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Abstract

We propose an extension of the Generalized Autocontour (G-ACR) tests for
dynamic specification of in-sample conditional densities and for evaluation of
out-of-sample forecast densities. The new tests are based on probability integral
transforms (PITs) computed from bootstrap conditional densities that incorporate
parameter uncertainty. Then, the parametric specification of the conditional moments
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can be tested without relying on any parametric error distribution yet exploiting
distributional properties of the variable of interest. We show that the finite sample
distribution of the bootstrapped G-ACR (BG-ACR) tests are well approximated
using standard asymptotic distributions. Furthermore, the proposed tests are easy
to implement and are accompanied by graphical tools that provide information
about the potential sources of misspecification. We apply the BG-ACR tests to
the Heterogeneous Autoregressive (HAR) model and the Multiplicative Error Model
(MEM) of the U.S. volatility index VIX. We find strong evidence against the
parametric assumptions of the conditional densities, i.e. normality in the HAR
model and semi non-parametric Gamma (GSNP) in the MEM. In both cases, the
true conditional density seems to be more skewed to the right and more peaked than
either normal or GSNP densities, with location, variance and skewness changing over
time. The preferred specification is the heteroscedastic HAR model with bootstrap
conditional densities of the log-VIX. Supplementary materials for this article are
available online.

Keywords: Distribution Uncertainty; Model Evaluation; Parameter Uncertainty; PIT; HAR
model; Multiplicative Error Model
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1 Introduction

Density forecasting is a very active and important area of research in the analysis of

economic and financial time series. The need to consider the full predictive density has

long been recognized in the related literature; see Tay and Wallis (2000) for a survey.

A problem often faced by forecasters is testing the correct specification of a conditional

forecast density; see, for example, Mitchell and Wallis (2011). Appropriate tests should take

into account that the forecast conditional distribution is often unknown, the specification

of conditional moments is also unknown, and the parameters in the conditional moments

have to be estimated. Furthermore, a useful test would indicate the source of rejection

of a given forecasting model, that is, whether it is rejected because of the specification of

the functional form of the conditional distribution or because of the specification of the

conditional moments.

Many tests for conditional forecast densities available in the literature are based

on testing a joint hypothesis of uniformity and independence (i.i.d. U(0,1)) of the

probability integral transforms (PITs) (Rosenblatt, 1952) which are applicable regardless

of the particular user’s loss function. Diebold et al. (1998) and Diebold et al. (1999)

introduce these tests in the econometric literature. Intuitively, the i.i.d. assumption

of the PITs is related with the correct specification of the conditional moments, while

the U(0,1) property characterizes the correct specification of the error distribution. The

PITs contain rich information on model misspecification that can be revealed by using

their histograms and autocorrelograms as suggested by Diebold et al. (1998). However,

it is nontrivial to develop a formal test for the joint hypothesis of independence and

uniformity of the PITs. The well-known Kolmogorov-Smirnov test checks uniformity under

the independence assumption rather than testing both properties jointly. Consequently, it

would easily miss the non-independent alternatives when PITs have a marginal uniform

distribution. Moreover, the Kolmogorov-Smirnov test does not take into account the impact

of parameter estimation uncertainty on the asymptotic distribution of the statistic. To solve

this problem, Bai (2003) proposes a Kolmogorov-Smirnov-type test based on a martingale

transformation of the PITs whose asymptotic distribution is free from the impact of

parameter estimation. Yet, the test proposed by Bai (2003) only checks uniformity and,
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consequently, it has no asymptotic unit power if the transformed PITs are uniform but

not independent; see Corradi and Swanson (2006) and Rossi and Sekhposyan (2013).

Alternatively, Hong and Li (2005) propose a nonparametric-kernel-based test with power

against violations of both independence and density functional form, but it depends on the

choice of a bandwidth, which could be problematic to choose in an empirical context.

Instead of testing for independence and uniformity of PITs, González-Rivera et al.

(2011) and González-Rivera and Yoldas (2012) propose autocontour (ACR) tests to evaluate

the adequacy of the conditional density model based on the generalized errors of the model.

They propose the “autocontour” device as a graphical tool that can be very helpful for

guiding the modelling. Moreover, it permits to focus on different areas of the conditional

density in order to assess those regions of interest. The ACR tests, which can be applied

to both original series and model residuals, have several advantages: i) they have standard

convergence rates and standard limiting distributions that deliver superior power; ii) they

are computationally easy to implement as they are based on a counting process; iii) they do

not require either a transformation of the original data or an assessment of the Kolmogorov

goodness of fit; and iv) they explicitly account for parameter uncertainty. Yet, they assume

a parametric time-invariant functional form of the conditional density and, once we depart

from standard densities, e.g. normal, Student-t, etc., the analytical expressions of the

autocontours may be mathematically cumbersome to derive. This problem becomes more

severe when we deal with conditional multivariate densities. To overcome these problems,

González-Rivera and Sun (2015) propose the generalized autocontour (G-ACR) tests that

are based on PITs instead of original observations or residuals. In this way, the G-ACR

tests inherit both the advantages of using PITs and those of using autocontours. However,

the tests are still based on assuming a particular specification of the conditional density in

order to compute the PITs. Therefore, when a given predictive density model is rejected, it

is difficult to disentangle whether the rejection can be attributed to the assumed functional

form of the error distribution (often normality) or to the specification of the conditional

moments. However, it is important to understand whether the rejection of a forecast density

is due to the often assumed normal distribution or to the specification of the conditional

moments. Furthermore, there are applications in which the conditional density does not
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have a known closed-form expression. For instance, when the errors are non-Gaussian or

when the model is non-linear, it is difficult to obtain the functional form of the multi-step

predictive densities.

In this paper, we propose an extension of the G-ACR tests for (in-sample) dynamic

specification of a density model and for (out-of-sample) evaluation of forecast densities.

Our contribution lies on computing the PITs from a bootstrapped conditional density so

that no assumption on the functional form of the forecast error density is needed. The

only restrictions required on the error density are those needed to guarantee that the

estimator of the parameters of the conditional moments is consistent and asymptotically

normal distributed. The bootstrap procedure allows for the incorporation of parameter

uncertainty and can be extended to multivariate systems. We show that the finite sample

distributions of the bootstrapped G-ACR (BG-ACR) tests are well approximated using

standard asymptotic distributions. The proposed approach is very easy to implement and

particularly useful to evaluate forecast densities when the error distribution is unknown.

Furthermore, using graphical devices, the procedure allows the identification of the source of

misspecification, namely, whether it is the error distribution or linear/non-linear dynamics.

Our second contribution is the implementation of the proposed BG-ACR tests to

evaluate the specification of the Heterogeneous Autoregressive (HAR) model and of the

Multiplicative Error Model (MEM), proposed to represent the dynamic evolution of the

daily forward-looking market volatility index (VIX) from the Chicago Board Options

Exchange (CBOE). The VIX is important because it is a barometer of the overall market

sentiment; see Whaley (2000, 2009) and Diebold and Yilmaz (2015) who define it as a

fear index. Furthermore, it reflects both the stock market uncertainty and the expected

premium from selling stock market variance in a swap contract. Finally, there is an

active market on VIX derivatives. The number of VIX futures contracts traded increased

dramatically from about 1 million in 2007 to about 24 million in 2012 with the largest

growth occurring after 2009, likely caused by the recent financial crisis; see, for example,

Park (2016), Song and Xiu (2016) and Martin (2017) for some recent references on

pricing VIX derivatives and Menćıa and Sentana (2016) for dynamic portfolio allocation

for Exchange Traded Notes (ETNs) tracking short and mid-term VIX futures indices.
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The recent development of volatility-based derivative products generates an interest on

predictive densities of volatility. After implementing the BG-ACR tests, we show that

the HAR and MEM specifications are both rejected if they do not incorporate conditional

heterocedasticity. Furthermore, we also show that normality of the errors of the HAR

model and the semiparametric Gamma distribution of the errors of the MEM model are

also rejected.

The rest of the paper is organized as follows. In section 2, we briefly describe the G-ACR

test to make the exposition self-contained. In section 3, we provide the main contribution

with the description of the new proposed BG-ACR tests. In section 4, we analyze their

in-sample finite sample performance and, in section 5, their out-of-sample performance. In

section 6, we offer an empirical application to illustrate the advantages of the BG-ACR

tests; we test for the adequacy of the HAR and MEM models to obtain forecast densities

of the VIX index. Finally, we conclude in section 7.

2 The Generalized-AutoContouR (G-ACR) test

We briefly describe the G-ACR test proposed by González-Rivera and Sun (2015) to

facilitate the reading of the forthcoming sections.

Let {yt}Tt=1 denote the random process of interest with conditional density function

ft(yt|Yt−1), where Yt−1 = (y1, ..., yt−1) is the information set available at time t-1. The

random process yt may enjoy very general statistical properties, e.g. heterogeneity, depen-

dence, etc. A conditional density model is constructed by specifying the conditional mean,

conditional variance or other conditional moments of interest, and making distributional

assumptions on the functional form of ft(yt|Yt−1). Based on the conditional model, the

researcher might construct a density forecast denoted by gt(yt|Yt−1) and obtain a sequence

of PITs of {yt}Tt=1 w.r.t. gt(yt|Yt−1) as follows

ut =

∫ yt

−∞

gt(vt|Yt−1) dvt. (1)

If gt(yt|Yt−1) coincides with the true conditional density, ft(yt|Yt−1), then the sequence of

PITs, {ut}Tt=1, must be i.i.d. U(0, 1); see Rosenblatt (1952) and Diebold et al. (1998).
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Therefore, the null hypothesis H0 : gt(yt|Yt−1) = ft(yt|Yt−1) is equivalent to the null

hypothesis

H ′
0 : {ut}Tt=1 is i.i.d. U(0, 1). (2)

Note that, if the forecast density coincides with the true data generating process (DGP),

then it is preferred by all forecasters regardless of their particular loss function; see Diebold

et al. (1998) and Granger and Pesaran (2000a,b). In order to compute the PITs in equation

(1), one needs to assume a particular distribution function for gt(yt|Yt−1). Simple tests

of independence and uniformity, such as, the Kolmogorov-Smirnov test suffer from the

problems described in the introduction. Alternatively, González-Rivera and Sun (2015)

propose an extension of the autocontour concepts in González-Rivera et al. (2011) to

evaluate the properties of the PITs under the null hypothesis (2).

Define G-ACRk,αi
as the set of points in the plane (ut, ut−k) such that the square with

√
αi-side and origin at (0,0) contains αi% of observations1, i.e.

G-ACRk,αi
= {B(ut, ut−k) ⊂ ℜ2|0 ≤ ut ≤

√
αi and 0 ≤ ut−k ≤ √

αi, s.t. : ut×ut−k ≤ αi}, (3)

and the indicator series Ik,αi

t , which takes value one if (ut, ut−k) ∈ G-ACRk,αi
and zero

otherwise.

If gt(yt|Yt−1) is a consistent estimator of ft(yt|Yt−1), then Ik,αi

t is asymptotically a

Bernoulli MA process whose order depends on k. The sample proportion of PIT pairs

(ut, ut−k) within the G-ACRk,αi
cube is given by

α̂k,i =

T∑
t=k+1

Ik,αi

t

T − k
. (4)

Consider the following statistic

tk,αi
=

√
T − k(α̂k,i − αi)

σαi

, (5)

where σ2
αi

= αi(1−αi)+2α
3/2
i (1−α1/2

i ). González-Rivera and Sun (2015) show that, under

1It is possible to define other regions in the unit cube depending on the interest of the researcher.
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the null hypothesis in (2), tk,αi
is asymptotically standard normal distributed.

The t-statistic in (5) is constructed for a single fixed autocontour, αi, and a single fixed

lag, k. However, it can be generalized to a set of lags with a fixed autocontour or to

several autocontours with a fixed lag. In the first case, for a fixed autocontour αi, define

Lαi
= (ℓ1,αi

, ..., ℓK,αi
)′ which is aK×1 stacked vector with element ℓk,αi

=
√
T − k(α̂k,i−αi).

Under H ′
0 in (2), L′

αi
Λ−1

αi
Lαi

is asymptotically χ2
K distributed, where a typical element of

the asymptotic covariance matrix, Λαi
, is given by:

λj,k =




αi(1− αi) + 2α

3/2
i (1− α

1/2
i ), j = k,

4α
3/2
i (1− α

1/2
i ), j 6= k.

Alternatively, for a fixed lag k, define the vector Ck = (ck,1, ..., ck,C)
′ with ck,i =

√
T − k(α̂k,i − αi). Once more, under H ′

0 in (2), C ′
kΩ

−1
k Ck has asymptotically a χ2

C

distribution, where a typical element of the asymptotic covariance matrix, Ωk, is given

by:

ωi,j =





αi(1− αi) + 2α
3/2
i (1− α

1/2
i ), i = j,

αi(1− αj) + 2αiα
1/2
j (1− α

1/2
j ), i < j,

αj(1− αi) + 2αjα
1/2
i (1− α

1/2
i ), i > j.

If the researcher is interested in partial aspects of the densities, such as, a particular

collection of quantiles, it is more informative to examine the Lαi
statistic, which

incorporates information for all desired k lags. On the other hand, if he is interested

in the whole distribution, Ck collects information on all desired C autocontours for a given

fixed lag k.

The tests described above are based on a given known predictive density gt(yt|Yt−1).

However, in practice, the parameters associated with the moments of this density need to

be estimated. González-Rivera and Sun (2015) analyze the effects of parameter estimation

on the asymptotic distribution of tk,αi
, and consequently on Lαi

and Ck, and conclude

that the corresponding adjustments to the asymptotic variance are model dependent

and thus, difficult to calculate analytically. To overcome this drawback, they propose

a fully parametric bootstrap procedure to approximate the asymptotic variance based on
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obtaining random extractions from the known error predictive density assumed under the

null hypothesis.

The G-ACR tests can be implemented both in-sample and out-of-sample.

González-Rivera and Sun (2015) show that, when testing the out-of-sample specification,

the importance of parameter uncertainty will depend on both the forecasting scheme

and the size of the estimation sample (T ) relative to the forecast sample (H). When

implementing the tests to check the correct specification of the out-of-sample forecast

densities, parameter uncertainty will distort the test size as long as the proportion of the

out-of-sample and in-sample sizes, H and T , respectively, is large. However, under the

assumption of
√
T -consistent estimators, if T −→ ∞, H −→ ∞ and H/T −→ 0, parameter

uncertainty is asymptotically negligible and no adjustment to the test is needed.

Finally, note that, if any of the G-ACR tests described above rejects the null hypothesis,

there is not any indication about whether the rejection can be attributed to an inadequate

assumption about the error distribution or to misspecification of the conditional moments.

González-Rivera and Sun (2015) point out that the G-ACR tests are more powerful for

detecting departures from the distributional assumption than for detecting misspecified

dynamics.

3 In-sample Bootstrap G-ACR (BG-ACR) tests

We propose a generalization of the G-ACR tests that allows testing for the specification

of the conditional moments without making any particular assumption on the conditional

distribution. We also justify heuristically the asymptotic distribution of the corresponding

statistics and carry out Monte Carlo experiments to establish the finite sample performance

of the new proposed tests.

Consider the following parametric location-scale model for the series of interest, yt,

t = 1, ..., T ,

yt = µt + σtεt, (6)

where µt and σ2
t are the conditional mean and variance of yt, which are specified as

parametric functions of the information set Yt−1, and εt is a strict white noise process
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with distribution Fε, such that E(εt) = 0 and E(ε2t ) = 1. The parameters governing µt, σ
2
t

and Fε guarantee stationarity and satisfy the conditions required for their estimators to be

consistent and asymptotically normal. Asymptotic normality of the parameter estimator is

a requirement for the bootstrap to be asymptotically valid for the estimation of its sample

distribution; see, for example, Hall and Yao (2003).

We consider a particular specification of (6) to illustrate the proposed tests, namely the

following popular AR(1)-GARCH(1,1) model,

yt = φ0 + φ1yt−1 + at, (7)

at = εtσt,

σ2
t = ω0 + ω1a

2
t−1 + ω2σ

2
t−1,

where |φ1| < 1, ω1 + ω2 < 1, ω0 > 0 and ω1, ω2 ≥ 0 to guarantee the stationarity of yt and

the positiveness of the conditional variance. We consider the Quasi-Maximum Likelihood

(QML) estimators of the parameters of the AR(1)-GARCH(1,1) model in (7) obtained

by maximizing the Gaussian log-likelihood function. Francq and Zaköıan (2004) prove the

strong consistency and asymptotic normality of the QML estimator of the ARMA-GARCH

model under finite fourth order moments of the observed series.

Next, we describe the proposed bootstrap algorithm to obtain in-sample one-step-ahead

bootstrap conditional densities of yt in the context of the AR(1)-GARCH(1,1) model in (7).

The algorithm is based on the residual bootstrap algorithms of Pascual et al. (2004, 2006)

for the construction of forecast densities in linear ARMA models and GARCH models,

respectively.

In-sample bootstrap algorithm

Step 1 Obtain the residuals

Estimate the parameters of model (7) by a two-step QML estimator: φ̂0, φ̂1, ω̂0, ω̂1 and

ω̂2. Obtain the standardized residuals ε̂t =
ât
σ̂t
, t = 2, ..., T , where ât = yt−φ̂0−φ̂1yt−1,

σ̂2
2 = ω̂0/(1− ω̂1 − ω̂2) and σ̂

2
t = ω̂0 + ω̂1â

2
t−1 + ω̂2σ̂

2
t−1, for t = 3, ..., T . Denote by F̂ε̂

the empirical distribution of the centered and scaled residuals.
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Step 2 Obtain bootstrap replicates of parameter estimates

For t = 3, ..., T , obtain recursively a bootstrap replicate of yt that mimics the dynamic

dependence of the original series as follows

σ
∗2(b)
t = ω̂0 + ω̂1a

∗2(b)
t−1 + ω̂2σ

∗2(b)
t−1 , (8)

a
∗(b)
t = ε

∗(b)
t σ

∗(b)
t ,

y
∗(b)
t = φ̂0 + φ̂1y

∗(b)
t−1 + a

∗(b)
t , (9)

where a
∗(b)
2 = â2, σ

∗2(b)
2 = σ̂2

2 , y
∗(b)
2 = y2 and ε

∗(b)
t are random extractions with

replacement from F̂ε̂. Estimate the parameters by QML using
{
y
∗(b)
t

}T

t=3
, obtaining

φ̂
∗(b)
0 , φ̂

∗(b)
1 , ω̂

∗(b)
0 , ω̂

∗(b)
1 and ω̂

∗(b)
2 .

Step 3 Obtain in-sample bootstrap one-step-ahead predictive densities

For t = 3, ..., T , obtain in-sample one-step-ahead estimates of volatilities and

observations as follows:

σ
∗∗2(b)
t = ω̂

∗(b)
0 + ω̂

∗(b)
1 (yt−1 − φ̂

∗(b)
0 − φ̂

∗(b)
1 yt−2)

2 + ω̂
∗(b)
2 σ

∗∗2(b)
t−1 , (10)

y
∗∗(b)
t = φ̂

∗(b)
0 + φ̂

∗(b)
1 yt−1 + σ

∗∗(b)
t ε

∗(b)
t , (11)

where σ
∗∗2(b)
2 = ω̂

∗(b)
0 /(1 − ω̂

∗(b)
1 − ω̂

∗(b)
2 ) and ε

∗(b)
t are random extractions with

replacement from F̂ε̂.

Step 4 Repeat steps 2 and 3 for b = 1, ..., B(1).

Note that, in step 2, we obtain replicates of y∗t that are not conditional on {y1, ..., yt−1}.
In (8), σ∗2

t depends on a∗2t−1 and in (9), y∗t depends on y
∗
t−1. Therefore, independent replicates

of the process are generated to estimate the parameters and to obtain an estimate of

their sample distribution. However, in step 3, the bootstrap replicates, σ∗∗2
t and y∗∗t , in

(10) and (11) respectively, are obtained incorporating the parameter uncertainty through

the bootstrap estimates of the parameters but always conditional on the original data

{y1, ..., yt−1}. In this way, at each moment of time, t = 3, ..., T , the above algorithm
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generates B(1) bootstrap replicates of yt conditional on Yt−1 incorporating parameter

uncertainty and avoiding any specific assumption about the distribution of εt. In order to

decide the number of bootstrap replicates that guarantees an appropriate estimate of the

predictive density, one can implement the procedure proposed by Andrews and Buchinsky

(2000). Note that a non-linear GARCH model will require a larger number of bootstrap

replicates than a linear model.

In-sample PITs can be easily computed as follows

ut =
1

B(1)

B(1)∑

b=1

1(y
∗∗(b)
t < yt), (12)

where 1(.) is the indicator function which takes value 1 when the argument is true and zero

otherwise. After computing the corresponding indicators, Ik,αi

t , the sample proportions,

α̂k,i, can be calculated as in (4). Finally, the tk,αi
, Lαi

and Ck statistics can be calculated

as explained in the previous section.

It is worth noting that the proposed procedure to obtain in-sample bootstrap conditional

densities, and the consequent BG-ACR statistics to evaluate them, can be applied to any

other parametric specifications of the conditional mean and conditional variance (and any

other higher moments) as far as a consistent and asymptotically normal estimator of the

parameters is available; see, for example, Mika and Saikkonen (2011) who prove the strong

consistency and asymptotic normality of the Gaussian QML estimator allowing both the

conditional mean and the conditional variance to be nonlinear.

In order to illustrate how the proposed procedure works, we have generated a time series

of size T = 5000 from the following homoscedastic AR(1) model:

yt = φ1yt−1 + εt, (13)

with φ1 = (0.5, 0.95) and i.i.d. εt either N(0,1), or centered and standardized Student-5,

or χ2
(5). In each case, an AR(1) model is fitted to the artificial series with the parameters

estimated by QML. Then, the in-sample PITs are computed (i) assuming normal errors as

in González-Rivera and Sun (2015) and (ii) implementing the bootstrap algorithm described

above based on B(1) = 999 replicates; see Pascual et al. (2004, 2006) and Pan and Politis
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(2016) for the same number of replicates. In Figure 1, we plot the autocontours for αi =

0.2 and 0.8 together with the pairs (ut, ut−1) for the AR(1) model with φ1 = 0.5 and

εt ∼ N(0, 1) (first row); φ1 = 0.5 and εt ∼ Student-5 (second row); φ1 = 0.5 and εt ∼ χ2
(5)

(third row); and φ1 = 0.95 and εt ∼ χ2
(5) (fourth row). Note that, when the PITs are

computed using the bootstrap densities (first column), they are uniformly distributed on

the surface regardless of the true error distribution of the underlying DGP. Therefore, they

suggest that the fitted AR(1) model is adequate. However, when the PITs are computed

as in the G-ACR procedure (second column), assuming normality, they are not uniformly

distributed unless the errors are Gaussian. In this case, when the model is rejected, there

is not indication about whether the rejection is coming from the misspecification of the

conditional mean or from a misspecified functional form of the error distribution.
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Figure 1: Pairs (ut, ut−1) and autocontours for the estimated AR(1) model with T = 5000. ACR20%,1 corresponds to
the black box and the ACR80%,1 to the red box. The DGPs are the AR(1) model with: φ1 = 0.5 and εt ∼ N(0, 1) (first

row); φ1 = 0.5 and εt ∼ Student-5 (second row); φ1 = 0.5 and εt ∼ χ2
(5)

(third row); and φ1 = 0.95 and εt ∼ χ2
(5)

(fourth

row). The PITs were computed using the bootstrap algorithm with B(1)=1000 (first column), or assuming Gaussian errors
(second column).
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Consider now the following three DGPs, from which we generate three time series of

size T = 5000

yt = 0.3yt−1 + 0.6yt−2 + εt, (14)

yt =





0.5yt−1 + εt, for t < T/2,

1 + 0.5yt−1 + εt, for t ≥ T/2,
(15)

yt = 0.5yt−1 + εtσt, (16)

σ2
t = 0.05 + 0.5ε2t−1σ

2
t−1 + 0.45σ2

t−1,

with εt defined as above. We fit an AR(1) model to each of the simulated series and

estimate its parameters by QML. As above, we compute the PITs both assuming normal

errors and using the proposed bootstrap procedure. In Figure 2, we plot the autocontours

for αi = 0.2 and 0.8 together with the pairs (ut, ut−1) when the DGP is the AR(2) model

in (14) with χ2
(5) errors (first row); the AR(1) model with structural break in the mean

in (15) with εt ∼ χ2
(5) (second row); the GARCH model in (16) with normal errors (third

row); and the GARCH model in (16) with χ2
(5) errors (fourth row). We observe that, when

the PITs are based on bootstrap densities (first column), they suggest the source of the

misspecification. In the first row, when the AR(1) model is fitted to the AR(2) series, we

observe a linear relation between the PITs, which tend to group around one of the diagonals

of the unit-square. In the second row, when the DGP is the AR(1) model with a break

in the mean, the PITs do not show any particular linear or non-linear relationship but

they are concentrated on the top-right corner of the unit-square. Finally, when the DGP is

the AR(1)-GARCH(1,1) model, we observe a non-linear relation between the PITs, which

are more concentrated towards the four corners of the unit-square. Furthermore, in this

last case, the autocontour plots are very similar regardless of the error distribution of the

DGP. Comparing the bootstrap-based PITs with those obtained using G-ACR assuming

a normal density (second column), the rejection of the fitted AR(1) model is also evident.

However, there is not an obvious indication of the source of the misspecification.
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Figure 2: Pairs (ut, ut−1) and autocontours for estimated AR(1) model with T = 5000. ACR20%,1 corresponds to the

black box and the ACR80%,1 to the red box. The DGPs are: AR(2) with εt ∼ χ2
(5)

(first row); AR(1) model with break in

the mean with εt ∼ χ2
(5)

(second row); AR(1)-GARCH(1,1) model with εt ∼ N(0,1) (third row); and AR(1)-GARCH(1,1)

model with εt ∼ χ2
(5)

(fourth row). The PITs were computed using the bootstrap algorithm with B(1) = 1000 (first column),

or assuming Gaussian errors (second column).
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The asymptotic distributions of the tk,αi
, Lαi

and Ck statistics depend on the asymptotic

validity of the residual bootstrap algorithm described above which has been established

by Pascual et al. (2004) in the context of obtaining predictive densities of linear ARMA

models. However, as far as we know, there is not a formal proof of the validity of the

procedure to construct predictive densities of nonlinear GARCH models. In order to show

that the algorithm is asymptotically valid, one needs first to show that the bootstrap

procedure in step 2, generates asymptotically valid estimates of the model parameters.

When implemented in GARCH models, Hidalgo and Zaffaroni (2007) show the first order

validity of the bootstrap QML estimator of the parameters of an ARCH(∞) process

characterized by a particular decay in the ARCH parameters.2 If the bootstrap procedure

is asymptotically valid for the estimation of the parameters, using the arguments in Pascual

et al. (2004) and Reeves (2005), one can establish its validity for the predictive densities

and, consequently, the distribution of α̂k,i should be as in (5) with the asymptotic variance

corrected to take into account parameter uncertainty.3

Following the suggestion of González-Rivera and Sun (2015), the variance of α̂k,i is

approximated using a bootstrap procedure to take into account parameter uncertainty.

B(2) bootstrap replicates, {y∗(b)t }Tt=1 are generated as in (9) and α̂
∗(b)
k,i is obtained using the

bootstrap series as if they were the original series. The bootstrap variance of α̂k,i is given

by

σ∗2
αi

=
1

B(2) − 1

B(2)∑

b=1


α̂∗(b)

k,i − 1

B(2)

B(2)∑

b=1

α̂
∗(b)
k,i




2

, (17)

and the corresponding corrected t-statistic is

t∗k,αi
=

(α̂k,i − αi)

σ∗
αi

, (18)

2Shimizu (2010, 2013, 2014) prove the consistency of the bootstrap QML estimator in the context of an
AR(1)-ARCH(1) model. However, the residual bootstrap considered by Shimizu (2010, 2013, 2014) is not
exactly the same as that considered in this paper. All the trajectories share the same estimated conditional
mean and variance when generating bootstrap replicates to estimate the parameters. It is important to
point out that Corradi and Iglesias (2008) cast some doubts on the asymptotic validity of the residual
bootstrap described in step 2. Alternatively, they show that a block bootstrap based on resampling the
likelihood as proposed by Gonçalves and White (2004) is asymptotically valid. Therefore, in step 2 of the
algorithm described above, one can consider using this block bootstrap instead of the residual bootstrap.

3Monte Carlo results on the size distortions of the t-statistic when the asymptotic variance is computed
as in (5) are available upon request.
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which asymptotically has a N(0,1) distribution. In this paper, results are based on B(2)=500

bootstrap replicates to compute σ∗
αi
; see González-Rivera and Sun (2015). Note that the

number of replicates needed to estimate standard errors is smaller than that required to

estimate intervals; see Efron (1987).

Obviously, the variances and covariances of the portmanteau statistics can also be

computed using the same arguments. In particular, a typical element of the covariance

matrix of Lαi
, say λ∗j,k, is obtained as follows:

λ∗j,k =





σ2∗
αi
, if j = k,

1
B(2)−1

B(2)∑
b=1

(
α̂
∗(b)
j,i − 1

B(2)

B(2)∑
b=1

α̂
∗(b)
j,i

)(
α̂
∗(b)
k,i − 1

B(2)

B(2)∑
b=1

α̂
∗(b)
k,i

)
, if j 6= k.

(19)

Similarly, a typical element of the covariance matrix of Ck, say ω∗
i,j, is obtained

analogously to (19) as follows:

ω∗
i,j =





σ2∗
αi
, if i = j,

1
B(2)−1

B(2)∑
b=1

(
α̂
∗(b)
k,i − 1

B(2)

B(2)∑
b=1

α̂
∗(b)
k,i

)(
α̂
∗(b)
k,j − 1

B(2)

B(2)∑
b=1

α̂
∗(b)
k,j

)
, if i 6= j.

(20)

4 Finite sample performance of in-sample tests

We perform Monte Carlo simulations to assess the finite sample properties of the proposed

statistics. For the size assessment, the DPG is a linear AR(1). We consider a model

far from the non-stationary region and another one near the non-stationary region with

different error distributions. For the power assessment, we consider linear and non-linear

alternatives. The number of Monte Carlo replicates is R = 1000 and the sample size

T = 50, 100, 300, 1000 and 5000. The number of bootstrap replicates is B(1) = 1000,

except for T = 5000, when we use B(1) = 2000. Finally, the number of bootstrap replicates

used to compute the variance of α̂k,i, Lαi
and Ck is B(2) = 500.
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4.1 Studying the size

To investigate the size properties of the tests, we consider as DGP the AR(1) in (13). For

each Monte Carlo replicate, we compute the proportions α̂k,i, for k = 1, ..., 5, and their

bootstrap variances. Then, we compute the Monte Carlo averages and standard deviations

of α̂k,i, together with the averages of the bootstrap standard deviations and the percentage

of rejections of the null hypothesis when the nominal size of the test is 5%. Table 1 reports

the Monte Carlo results for k = 1 when φ1 = 0.95 and the errors are χ2
(5). We observe that,

even for the smallest sample size of T = 50, the Monte Carlo averages of α̂k,i are rather

close to αi and that, for moderate sample sizes, the average of the bootstrap standard

deviations is a good approximation to the Monte Carlo standard deviation of α̂k,i. For

relatively small sample sizes, the bootstrap standard deviations tend to overestimate the

empirical standard deviations of α̂k,i, mainly for the largest quantiles. Consequently, the

size of the t1,αi
statistic is smaller than the nominal. As the sample size increases, the

percentage of rejections becomes rather close to the 5% nominal level.

We also analyze the finite sample performance of the two portmanteau tests. Table 2

reports the Monte Carlo percentage of rejections of L5
αi

(adding up the information over

the first five lags) and of C1 (adding information of the thirteen quantiles considered) for

the same model considered in Table 1. Regarding L5
αi
, we observe that, the Monte Carlo

percentage of rejections is very close to the nominal size with a tendency to over-reject for

the largest quantiles. Regarding C1, we observe that it under-rejects when the sample size

is not large enough, and over-rejects for very large samples.

Summarizing, asymptotic normality is a good approximation to the finite sample

performance of the proposed BG-ACR test under the null of correct specification as far

as we do not consider extreme autocontours. This conclusion is valid regardless of the

particular error distribution and the persistence properties of the conditional mean.4

4Results for the AR(1) model with φ1 = 0.5 and Gaussian errors are reported in Tables A and B of the
supplementary material. The conclusions are the same.
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Table 1

Monte Carlo size results for t1,αi
. The DGP is yt = 0.95yt−1 + εt, with εt ∼ χ2

(5) and the nominal size is 5%.

T αi 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99
50

α̂k,i 0.015 0.058 0.109 0.209 0.307 0.407 0.504 0.603 0.705 0.804 0.901 0.950 0.984
std (0.022) (0.048) (0.067) (0.089) (0.098) (0.102) (0.097) (0.094) (0.081) (0.064) (0.043) (0.034) (0.023)
σ̄∗
αi

0.022 0.049 0.068 0.090 0.100 0.103 0.101 0.095 0.086 0.072 0.054 0.045 0.032
size 0.061 0.046 0.026 0.022 0.015 0.023 0.016 0.025 0.013 0.012 0.001 0.004 0.009

100
α̂k,i 0.012 0.055 0.106 0.205 0.305 0.406 0.503 0.602 0.702 0.803 0.900 0.949 0.989
std (0.014) (0.032) (0.045) (0.060) (0.064) (0.067) (0.062) (0.057) (0.049) (0.038) (0.027) (0.020) (0.012)
σ̄∗
αi

0.015 0.033 0.046 0.060 0.066 0.067 0.065 0.060 0.053 0.043 0.032 0.025 0.018
size 0.060 0.037 0.029 0.025 0.021 0.025 0.014 0.012 0.014 0.014 0.008 0.005 0.000

300
α̂k,i 0.011 0.052 0.102 0.202 0.303 0.402 0.502 0.601 0.701 0.800 0.899 0.949 0.988
std (0.007) (0.017) (0.024) (0.030) (0.033) (0.032) (0.032) (0.028) (0.024) (0.018) (0.013) (0.009) (0.006)
σ̄∗
αi

0.008 0.017 0.024 0.031 0.034 0.034 0.032 0.030 0.026 0.020 0.014 0.011 0.007
size 0.044 0.036 0.033 0.039 0.034 0.022 0.032 0.024 0.031 0.017 0.026 0.018 0.011

1000
α̂k,i 0.011 0.051 0.101 0.201 0.301 0.401 0.501 0.600 0.700 0.800 0.899 0.949 0.988
std (0.004) (0.009) (0.012) (0.016) (0.017) (0.017) (0.016) (0.015) (0.012) (0.009) (0.006) (0.004) (0.003)
σ̄∗
αi

0.004 0.009 0.012 0.016 0.017 0.017 0.016 0.015 0.012 0.010 0.007 0.005 0.003
size 0.054 0.048 0.046 0.051 0.039 0.040 0.042 0.048 0.045 0.034 0.037 0.043 0.101

5000
α̂k,i 0.010 0.050 0.101 0.200 0.300 0.400 0.500 0.600 0.700 0.799 0.900 0.950 0.989
std (0.002) (0.004) (0.005) (0.007) (0.008) (0.007) (0.007) (0.006) (0.005) (0.004) (0.002) (0.002) (0.001)
σ̄∗
αi

0.002 0.004 0.005 0.007 0.007 0.007 0.007 0.006 0.005 0.004 0.002 0.002 0.001
size 0.049 0.063 0.055 0.046 0.054 0.039 0.049 0.046 0.051 0.044 0.051 0.056 0.162
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Table 2

Monte Carlo size results for L5
αi

and C1 statistics. The DGP is yt = 0.95yt−1 + εt, εt ∼ χ2
(5). The nominal size is 5%.

L5
0.01 L5

0.05 L5
0.1 L5

0.2 L5
0.3 L5

0.4 L5
0.5 L5

0.6 L5
0.7 L5

0.8 L5
0.9 L5

0.95 L5
0.99 C13

1

50 0.121 0.091 0.073 0.043 0.036 0.033 0.048 0.059 0.064 0.063 0.081 0.107 0.058 0.023
100 0.098 0.065 0.053 0.045 0.038 0.041 0.054 0.048 0.051 0.038 0.091 0.115 0.027 0.008
300 0.083 0.051 0.057 0.032 0.047 0.045 0.041 0.040 0.036 0.050 0.060 0.095 0.075 0.023
1000 0.070 0.053 0.053 0.058 0.056 0.055 0.047 0.051 0.053 0.051 0.058 0.070 0.193 0.060
5000 0.063 0.051 0.051 0.048 0.043 0.044 0.044 0.034 0.050 0.062 0.051 0.048 0.120 0.089

21



4.1.1 Studying the power

To study the finite sample power of the tests, we generate replicates using the models in

equations (15) and (16). In both cases, we fit an AR(1) model. Under the null hypothesis,

we test the correct specification of the AR(1) model without drift. For the DGP in (15),

we analyze their power against breaks in the conditional mean while for the DGP in (16),

we study their power against misspecification in the conditional variance.

In Tables 3 and 4, we report the power results of the test t1,αi
for each of these two

DGPs, respectively, and in Table 5, we report the power results corresponding to the

portmanteau tests. When the DGP has a break in the conditional mean (Table 3), the

tests have high power (70-100%) for sample sizes of 300 and above. When the DGP is an

AR(1)-GARCH(1,1) model (Table 4), we observe that the power of t1,αi
is the highest in

the extreme 1% and 5% autocontours. This is consistent with the results that we have

explained in Figure 2, where the pairs of PITs tend to concentrate into the corners of the

unit-square. These results suggest that we need larger sample sizes for the tests to have

power against misspecification in the conditional variance.5

Regarding the portmanteau tests (Table 5), both L5
αi

and C1 are very powerful for

detecting breaks in the conditional mean when the sample size is 300 and above. Detecting

misspecification in the conditional variance is more difficult in small samples and we need

sample sizes beyond 1000 observations to obtain high power. As with the t1,αi
, the power

of L5
αi

is higher in the extreme autocontours.6

5Note that this result could be expected as inference in nonlinear GARCH models require large samples.
6Results on the power when the DGP is the AR(2) model in (14) are reported in Tables C and D of the

supplementary material. The proposed tests are very powerful even for small sample sizes.
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Table 3

Monte Carlo power results for t1,αi
. The DGP is the AR(1) model with break in the mean and εt ∼ N(0, 1). The nominal size is 5%.

T αi 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99
50

α̂k,i 0.001 0.014 0.040 0.103 0.176 0.264 0.359 0.462 0.577 0.701 0.830 0.897 0.948
std (0.005) (0.016) (0.026) (0.041) (0.049) (0.055) (0.059) (0.059) (0.060) (0.052) (0.045) (0.038) (0.027)
σ̄∗
αi

0.016 0.037 0.053 0.076 0.090 0.099 0.102 0.099 0.092 0.079 0.061 0.049 0.033
power 0.000 0.000 0.041 0.105 0.131 0.144 0.137 0.145 0.142 0.090 0.098 0.080 0.163

100
α̂k,i 0.002 0.017 0.043 0.109 0.184 0.273 0.372 0.477 0.589 0.712 0.840 0.909 0.967
std (0.004) (0.013) (0.019) (0.027) (0.033) (0.039) (0.042) (0.041) (0.039) (0.036) (0.029) (0.026) (0.017)
σ̄∗
αi

0.010 0.024 0.035 0.050 0.059 0.064 0.065 0.063 0.058 0.050 0.037 0.029 0.018
power 0.001 0.107 0.284 0.417 0.488 0.516 0.486 0.460 0.441 0.374 0.258 0.212 0.136

300
α̂k,i 0.002 0.018 0.046 0.114 0.193 0.283 0.381 0.485 0.599 0.719 0.849 0.917 0.976
std (0.003) (0.007) (0.011) (0.016) (0.020) (0.022) (0.024) (0.025) (0.024) (0.021) (0.018) (0.014) (0.008)
σ̄∗
αi

0.006 0.013 0.019 0.027 0.032 0.034 0.035 0.033 0.030 0.025 0.018 0.013 0.008
power 0.000 0.785 0.927 0.985 0.989 0.994 0.995 0.994 0.986 0.969 0.874 0.716 0.421

1000
α̂k,i 0.002 0.019 0.047 0.116 0.196 0.287 0.385 0.490 0.604 0.724 0.851 0.920 0.979
std (0.002) (0.004) (0.006) (0.009) (0.011) (0.012) (0.013) (0.013) (0.013) (0.012) (0.009) (0.008) (0.004)
σ̄∗
αi

0.003 0.007 0.010 0.014 0.017 0.018 0.018 0.017 0.015 0.013 0.009 0.006 0.003
power 0.824 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.911

5000
α̂k,i 0.003 0.019 0.047 0.116 0.197 0.287 0.387 0.491 0.604 0.724 0.853 0.921 0.980
std (0.001) (0.002) (0.003) (0.004) (0.005) (0.005) (0.006) (0.006) (0.006) (0.005) (0.004) (0.003) (0.002)
σ̄∗
αi

0.001 0.003 0.004 0.006 0.007 0.008 0.008 0.007 0.007 0.005 0.004 0.002 0.001
power 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 4

Monte Carlo power results for t1,αi
. The DGP is the AR(1)-GARCH(1,1) model in (16) and εt ∼ N(0, 1). The nominal size is 5%.

T αi 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99
50

α̂k,i 0.018 0.063 0.111 0.209 0.312 0.418 0.522 0.622 0.719 0.815 0.908 0.953 0.991
std (0.019) (0.039) (0.056) (0.078) (0.089) (0.096) (0.093) (0.086) (0.077) (0.061) (0.041) (0.031) (0.019)
σ̄∗
αi

0.014 0.035 0.054 0.079 0.094 0.103 0.104 0.100 0.090 0.075 0.057 0.047 0.033
power 0.204 0.073 0.048 0.034 0.022 0.025 0.019 0.012 0.014 0.010 0.006 0.006 0.009

100
α̂k,i 0.021 0.066 0.112 0.207 0.308 0.413 0.517 0.620 0.718 0.816 0.909 0.953 0.990
std (0.014) (0.029) (0.043) (0.061) (0.071) (0.075) (0.072) (0.064) (0.050) (0.038) (0.026) (0.018) (0.011)
σ̄∗
αi

0.010 0.025 0.039 0.058 0.069 0.074 0.074 0.069 0.060 0.047 0.033 0.025 0.018
power 0.321 0.132 0.067 0.043 0.051 0.035 0.028 0.027 0.017 0.015 0.009 0.004 0.002

300
α̂k,i 0.023 0.066 0.112 0.206 0.306 0.410 0.516 0.618 0.718 0.816 0.908 0.953 0.989
std (0.009) (0.022) (0.031) (0.041) (0.046) (0.048) (0.045) (0.039) (0.031) (0.021) (0.012) (0.008) (0.005)
σ̄∗
αi

0.006 0.015 0.024 0.035 0.042 0.045 0.044 0.041 0.034 0.025 0.015 0.011 0.007
power 0.542 0.232 0.094 0.052 0.045 0.044 0.038 0.043 0.040 0.051 0.031 0.006 0.006

1000
α̂k,i 0.024 0.066 0.111 0.204 0.303 0.408 0.514 0.616 0.717 0.814 0.908 0.953 0.989
std (0.006) (0.011) (0.016) (0.023) (0.026) (0.027) (0.026) (0.021) (0.017) (0.012) (0.006) (0.004) (0.002)
σ̄∗
αi

0.003 0.008 0.013 0.020 0.024 0.026 0.025 0.023 0.019 0.013 0.007 0.005 0.003
power 0.929 0.494 0.152 0.061 0.048 0.051 0.066 0.070 0.105 0.159 0.145 0.070 0.031

5000
α̂k,i 0.024 0.066 0.110 0.202 0.302 0.406 0.512 0.615 0.716 0.814 0.908 0.954 0.989
std (0.003) (0.007) (0.010) (0.014) (0.016) (0.017) (0.016) (0.015) (0.012) (0.007) (0.003) (0.002) (0.001)
σ̄∗
αi

0.001 0.004 0.006 0.010 0.011 0.012 0.012 0.011 0.009 0.006 0.003 0.002 0.001
power 0.999 0.925 0.419 0.119 0.098 0.113 0.197 0.330 0.482 0.692 0.724 0.476 0.110
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Table 5

Monte Carlo power results for L5
αi

and C1 statistics. The DGPs are: AR(1) model with break in the mean (Panel
A) and AR(1)-GARCH(1,1) (Panel B). The nominal size is 5%.

L5
0.01 L5

0.05 L5
0.1 L5

0.2 L5
0.3 L5

0.4 L5
0.5 L5

0.6 L5
0.7 L5

0.8 L5
0.9 L5

0.95 L5
0.99 C13

1

Panel A

50 0.000 0.006 0.019 0.063 0.121 0.155 0.205 0.257 0.269 0.280 0.257 0.300 0.240 0.054
100 0.002 0.014 0.047 0.131 0.256 0.292 0.326 0.362 0.379 0.375 0.391 0.404 0.186 0.166
300 0.004 0.339 0.586 0.789 0.869 0.891 0.900 0.891 0.879 0.839 0.726 0.591 0.276 0.855
1000 0.743 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.984 0.676 1.000
5000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Panel B

50 0.177 0.093 0.064 0.054 0.041 0.040 0.045 0.031 0.055 0.085 0.122 0.180 0.052 0.059
100 0.301 0.104 0.076 0.065 0.051 0.050 0.055 0.057 0.056 0.095 0.207 0.279 0.061 0.107
300 0.589 0.175 0.071 0.064 0.061 0.063 0.074 0.084 0.088 0.143 0.282 0.473 0.314 0.381
1000 0.935 0.366 0.144 0.090 0.088 0.091 0.106 0.161 0.238 0.331 0.520 0.653 0.886 0.907
5000 0.999 0.875 0.345 0.166 0.154 0.187 0.332 0.557 0.770 0.890 0.940 0.941 0.972 1.000
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5 Out-of-sample h-step-ahead Bootstrap G-ACR

(BG-ACR) tests

We extend the procedures and tests described in the previous section to obtain

out-of-sample h-step-ahead densities. The in-sample bootstrap algorithm can also be

applied to obtain bootstrap replicates of the out-of-sample multi-step-ahead observations.

Then, the corresponding PITs and indicators can be computed. In order to compute the

proportion α̂k,i, it is necessary to obtain (H − h + 1) h-step-ahead bootstrap forecast

densities. If the parameters are not re-estimated each time a new observation is available,

then the in-sample algorithm can be implemented as described in Section 3 with step 3

modified as follows:

Step 3’. Obtain out-of-sample h-step-ahead bootstrap forecast densities

For h = 1, 2, ... and j = 0, ..., H−h obtain out-of-sample h-step-ahead conditional estimates

of volatilities and observations as follows:

σ
∗∗2(b)
T+h+j|T+j

= ω̂
∗(b)
0 + ω̂

∗(b)
1 (y

∗∗(b)
T+h−1+j|T+j

− µ̂∗(b) − φ̂∗(b)yT+h−2+j|T+j)
2 + ω̂

∗(b)
2 σ

∗∗2(b)
T+h−1+j|T+j

,

y
∗∗(b)
T+h+j|T+j

= µ̂∗(b) + φ̂∗(b)y
∗∗(b)
T+h−1+j|T+j

+ σ
∗∗(b)
T+h+j|T+j

ε
∗(b)
T+h, (21)

where y
∗∗(b)
T+i|T = yT+i when i ≤ 0 and

σ
∗∗2(b)
i|i =

ω̂
∗(b)
0

1−ω̂
∗(b)
1 −ω̂

∗(b)
2

+ ω̂
∗(b)
1

i−3∑
j=0

ω̂
∗(b)j
2

[
(yi−j−1 − µ̂∗(b) − φ̂∗(b)yi−j−2)

2 − ω̂
∗(b)
0

1−ω̂
∗(b)
1 −ω̂

∗(b)
2

]
for

i = T, T + 1, ..., T +H − 1.

At each moment T + j, j = h, ..., H , we compute out-of-sample multi-period PITs as

follows

uT+j|T+j−h =
1

B(1)

B(1)∑

b=1

1(y
∗∗(b)
T+j|T+j−h < yT+j).

Note that the PITs based on h-step-ahead density forecasts will generally follow a moving

average process of order h − 1. When h > 1, under the null that the predictive density

coincides with the true density, the distributional features of the PITs are not well defined.

As a result, it is only possible to test the null of a well behaved density forecast jointly with

an assumed model of the process driving the associated h-step-ahead PITs. Alternatively,
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one can choose PITs separated by h periods to ensure an uncorrelated sample. This

procedure may significantly reduce the evaluation sample when h is relatively large. In this

case, the procedure can be implemented in several uncorrelated sub-samples of forecasts

that are h periods apart and then use Bonferroni methods to obtain a joint test without

discarding observations; see, for example, Diebold et al. (1998), Manzan and Zerom (2008)

and Rossi and Sekhposyan (2016) among others.

Using the uncorrelated PITs {uT+ht|T+h(t−1)}[H/h]
t=1 , we compute the corresponding

indicators, Ik,αi

T+ht, and the proportions

α̂k,i =

[H/h]∑
t=k+1

Ik,αi

T+ht

H/h− k
.

Finally, the t-statistic is given by

tk,αi
=

√
H/h− k(α̂k,i − αi)

σαi

,

where σ2
αi

is defined as in (5). Note that σ2
αi

can be estimated either as in expression (5) or

by bootstrapping. As mentioned above, when testing the in-sample specification, ignoring

parameter uncertainty may cause severe distortions in the size of the tests. However, when

testing the out-of-sample specification, the importance of parameter uncertainty decreases

as far H/T → 0 when T → ∞ and H → ∞. Therefore, if H is small relative to T , one can

compute the variance σ2
αi

by using the asymptotic expression.

As an illustration of the out-of-sample one-step-ahead performance of the tests, we

generate R = 1000 replicates from the AR(1) model in expression (13) with φ1 = 0.95

and εt ∼ N(0, 1). The model is estimated by OLS using T = 50, 100, 300, 1000 and

5000 observations and H = 50 and 500 out-of-sample one-step-ahead densities. Their

corresponding PITs are obtained using the bootstrap procedure. The variance of α̂k,i and

the covariances in Λαi
and Ωk are computed by bootstrapping.7 In Table 6, we report the

7Results based on the asymptotic expression of the variances and covariances are very similar when
H = 50 and T = 1000 (H/T = 0.05) or T = 5000 (H/T = 0.01). When H = 500, the results are similar
if T = 5000 (H/T = 0.1). As mentioned above, in these cases, the parameter uncertainty is irrelevant.
These results are available upon request.
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size of the corresponding L5
αi

and C13
1 test statistics for H = 50 and H = 500. Increasing

H improves the size properties of the tests as far as the ratio H/T is still small. For

small estimation samples, the tests tend to be oversized but the size is corrected when the

estimation and evaluation samples are larger.8

8Results for the t-tests are reported in Table E of the supplementary material. For small estimation
sizes, the test tends to be oversized for the middle autocontours. When T is relatively large and H/T is
small, the empirical size is about 5%.

28



Table 6

Monte Carlo size results for out-of-sample L5
αi

and C1 statistics. The DGP is yt = 0.95yt−1 + εt and εt ∼ N(0, 1).
The nominal size is 5%, H = 50 (Panel A) and H = 500 (Panel B).

L5
0.01 L5

0.05 L5
0.1 L5

0.2 L5
0.3 L5

0.4 L5
0.5 L5

0.6 L5
0.7 L5

0.8 L5
0.9 L5

0.95 L5
0.99 C13

1

T Panel A

50 0.116 0.113 0.096 0.083 0.070 0.072 0.090 0.091 0.108 0.108 0.121 0.117 0.147 0.086
100 0.100 0.075 0.084 0.050 0.039 0.051 0.062 0.080 0.107 0.105 0.116 0.136 0.094 0.078
300 0.120 0.080 0.068 0.059 0.066 0.073 0.069 0.070 0.077 0.091 0.118 0.139 0.087 0.071
1000 0.124 0.081 0.075 0.072 0.067 0.063 0.079 0.075 0.090 0.103 0.126 0.151 0.074 0.079
5000 0.093 0.077 0.054 0.058 0.053 0.062 0.063 0.062 0.073 0.079 0.116 0.161 0.090 0.064

Panel B

50 0.119 0.092 0.088 0.087 0.082 0.087 0.085 0.070 0.076 0.084 0.093 0.107 0.107 0.057
100 0.100 0.076 0.079 0.066 0.078 0.067 0.065 0.060 0.073 0.074 0.102 0.111 0.115 0.047
300 0.094 0.069 0.070 0.057 0.056 0.052 0.066 0.059 0.066 0.059 0.081 0.102 0.197 0.062
1000 0.074 0.063 0.059 0.055 0.060 0.059 0.065 0.056 0.075 0.068 0.081 0.090 0.164 0.065
5000 0.056 0.054 0.049 0.058 0.047 0.058 0.057 0.053 0.053 0.051 0.077 0.113 0.127 0.050
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Finally, we study the finite sample power of the out-of-sample one-step-ahead tests.

With this purpose, we generate R = 1000 replicates from the AR(2) model in (14) and

from the AR(1)-GARCH(1,1) model in (16). Under the null hypothesis, we estimate an

AR(1) process without drift. In Table 7, we report the power of the t1,αi
test when the DGP

is the AR(2) model and H = 500. For small estimation samples (T = 50, 100), the power

is high in the middle 20%-70% autocontours. As the estimation sample grows, the power

reaches 1 for most autocontours. When the information is accumulated either over several

lags or over several quantiles, as in the L5
αi

and C13
1 tests (Table 9, Panel A), the power is

very high even for small estimation samples. We report the power results of the t1,αi
tests

corresponding to the AR(1)-GARCH(1,1) in Table 8 with H = 500. We observe a similar

behavior as in the in-sample tests. The information on heteroscedasticity is contained in

the lower 1% and 5% autocontours and large estimation samples are required. In Panel

B of Table 9, we observe an acceptable power of around 60% for the C13
1 statistic for

estimation samples of T = 300 and above. The test L5
αi

delivers similar power for the

lowest 1% autocontour and for the highest 95-99% autocontours. It is important to note

that in-sample tests are expected to be more powerful than out-of-sample tests; see, for

example, Inoue and Kilian (2005).
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Table 7

Monte Carlo power results for out-of-sample t1,αi
. The DGP is the AR(2) model and εt ∼ N(0, 1). The nominal size is 5% and H = 500.

T αi 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99
50

α̂k,i 0.000 0.002 0.008 0.038 0.100 0.193 0.305 0.430 0.559 0.692 0.829 0.898 0.948
std (0.001) (0.003) (0.008) (0.021) (0.038) (0.059) (0.079) (0.095) (0.102) (0.098) (0.083) (0.068) (0.049)
σ̄∗
αi

0.024 0.043 0.056 0.069 0.077 0.083 0.086 0.086 0.084 0.078 0.064 0.051 0.036
power 0.000 0.030 0.450 0.764 0.809 0.745 0.653 0.526 0.418 0.327 0.234 0.212 0.211

100
α̂k,i 0.000 0.002 0.010 0.047 0.115 0.211 0.324 0.449 0.579 0.711 0.845 0.914 0.967
std (0.000) (0.003) (0.007) (0.019) (0.032) (0.047) (0.059) (0.069) (0.076) (0.073) (0.060) (0.047) (0.030)
σ̄∗
αi

0.012 0.026 0.037 0.049 0.056 0.061 0.064 0.064 0.063 0.057 0.045 0.035 0.021
power 0.000 0.415 0.874 0.956 0.952 0.898 0.795 0.644 0.482 0.353 0.261 0.226 0.196

300
α̂k,i 0.000 0.002 0.011 0.055 0.129 0.229 0.344 0.469 0.599 0.730 0.859 0.925 0.978
std (0.000) (0.002) (0.006) (0.015) (0.023) (0.033) (0.040) (0.046) (0.049) (0.047) (0.038) (0.028) (0.015)
σ̄∗
αi

0.007 0.016 0.023 0.032 0.038 0.042 0.044 0.044 0.043 0.038 0.029 0.022 0.012
power 0.000 0.999 1.000 1.000 1.000 0.991 0.951 0.832 0.665 0.444 0.310 0.244 0.194

1000
α̂k,i 0.000 0.002 0.012 0.058 0.134 0.237 0.355 0.482 0.610 0.739 0.866 0.930 0.982
std (0.000) (0.002) (0.006) (0.012) (0.019) (0.026) (0.033) (0.038) (0.039) (0.036) (0.029) (0.022) (0.011)
σ̄∗
αi

0.005 0.013 0.018 0.026 0.031 0.034 0.035 0.035 0.033 0.029 0.023 0.017 0.008
power 0.149 1.000 1.000 1.000 1.000 1.000 0.985 0.898 0.736 0.521 0.349 0.258 0.205

5000
α̂k,i 0.000 0.002 0.012 0.059 0.139 0.239 0.358 0.484 0.614 0.741 0.869 0.933 0.985
std (0.000) (0.002) (0.005) (0.012) (0.018) (0.023) (0.028) (0.033) (0.033) (0.030) (0.025) (0.018) (0.009)
σ̄∗
αi

0.005 0.012 0.017 0.023 0.028 0.030 0.031 0.031 0.029 0.026 0.020 0.014 0.007
power 0.813 1.000 1.000 1.000 1.000 1.000 1.000 0.961 0.802 0.608 0.385 0.246 0.187
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Table 8

Monte Carlo power results for out-of-sample t1,αi
. The DGP is the AR(1)-GARCH(1,1) model with εt ∼ N(0, 1). The nominal size is 5%

and H = 500.

T αi 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99
50

α̂k,i 0.030 0.070 0.115 0.213 0.323 0.432 0.537 0.630 0.718 0.800 0.875 0.912 0.943
std (0.022) (0.036) (0.047) (0.063) (0.082) (0.098) (0.109) (0.114) (0.110) (0.100) (0.083) (0.069) (0.054)
σ̄∗
αi

0.011 0.027 0.038 0.053 0.062 0.068 0.070 0.071 0.069 0.064 0.053 0.044 0.033
power 0.388 0.183 0.119 0.090 0.118 0.148 0.198 0.219 0.243 0.248 0.193 0.228 0.289

100
α̂k,i 0.028 0.069 0.114 0.210 0.314 0.421 0.525 0.625 0.719 0.808 0.889 0.929 0.963
std (0.019) (0.030) (0.039) (0.053) (0.064) (0.079) (0.087) (0.091) (0.090) (0.084) (0.068) (0.054) (0.037)
σ̄∗
αi

0.009 0.021 0.032 0.045 0.052 0.057 0.058 0.057 0.054 0.049 0.040 0.031 0.020
power 0.464 0.228 0.128 0.059 0.078 0.143 0.180 0.213 0.246 0.280 0.263 0.209 0.290

300
α̂k,i 0.026 0.067 0.113 0.207 0.308 0.413 0.519 0.619 0.718 0.811 0.899 0.943 0.977
std (0.015) (0.025) (0.032) (0.040) (0.048) (0.058) (0.066) (0.069) (0.069) (0.065) (0.052) (0.040) (0.024)
σ̄∗
αi

0.006 0.016 0.024 0.034 0.040 0.044 0.045 0.043 0.040 0.035 0.027 0.021 0.011
power 0.551 0.281 0.135 0.066 0.065 0.120 0.169 0.214 0.265 0.305 0.314 0.300 0.271

1000
α̂k,i 0.025 0.067 0.112 0.205 0.305 0.410 0.515 0.617 0.716 0.813 0.905 0.950 0.985
std (0.012) (0.019) (0.024) (0.030) (0.035) (0.041) (0.046) (0.049) (0.051) (0.049) (0.040) (0.031) (0.017)
σ̄∗
αi

0.005 0.013 0.019 0.028 0.033 0.035 0.036 0.035 0.033 0.029 0.022 0.016 0.008
power 0.587 0.317 0.151 0.059 0.073 0.097 0.127 0.198 0.238 0.286 0.298 0.304 0.206

5000
α̂k,i 0.024 0.066 0.110 0.202 0.303 0.408 0.513 0.617 0.716 0.814 0.908 0.954 0.989
std (0.012) (0.018) (0.022) (0.026) (0.031) (0.036) (0.041) (0.045) (0.047) (0.045) (0.036) (0.027) (0.013)
σ̄∗
αi

0.005 0.012 0.017 0.024 0.029 0.031 0.032 0.031 0.030 0.026 0.020 0.014 0.007
power 0.632 0.330 0.148 0.065 0.066 0.087 0.133 0.189 0.244 0.302 0.320 0.316 0.124
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Table 9

Monte Carlo power results for out-of-sample L5
αi

and C1 statistics with H = 500. The DGPs are: the AR(2) model
with εt ∼ N(0, 1) (Panel A); and the AR(1)-GARCH(1,1) model with εt ∼ N(0, 1) (Panel B). The nominal size is
5%.

L5
0.01 L5

0.05 L5
0.1 L5

0.2 L5
0.3 L5

0.4 L5
0.5 L5

0.6 L5
0.7 L5

0.8 L5
0.9 L5

0.95 L5
0.99 C13

1

Panel A

50 0.288 0.773 0.978 1.000 1.000 1.000 1.000 1.000 0.987 0.919 0.713 0.521 0.348 0.596
100 0.418 0.928 0.999 1.000 1.000 1.000 1.000 1.000 0.996 0.964 0.751 0.526 0.297 0.728
300 0.565 0.999 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.980 0.827 0.573 0.415 0.989
1000 0.691 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.986 0.832 0.602 0.385 1.000
5000 0.721 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.987 0.845 0.624 0.327 1.000

Panel B

50 0.371 0.150 0.111 0.096 0.122 0.128 0.157 0.189 0.223 0.259 0.377 0.448 0.528 0.385
100 0.445 0.185 0.122 0.087 0.092 0.118 0.153 0.186 0.242 0.297 0.378 0.500 0.558 0.495
300 0.525 0.242 0.110 0.088 0.095 0.108 0.132 0.164 0.252 0.341 0.441 0.491 0.599 0.569
1000 0.569 0.238 0.126 0.077 0.071 0.078 0.097 0.170 0.239 0.360 0.479 0.500 0.503 0.573
5000 0.602 0.277 0.115 0.064 0.071 0.079 0.113 0.161 0.231 0.322 0.484 0.551 0.412 0.600

33



6 Empirical application: Modeling VIX

There is an increasing interest in modeling and forecasting the volatility index VIX from the

CBOE. The VIX was originally computed as the weighted average of the implied volatilities

from eight at-the-money call and put options of the S&P100 index with an average time

to maturity of 30 days. In 2003, the VIX was entirely revised by changing the reference

index to the S&P500 index, taking into account a wide range of strike prices with the

same time to maturity, and freeing its calculation from any specific option pricing model;

see Whaley (2009) for a history of the VIX and Fernandes et al. (2014) for a detailed

description of the VIX calculation. The recent development of volatility-based derivative

products generates an interest on predictive densities of volatility. Intuitively, risk averse

investors must take into account not only the expected value of the payoffs, which can be

obtained from the conditional mean forecasts, but also the risk involved, which necessarily

depends on features of the conditional density. In the context of VIX, Konstantinidi and

Skiadopoulos (2011) implement the bootstrap procedure of Pascual et al. (2004) to obtain

forecast intervals for the VIX that are then used in a trading strategy. Konstantinidi et al.

(2008) and Psaradellis and Sermpinis (2016) also compare several specifications of the VIX

for trading purposes.

It is commonly accepted that the VIX display long-memory; see, for example, Kon-

stantinidi et al. (2008) and Fernandes et al. (2014). Consequently, several authors propose

variants of the simple and easy-to-estimate long-memory Heterogeneous Autoregressive

(HAR) model of Corsi (2009) to represent and predict the VIX; see Fernandes et al. (2014),

Caporin et al. (2016) and Psaradellis and Sermpinis (2016). Alternatively, Menćıa and

Sentana (2016) propose modeling the persistence of the VIX using the Multiplicative Error

Model (MEM) of Engle and Gallo (2006) with a semi-nonparametric expansion of the

Gamma distribution.

In this section, we implement the BG-ACR tests to one-step-ahead in-sample conditional

densities obtained after fitting the HAR and MEM models to Vt, the daily VIX index,

observed from January 2, 1990 to January 15, 2013 with a total of 5807 observations.

Fernandes et al. (2014), who analyze the same series, show that the null hypothesis of a

unit-root is clearly rejected and find strong evidence of long-memory. Consequently, the
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following HAR model is fitted to yt = log Vt
9

yt = φ0 + φ1yt−1 + φ5ȳt−1:5 + φ10ȳt−1:10 + φ22ȳt−1:22 + φ66ȳt−1:66 + εt, (22)

where ȳt:i = i−1
i−1∑
j=0

yt−j and εt is an independent white noise sequence. Note that the

HAR model in equation (22) is an AR(66) model reparameterized in a parsimonious way

by imposing economically meaningful restrictions. As in Corsi (2009), the parameters in

equation (22) are estimated by OLS. Standard OLS regression estimators are consistent

and normally distributed. In order to account for the possible presence of serial correlation

in the data, the Newey-West covariance correction for serial correlation can be employed10.

We compute the in-sample bootstrap conditional densities as described in Section 3.

In Figure 3, we plot kernel estimates of the bootstrap densities (solid lines) at different

moments of time together with the corresponding normal density (dashed lines). We

observe that not only the location but also the variance of the densities of the log-VIX

change over time. When compared with the normal densities, we also observe large

distortions. The boostrap densities are more peaked than the normal densities and they

are rightly skewed.

After computing the in-sample PITs, we plot the pairs (ut,ut−1) in Figure 4 (first

row) together with 20% and 80% autocontours. We observe that they are not uniformly

distributed on the unit square. There is a concentration of PITs in the left and right

top corners, suggesting that conditional heteroscedasticity has not been modeled when

computing the conditional densities for log-VIX. For comparison purposes, we also plot

pairs of the PITs computed as in González-Rivera and Sun (2015) assuming that the errors

are Gaussian (second column of Figure 4). We observe a concentration of pairs in the central

section of the unit-square, suggesting that the HAR model is misspecified if Gaussian errors

are assumed.

We formally test the null hypothesis of correct specification of the HAR model for the

log-VIX. In Table 10, we report the sample proportions, α̂k,i, and the in-sample BG-ACR

statistics t1,αi
, L5

αi
and C13

1 . We observe that the specification is strongly rejected from

9Fernandes et al. (2014) include explanatory variables in equation (22). However, we stick to an
univariate model to simplify the implementation of the proposed testing procedure.

10Estimated parameters and residual diagnostics are reported in the supplementary material
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the 30% to the 99% autocontours by the t1,αi
and L5

αi
statistics. The C13

1 statistic, which

is computed adding information of all autocontours, rejects H0 at 1% significance level.

Therefore, as suggested in Figure 4, the basic HAR model is not adequate to model the

conditional densities of the daily log-VIX. In Table 10, we also report the corresponding

tests assuming Gaussian errors. As expected from the information contained in Figure 4,

the null is strongly rejected for almost all autocontours, with the statistics being much

larger than those of the BG-ACR tests. Therefore, the overall conditional density model,

i.e. dynamics and conditional normality, provided by the HAR specification of the log-VIX

is strongly rejected.
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Figure 3: In-sample one-step-ahead densities obtained after fitting the HAR model (first
row), the HAR-GJR model (second row) and the MEM model (third row) at three moments
of time: April 6,1990 (first column), November 25,1997 (second column) and October
29,2009 (third column). The solid lines represent the bootstrap densities and the dashed
lines represent the normal density for the HAR and HAR-GJR models and the GSNP
density for the MEM model.
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Figure 4: Pairs (ut, ut−1) and autocontours for the HAR model (first line), HAR-GJR
model (second line) and MEM (third line). The PITS are obtained with the bootstrap
procedure (first column) and assuming Gaussian errors for the HAR models and the GSNP
distribution for the MEM (second column). ACR20%,1 corresponds to the black box and
ACR80%,1 to the red box.
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Table 10

In-sample G-ACR and BG-ACR tests for HAR and HAR-GJR models fitted to log-VIX and MEM model fitted to VIX. *, **, *** indicate that H0 is rejected at 10%, 5% and 1%

levels of significance, respectively.

HAR

αi 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

BG-ACR

α̂k,i 0.010 0.053 0.103 0.205 0.308 0.409 0.514 0.610 0.707 0.804 0.899 0.950 0.989

|t1,αi
| |0.377| |1.204| |1.147| |1.489| |2.190|∗∗ |2.721|∗∗∗ |4.720|∗∗∗ |4.232|∗∗∗ |3.018|∗∗∗ |2.039|∗∗ -0.333 0.145 -1.021

L5
αi

8.654 2.595 6.522 7.004 9.367∗ 9.033 27.702∗∗∗ 22.698∗∗∗ 15.490∗∗∗ 10.001∗ 5.468 18.588∗∗∗ 21.017∗∗∗

C13
1 36.747∗∗∗

G-ACR

α̂k,i 0.005 0.037 0.093 0.228 0.367 0.489 0.596 0.684 0.764 0.837 0.895 0.927 0.969

|t1,αi
| |3.93|∗∗∗ |5.02|∗∗∗ |2.08|∗∗ |6.30|∗∗∗ |12.69|∗∗∗ |16.98|∗∗∗ |17.85|∗∗∗ |16.02|∗∗∗ |13.51|∗∗∗ |7.87|∗∗∗ |1.21| |7.56|∗∗∗ |12.54|∗∗∗

L5
αi

30.30∗∗∗ 73.09∗∗∗ 23.12∗∗∗ 51.01∗∗∗ 193.75∗∗∗ 321.82∗∗∗ 343.19∗∗∗ 284.29∗∗∗ 201.29∗∗∗ 71.28∗∗∗ 7.22 66.05∗∗∗ 198.36∗∗∗

C13
1 881.66∗∗∗

HAR-GJR

BG-ACR

α̂k,i 0.008 0.052 0.105 0.205 0.306 0.405 0.508 0.602 0.698 0.800 0.901 0.947 0.990

|t1,αi
| |1.699|∗ 0.798 1.453 1.246 1.530 1.335 |2.102|∗∗ |0.699| |1.033| |0.070| |0.463| |2.291|∗∗ |0.137|

L5
αi

5.518 3.384 5.964 5.150 7.991 5.920 6.888 1.903 3.480 3.530 7.249 7.468 5.558

C13
1 21.092∗

G-ACR

α̂k,i 0.005 0.042 0.102 0.236 0.363 0.475 0.576 0.666 0.742 0.812 0.892 0.930 0.970

|t1,αi
| |4.589|∗∗∗ |2.991|∗∗∗ |0.594| |7.265|∗∗∗ |11.343|∗∗∗ |12.749|∗∗∗ |12.518|∗∗∗ |11.466|∗∗∗ |7.590|∗∗∗ |2.415|∗∗ |1.974|∗∗ |6.464|∗∗∗ |10.775|∗∗∗

L5
αi

56.361∗∗∗ 28.913∗∗∗ 4.768 63.059∗∗∗ 144.393∗∗∗ 176.729∗∗∗ 179.438∗∗∗ 143.983∗∗∗ 69.193∗∗∗ 12.108∗∗ 9.264∗ 54.380∗∗∗ 131.270∗∗∗

C13
1 318.896∗∗∗

MEM

BG-ACR

α̂k,i 0.013 0.057 0.109 0.205 0.304 0.401 0.497 0.590 0.689 0.787 0.894 0.948 0.988

|t1,αi
| |2.450|∗∗ |2.410|∗∗ |2.492|∗∗ |1.444| |1.039| |0.188| |0.667| |2.086|∗∗ |2.383|∗∗ |3.179|∗∗∗ |1.852|∗ |1.252| |1.616|

L5
αi

16.861∗∗∗ 8.985 10.426∗ 6.305 11.192∗∗ 9.639∗ 6.895 8.528 9.276∗∗ 16.713∗∗∗ 6.479 17.387∗∗∗ 22.263∗∗∗

C13
1 18.511

G-ACR

α̂k,i 0.007 0.046 0.105 0.225 0.342 0.455 0.546 0.636 0.721 0.807 0.898 0.957 0.988

|t1,αi
| |2.578|∗∗∗ |1.397| |1.207| |4.187|∗∗∗ |6.252|∗∗∗ |7.549|∗∗∗ |6.004|∗∗∗ |4.881|∗∗∗ |3.081|∗∗∗ |1.076| |0.452| |3.488|∗∗∗ |1.298|

L5
αi

7.671 8.887 6.391 20.978∗∗∗ 40.934∗∗∗ 59.412∗∗∗ 36.800∗∗∗ 25.932∗∗∗ 12.606∗∗ 4.555 3.978 16.503∗∗∗ 5.035

C13
1 103.417∗∗∗
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Based on the information provided by the BG-ACR test and the autocontours plotted in

Figure 4, we incorporate asymmetric conditional heteroscedasticity, and fit the HAR-GJR

model in (22) with heteroscedastic εt as follows:

εt = σtat, (23)

σ2
t = ω0 + ω1ε

2
t−1 + ω2σ

2
t−1 + λ1(εt−1 < 0)ε2t−1,

where λ < 2(1−ω1−ω2), ω0 > 0 and ω1, ω2 ≥ 0 to guarantee the stationarity of εt and the

positiveness of the conditional variance. at is an independent white noise sequence with

variance 1; see Corsi et al. (2008), Bollerslev et al. (2009) and Huang et al. (2016) for

HAR-GARCH specifications in the context of realized volatility.11 The HAR-GJR model

is estimated by a two-step QML estimation, in which the HAR equation is estimated by

OLS and the GJR equation by QML maximizing the Gaussian log-likelihood function;

see McAleer et al. (2009) for the asymptotic properties of the QML estimator of the

ARMA-GJR model.12

In Figure 3 (second row), we plot the one-step-ahead in-sample bootstrap conditional

densities for three different dates. We observe that the locations of these densities are

similar to those obtained with the homoscedastic HAR model. The shapes of the bootstrap

densities, although still mildly asymmetric and slightly more peaked than the normal, are

becoming closer to normality. We also observe changes in the variance of the log-VIX.

These differences may have important implications for developing volatility-based derivative

products.

In Figure 4 (second row), we plot the PIT pairs (ut,ut−1) from the bootstrap conditional

densities (first column) and assuming conditional normality (second column). Comparing

both plots of PITs, we observe that, while they are uniformly distributed in the former

case, the normal PITs are still concentrated in some areas of the unit-square. In Table 10,

we report the corresponding statistics. The HAR-GJR model with bootstrap conditional

densities is not rejected while the HAR-GJR with normal conditional densities is strongly

11Note that these authors conclude that the distribution of at is better represented by a normal inverse
Gaussian (NIG) or a normal-mixture distributions.

12Corsi and Renò (2012) and Todorova (2015) propose alternative specifications of the leverage in the
context of HAR-GARCH models.
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rejected. This is a prime example of the power of the proposed tests because they are able

to use distributional properties of the error to enhance the testing of the dynamics of the

moments of interest, which in our case involves not only the specification of the conditional

mean but also the conditional variance of the log-VIX.

In addition to the HAR specification, we also consider the MEM model of Menćıa and

Sentana (2016) that deals directly with the untransformed VIX, i.e. Vt. Their specification

is the following, 13

Vt −∆ = µtεt, (24)

µt = ςt + st,

ςt = ϕ0 + ϕ1ςt−1 + ϕ2(Vt−1 −∆− µt−1),

st = (β1 + β2)st−1 + β1(Vt−1 −∆− µt−1),

where ϕ0 > 0, |ϕ1|, |ϕ2|, |β1|, |β2| < 1, β1 + β2 < 1 and ∆ is a constant shift introduced

to improve the fit by assigning zero probability to those events in which Vt < ∆. The

component ςt reverts to ϕ0/(1 − ϕ1), the unconditional mean of Vt−1, while st reverts

to zero. The noise εt is assumed to be i.i.d. whose density is given by the following

semi-nonparametric expansion of order 2 of the Gamma density (GSNP)

fGSNP (εt; ν, ψ, δ) =
1

Γ(ν)ψν
εν−1
t exp(−εt/ψ)

[
2∑

j=0

δj

(
ε

ψ

)j
]2

1

d
, (25)

where Γ(.) denotes the Gamma function, ν are the degrees of freedom, ψ =

d
[∑4

j=0 γj(δ)
Γ(ν+j+1)

Γ(ν)

]−1

is a scale parameter with d =
∑4

j=0 γj(δ)
Γ(ν+j)
Γ(ν)

being a constant

that ensures that the density integrates to 1, and γj(δ) =
∑min(j,2)

k=max(j−2,0) δjδj−k, where δj

are parameters to be estimated, such that δ0 = 1 and δ′δ = 1. The parameters of the

MEM model are estimated by maximum likelihood.14

13Menćıa and Sentana (2016) develop a theoretical framework to a dynamic portfolio allocation for
Exchange Traded Notes tracking short- and mid-term VIX futures indices. They model the distribution of
the future index returns conditional on past information and on the VIX, which in turn, is modeled by a
MEM process with a GSNP distribution for the innovations. They conclude that the fit of the VIX seems
to depend more on the assumed distribution whereas the fit of the futures prices seems to depend more on
the dynamics of the conditional mean of the MEM model.

14We use the values of the parameters estimated in Menćıa and Sentana (2016) as initial conditions for
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In Figure 3 (third row), we plot the one-step-ahead bootstrap conditional densities

(solid lines) together with the corresponding assumed GSNP densities (dashed lines) for

three different dates. It is important to note that the densities from the MEM model are not

directly comparable with those from the HAR models as the former are densities for VIX

while the latter correspond to log-VIX. However, the locations implied by the MEM model

are similar to those implied by the HAR models. We observe large differences between

the densities. The bootstrap densities are more skewed to the right and more peaked than

the GSNP densities. It seems that GSNP densities assign more probability mass to the

observations in the left tail.

In Figure 4 (third row), we plot the pairs of PITs (ut, ut−1) from the bootstrap

conditional densities (first column) and from the assumed GSNP density (second column).

We observe that the PITs obtained by the MEM-GSNP model are not uniformly distributed

on the unit-square surface. The G-ACR statistics reported in Table 10 confirm these

conclusions. The MEM-GSNP model is clearly rejected for almost all autocontours.

Regarding the PITs from the bootstrap densities, they seem to be more uniformly

distributed in the unit square though we observe some concentration of PITs in the corners,

which indicates that some additional conditional heteroscedasticity model may be needed.

In Table 10, the BG-ACR statistics t1,αi
indicate a mild rejection of the MEM model but

the portmanteau test C13
1 does not reject. The portmanteau test L5

αi
tend to reject MEM

only for the extreme autocontours.

In summary, we have found strong evidence against the standard parametric assump-

tions of the conditional densities of the HAR and MEM models for the VIX index. In both

cases, the true conditional density seems to be more skewed to the right and more peaked

than either normal or GSNP densities, with location and variance changing over time. We

have shown that bootstrap densities deliver good results for the testing of the density model

of the VIX index. The preferred specification is the heteroscedastic HAR-GJR model with

bootstrap conditional densities of the log-VIX.

our estimation. Estimation results are reported in the supplementary material.
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7 Conclusions

We have proposed an extension of the G-ACR tests of González-Rivera and Sun (2015) for

dynamic specification of a density model (in-sample) and for evaluation of forecast densities

(out-of-sample). Our contribution lies on computing the PITs from a bootstrapped

conditional density so that no assumption on the functional form of the density is needed,

yet the information on the bootstrap density contributes to the good properties of the

proposed tests. Furthermore, the bootstrap procedure directly incorporates parameter

uncertainty. Our proposed tests are easy to compute and have standard asymptotic

distributions that approximate well the finite sample distribution under the null. The

tests, which are powerful for detecting departures from the assumed conditional density,

are accompanied by a graphical tool that provides information on the potential sources of

misspecification.

The proposed approach is particularly useful to evaluate forecast densities when the

error distribution is unknown as, for example, in the context of multi-step forecasts in

nonlinear and/or non-Gaussian models. A very interesting application is the modeling of

the VIX index where several parametric conditional densities have been proposed. We have

evaluated the adequacy of conditional densities of the daily VIX index derived from the

HAR and MEM models. We have strongly rejected the standard parametric assumptions

of normality in the case of HAR model and of GSNP in the case of the MEM models. Our

results suggest that the most successful density model should take into account conditional

heteroscedasticity of the error for an adequate construction of the conditional densities

regardless of the specification used for the conditional mean.

Given that the proposed tests are based on the information contained in the vector

of PITs that eventually is condensed into an indicator, they could be extended into a

multivariate framework using the multivariate bootstrap procedures of Fresoli et al. (2015)

and Fresoli and Ruiz (2016) for VARMA and multivariate GARCH models, respectively.

It is also important to note that, in a multivariate context, the PITs with respect to a

multivariate conditional density are not longer independent and uniform even if the model is

correctly specified; see, for example, Chen and Hong (2014). In the context of multivariate

GARCH models, Bai and Chen (2008) propose evaluating the distribution by using the
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PITs of each individual component. However, this test may miss important information

on the joint distribution and, in particular, may fail to detect misspecification in the joint

dynamics.

Finally, the residual bootstrap implemented in this paper to obtain h-step-ahead

predictive densities can be modified in several directions. First, one can extend it to cope

with lag-order uncertainty of the ARMA lags by implementing the procedures of Kilian

(1998), Alonso et al. (2004, 2006) and Fenga and Politis (2011). Another alternative is

substituting the basic residual bootstrap to obtain the sample distribution of the parameters

by the subsampling procedure proposed by Hall and Yao (2003). Alternatively, one can

implement the block bootstrap based on resampling the likelihood proposed by Corradi

and Iglesias (2008). Although we do not expect the results to change qualitatively, the

asymptotic validity of the bootstrap could be easier to prove in the case of GARCH

errors. A very interesting research extension could be implementing the new bootstrap

approach proposed by Pan and Politis (2016) for bootstrap prediction intervals in linear

AR models. This new approach is computationally fast because it does not need to generate

pseudo-series alleviating the computational burden associated with bootstrapping to obtain

the parameter estimator distribution and the variance of the BG-ACR statistics.

SUPPLEMENTARY MATERIAL

Supplementary Tables: Tables A and B report Monte Carlos results on the in-sample

size of the BG-ACR tests when the DGP is the AR(1) with φ = 0.5 and εt ∼ N(0, 1).

Tables C and D report Monte Carlo results on the in-sample power of the BG-ACR

tests when the DGP is the AR(2) with εt ∼ N(0, 1). Table E reports Monte Carlo

results on the out-of-sample size of the BG-ACR tests when the DGP is the AR(1)

with φ = 0.95 and εt ∼ N(0, 1). Table F report estimation results of the parameters

of the HAR, HAR-GJR and MEM-GSNP models for the VIX index while Table G

reports the corresponding residual diagnosis together with descriptive moments of

the VIX. (Supplementary tables.pdf)
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Menćıa, J. and E. Sentana (2016). Volatility-related exchange traded assets: An

econometric investigation. Journal of Business & Economic Statistics, in press .

Mika, M. and P. Saikkonen (2011). Parameter estimation in nonlinear AR–GARCH models.

Econometric Theory 27 (6), 1236–1278.

Mitchell, J. and K. F. Wallis (2011). Evaluating density forecasts: Forecast combinations,

model mixtures, calibration and sharpness. Journal of Applied Econometrics 26 (6),

1023–1040.

Pan, L. and D. N. Politis (2016). Bootstrap prediction intervals for linear, nonlinear and

nonparametric autoregressions. Journal of Statistical Planning and Inference 177, 1–27.

Park, Y.-H. (2016). The effects of asymmetric volatility and jumps on the pricing of VIX

derivatives. Journal of Econometrics 192 (1), 313–328.

Pascual, L., J. Romo, and E. Ruiz (2004). Bootstrap predictive inference for ARIMA

processes. Journal of Time Series Analysis 25, 449–465.

Pascual, L., J. Romo, and E. Ruiz (2006). Bootstrap prediction for returns and volatilities

in GARCH models. Computational Statistics & Data Analysis 50, 2293–2312.

47



Psaradellis, I. and G. Sermpinis (2016). Modelling and trading the US implied volatility

indices. evidence from the VIX, VXN and VXD indices. International Journal of

Forecasting 32 (4), 1268–1283.

Reeves, J. J. (2005). Bootstrap prediction intervals for ARCH models. International

Journal of Forecasting 21 (2), 237–248.

Rosenblatt, M. (1952). Remarks on a multivariate transformation. The Annals of

Mathematical Statistics 23 (3), 470–472.

Rossi, B. and T. Sekhposyan (2013). Conditional predictive density evaluation in the

presence of instabilities. Journal of Econometrics 177, 199–212.

Rossi, B. and T. Sekhposyan (2016). Alternative tests for correct specification of conditional

predictive densities. Available at SSRN: https://ssrn.com/abstract=2283980 .

Shimizu, K. (2010). Bootstrapping Stationary ARMA-GARCH Models. Springer, Vieweg.

Shimizu, K. (2013). The bootstrap does not always work for heteroscedastic models.

Statistics & Risk Modeling 30 (3), 189–204.

Shimizu, K. (2014). Bootstrapping the nonparametric ARCH regression model. Statistics

& Probability Letters 87, 61–69.

Song, Z. and D. Xiu (2016). A tale of two option markets: Pricing kernels and volatility

risk. Journal of Econometrics 190 (1), 176–196.

Tay, A. S. and K. F. Wallis (2000). Density forecasting: A survey. Journal of Forecasting 19,

235–254.

Todorova, N. (2015). The course of realized volatility in the lme non-ferrous metal market.

Economic Modelling 51, 1–12.

Whaley, R. E. (2000). The investor fear gauge. Journal of Portfolio Management 26 (3),

12–17.

Whaley, R. E. (2009). Understanding the VIX. Journal of Portfolio Management 35 (3),

98–105.

48


