of this paper is the following. In section 2, we provide the basic assumptions for

estimation of the model. In section 3, we present the two-step estimation procedure and establish

the asymptotic properties of the second-step nonparametric regression with generated regressors. In

section 4, we analyze several models to explain the relationship of extreme returns with intensity of

trading and volatility, and finally, we conclude in section 5.

2 Basic Assumptions

We describe the data generating process of the interval-valued time series. We need several

assumptions, which are not too restrictive, and they accommodate many of the processes frequently
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encountered in financial data.

Assumption 1 (Data Generating Process). Let {Yt : t = 1, · · · , T} be an underlying stationary

stochastic process. The continuous random variable Yt at time t has conditional density f(yt|Ft−1),

where Ft−1 is the information set available at time t. At each time t, there are Nt independent

draws from f(yt|Ft−1) collected in a set St ≡ {yit : i = 1, · · · , Nt} with random sample size Nt,

which it is assumed to follow a conditional distribution H(nt|Ft−1).

Let ylt and yut denote the smallest and largest values in the sample St at time t:

ylt ≡ min
i
St = min

1≤i≤Nt
{yit},

yut ≡ max
i
St = max

1≤i≤Nt
{yit}.

Then, {(ylt, yut) : t = 1, · · · , T} is the observed interval time series (ITS) of lower and upper bounds.

The intuition behind Assumption 1 is straightforward. For instance, suppose that we have

financial data and we choose a frequency, say, every five minutes. During these five minutes, trading

takes place and, for every transaction, we observe a return (price). Then, in each block of five

minutes, we will observe the lowest return, the highest return, and the number of trades. Our

assumption means that the conditional density of returns f(yt|Ft−1) is updated every five minutes

according to some dynamic specification. The number of trades during the five-minute time interval

represents the number of random draws nt from the conditional distribution of returns. Then,

the lowest and the highest returns (ylt and yut) are the two extremal (minimal and maximal)

observations in the sample St of size nt.

Given this data generating mechanism, our analysis of ITS data proceeds with the analysis of

extremal observations {(ylt, yut)} based on the results of the extreme value theory. The asymptotic

theory for maxima (and minima) is very different from the theory applied to averages. Once the

average is properly centered around its mean and standardized by its standard deviation, central

limit theorems provide a normal limiting distribution. In contrast, the centering and standardizing

terms in the limit theorems for maxima (minima) are more difficult to derive because they depend

on the tail characteristics of the assumed underlying density. The key result in extreme value

theory is the Fisher-Tippett Theorem (Fisher and Tippett, 1928; Gnedenko, 1943) that provides
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the limiting distributions of properly centered and standardized maxima (minima) 1. The three

limiting distributions are Fréchet, Weibull, and Gumbel, which can be nested into a one-parameter

Generalized Extreme Value (GEV) distribution Hξ defined as

Hξ(x) =

 exp{−(1 + ξx)−1/ξ} if ξ 6= 0,

exp{− exp{−x}} if ξ = 0,

in which ξ is a shape parameter and 1 + ξx > 0. Then, (i) ξ = α−1 > 0 corresponds to the Fréchet

distribution, (ii) ξ = 0 corresponds to the Gumbel distribution, and (iii) ξ = −α−1 < 0 corresponds

to the Weibull distribution. For more detail, see Theorem 1.1.3 and its discussion in de Haan and

Ferreira (2000).

It is said that the random variable Yt belongs to the maximum domain of attraction (MDA)

of the extreme value distribution Hξ (Yt ∈ MDA(Hξ)) if the limiting distribution of standardized

extremes, i.e. c−1ut (Yut − dut), is the extreme value distribution Hξ. The standardizing and centering

terms, cut and dut, depend on t through the conditional distribution of Yt and the number of random

draws Nt. Explicitly, we write cut ≡ cu(Nt, f(yt|Ft−1)) and dut ≡ du(Nt, f(yt|Ft−1)). Based on

Assumption 1 (DGP), the limiting distribution of maxima Yut conditioning on Ft−1 is

c−1ut [Yut − dut]|Ft−1
d−→ Hξu , for each t = 1, . . . , T , (2.1)

as the number of random draws Nt goes to infinity in probability, which follows directly from the

Fisher-Tippett Theorem and Lemma 2.5.6 in Embrechts, Klüppelberg, and Mikosch (1997). The

same argument holds for the minima process {Ylt} so that

c−1lt [Ylt − dlt]|Ft−1
d−→ Hξl , for each t = 1, . . . , T , (2.2)

as the number of random draws Nt goes to infinity in probability.

A key requirement to invoke the Fisher-Tippett Theorem is that the maxima Yut and minima

Ylt are drawn from an i.i.d. random sample St as stated in Assumption 1. However, under certain

regularity conditions, the i.i.d. assumption can be substantially relaxed to strictly stationarity,

which allows the yit sequence in St to be weakly dependent without essentially affecting our model

1We only consider continuous random variables, therefore the existence of a non-degenerate limiting distribution
should always hold.
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specification. We further discuss the regularity conditions in Appendix A.1.

Since we would like to build conditional mean models for the extremes, the above convergence in

distribution, (2.1) and (2.2), is too weak. We need to impose restrictions on the first moments of Ylt

and Yut to achieve stronger convergence. For notational simplicity, let Ỹlt(Nt) ≡ c−1lt (Ylt − dlt) and

Ỹut(Nt) ≡ c−1ut (Yut− dut) be the appropriately standardized maxima and minima, whose dependence

on the number of random draws Nt is explicitly expressed.

Assumption 2. For all t, there exists δ > 0, such that

sup
n
E

[∣∣∣Ỹlt(n)
∣∣∣1+δ∣∣∣∣Ft−1] = Ml <∞, sup

n
E

[∣∣∣Ỹut(n)
∣∣∣1+δ∣∣∣∣Ft−1] = Mu <∞.

Given Assumption 2 and according to Theorem 4.5.2 in Chung (2001), we have that for each

t = 1, . . . , T ,

E
[
Ỹlt(Nt)

∣∣∣Ft−1] p−→ E(Yξl), E
[
Ỹut(Nt)

∣∣∣Ft−1] p−→ E(Yξu),

as Nt goes to infinity in probability. Since the conditional expectation of the GEV random variable

Yξu is E(Yξu) = [Γ(1− ξu)− 1]/ξu, where Γ(·) is the Gamma function, the conditional expectations

of the extrema are

E(Yut|Nt;Ft−1) = du(Nt, f(yt|Ft−1)) + cu(Nt, f(yt|Ft−1))
Γ(1− ξu)− 1

ξu
+ o(cu(Nt, θt)),

E(Ylt|Nt;Ft−1) = dl(Nt, f(yt|Ft−1)) + cl(Nt, f(yt|Ft−1))
Γ(1− ξl)− 1

ξl
+ o(cl(Nt, θt)).

The conditional mean functions of the upper and lower bounds depend on the centering and

standardizing terms associated with the assumed conditional density f(yt|Ft−1). Even for some

common densities like normal or Student’s t, these terms are highly nonlinear on the moments of

interest.2 Therefore, we propose to estimate the conditional mean functions nonparametrically so

that they are robust to density misspecification of the underlying stochastic processes. In doing

2 If yt is normally distributed N(µt, σ
2
t ), we have

cu(nt, µt, σt) =
1

σt
√

2 lnnt
; du(nt, µt, σt) = µt + σt

√
2 lnnt − σt

ln(4π) + ln lnnt
2(2 lnnt)1/2

.

If yt has t-distribution with mean µt and degrees of freedom νt, we have du(nt, µt, σt) = 0 and cu(nt, µt, νt) is the
solution to the following reduced form model,

1

nt
=

1

2
− (c− µt)Γ

(
νt + 1

2

)
·
2F1

(
1
2
; νt+1

2
; 3
2
;− (c−µt)

2

νt

)
√
πνtΓ

(
νt
2

)
where 2F1 is the hypergeometric function.
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so, we also avoid the difficult task of calculating the associated standardizing and centering terms.

Then, we write

E(Yut|Nt,Ft−1) = mu(Nt, f(yt|Ft−1), ξu), (2.3)

E(Ylt|Nt,Ft−1) = ml(Nt, f(yt|Ft−1), ξl), (2.4)

where ml(·) and mu(·) are the conditional mean functions depending on the conditional density of

the underlying process f(yt|Ft−1), the number of random draws Nt, and the shape parameters of

the limiting GEV distribution ξl and ξu. Note that ξl and ξu are constant, and therefore can be

innocuously excluded from the functions.

We also assume that the conditional density f(yt|Ft−1) is indexed by a finite-dimensional

parameter. We will include the first two moments of the underlying random process Yt in a

parameter vector θt, i.e., θt = (µt, σt), to capture the location and the scale of the conditional

distribution of Yt at time t. Similarly, for the number of random draws Nt, we assume that the

conditional distribution H(nt|Ft−1) is indexed by the first moment of Nt, denoted by λt. Formally,

Assumption 3. (i) For any time period t, the conditional density f(yt|Ft−1) is indexed by the

first and second order conditional moments θt ≡ θ(Ft−1) ∈ Θ ⊂ R2, where Θ is a compact

subset of the Euclidean space, i.e., f(yt|Ft−1) = f(yt; θt) for all t.

(ii) For any time period t, the conditional distribution H(nt|Ft−1) is indexed by the first order

conditional moment λt ≡ λ(Ft−1) ∈ Θ ⊂ R, where Θ is a compact subset of the Euclidean

space, i.e., H(nt|Ft−1) = H(nt;λt) for all t.

(iii) Let Ψ1 and Ψ2 be compact subsets on some finite k-dimensional Euclidean space Rk. The

expectational models M1(Ψ1) and M2(Ψ2) are correctly specified for θt ≡ (µt, σ
2
t ) and λt,

respectively, i.e.,

µt ≡ E(Yt|Ft−1) = µ(Ft−1, ψo1)

σ2t ≡ E[(Yt − µt)2|Ft−1] = σ2(Ft−1, ψo1)

λt ≡ E(nt|Ft−1) = λ(Ft−1, ψo2)

almost surely for each time t with some ψo1 ∈ Ψ1 and ψo2 ∈ Ψ2. In addition, the point-valued

7



time series {yt}Tt=1 (e.g. returns based on closing prices), and {nt}Tt=1, used to estimate

the parameters in the specifications M1 and M2, satisfy regularity conditions such that the

estimates ψ̂1 and ψ̂2 are
√
T -consistent.

Given assumption 3(i), the conditional expectations of maxima and minima in (2.3) and (2.4)

can be further simplified to

E(Ylt|Nt,Ft−1) = ml(Nt, θt), E(Yut|Nt,Ft−1) = mu(Nt, θt). (2.5)

For these conditional expectations, observe that the conditioning information set includes not only

past information Ft−1 but also the number of random draws Nt in the current period. Since Nt

is not observable until time period t ends, econometric models directly built upon (2.5) cannot

be used to forecast future extreme returns in practice. To overcome this drawback, we integrate

out the random variable Nt in (2.5) so that the conditioning information set only contains Ft−1,

which is available at the beginning of time t. With assumption 3(ii), we can calculate the marginal

expectations of the extremes as

E(Ylt|Ft−1) = Ml(θt, λt) ≡
∫
ml(s, θt)dH(s;λt), (2.6)

E(Yut|Ft−1) = Mu(θt, λt) ≡
∫
mu(s, θt)dH(s;λt). (2.7)

Assumption 3(iii) is a high level assumption. In the framework of QMLE, it requires that the

quasi log-likelihood function obeys the strong uniform law of large numbers (SULLN). Primitive

conditions are available in the literature, see Domowitz and White (1982), among others.

3 Estimation

We propose to estimate (2.6) and (2.7) in two steps. First, we will generate the regressors θt and λt,

and secondly we will estimate non-parametrically the conditional mean functions.

If the parameter λt and θt were known, we could directly use nonparametric methods to estimate

the following two conditional mean models:

Ylt = Ml(θt, λt) + εlt, (3.1)
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Yut = Mu(θt, λt) + εut. (3.2)

However, in most situations the regressors λt and θt are unknown. We will estimate them by

proposing some parametric models that, according to assumption 3(iii), must be well specified.

Consequently, our objective is the estimation of nonparametric conditional mean functions of

generated regressors:

Ylt = Ml(θ̂t, λ̂t) + vlt, (3.3)

Yut = Mu(θ̂t, λ̂t) + vut. (3.4)

To estimate θt ≡ (µt, σ
2
t ), we work with a point-valued time series. If we are modelling returns,

we can follow the standard practice of choosing the series of returns calculated at the end of each

time period. Alternatively, we could also choose the series of the centers of the intervals as a realized

sample path of the underlying process {Yt} and specify the dynamics of the conditional mean of

the centers. The specification of the dynamics of the variance could be based on the time series of

ranges of the intervals. Similarly, we work with the realized sample path {nt}, specify and estimate

the dynamics of the conditional intensity λt = E(Nt|Ft−1).

It is possible to avoid these generated regressors by directly inserting into the nonparametric

functions those observed regressors in the information set Ft−1 that drive the conditional moments

µt, σ
2
t and λt. The drawback of this approach is that the number of regressors could be very large

so we face the curse of dimensionality of nonparametric models. The generated regressor approach

offers a more parsimonious model, though we need to take into account the extra uncertainty

generated by the estimation of the regressors.

There are two important differences with the approach in Lin and González-Rivera (2016).

There, the estimation methodology is maximum likelihood and the log-likelihood function is based

on the joint density of the lowest and the highest rank order statistics of the random sample

St ≡ {yit : i = 1, · · · , Nt}. Though we assume conditional normality for the underlying process {Yt},

a QML estimator may not exist because, as we discussed there, the joint density of the ordinal

statistics does not belong to the quadratic exponential family and the consistency of the QML

estimator cannot be guaranteed. The approach that we propose here is robust to distributional
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assumptions:

� With the realized sample paths of point-valued time series, i.e., {yt} and {nt}, associated with

the underlying stochastic processes {Yt} and {Nt}, we estimate consistently the conditional

moments (θt, λt).

� With the maxima and minima of the interval-valued time series ({ylt}, {yut}) and the para-

metrically generated covariates (θ̂t, λ̂t), we estimate nonparametrically the two conditional

mean functions (3.3) and (3.4).

The second difference is related to the feasibility of the order statistics approach when the number

of draws Nt is very large. A quick look at the log-likelihood function based on the joint density of

the ordinal statistics reveals that, for large number of trades, the function will explode, and the

optimization exercise will not have a solution. Hence, the extreme value approach proposed here is

general enough to provide both, time feasibility and robustness.

Under Assumption 3(iii) and within a QMLE framework, the first-step estimators (θ̂t, λ̂t) enjoy

standard asymptotic properties. Now, we focus on the asymptotics of the second step nonparametric

estimator. In this respect, we follow Conrad and Mammen (2008) who estimate a semiparametric

GARCH-in-Mean model in which the dynamics of the conditional variance are parametrically

specified, and the dependence of the return on its conditional variance is estimated by nonparametric

kernel smoothing methods. Our two-step estimator is similar to their iterated estimator but much

simpler. First, the latent regressors in our model are generated parametrically, while their first step

estimators have both parametric and nonparametric components. Second, because the conditional

variance enters the nonparametric conditional mean function and depends on past error terms,

the estimator in Conrad and Mammen (2008) need an iterative estimation procedure. In contrast,

our first-step estimates are obtained from parametric models based on realized sample paths of

the underlying process. Hence, an iterative estimation procedure is not needed for our two-step

estimator. The only difficulty is that our nonparametric conditional mean functions involve multiple

generated covariates as opposed to a single covariate in Conrad and Mammen (2008). Therefore, we

only need a mild adaptation of their theorems to show that the oracle property of a kernel-based

nonparametric estimator also applies to our two-step estimator.
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Before stating Theorem 1, we first introduce some terms to simplify notation. Let ht ≡ ht(ψ0) =

(θt(ψ0), λt(ψ0)) be the finite q-dimensional random process of true moments and ĥt ≡ ht(ψ̂) be

their estimates obtained in the first step estimation. Let σ2j (x) = E(ε2jt|ht = x) be the conditional

variance of the error terms εjt (j = l and u) in (3.1) and (3.2). Let fh(x) be the q-dimensional

unconditional PDF of ht.

Theorem 1 (Asymptotic properties of the two-step local linear estimator).

For j = l and u, assume that Mj(x), fh(x), and σ2j (x) are twice differentiable. K(v) =
∏q
`=1 k(v`)

is a bounded second order kernel, κ2,0 =
∫
K(v)2dv, κ1,2 =

∫
K(v)v2dv, and b = (b1, · · · , bq) are

the bandwidths for the q variables in ht with Tb1 · · · bq → ∞. Given Assumptions 1 – 3 and the

regularity conditions stated in Appendix S.1 of the supplementary file, we have

(i) (Asymptotic Equivalence) For j = l and u, the two-step local linear estimator M̂LL
j (x) with

generated covariates ĥt is asymptotic equivalent to the infeasible estimator M̃LL
j (x) in the

sense that

sup
x∈I
|M̂LL

j (x)− M̃LL
j (x)| = op(T

(η+−1)/2 + T−2η+),

where η+ =
∑q

`=1 η`, and the two terms T (η+−1)/2 and T−2η+ are the orders of the leading

variance and bias terms for the infeasible estimator M̃LL
j (x) respectively;

(ii) (Asymptotic Normality) For j = l and u, the limiting distribution of the feasible two-step local

linear estimator is the same as that of the infeasible estimator, i.e.,

√
Tb1 · · · bq

(
M̂LL
j (x)−Mj(x)− κ1,2

2

q∑
`=1

b2`M
(2)
j (x)

)
d−→ N

(
0,
κq2,0σ

2
j (x)

fh(x)

)
.

We provide a sketched proof of Theorem 1 in Appendix S.2 of the supplementary file. Essentially,

the regularity conditions require that (a) the process from which the true moments ht will be

estimated be stationary and β-mixing; (b) the estimates ĥt converge to their true values at the
√
T -rate, which is fast enough; (c) the dynamic specifications in Assumption 3(iii) can be well

approximated by linear functions of parameters ψ in a neighborhood of their true values ψ0; (d)

the error terms εlt and εut have conditional subexponential tails; and (e) some other regularity

conditions on the kernel functions controlling the bias terms of the local linear smoothing.
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4 Extreme Returns and Intensity of Trading

We model the interval-valued time series of the low/high returns to seven stocks in the U.S. financial

and technology sectors. The financial stocks correspond to three banks: Wells Fargo Corporation

(WFC), Bank of America (BAC), and JP Morgan Chase (JPM), which are traded in the New York

Stock Exchange. The technology stocks correspond to the four tech giants: Apple (AAPL), Amazon

(AMZN), Google (GOOG), and Intel (INTC) , which are traded in the Nasdaq Stock Market. All

these stocks are very liquid as their trading volumes are very high. We analyze the time series at

the 5-minute and 1-minute frequencies from June 1st to June 30th, 2017 for a total of 22 trading

days. The data are retrieved from the NYSE Trade and Quote (TAQ) database that provides all

trades and quotes occurred on the trading days of June 2017 for all those stocks. We record the

stock price of every trade and split the trading day in 5-minute and 1-minute periods so that for

each stock we have two time series to model. We compute the log-returns with respect to the last

price of the previous period and report the returns in basis points (one basis point is defined as one

per ten-thousand, i.e. 1 basis point = 1�):

yut ≡ log(Phigh,t/Pclose,t−1)× 10, 000�, (the highest return)

ylt ≡ log(Plow,t/Pclose,t−1)× 10, 000�, (the lowest return)

yct ≡ log(Pclose,t/Pclose,t−1)× 10, 000�, (close-to-close return)

where Phigh,t and Plow,t are the highest and lowest price in the period t, and Pclose,t−1 is the last

price in the previous period (t − 1). Given the interval-valued return [ylt, yut], the center ct and

range rt are defined as

ct ≡
ylt + ylt

2
= log(

√
Phigh,tPlow,t/Pclose,t−1)× 10, 000�,

rt ≡ yut − ylt = log(Phigh,t/Plow,t)× 10, 000�.

The total number of observations is 1716 (22 days × 78 observations per day) at the 5-minute

frequency; and 8580 (22 days× 390 observations per day) at the 1-minute frequency.

The complexity of the estimation generates a sheer number of models and, due to space constraints,

12



we will only report a subset of results 3. We showcase our modelling strategy for one bank BAC

and for one technology stock AMZN and provide an additional file with supplementary material on

the description and estimation results of the five remaining stocks.

Prior to the analysis, we analyze the outliers in the samples. We implement a modified version

of Tukey’s fences (Tukey, 1977) for identification and removal of outliers that is more conservative

than that provided by Brownless and Gallo (2006) and Barndorff-Nielsen et al. (2009). The detailed

procedure is explained in the Appendix A.2.

In Table 1, we start by reporting descriptive statistics for BAC and AMZN lowest and highest

returns as well as the close-to-close returns and the time series of the number of trades at both

5-minute and 1-minute frequencies. We also report the characteristics of the time series of the center

and range of the low/high interval of returns. These series are also plotted in Figure 1.

[Table 1] [Figure 1]

As expected, the highest returns are positively skewed and the lowest returns negatively skewed,

both with large kurtosis. There is a mild positive correlation or no correlation between the highest

and the lowest returns, and a mild negative correlation between the center and range series. The

number of trades series exhibit overdispersion with a variance much larger than the mean favoring a

negative binomial distribution. The 1-minute time series are much less volatile than the 5-minute

series, which is expected. On average, the number of trades at the 5-minute frequency is about five

times the number of trades at the 1-minute frequency. For BAC, the close-to-close returns and the

center series are very similar, and they seem to be symmetric around a median (or mean) of zero

with no much skewness and mild kurtosis. The range series is positively skewed with large kurtosis.

These features hold at both frequencies and are also present in the JPM and WFC series (see Tables

S3 and S4 in the supplementary file). For AMZN, we observe similar features to those in BAC but

more pronounced; there is more volatility, more skewness and more kurtosis in the AMZN and other

tech return series than those in the banking time series. A distinctive feature for AMZN and the

3The first step estimation involves searching for the best models for the conditional mean and the conditional
variance of the latent process, and for the conditional intensity of the number of trades. With seven stocks and
two frequencies, we end up with 42 final models (7× 2× 3). In the second step estimation, we search for the best
nonparametric specification for low and high returns. We entertain six nonparametric models and two linear models.
With seven stocks and two frequencies, we end up with 112 final models (7× 2× 8).
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rest of the technology stock returns is that the lowest returns tend to be more volatile and more

skewed than the highest returns. Even after removing outliers, the lowest returns tend to be much

larger in magnitude than the highest returns (see Tables S5, S6 and S7 in the supplementary file).

4.1 Conditional moments of the latent process

We proceed to model the conditional moments of the underlying latent process Yt. We implement

two different approaches to model the dynamics of Yt. First, we consider the center and range

of the low/high intervals as good proxies for the location and scale of the conditional probability

density function of Yt. We will call this approach the “interval value approach for Yt”. Second,

we simply use the close-to-close returns series {yct} as a realized sample path of the underlying

latent processes Yt and model its conditional moments. We will call this approach the “point value

approach for Yt”. Due to the space constraints, we report the estimation results for the interval

value approach here and those for the point value approach in the supplementary file (see Section

S.3 in the supplementary file).

We model the dynamics of the center and range series separately. In all our specification searches,

we select the best model, i.e., optimal number of lags, by minimizing AIC. This criterium is rather

conservative as it tends to choose models with a large number of lags. In our modelling strategy,

we prefer to be conservative in the first step estimation to guard against potential misspecification.

As we have described in the previous sections, the estimated conditional moments of the latent

process are inputs into the final nonparametric models of the low/high returns and they need to be

correctly specified for the results of Theorem 1 to go through. Thus, we prefer less parsimonious

models, even at the cost of carrying some noise into the second step estimation. In addition, each

specification needs to pass standard diagnosis tests, i.e. the residuals must be white noise and the

pseudo Pearson residuals must have zero mean and unit standard deviation.

For the center series {ct}, we fit simple ARMA models. The preferred specifications for the

center series of BAC are ARMA(3,1) (5-min frequency) and MA(2) (1-min frequency). For AMZN,

AR(1) (5-min frequency) and ARMA(1,2) (1-min frequency). In the top panel of Table 2, we report

the estimations results of the ARMA models for the center series of BAC and AMZN at 5-minute
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frequency (see Table S9 in the supplementary file for results at the 1-minute frequency). In Figure

2, we plot the fitted time series versus the actual series.

[Table 2] [Figure 2]

As expected, the time dependence in the conditional mean is very weak in both stocks and it

only reflects some microstructure noise. In the case of BAC, the mean is zero and in the case of

AMZN the mean is negative. In comparison with the actual values of the center time series, the

conditional means are practically zero. This is evident in the time series plots of the center series in

Figure 2. We will call ĉt the fitted value for the center that proxies the estimated conditional mean

of the latent process.

For the range series {rt}, we specify a Conditional AutoRegressive Range model with Burr

distribution (CARR-Burr). Since the original range series {rt} exhibit strong diurnal patterns, we

first remove the intraday seasonality for each weekday separately by cubic B-spline smoothing, that

is,

r∗t(d) =
rt(d)

fd(it(d))
, fd(it(d)) = exp

b0 +

Ld∑
jd=1

bjdBjd(it(d))

 , (4.1)

where {Bjd(·) : jd = 1, . . . , Ld} are B-spline basis functions, t(d) selects those observations on

weekday d ∈ {Monday, Tuesday, Wednesday, Thursday, Friday}, and it(d) is the fraction of time in

the trading day for the t-th observation such that

it(d) =

 1, if t(d) mod D = 0

t(d)/D − bt(d)/Dc , otherwise,

where D is the total number of observations in each day. We have D = 78 for the series in 5-minute

frequency and D = 390 for the series in 1-minute frequency. After taking natural logarithm on

both sides of (4.1), we obtain the coefficient estimates b̂j and f̂d(it(d)) by ordinary least squares and

the number of splines Ld is selected by generalized cross-validation (reported in Table S8 of the

supplementary file); and the estimated intraday seasonality for each time period t is f̂(t) = f̂d(it(d))

if the time period t is in weekday d.

Then, we specify the conditional autoregressive range model with Burr distribution, CARR(p, s)-

15



Burr, for the adjusted range r∗t ,

r∗t = ψtεt,

ψt = ω +

p∑
i=1

αir
∗
t−i +

s∑
j=1

βjψt−j ,

εt|Ft−1 ∼ gBurr(·; θ),

where ψt is the conditional mean of the adjusted range based on the information set available at

time t. The normalized adjusted range εt = r∗t /ψt is assumed to be standardized Burr distributed

with density function gBurr(·; θ) with unit mean and shape parameters θ ≡ (κ, σ2). We impose the

restriction
∑r

i=1 αi +
∑s

j=1 βj < 1 to ensure that the series r∗t is stationary. As with the center

series, the optimal lags p and s in CARR(p, s)-Burr are selected by AIC and the adequacy of the

models is assessed with standard diagnostics. The selected model for the range series of BAC is

CARR(3,4) (5-min frequency) and CARR(5,6) (1-min frequency). For AMZN, CARR(6,5) (5-min

frequency) and CARR(9,10) (1-min frequency).

We denote r̂∗t as the fitted range with diurnal pattern adjustment and r̂t = r̂∗t f̂(it) the fitted

range for the original range. In the bottom panel of Table 2, we report the estimation results of the

CARR-Burr models for the range series of BAC and AMZN at 5-minute frequency (see Table S8 for

results at the 1-minute frequency). Both series have large persistence, for BAC the persistence is

about 0.82 (obtained by
∑
αi +

∑
βj), while that of AMZN is 0.95. The shape parameters κ and σ2

are significantly different from 1 and 0 respectively for both stocks so that the empirical conditional

standardized probability density is far from exponential. Standard diagnostic tests indicate that the

fitting is adequate. The standardized residuals have zero mean and unit standard deviation. The

Q-statistics of the standardized residuals show no residual dependence left in the data. We plot the

fitted range series in Figure 2. For the remaining five stocks, the preferred specifications for the

center and range series are in Table S11 of the supplementary file.

4.2 Conditional trading intensity

We specify autoregressive dynamics in the conditional trading intensity to account for the temporal

dependence in the number of trades series {nt}. As in the range series {rt}, the number of trades
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series exhibits a clear diurnal pattern. We remove the intraday seasonality for each weekday

separately by spline smoothing on the original series, that is,

n∗t = nt/fd(it(d)), (4.2)

where the intraday seasonality fd(it(d)) is defined and obtained as in the case of the range series

explained in Section 4.1. Then, for the adjusted numbers of trades n∗t , we specify the model

ψt = ω +

p∑
i=1

αin
∗
t−i +

s∑
j=1

βjψt−j . (4.3)

Combining (4.2) and (4.3), we propose the Autoregressive Conditional Intensity (ACI) model,

λt = f̂(it)ψt, and nt ∼ gNB(·;λt, d), (4.4)

where λt is the conditional trading intensity based on the information set available at time t.

The number of trades Nt is assumed to be negative binomial distributed with density function

gNB(·;λt, d) with mean λt and dispersion parameter d. We restrict
∑p

i=1 αi +
∑s

j=1 βj < 1 to ensure

that the series {nt} is stationary. We select the optimal number of lags p and s by AIC and test the

specification of the model with standard diagnostic statistics. The estimated conditional trading

intensity is denoted as λ̂t.

For the BAC series, the preferred models are ACI(12,13) (5-min frequency) and ACI(12,12)

(1-min frequency). For the AMZN series, they are ACI(10,10) (5-min and 1-min frequencies). We

report the estimation results of the ACI models for the number of trades series of BAC and AMZN

at 5-minute frequency in Table 3 (see Table S10 for the results at the 1-minute frequency) and we

plot the estimated conditional intensity against the actual number of trades in Figure 2. Both series

have a strong persistence, the persistence is 0.75 for BAC and 0.81 for AMZN. The pseudo-Pearson

residuals have mean zero and variance one and their Q-statistics do not show any dependence,

indicating that these specifications are adequate. For the remaining five stocks, the preferred

specifications for the number of trades series are displayed in Table S11 of the supplementary file.

[Table 3] [Figure 2]
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4.3 Nonparametric conditional mean for lower and upper bounds

From the modeling of the latent process Yt, we gather the estimated regressors, i.e., conditional

mean, range, and intensity, that will be fed into a nonparametric regression to obtain the conditional

means of the lower and upper bounds, i.e., ylt and yut, of the return interval. We propose and

evaluate the following nonparametric regressions.

The first model has as regressors the estimated conditional centers ĉt (ARMA models), conditional

mean ranges r̂t (CARR-Burr models), and conditional intensity λ̂t (ACI-NB models). It is the most

general and parsimonious model.

� Model 1: yjt = Mj(ĉt, r̂t, λ̂t) + vjt, for j = l, u.

If the models for centers, ranges, and intensity have short dynamics, we could avoid the first

estimation step and directly include original regressors such as ct−1, rt−1, nt−1, etc. into the

nonparametric regressions. The drawback of this approach is that, if the number of lags is very

large, we run into the curse of dimensionality. With the current data, we experiment with the

following model,

� Model 2: yjt = Mj(ct−1, rt−1, nt−1) + vjt, for j = l, u.

The next model considers regressors when the modelling of Yt follows the “point value approach”.

We estimate the conditional standard deviation σ̂t (GARCH-GED models) (see Tables S1 and S2 in

the supplementary file) in addition to the conditional intensity λ̂t (ACI models), λ̂t, i.e.,

� Model 3: yjt = Mj(σ̂t, λ̂t) + vjt, for j = l, u.

We propose the next two nonparametric models to assess the importance of the intensity of

trading in the modelling of the conditional mean of the upper and lower bounds,

� Model 4: yjt = Mj(ĉt, r̂t) + vjt, for j = l, u.

� Model 5: yjt = Mj(ct−1, rt−1) + vjt, for j = l, u.

Finally, we also propose Model 6 to assess whether the conditional trading intensity λ̂t could be

sufficient to predict the expected lower and upper bounds without information about the latent

process Yt,
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� Model 6: yjt = Mj(λ̂t) + vjt, for j = l, u.

4.4 In-sample model evaluation

We evaluate the performance of the proposed models by comparing several measures of fit for

interval-valued data. In addition to the six specifications of the previous section, we include two

additional models proposed in González-Rivera and Lin (2013), which are constrained VAR-type

specifications satisfying the inequality ylt ≤ yut for all t. These are Interval Autoregressive-Two Step

(IAR-TS) and Interval Autoregressive-Modified Two Step (IAR-MTS). These models have been

proven to be superior to the existing interval-valued regression approaches (see González-Rivera

and Lin, 2013; Lin and González-Rivera, 2016).

For a sample of size T , let [ŷlt, ŷut] be the fitted values of the corresponding interval yt = [ylt, yut]

provided by each model. We consider the following criteria:

(i) Mean Squared Error (MSE) for upper and lower bounds separately.

MSElower =

T∑
t=1

(ŷlt − ylt)2/T MSEupper =

T∑
t=1

(ŷut − yut)2/T ;

(ii) Multivariate Loss Functions (MLF) for the vector of lower and upper bounds (Komunjer

and Owyang, 2012): Lp(τ , e) ≡ (‖e‖p + τ ′e) ‖e‖p−1p where ‖ · ‖p is the lp-norm, τ is a

two-dimensional parameter vector that determines the asymmetry of the loss function (if

τ = 0, the bivariate loss is symmetric), and e = (el, eu) is the bivariate residual interval

(ŷlt − ylt, ŷut − yut). We consider two norms, p = 1 and p = 2 and their corresponding τ

parameter vectors within the unit balls B∞ ≡ {(τ1, τ2) ∈ R2 : |τ1| ≤ 1 and |τ2| ≤ 1} and

B2 ≡ {(τ1, τ2) ∈ R2 : τ21 + τ22 ≤ 1}, respectively.

Then, the Multivariate Loss Functions (MLF) are defined by their sample averages:

MLF1 =
T∑
t=1

L1(τ
∗
t , et)/T, MLF2 =

T∑
t=1

L2(τ
∗
t , et)/T,

where τ ∗t is the optimal vector that defines the asymmetry of the loss.

(iii) Mean Distance Error (MDE) between the fitted and actual intervals (Arroyo, González-Rivera,
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and Mate, 2011).

Let Dq(ŷt, yt) be a distance measure of order q between the fitted and the actual intervals, the

mean distance error is defined as MDEq({ŷt}, {yt}) =
∑T

t=1D
q
q(ŷt, yt)/T . We consider q = 1

and q = 2, with a distance measure such as,

D1(ŷt, yt) =
1

2
(|ŷlt − ylt|+ |ŷut − yut|),

D2(ŷt, yt) =
1√
2

[(ŷlt − ylt)2 + (ŷut − yut)2]1/2.

Note that MDE1 and MDE2 are equal to a half of MLF1 and MLF2 respectively if τ = 0.

In Table 4, we report the in-sample evaluation of the linear and nonparametric models for

BAC and AMZN stock returns at both 5-minute and 1-minute frequencies. The supplementary

file contains similar tables (S12 – S16) with the evaluation results for the remaining five stocks.

The first finding is that the nonparametric regressions are superior to the IAR-TS and IAR-MTS

specifications as they deliver, in most cases, the smallest losses across loss functions and for both

BAC and AMZN stocks at both 5-minute and 1-minute frequencies. Within the six nonparametric

models, the preferred specification is Model 1 across loss functions and for the two stocks. Model 4

is a competitor to Model 1 indicating that in some cases omitting trading intensity may not be very

detrimental to the performance of the model. It is interesting to observe that trading intensity alone

(Model 6) is far from being an optimal specification: it is the interaction of the three regressors that

are most helpful to estimate the conditional means of the extreme bounds of the interval. For most

of the cases, Model 3, with regressors estimated by the “point value approach”, is dominated by

Model 1, whose regressors depend on the features of the interval, i.e. centers and range.

[Table 4]

In Table 5 we report Diebold-Mariano tests to formally test the superiority of Model 1 versus

the parametric linear model and the remaining five non-parametric models for BAC and AMZN at

both 5-minute and 1-minute frequencies. Similar tables (S17 – S21) for the remaining five stocks

are in the supplementary file. For BAC at both frequencies, there is overwhelming evidence that

Model 1 is superior across loss functions; all p-values but a few are practically zero so that we reject

the null hypothesis of equally predictive accuracy (in-sample). For AMZN, the evidence is mixed.
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At the 5-minute frequency, the non-parametric Models 1, 2, 3 and 4 seem to be equivalent. Model

1 is marginally superior to the linear IAR-TS but superior to Models 5 and 6. At the 1-minute

frequency, Model 1 seems equivalent to Model 4 but superior to Models 2, 3, 5, and 6. The evidence

with respect to the linear model IAR-TS is mixed and depends on the loss function. When the norm

of the loss function is p = 1, Model 1 is superior to the linear specification. For the remaining five

stocks, we find similar patterns. For the banking stocks, Model 1 outperforms other parametric and

nonparametric models in most cases at both frequencies. For the technology stocks, at the 5-minute

frequency, Model 1 is still one of the preferred specifications, but at the 1-minute frequency, the

linear specification is a contender to Model 1 for GOOG and AAPL stocks.

Overall, Model 1 is a superior specification for the banking stocks at both frequencies and for

the technology stocks at the 5-minute frequency; these results confirm that the joint inclusion of the

three regressors, i.e. center, range, and intensity, are needed to produce the best fit for the bounds

of the interval. For the technology stocks at the 1-minute frequency, we observe that the linear

specification and Model 1 seem to be equivalent under quadratic loss functions.

[Table 5]

In Figures 3 – 6, we plot the estimated conditional surfaces of the lowest and highest returns

for BAC and AMZN provided by the non-parametric Model 1. Similar figures (Figures S3 – S12)

for the remaining five stocks are in the supplementary file. We plot the expected ylt and yut as

a function of r̂t and λ̂t keeping ĉt fixed at its sample median. The variable r̂t is the conditional

expected range and proxies the volatility of the underlying latent return process and the variable λ̂t

is the conditional expected trading intensity. The surfaces clearly indicate the nonlinear behavior of

the function. The direction of the arrows in the horizontal axis (volatility and intensity) and in

the vertical axis (low and high returns) indicate that the values go from low to high. In general,

we find that the relationship of extreme returns with trading intensity and volatility goes in the

expected direction. For both frequencies, the higher the volatility and the trading intensity are, the

larger the magnitude of the extreme returns are, i.e. the high return goes up and the low return

goes down (by examining the surfaces along the diagonals). The response of extreme returns to

trading intensity depends on the level of volatility. For low levels of volatility, extreme returns tend

to be flat as trading activity intensifies but when the volatility is moderate to high, both extreme
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returns are very responsive to increasing trading intensity and more so the low returns.

[Figures 3 – 6]

5 Conclusion

In contrast to existing regression-type models for interval-valued data, we have exploited the extreme

nature of the lower and upper bounds of intervals to propose a semiparametric model for interval-

valued time series data that is rooted in the limiting results provided by the extreme value theory.

We have assumed that there are two stochastic processes that generated the interval-valued data.

The first process {Yt} is latent, e.g. the process of financial returns, and follows some unknown

conditional density. The second process {Nt} is observable and it consists of a collection of random

draws, e.g. the process of number of trades. In this framework, the upper and lower bounds of the

interval, e.g. the highest and the lowest returns at time t, are the realized extreme observations

within the sample of random draws at time t. We have shown that the conditional mean of extreme

returns is a nonlinear function of the conditional moments of the latent process and of the conditional

intensity of the process for the number of draws. This specification provides a natural context to test

the relationship between extreme returns and intensity of trading. Asymmetric information models

of market microstructure claim that trading volume is a proxy for latent information on the value of

a financial asset. With interval-valued time series of 5-minute and 1-minute returns for seven stocks

of banks and technology companies, we have found that indeed there is a nonlinear relationship

between extreme returns and intensity of trading, which is superior to linear specifications.

The proposed semiparametric model has advantages over the existing models. It is general enough

to accommodate linear specifications when these are granted, but the most important advantage is

that the model is robust to misspecification of the conditional density of the latent process. We have

estimated the conditional mean of the extremes, which is nonlinear on the conditional moments of

the latent process, with nonparametric methods. In doing so, we have avoided to choose a specific

functional form of the conditional density, which according to extreme value theory is the driver of

the nonlinearity. However, the nonparametric function depends on regressors that are generated in a

first step. We have shown that the effect of the first-step parameter uncertainty into the second-step

22



nonparametric estimator is asymptotically negligible, and therefore, our two-step estimator has

typical nonparametric convergence rate and it is asymptotically normal.

Appendix

A.1 Relaxing the i.i.d. assumption of the random draws {Nt}

According to extreme value theory for stationary process, the i.i.d. assumption of the random draws

within each sampling time interval can be substantially relaxed to strictly stationarity with certain

regularity conditions, which allows the yit sequence in St to be weakly dependent without gravely

affecting our model specifications. For notational simplicity, we drop the time subscript t. Let {Yi}

be a strictly stationary process, where the subscript i = 1, 2, . . . , N denotes the time order of total

N transactions happening during each time period. Let MN = max{Y1, · · · , YN} be its sample

maximum. Define {Ỹi} as the i.i.d. process associated with {Yi} if the two processes share a common

marginal distribution function F (y) = P (Y ≤ y) = P (Ỹ ≤ y), and M̃N = max{Ỹ1, · · · , ỸN} as its

sample maximum. If the distribution function F (·) ∈ MDA(H), the limit distribution of the sample

maximum M̃N of the associated iid process {Ỹi} is H, i.e., as N →∞,

c−1N (M̃N − dN )
d−→ H.

If the process {Yi} satisfies the conditions D(uN ) and D′(uN ) given below, the limit distribution of

the sample maximum MN of the stationary process {Yi} is also H, i.e., as N →∞,

c−1N (MN − dN )
d−→ H,

with the same centering and normalizing terms cN and dN .

Condition. D(uN ): for each y ∈ R the sequence uN = cNy + dN satisfies that, for any integers

p and q, with p+ q different numbers picked out from the sequence of the time ordered subscript

i = 1, 2, . . . , N such that 1 ≤ i1 < · · · < ip < j1 < · · · < jq ≤ N and j1 − ip ≥ l, we have∣∣∣∣P ( max
i∈A1∪A2

Yi ≤ uN
)
− P

(
max
i∈A1

Yi ≤ uN
)
P

(
max
i∈A2

Yi ≤ uN
)∣∣∣∣ ≤ αN,l,

where A1 = {i1, · · · , ip}, A2 = {j1, · · · , jq}, αN,l → 0 as N →∞ for some sequence l = lN = o(N).
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Condition. D′(uN ): for each y ∈ R the sequence uN = cNy + dN satisfies that

lim
k→∞

lim sup
N→∞

n

[n/k]∑
j=2

P (Y1 > uN , Yj > uN ) = 0.

Condition D(uN ) describes a specific type of asymptotic independence. As a distributional

mixing condition, it is weaker than most of the classical forms of dependence restrictions. Condition

D′(uN ) means that joint exceedance of UN by every pairs (Yi, Yj) is very unlikely as N approaches

to ∞. These two conditions are discussed extensively in Leadbetter, Lindgren, and Rootzén (1983).

Direct verification of these two conditions is tedious. However, for Gaussian stationary linear

process, Yi =
∑∞

j=−∞ ψjZi−j , i ∈ Z, where {Zi} is an iid Gaussian innovation process, the

conditions D(uN ) and D′(uN ) boil down to a very weak and intuitive one: the auto-covariance

function γ(h) = cov(Yi, Yi+h) of the process {Yi} approaches to 0 faster than (lnh)−1 as h → ∞,

i.e., γ(h) lnh→ 0. It even includes Gaussian fractional ARIMA process with the order of difference

d ∈ (0, 0.5) whose auto-covariances are not absolutely summable. Moreover, the Gaussian distribution

of innovations Zi can be further relaxed to sub-exponential distributions, and the sample maxima

of sub-exponential linear process may still have a non-degenerate limit distribution. See Leadbetter

and Rootzén (1988) for more details.

A.2 Procedure for cleaning the TAQ database and treatment of outliers

We use the Steps C1 – C4 described below to clean the TAQ high frequency data:

� C1. Keep entries labeled as regular trade (which is not corrected, changed or signified as cancel

or error with corrected trades) or corrected trade (which contains the original time and the

corrected data for the trade). They are trades with Trade.Correction.Indicator = 00 or 01.

� C2. Delete entries with abnormal Sale Condition. Since the stocks of three banks are CTA

issues and the stocks of the four technology companies are UTP issues, their codes for sale

condition are slightly different. For the banks, we drop the trades where Sale.Condition has a

letter code except for ‘@’, F, I, ‘Q’, ‘O’, ‘M’, and ‘6’. For the technology companies, we drop

the trades where Sale.Condition has a letter code except for ‘@’, F, I, ‘Q’, ‘OX’, ‘M’, and ‘6X’.

See the Daily TAQ Client Specification (Version 2.2a) for details about sale conditions.
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� C3. Let pit be the price of the i-th transaction in the t-th time interval (1 or 5 minutes), and

Qt(p) be the p-th sample quantile of the prices {pit}Nti=1 in time interval t, where Nt is the total

number of trades in time interval t. Let the Quartile Range (QR) of the price in interval t be

QR(t; a) ≡ Q1−a/2(t)−Qa/2(t) with a ∈ [0, 1]. Set a1 = 0.5 and follow the outlier detection

procedure recursively: if QR(t; an) > 0, all transactions with trade prices outside of the region

[Qan/2(t)− 3/2n−1 ·QR(t; an), Q1−an/2(t) + 3/2n−1 ·QR(t; an)] are removed, and the outlier

detection stops. Otherwise, if QR(t; an) = 0, go to the next step and set an+1 = an/2.

� C4. Finally, delete the entries outside the official trading time window (9:30am – 4:00pm).

Note that if Step C3 stops at a1 = 0.5, the outlier detection procedure coincides with the Tukey’s

fences (Tukey, 1977) used to detect extreme outliers. However, when the trade prices are highly

clustered in a time interval such that the inter-quartile range is 0, the Tukey’s fences method

removes too many transactions and results in no price variation within the time interval. However,

our modified procedure generalizes Tukey’s fences by enlarging the quantile range if the previous

quantile range in the procedure is zero. Hence, compared to the Tukey’s fences, the outlier detection

procedure in Brownless and Gallo (2006) using trimmed sample mean and standard deviation, and

that in Barndorff-Nielsen et al. (2009) using sample median and mean absolute deviation from the

mean, our procedure is more conservative in defining outlier in the sample.

Before proceeding with the estimation of the nonparametric models, we introduce two pre-

treatments of our sample to deal with two practical data problems in nonparametric estimation.

Global outliers. These are triggered by some economic shocks, which cause extremely low or high

returns and a very large numbers of trades in some days. This will produce a very large kurtosis

as we have seen in the descriptive statistics of Table 1. Because of the local features of the kernel

approach, the results of the local linear estimation are sensitive to the global outliers. To alleviate

this problem, we censor the sample of the low and high returns and the covariates for each model at

the 0.5% percentile on both sides: for each variable, all observations below (above) its 0.5th (99.5th)

sample percentile are set to the 0.5th (99.5th) sample percentile. In comparison to the traditional

sample trimming method that excludes observations in the top and bottom percentiles, the sample

censoring method does not discard any extreme observation. It keeps the contribution of extreme
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observations in the tails of the distribution, and thus has a lesser effect on estimates of scale.

Heavy tails. High frequency data exhibit heavy tail behavior with just a few observations in the

tail domains of the empirical distributions of the variables. Ignoring heavy tails in the data may

lead to serious distortions and large biases in the estimators. To alleviate this problem, we apply

the logarithm transformation to the regressors that are positive and have only heavy right tails

(range, conditional intensity, number of trades, conditional standard deviation), and the two-side

logarithm transformation (A.1) to the center returns that have heavy tails on both sides,

S(xi) =

 log(1 + xi − xmed), if xi > xmed,

− log(1 + xmed − xi), otherwise,
(A.1)

where xmed is the median value of the sample {xi}Ti=1. Other approaches dealing with heavy

tails in kernel-based nonparametric estimation are more complex and require additional technical

assumptions (Markovich, 2008). We choose the fixed transformation because of its simplicity.

We use the following algorithm to obtain the nonparametric estimates for the six proposed

nonparametric models: First, censor the sample of dependent variables and the regressors at 0.5%

percentile on both sides. Second, apply the fixed transformations to the regressors. Third, obtain

the estimates of the conditional mean functions of the transformed sample by the local linear kernel

smoothing method with a second order Epanechnikov kernel. The optimal bandwidths are selected

by minimizing the least squares cross-validation function for each model and j = l and u,

CV LL
j (b1, . . . , bq) =

1

T

T∑
t=1

(
Yjt − M̂LL

j,−t(x
∗
t )
)2
,

where M̂LL
j,−t(·) is the leave-one-out local linear estimator and x∗t includes the q transformed regressors

of the model. Finally, the local linear estimate of the conditional mean function is M̂L
j, opt(T (xt))

where the function T (·) transforms each regressors in xt appropriately.

References

Andersen, T. (1996). Return Volatility and Trading Volume: An Information Flow Interpretation of

Stochastic Volatility. Journal of Finance, 51, pp. 169–204.

26
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Lin, W., & González-Rivera, G. (2016). Interval-valued Time Series Models: Estimation based on

Order Statistics. Exploring the Agriculture Marketing Service Data. Computational Statistics &

Data Analysis, 100, pp. 694–711.

Markovich, N. (2008). Nonparametric analysis of univariate heavy-tailed data: research and practice

(Vol. 753). John Wiley & Sons.

Ning, C., & Wirjanto T.S. (2009). Extreme Returnvolume Dependence in East-Asian Stock Markets:

A Copula Approach. Finance Research Letters, 6, pp. 202-209.

Parkinson, M. (1980). The Extreme Value Method for Estimating the Variance of the Rate of

Return. Journal of Business, 53, pp. 61-65.

Sita, B.B., & Westerholm, P.J. (2011). The Role of Trading Intensity Estimating the Implicit

Bidask Spread and Determining Transitory Effects. International Review of Financial Analysis,

20, pp. 306–310.

Tukey, J.W. (1977). Exploratory Data Analysis. Addison-Wesley.

28



Table 1: Descriptive Statistics for Bank of America Corp. and Amazon.com Inc *

Returns in Returns in

Statistics Low High Close Center Range # of trades Low High Close Center Range # of trades

Bank of America Corp. (BAC) at 5-min Freq. Bank of America Corp. (BAC) at 1-min Freq.

Minimum -89.65 -6.63 -78.61 -40.58 0.04 298.00 -59.23 -8.43 -55.38 -29.40 0.04 11.00
1st Quartile -13.09 4.13 -6.86 -4.34 12.67 1049.50 -6.39 2.09 -3.85 -2.14 4.42 168.00

Median -7.41 8.01 0.00 0.00 17.02 1438.50 -4.02 4.18 0.00 0.00 8.42 279.00
3rd Quartile -3.97 13.13 7.14 4.35 25.30 2084.00 -1.79 6.40 3.69 2.17 12.58 446.00
Maximum 5.87 122.49 105.69 61.03 122.92 15702.00 7.85 59.32 59.32 29.45 66.86 3789.00

Mean -10.20 10.03 0.08 -0.08 20.23 1791.91 -4.56 4.69 0.02 0.06 9.26 355.55
Variance 112.81 106.16 212.75 69.79 158.78 1525810.14 25.65 24.64 46.61 15.69 37.81 86358.38

Correlation 0.28 -0.03 0.25 -0.02
Skewness -2.43 3.10 0.20 0.12 2.37 3.01 -2.45 2.38 0.01 -0.03 2.19 2.99
Kurtosis 9.34 19.10 5.72 4.94 9.77 16.21 12.02 11.76 6.47 4.11 9.44 16.35

Amazon.com Inc (AMZN) at 5-min Freq. Amazon.com Inc (AMZN) at 1-min Freq.

Minimum -370.61 -30.28 -171.70 -128.66 2.97 175.00 -370.61 -51.90 -132.79 -142.56 0.01 16.00
1st Quartile -13.46 2.89 -5.88 -4.34 9.94 388.00 -6.30 1.38 -2.81 -2.02 4.95 72.00

Median -7.03 5.96 -0.12 -0.35 15.00 590.00 -3.48 3.03 0.00 -0.19 7.28 113.00
3rd Quartile -3.42 11.29 5.20 2.85 24.12 954.50 -1.70 5.77 2.77 1.58 11.48 190.00
Maximum 2.12 113.29 113.29 42.88 483.89 13600.00 6.92 103.93 95.24 47.23 456.11 9954.00

Mean -10.73 8.92 -0.57 -0.91 19.64 839.49 -4.95 4.41 -0.12 -0.27 9.36 167.41
Variance 228.45 107.47 209.87 77.31 362.60 713745.60 50.07 28.48 47.72 19.73 78.17 43340.97

Correlation -0.09 -0.36 0.01 -0.27
Skewness -10.29 3.34 -1.19 -3.07 10.30 5.27 -19.55 4.00 -1.86 -5.29 17.66 15.12
Kurtosis 202.05 19.17 20.30 38.04 213.74 50.11 870.04 39.44 41.78 153.64 779.16 588.75

* The sample period is 22 trading days in June 2017. Returns are in the unit of 1 basis point, and the sample size is 1716 and 8580 at
5-minute and 1-minute frequency respectively. For BAC, the raw data set contains 3085563 trades in total. After removal of outliers,
the total number of trades is 3074919 for the sample at 5-minute frequency, and 3050589 at 1-minute frequency. For AMZN, the raw
data set contains 1441127 trades in total. After removal of outliers, the total number of trades is 1440561 for the sample at 5-minute
frequency, and 1436377 at 1-minute frequency.
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Table 2: Models for center and range series of low/high
return interval for BAC and AMZN at 5 min-
utes frequency

Center series: ARMA models

BAC AMZN

coeff. s.e. coeff. s.e.
intercept -0.9051 (0.2248)
AR(1) -0.6943 (0.2164) 0.0579 (0.0241)
AR(2) 0.0098 (0.0299)
AR(3) 0.0106 (0.0252)
MA(1) 0.7194 (0.2150)

σ2 69.84 77.1
LogLike -6076.12 -6161.97

AIC 12162.24 12329.93

Range Series: CARR models*

BAC AMZN

coeff. s.e. coeff. s.e.
ω 0.1918 (0.0499) 0.0567 (0.0157)
α1 0.1615 (0.0219) 0.2650 (0.0228)
α2 0.2486 (0.0384) 0.1337 (0.0322)
α3 0.1512 (0.0251) -0.1163 (0.0304)
α4 0.1705 (0.0365)
α5 0.1776 (0.0207)
α6 -0.0592 (0.0308)
β1 -1.1157 (0.1684) 0.0085 (0.0509)
β2 0.2269 (0.1411) 0.8488 (0.0293)
β3 0.9194 (0.1005) -0.8550 (0.0655)
β4 0.2320 (0.1418) -0.3783 (0.0254)
β5 0.7572 (0.0401)
κ 3.7189 (0.1295) 5.6709 (0.2478)
σ2 0.4743 (0.0643) 1.3530 (0.1251)

LogLike -833.01 -635.71
AIC 1686.02 1299.41

Ljung-Box test on standardized residuals�

statistic p-value statistic p-value

Q(50) 38.0931 0.8912 41.4138 0.8011
Q(100) 89.5671 0.7635 78.8183 0.9419
Q(200) 151.2688 0.9958 170.3999 0.9365

* If the two null hypotheses for distributional parame-
ters κ = 1 and σ2 = 0 are true, the Burr distribution
reduces to the exponential distribution.

� For the pseudo-Pearson residuals, the mean and stan-
dard deviation are 0.001 and 0.9835 for BAC respec-
tively, and -0.0090 and 0.9322 for AMZN respectively.
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Table 3: Models for series of the number of trades for BAC and AMZN at 5 minutes frequency

Series of number of trades: Autoregressive Conditional Intensity models

BAC AMZN

coeff. s.e. coeff. s.e. coeff. s.e. coeff. s.e.
α1 0.30 (0.03) β1 -0.06 (0.01) α1 0.50 (0.02) β1 -1.52 (0.04)
α2 0.13 (0.01) β2 0.04 (0.01) α2 0.84 (0.05) β2 -1.30 (0.02)
α3 0.12 (0.01) β3 -0.20 (0.01) α3 0.88 (0.04) β3 -1.16 (0.02)
α4 0.12 (0.01) β4 -0.02 (0.01) α4 0.92 (0.03) β4 -0.93 (0.02)
α5 0.11 (0.01) β5 -0.15 (0.01) α5 0.80 (0.02) β5 -0.10 (0.01)
α6 0.11 (0.01) β6 -0.04 (0.01) α6 0.40 (0.02) β6 0.10 (0.03)
α7 0.11 (0.01) β7 -0.30 (0.00) α7 0.17 (0.03) β7 0.70 (0.01)
α8 0.15 (0.01) β8 -0.06 (0.01) α8 -0.16 (0.04) β8 0.95 (0.03)
α9 0.10 (0.01) β9 -0.31 (0.01) α9 -0.30 (0.05) β9 0.30 (0.02)
α10 0.22 (0.01) β10 -0.66 (0.01) α10 -0.13 (0.04) β10 -0.15 (0.01)
α11 0.25 (0.01) β11 0.56 (0.01)
α12 -0.02 (0.03) β12 0.15 (0.01)

β13 0.10 (0.01)
ω 0.07 (0.00) 1/d 0.07 (0.00) ω 0.16 (0.01) 1/d 0.08 (0.00)

LogLik. -12762.11 -11364.11
AIC 25578.22 22772.22

Ljung-Box test on standardized residuals�

statistic p-value statistic p-value

Q(50) 38.0931 0.8912 41.4138 0.8011
Q(100) 89.5671 0.7635 78.8183 0.9419
Q(200) 151.2688 0.9958 170.3999 0.9365

� For the pseudo-Pearson residuals, the mean and standard deviation are 0.0054 and 1.0433 for
BAC respectively, and 0.0017 and 1.1379 for AMZN respectively.
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Table 4: In-sample model evaluation for 5-minute and 1-minute low/high stock returns

Models MSE MLF MDE MSE MLF MDE

Lower Upper p = 1 p = 2 q = 1 q = 2 Lower Upper p = 1 p = 2 q = 1 q = 2

Bank of America Corp (BAC) at 5-min Freq. Bank of America Corp (BAC) at 1-min Freq.
IAR-TS 96.18 94.08 26.76 379.46 6.69 95.13 21.58 21.12 13.02 85.14 3.25 21.35

IAR-MTS 96.18 95.02 26.78 381.35 6.70 95.60 21.58 21.12 13.02 85.14 3.25 21.35
Model 1 83.81 82.71 25.98 332.05 6.50 83.26 20.51 20.15 12.83 81.07 3.21 20.33
Model 2 92.54 81.87 26.55 347.79 6.64 87.20 22.05 21.82 13.27 87.46 3.32 21.93
Model 3 88.12 87.05 26.41 349.18 6.60 87.58 21.90 21.15 13.11 85.84 3.28 21.52
Model 4 88.28 82.87 26.23 341.27 6.56 85.57 20.77 20.22 12.88 81.73 3.22 20.49
Model 5 98.43 94.86 27.20 385.46 6.80 96.64 22.39 22.21 13.29 88.93 3.32 22.30
Model 6 95.42 93.94 27.29 377.47 6.82 94.68 22.70 21.92 13.37 88.97 3.34 22.31

Amazon.com Inc (AMZN) at 5-min Freq. Amazon.com Inc (AMZN) at 1-min Freq.
IAR-TS 184.92 76.98 25.07 522.27 6.27 130.95 40.26 19.23 11.83 118.52 2.96 29.74

IAR-MTS 198.55 81.30 26.08 558.12 6.52 139.92 41.20 19.43 12.00 120.80 3.00 30.32
Model 1 170.80 75.10 24.40 490.21 6.10 122.95 39.82 19.32 11.70 117.84 2.92 29.57
Model 2 161.33 75.97 24.44 473.19 6.11 118.65 40.66 20.55 11.97 121.97 2.99 30.61
Model 3 174.58 70.48 24.42 488.48 6.11 122.53 41.37 19.44 11.83 121.16 2.96 30.40
Model 4 166.60 75.63 24.27 482.97 6.07 121.11 39.75 19.56 11.70 118.19 2.92 29.66
Model 5 187.08 75.05 25.12 522.67 6.28 131.06 42.47 20.76 12.07 125.99 3.02 31.62
Model 6 171.42 82.16 25.30 505.63 6.32 126.79 42.16 22.12 12.46 128.12 3.12 32.14

The numbers in boldface correspond to the two lowest values for each loss function.
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Table 5: In-sample Diebold-Mariano tests of Model 1 v.s. other models for BAC and AMZN

BAC AMZN

5 min. freq. 1 min. freq. 5 min. freq. 1 min. freq.

stat. p-value� stat. p-value� stat. p-value� stat. p-value�

M. 1
vs.
IAR-TS

MSE: lower -3.4963 0.0002 -4.9617 0.0000 -1.4462 0.0741 -0.2056 0.4186
MSE: upper -2.8823 0.0020 -3.9187 0.0000 -0.7816 0.2172 0.1141 0.5454
MLF: p = 1 -6.5061 0.0000 -8.3670 0.0000 -3.4584 0.0003 -3.5049 0.0002
MLF: p = 2 -5.3019 0.0000 -7.2969 0.0000 -1.4653 0.0714 -0.1718 0.4318
MDE: q = 1 -6.5061 0.0000 -8.3670 0.0000 -3.4584 0.0003 -3.5049 0.0002
MDE: q = 2 -5.3108 0.0000 -7.2952 0.0000 -1.4609 0.0720 -0.1717 0.4318

M. 1
vs.
M. 2

MSE: lower -4.4332 0.0000 -7.3835 0.0000 1.5531 0.9398 -2.5297 0.0057
MSE: upper 0.4590 0.6769 -7.6964 0.0000 -0.6909 0.2448 -4.2655 0.0000
MLF: p = 1 -4.4403 0.0000 -14.2372 0.0000 -0.3406 0.3667 -9.2217 0.0000
MLF: p = 2 -3.4633 0.0003 -13.0307 0.0000 1.2993 0.9031 -5.5705 0.0000
MDE: q = 1 -4.4403 0.0000 -14.2372 0.0000 -0.3406 0.3667 -9.2217 0.0000
MDE: q = 2 -3.4595 0.0003 -13.0180 0.0000 1.3069 0.9044 -5.5604 0.0000

M. 1
vs.
M. 3

MSE: lower -2.1999 0.0139 -6.4415 0.0000 -1.7562 0.0395 -4.9706 0.0000
MSE: upper -2.2484 0.0123 -5.2470 0.0000 1.9103 0.9720 -0.4560 0.3242
MLF: p = 1 -3.3821 0.0004 -11.9744 0.0000 -0.1522 0.4395 -6.0294 0.0000
MLF: p = 2 -3.7366 0.0001 -9.1912 0.0000 0.2696 0.6063 -5.5925 0.0000
MDE: q = 1 -3.3821 0.0004 -11.9744 0.0000 -0.1522 0.4395 -6.0294 0.0000
MDE: q = 2 -3.7532 0.0001 -9.1821 0.0000 0.2616 0.6032 -5.6478 0.0000

M. 1
vs.
M. 4

MSE: lower -3.1536 0.0008 -4.2970 0.0000 1.7115 0.9565 0.9341 0.8249
MSE: upper -0.7667 0.2216 -2.4898 0.0064 -1.8555 0.0318 -3.0974 0.0010
MLF: p = 1 -3.9140 0.0000 -6.1857 0.0000 1.5936 0.9445 0.2110 0.5836
MLF: p = 2 -3.2291 0.0006 -5.3529 0.0000 1.4953 0.9326 -1.8320 0.0335
MDE: q = 1 -3.9140 0.0000 -6.1857 0.0000 1.5936 0.9445 0.2110 0.5836
MDE: q = 2 -3.2414 0.0006 -5.3504 0.0000 1.5096 0.9344 -1.7748 0.0380

M. 1
vs.
M. 5

MSE: lower -4.1230 0.0000 -7.5117 0.0000 -2.9851 0.0014 -4.9595 0.0000
MSE: upper -2.9955 0.0014 -7.4763 0.0000 -0.0318 0.4873 -3.9850 0.0000
MLF: p = 1 -8.8585 0.0000 -14.4863 0.0000 -4.8912 0.0000 -12.5930 0.0000
MLF: p = 2 -5.8580 0.0000 -12.7531 0.0000 -3.0183 0.0013 -7.3010 0.0000
MDE: q = 1 -8.8585 0.0000 -14.4863 0.0000 -4.8912 0.0000 -12.5930 0.0000
MDE: q = 2 -5.8684 0.0000 -12.7492 0.0000 -3.0141 0.0013 -7.2860 0.0000

M. 1
vs.
M. 6

MSE: lower -4.6496 0.0000 -9.0240 0.0000 -0.1630 0.4353 -9.3610 0.0000
MSE: upper -4.4626 0.0000 -8.2320 0.0000 -4.5134 0.0000 -8.9482 0.0000
MLF: p = 1 -8.0005 0.0000 -16.7451 0.0000 -6.1236 0.0000 -21.4776 0.0000
MLF: p = 2 -7.3554 0.0000 -14.2630 0.0000 -2.2458 0.0124 -13.5271 0.0000
MDE: q = 1 -8.0005 0.0000 -16.7451 0.0000 -6.1236 0.0000 -21.4776 0.0000
MDE: q = 2 -7.3434 0.0000 -14.2588 0.0000 -2.2105 0.0135 -13.7240 0.0000

� The p-values are calculated under the alternative hypothesis Ha : Lp(e) < Lc(e), i.e., our proposed Model
1 has higher predicative accuracy than the other competing models.
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(a) BAC 5-min freq: High, low, close returns

0 500 1000 1500

−
50

0
50

10
0

Time

B
as

is
 p

oi
nt

s

highest return
close return
lowest return

(b) BAC 5-min freq: Number of trades
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(c) BAC 1-min freq: High, low, close returns
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(d) BAC 1-min freq: Number of trades
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(e) AMZN 5-min freq: High, low, close returns
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(f) AMZN 5-min freq: Number of trades
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(g) AMZN 1-min freq: High, low, close returns
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(h) AMZN 1-min freq: Number of trades
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Figure 1: Time series plots for BAC and AMZN at 5-minute and 1-minute frequencies
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(a) BAC: Center and ARMA fit
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(b) BAC: Range and CARR-Burr fit
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(c) BAC: # of trades and ACI-NB fit
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(d) AMZN: Center and ARMA fit
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(e) AMZN: Range and CARR-Burr fit
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(f) AMZN: # of trades and ACI-NB fit
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Figure 2: First step estimation for BAC and AMZN at 5-minute frequency35
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Figure 3: BAC: 5-min low/high returns v.s. intensity and volatility
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Figure 4: BAC: 1-min low/high returns v.s. intensity and volatility
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Figure 5: AMZN: 5-min low/high returns v.s. intensity and volatility
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Figure 6: AMZN: 1-min low/high returns v.s. intensity and volatility
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