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Abstract

For a quarter century, a top priority in transportation economic theory has been to develop models

of rush-hour traffic dynamics that incorporate hypercongestion – situations of heavy congestion where

throughput decreases as traffic density increases. Unfortunately, even the simplest models along these

lines appear to be analytically intractable, and none of the models that have made approximations in

order to achieve tractability has gained widespread acceptance. This paper takes a different tack focusing

on a special case – the isotropic model with identical commuters and the α − β − γ cost function – for

which an analytical solution is possible. A complete, closed-form solution is presented for the no-toll

equilibrium in which departures and arrivals occur in masses, and the solution for the social optimum is

fully characterized.
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1 Introduction

Until a decade ago, there were no aggregate data on traffic congestion (flow, density, and velocity) at the

level of a downtown neighborhood or of the entire downtown area. Then, in a landmark paper, Geroliminis

and Daganzo (2008), using a combination of stationary and mobile (taxis) sensors, measured traffic flow and

density over a neighborhood of Yokohama, Japan essentially continuously over a period of weeks (see Figure

1). At this spatial scale, they found an inverse U-shaped relationship between traffic flow and density that

was stable over the course of the day, and across days, which they termed the neighborhood’s macroscopic

fundamental diagram (MFD). Subsequent research has documented the same qualitative result for downtown

areas in other cities, though the MFDs vary across neighborhoods within a downtown area and across the

downtown areas of different cities.
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Figure 1: Macroscopic fundamental diagram for three cities
Note: Each dot corresponds to an observation. Observations were made at regular intervals throughout the
business day and over days of the workweek

This research confirmed what many urban transportation economists and transportation scientists long

suspected, that hypercongestion – situations where traffic flow is negatively related to traffic density – is a

pervasive and quantitatively important feature of equilibrium rush-hour traffic dynamics at the scale of a

downtown area.

William Vickrey’s bottleneck model (1969) has been the workhorse model of metropolitan rush-hour traf-
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fic dynamics for a quarter century.1 While it has proved very adaptable and has generated a host of useful

insights, as a model of downtown rush-hour traffic dynamics it is flawed since it rules out hypercongestion,

assuming instead that under congested conditions aggregate traffic flow is constant. Urban transportation

economists have been searching for a model of rush-hour traffic dynamics that admits hypercongestion with-

out sacrificing the elegant simplicity of the bottleneck model. There is an obvious alternative “proper” model.

Unfortunately, it is in general analytically intractable. Some modelers have addressed this intractability by

making approximating assumptions, but none of these approximating models has been widely accepted,

partly because, without solution of the proper model, the accuracy of the approximations is unknown. This

paper takes a different tack, solving for the equilibrium and the optimum for a special case that is analytically

tractable.

To place this paper in context, we present the essentials of the alternative proper model, and explain

why the equilibrium is in general analytically intractable but tractable for the special case we consider. The

simplest variant of the alternative proper model describes an isotropic (spatially uniform) downtown area in

which a fixed number of identical commuters per unit area, N , have to travel a given distance, L, from home

to work over the morning rush hour. We term the class of models that considers an isotropic downtown area

as “the isotropic model”.2 The congestion technology conforms to the macroscopic fundamental diagram,

combining an assumed technological relationship in which traffic velocity, v, is inversely related to traffic

density per unit area, k (v = v(k), v′(k) < 0), with the fundamental identity of traffic flow, that flow per unit

area, q, equals velocity times density per unit area: q(k) = kv(k). A defining feature of no-toll rush-hour

traffic equilibrium is the Vickrey trip-timing equilibrium condition: that no commuter can reduce her trip

cost by altering her departure time. It is assumed that trip cost can be written as a function of departure

time and travel time:

c(t, T (t)) = c for all t ∈ D and c(t, T (t)) ≥ c for all t /∈ D, (1)

where c is the equilibrium trip cost, t is departure time, T (t) is equilibrium travel time as a function of

departure time, c(·) is the trip cost function, and D is the set of times at which departures occur. We

assume for the moment that c(·) has continuous partial derivatives. The physical relationship that the

integral of travel speed over the duration of a trip equal trip distance is

∫ t+T (t)

t

v(k(u))du = L. (2)

1Small (2015) offers a review of the bottleneck literature.
2This term is tentative since there is yet no consensus on terminology for this class of models.
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Note that this relationship holds at all times, not just times in the departure set. Differentiating (2) with

respect to t yields3

v
(
k
(
t+ T (t)

))(
1 + Ṫ (t)

)
= v
(
k(t)

)
. (3)

Differentiating (1) with respect to t gives

0 = ct(t, T (t)) + cT (t, T (t))Ṫ (t) for t ∈ D. (4)

Substituting the expression for Ṫ (t) from (4) into (3) yields

v
(
k
(
t+ T (t)

))
=

v
(
k(t)

)
1− ct(t,T (t))

cT (t,T (t))

for t ∈ D. (5)

which indicates what a commuter’s velocity needs to be at the end of her trip, as a function of her velocity at

the beginning of her trip, for the trip-timing condition to be satisfied. There is also the equation of motion

k̇(t) = e(t)− x(t),

where e(t) is the entry (or departure) rate per unit area and x(t) is the exit (or arrival) rate per unit area

at time t. There are also the constraints that e(t) > 0 for t ∈ D and e(t) = 0 for t /∈ D. Since the number of

commuters who have exited by time t + T (t), X(·), equals the number of commuters who have entered by

time t, E(·), we have

X(t+ T (t)) = E(t),

which implies that

x(t+ T (t))(1 + Ṫ (t)) = e(t).

Since there is a period at the beginning of the rush hour during which there are entries but no exits, and a

period at the end of the rush hour during which there are exits but no entries, the equation of motion may

3Consider two commuters, with commuter 2 departing an interval of time dt after commuter 1. For most of the trip they
travel on the road together at the same (time-varying) velocity. However, when commuter 2 enters the road, commuter 1 has
already traveled a distance v(k(t))dt. When commuter 1 exits the road, commuter 2 has this distance further to travel, which
takes her an amount of time dt′ = v(k(t))dt/v(k(t + T (t)). Since, commuter 2’s trip takes Ṫ (t)dt more time than commuter
1’s, dt′ = (1 + Ṫ (t))dt.
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be rewritten as

k̇(t) =


e(t) for t ∈ [t, t′)

e(t)− x(t) = e(t)− e
(
t− S(t)

)
(1− Ṡ(t)) for t ∈ [t′, t̄]

−x(t) = −e
(
t− S(t)

)
(1− Ṡ(t)) for t ∈ (t̄, t̄′]

(6)

where t, t′, t̄, and t̄′ are the times of the first entry, the first exit, the last entry, and the last exit, respectively,

and S(t) is the travel time4 for a commuter who arrives at time t.

The difficulty lies in determining an entry rate function over the rush hour that is consistent with (5) and

(6), the boundary conditions that k(t) is zero at the beginning and end of the rush hour, the conditions that

the entry rate is positive over the departure interval and zero outside it, and the condition that the integral

of the entry rate over the departure interval equals the exogenous population, N . Not a single example has

yet been found that has a closed-form or analytical solution.5 This is very disappointing since the isotropic

model is such a natural starting point for the study of downtown rush-hour traffic dynamics.

This paper investigates the special case of the isotropic model having the α− β − γ cost function. With

this cost function,6 for t ∈ D

Ṫ (t)

=
β

α− β
with early arrival

= − γ

α+ γ
with late arrival,

(7)

with α > β. Eqs. (3) and (7) together imply that, with the α− β − γ cost function, there is a discontinuous

increase in
v(k(t+ T (t)))

v(k(t))
at t′ ≡ t∗ − S(t∗). This requires that there be a departure mass at t′, an arrival

mass at t∗ or both. Since a departure mass at time t′ implies an arrival mass at t∗, and vice versa, both

occur. This observation gives rise to the conjecture that, with the α − β − γ cost function, there is an

equilibrium in which all departures occur in masses, which implies that all arrivals also occur in masses. The

analysis that follows confirms this conjecture. Furthermore, with departure masses, we obtain a closed-form

solution for equilibrium.

Thus, the motivation of the paper is as follows. In what seems to be the simplest and most natural model

4In terms of the arrival time, the conservation of cars is X(t) = E(t− S(t)), so that x(t) = e(t− S(t))(1− Ṡ(t)).
5To us at least, it is counterintuitive that the model is so difficult to solve. Imagine a road from A to B on which velocity is

constant along the road at a point in time but changes over time. One would think that knowing how trip duration varies over
time would provide enough information to solve analytically for how velocity varies over time. But such is not the case.

6With early arrival, c(t, T (t)) = αT (t) + β(t∗ − (t + T (t))), where α is the unit value of travel time, β is the unit value
of time early, and t∗ is the desired arrival time. Over any interval of the early morning rush hour over which departures are

continuous, the trip-timing condition implies that dc(t, T (t))/dt = 0, so that Ṫ (t) =
β

α− β
. Inserting this result into (5) gives

that v(k(t+T (t))) = [(α−β)/α]v(k(t)). Thus, over any interval of the morning rush hour over which departures are continuous,
a commuter’s velocity at the end of her trip is (α− β)/α times her velocity at the beginning of her trip.
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of equilibrium rush-hour traffic dynamics in a downtown area, an analytical solution of equilibrium is not in

general possible. Without an analytical solution, it is difficult to gain insight into the economic properties of

equilibrium. There is, however, a special case with an analytical solution. Studying this special case, which

entails departure masses, will hopefully provide economic insights that generalize.

Section 2 provides a brief review of the relevant literature. Section 3 presents the model and discusses

issues related to the existence and uniqueness of equilibrium in the model. Section 4 provides a detailed

analysis of equilibrium in the model. Section 5 presents a preliminary and incomplete analysis of the social

optimum in the model, and a preliminary and incomplete comparison of equilibrium and optimum. Section

6 discusses extensions, and section 7 concludes.

2 Literature Review

The importance of having a strong theoretical basis for designing policies to address rush-hour traffic con-

gestion has long been recognized. The literature on the subject derives from three classic articles. The first

is Beckmann et al. (1956), which derives static (steady-state) equilibrium on a traffic network in which travel

time on a link is an increasing function of the ratio of the volume (flow) to capacity on the link. The second

is Walters (1961), which both develops the economic theory of steady-state traffic congestion that we employ

today and introduces hypercongestion. The third is Vickrey (1969), which presents the bottleneck model.

Agnew (1976) presents a dynamic model in which the throughput of a congestion-prone system is a

strictly concave function of its load. In the context of rush-hour traffic dynamics, throughput is the exit rate

and load is traffic density. In that context, the model makes the simplifying assumption that the exit rate

depends only on traffic density and not on the time pattern of entries.7 It is surprising that the Agnew model

has not been widely used by transportation economists, since it may provide a good approximation to actual

rush-hour traffic dynamics when the average duration of a trip is short relative to the length of the rush

hour. In unpublished notes, Vickrey (1991) sketches a model, which Vickrey termed the “bathtub model” of

traffic congestion, that essentially adapts Agnew’s model to traffic congestion in Manhattan. Arnott (2013)

provides a formalization of Vickrey’s bathtub model that explicitly incorporates schedule delay costs and, in

the equilibrium variant, applies Vickrey’s equilibrium trip-timing condition. The paper shows that Agnew’s

assumption that the exit rate depends only on traffic density holds if trip distances have the same negative

exponential distribution over the rush hour, but also argues that this will generally not hold since trip-cost-

minimizing commuters will order themselves by trip distance, those with shorter trips traveling closer to the

peak.

7This assumption is supported by the empirical work by Geroliminis and Daganzo (2008) mentioned earlier.
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Several paper have modeled rush-hour traffic dynamics by extending the Vickrey bottleneck model so

that the capacity of the bottleneck depends on the length of the queue behind it. Most recently Fosgerau

and Small (2013) sidesteps the analytical intractability of a proper model by treating a discrete number

of capacity levels. Yet other papers avoid the intractability of the proper isotropic model by making the

approximation that a commuter’s travel time on a trip depends on the density of cars when the commuter

begins (Geroliminis and Levinson 2009) or ends (Small and Chu 2003) her trip.

None of the models that avoid the intractablity of the proper model by making approximating assumptions

has gained widespread acceptance. There are three grounds for criticizing an approximating assumption.

First, it may be “inconsistent with rational economic behavior”; this is a valid criticism since rational

behavior is necessary for sound welfare analysis. Second, it may be “inconsistent with the laws of physics”;

this is a valid criticism, though it needs to be made precise what laws of physics are violated and how. And

third, it may result in an inaccurate approximation; this is a potentially valid criticism, but to gauge the

inaccuracy of an approximation it is necessary to know the exact solution, and, remarkably, no one has yet

solved a proper model numerically.

The model of this paper is consistent with rational economic behavior. It also entails no approximations.

However, its congestion technology can be viewed as inconsistent with laws of physics. For one thing, when

a car enters the street system it is assumed to instantaneously travel at the velocity of the prevailing traffic,

which entails infinite acceleration, and when a car exits the road it is assumed to reduce its velocity from that

of the prevailing traffic to zero instantaneously, which entails infinite deceleration. This inconsistency is more

severe in our model since a departure mass entails a mass of cars simultaneously entering and immediately

traveling at the velocity consistent with the density of cars in the departure mass. To what extent these

physical inconsistencies cause the aggregate behavior of the model to be unrealistic is a matter of judgment.

Fosgerau (2015) is the only paper in the literature to date that works with the proper isotropic model

(which Fosgerau refers to as the bathtub model).8 In contrast to this paper, it specifies a trip cost function

that is sufficiently smooth that departure masses do not occur. Also, in contrast to this paper, the two

variants of the model that it explores treat heterogeneous commuters. In the first, drivers are heterogeneous

with respect to trip distance; in the second, they are heterogeneous with respect to both trip distance and

the analog in his model to desired arrival time. For both variants, “regular sorting” is assumed, under

8Fosgerau (2015) and Vickrey (1991) (with Arnott (2013) following Vickrey) use the term “bathtub” model in different
senses. In the hydrological literature, a bathtub model of a water table is so called since water is assumed to distribute itself
over space such that the height of the water table is the same everywhere, just as the surface of the water in a bathtub is flat.
Fosgerau (2015) refers to a bathtub model of traffic flow in this sense since traffic is assumed to distribute itself over space
such that traffic density is the same everywhere. Vickrey (1991) uses the term bathtub in a double sense to model rush-hour
traffic dynamics in Manhattan. First, Manhattan is shaped like a bathtub, and one may view Manhattan streets as filling up
with traffic in the early morning rush hour and then draining in the late morning rush hour. Second, the exit rate from traffic
depends on traffic density, just as the rate at which water flows out of a bathtub depends on the height of water in the bathtub.
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which drivers with longer trip distances both depart earlier and arrive later than those with shorter trips.

Under this assumption, the model can be formulated in terms of ordinary differential equations. In the first

variant, the paper obtains the strong result that the equilibrium and the optimum coincide. In the second

variant, among drivers with the same trip distance, a driver with an earlier desired arrival time departs and

arrives earlier than a driver with a later desired arrival time, and tolling is effective. The paper presents

numerical examples with hypercongestion in the equilibrium but none with hypercongestion in the social

optimum, which leads to the conjecture that hypercongestion does not arise with socially optimal rush-

hour traffic dynamics. How limiting the assumption of regular sorting is remains to be seen.9 The paper’s

analysis suggests, paradoxically, that the mathematics with a continuum of commuters who differ in terms

of a naturally ordered characteristic, such as trip distance or desired arrival time, may be easier than the

mathematics with identical individuals, by smoothing the problem.

The bottleneck model is remarkable in having gained almost universal currency. In contrast, none of the

models reviewed above has been widely adopted.

Trained in the spirit of microeconomics, transportation economic theorists have resisted solving models

exclusively using numerical analysis. Numerical examples are welcome to supplement and quantify theory

but not as a substitute for theoretical analysis. But to break the current logjam in the study of rush-hour

traffic dynamics with hypercongestion, it may be necessary to rely more heavily on numerical analysis.

Numerical analysis will provide exact solutions that can be used to determine the accuracy of alternative

approximating models. As well, numerical analysis can be used to generate empirical regularities that will

guide theory. It can be used, for example, to investigate whether the Fosgerau (2015) regularity condition

holds for most realistic rush-hour traffic conditions or only for a highly restricted subset. It can also be used

to resolve an important question that this paper does not answer. We show that, under our assumptions, an

equilibrium exists in which all departures occur in masses with contiguous travel time intervals, but do not

demonstrate uniqueness. Numerical analysis might generate an equilibrium that is different from the one we

identify.

3 The Basic Model and the Properties of its Equilibrium

3.1 The Basic Model

Throughout most of the paper we work with normalized units, while unnormalized variables, as well as

functions of unnormalized variables, are indicated with a ̂ . The model is spatial and its space is an

9Regular sorting implies that all drivers be on the road at the same time, which seems unrealistic for large cities.
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isotropic downtown area: home locations, job locations, and road capacity are uniformly distributed over

space.10 Per unit area, N̂ commuters must travel from home to work over the morning rush hour. All

commuters have the same commuting distance, L, and the same desired arrival time, t̂∗.

The form of congestion is flow congestion in which commuters’ velocity is decreasing in the density of

commuters. To simplify the algebra, Greenshields’ Relation is assumed, in which traffic velocity, v̂, is negative

linearly related to traffic density, k̂:

v̂ = vf

(
1− k̂

Ω

)
,

where vf is free-flow velocity and Ω is jam density. Thus, travel time per unit distance is

1

v̂
=

(
1

vf

)
Ω

Ω− k̂
.

Greenshields’ Relation has the properties that maximum or capacity flow occurs when traffic density equals

one-half jam density. Traffic is said to be congested at densities below this level and hypercongested at

densities above this level.

The physical relationship that trip distance equals the integral of velocity over trip duration is

∫ t̂+T̂ (t̂)

t̂

v̂(k̂(u))du = L, (8)

where t̂ is departure time, and T̂ (t̂) is travel time with departure time t̂.

The familiar α− β − γ trip cost function is employed:

ĉ = α(travel time) + β(time early) + γ(time late).

Where ĉ(t̂) is trip cost as a function of departure time:

ĉ(t̂) = αT̂ (t̂) + βmax(0, t̂∗ − t̂− T̂ (t̂)) + γmax(0, t̂+ T̂ (t̂)− t̂∗). (9)

We impose the standard condition that the unit cost of travel time exceeds the unit cost of time early, α > β.

In the morning rush hour, each commuter chooses when to depart from home so as to minimize her trip

price. A commuter’s trip price equals her trip cost plus the toll she pays.

Four other conditions complete the model. The first is the accumulation equation, that density at time t̂

equals cumulative entries at time t̂ minus cumulative exits at time t̂. Two other conditions are the boundary

10One may think of the downtown area as having a dense, grid network of streets extending infinitely in both the north-south
and east-west directions. Alternatively, one may think of the downtown area as covering the outside of a large torus. In either
case, space is isotropic so that there are no edge effects.
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conditions that density equal zero right before the start of the rush hour and right after the end of the rush

hour. Together these equations imply the conservation of vehicles. The fourth condition is that cumulative

exits at time t̂ + T̂ (t̂) equal cumulative entries at time t̂. Along with (8), this condition ensures that all

commuters have trip length L.

3.2 Equilibrium

A morning rush hour equilibrium is a time path of departures over the morning rush hour, and the induced

time paths of traffic density and arrivals over the morning rush hour, such that no commuter can reduce her

trip price by altering her departure time. When no toll is applied, we refer to this as a no-toll morning rush

hour equilibrium. “Trip price” in the definition of equilibrium may then be replaced by trip cost. Except

section 6, the paper focuses on the basic model in which commuters are identical – having the same α, β, γ,

L and t̂∗ – with no late arrivals admitted. Analytically, “admitting no late arrivals” is the limiting case as

the unit value of time late, γ, approaches infinity.

In the no-toll morning rush hour equilibrium with identical commuters, the trip-timing condition reduces

to the condition that trip cost is the same at all times at which there are departures and is at least as high

at all times at which there are no departures. Where D denotes the set of departure times at which there

are departures, this condition is

ĉ(t̂) = ĉ for all t̂ ∈ D and ĉ(t̂) ≥ ĉ for all t̂ /∈ D,

where ĉ(t̂) is given by (9).

3.3 Existence and Uniqueness of a No-Toll Morning Rush Hour Equilibrium

Even though the above model is simple, its mathematical structure is not. There are no off-the-shelf results

from the theory of integral/differential equations that can be applied to establish the existence and uniqueness

of equilibrium in the isotropic model. One reason is that the model gives rise to non-standard differential

equations11 (i.e., not ordinary differential equations) for which the literature on existence and uniqueness

of equilibrium is not as well developed as the corresponding literature on ordinary differential equations.

Another is that all theorems on existence and uniqueness of solutions to differential equations apply to

particular classes of functions (such as analytical functions) not to any function, and there is no good

11Differentiation of (3) gives v′(k(t + T (t)))k̇(t + T (t))(1 + Ṫ (t))2 + v(k(t + T (t))) ˙̇T (t) = v′(k(t))k̇(t). With Greenshields’

Relation, this simplifies to k̇(t+T (t))(1+ Ṫ (t))2−v(k(t+T (t)) ˙̇T (t)− k̇(t) = 0. Over the departure interval, trip cost is constant.

Taking this trip cost as a parameter, the functions T (t), Ṫ (t), and ˙̇T (t) are exogenous. Therefore the differential equation is a
delay differential equation with an endogenous delay.

10



justification for restricting our model’s equilibrium departure rate function to be a member of particular

class of functions. Thus, investigation of the existence and uniqueness of equilibrium in the basic model

requires ad hoc reasoning. In this subsection, we assume that no late arrivals are permitted.

Lemma 1. The last arrival must be at t̂∗.

Proof. Suppose not and that the last arrival is at t̂′ < t̂∗. A deviating commuter who departs a period of

time d̂t after the commuter who arrives at t̂′ will travel a distance v̂
(
k̂
(
t̂′ − S(t̂′)

))
d̂t after the commuter

who arrives at t̂′ completes her journey. Since she travels at free-flow speed over this distance, she arrives a

period of time
v̂

(
k̂
(
t̂′−S(t̂′)

))
d̂t

vf
less early than the commuter who arrives at t̂′. Since v̂

(
k̂
(
t̂′ − S(t̂′)

))
is less

than or equal to vf , the travel time of the deviating commuter is no greater than that of the commuter who

arrives at t̂′ while her schedule delay is less, which is inconsistent with the definition of equilibrium.

Let ˆ̄t denote the departure time corresponding to arrival at t̂∗.

Lemma 2. There is an arrival mass at t̂∗ and a corresponding departure mass at ˆ̄t.

Proof. Suppose not, so that there is neither an arrival mass at t̂∗ nor a departure mass at ˆ̄t. Then, since late

arrival is not admitted, k̂(t̂∗−) = 0. Either there are departures in the interval of time d̂t prior to ˆ̄t or there

are not. Consider first the case where there are departures in the interval of time prior to ˆ̄t. The condition

that trip cost be the same at ˆ̄t− d̂t as at ˆ̄t implies that

˙̂
T (ˆ̄t−) = β/(α− β).

Differentiating (8) with respect to t̂ and evaluating at ˆ̄t− gives

v̂
(
k̂
(ˆ̄t− + T̂ (ˆ̄t−)

))(
1 +

˙̂
T (ˆ̄t−)

)
= v̂
(
k̂(ˆ̄t−)

)
.

Since
˙̂
T (ˆ̄t−) = β/(α− β), and since ˆ̄t− + T (ˆ̄t−) = t̂∗−,

v̂
(
k̂(t̂∗−)

)[ α

α− β

]
= v̂(k̂(ˆ̄t−)),

which implies that v̂
(
k̂(t̂∗−)

)
< v̂(k̂(ˆ̄t−)). But since v̂

(
k̂(t̂∗−)

)
= vf is the maximum possible velocity, this

leads to a contradiction. This leaves the other case, in which there are no departures in the time interval

immediately prior to ˆ̄t. Let t̂′′ be the latest time prior to ˆ̄t at which there are departures. Since cars may

have exited the downtown street system between t̂′′ and ˆ̄t, and since no cars have entered the downtown

street system in this time interval, the travel time at t̂′′ must be at least as high as that at ˆ̄t. Since the
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schedule delay cost for departure at t̂′′ is strictly higher than that at ˆ̄t, the trip cost for departure at t̂′′ is

strictly higher than that at ˆ̄t, which is inconsistent with equilibrium.

A broad intuition is as follows. Since the last commuter to arrive faces no schedule delay cost, she must

face the highest travel time cost. If there were no arrival mass at t∗, the last commuter to arrive would

be traveling at free-flow velocity when at the end of her journey, which is inconsistent with her having the

highest travel time cost.

Lemmas 1 and 2 lead to Conjecture 1, that there is an equilibrium departure rate function with all

departures occurring in masses. Actually, we came to this conjecture by a different route. We noticed that

when the number of commuters is small relative to the capacity of the street system, a single departure

mass arriving at t̂∗ is an equilibrium. Any commuter departing after the mass arrives after t̂∗, which is not

is permitted. If the number of commuters is sufficiently small, any commuter who departs before the mass

experiences a schedule delay cost that is greater than the travel cost saving.

Lemmas 1 and 2 also lead to additional conjectures: Conjecture 2, that, among departure rate functions

in which all departures occur in masses, there is a unique equilibrium, and Conjecture 3, that this equilibrium

is in fact the unique equilibrium when no restrictions are put on the form of the departure rate function.

3.3.1 Conjecture 1

Conjecture 1 is that there is an equilibrium departure rate function with all departures occurring in masses.

Since we provide a proof by construction in the next section, here we just provide a heuristic argument.

t t*̂

n3n3
n3

n2
n3

n1

N

t3t1^t3t2^t3t3^

Figure 2: Three contiguous departure masses

Figure 2 displays an equilibrium with three departure masses. The departure masses are indexed such

12



that the departure mass arriving at t̂∗ is mass 1, the next latest departure mass is mass 2, etc. The travel

time intervals of the three masses are contiguous – they do not overlap and there is no travel time interval

between the travel time intervals of the masses. Thus, for example departure mass 1 departs immediately

after departure mass 2 arrives.

Letting n̂mi denote the size of departure mass i when there are m departure masses, the velocity of cars

in mass i is v̂mi = vf

(
1− n̂mi

Ω

)
. The travel time of a commuter in mass i is trip distance divided by velocity,

T̂mi =
(
L
vf

) [
Ω

Ω−n̂mi

]
. The trip cost of a commuter in mass i is the unit cost of travel time multiplied by

travel time in mass i plus the unit cost of time early multiplied by the time early, which equals the sum of

the travel times of all later departure masses, ĉmi = αT̂mi + β
∑i−1
j=1 T̂

m
i . In equilibrium the trip cost of all

the masses is the same and the trip cost of a commuter who departs before the earliest departure mass is

greater than the common trip cost in the masses.

The departure function displayed in Figure 2 is an equilibrium. If a commuter deviates by departing after

the latest departure mass, she arrives late, which is not permitted. If she deviates by departing between

two departure masses, her trip cost is a weighted average of the trip cost associated with traveling in each

departure mass, and since those trip costs are the same so is their weighted average. If she deviates by

departing before the earliest departure mass, her trip cost is strictly higher than the equilibrium trip cost.

Extending the argument to an arbitrary number of departure masses confirms Conjecture 1. Thus, we have

Theorem 1. In the isotropic model with identical individuals, no late arrivals allowed, and a cost function

that is linear in travel time and time early, for any set of parameter values there exists a “restricted”

equilibrium, where “restricted” entails all departures occurring in departure masses with contiguous travel

time intervals.

3.3.2 Conjectures 2 and 3

Conjecture 2 is that, among departure rate functions in which all departures occur in masses, there is a

unique equilibrium, which is the unique restricted equilibrium.

Lemma 3. In the no-toll equilibrium, there can be no time interval in the interior of the rush hour with no

cars on the road.

Proof. Suppose not, and that a departure configuration such as that displayed in Figure 3 is an equilibrium.

Consider a deviating commuter who departs an interval of time d̂t after the departure mass at t̂22. The

deviating commuter travels most of her journey with the departure mass. When the departure mass exits

she has a distance v̂
(
k̂(t̂22)

)
d̂t left to travel, which she does at free-flow speed. Not only is her trip duration

13



lower than the trip duration of those traveling in the departure mass but also her schedule delay is lower,

which is inconsistent with the equal trip-cost condition.

t t*

N

^

n2

n2n2

n1

t2t2 t2t1^
^

Figure 3: Two departure masses with an interval with no cars on the road during the rush hour

We now investigate whether, in the no-toll equilibrium, the travel time intervals of different departure

masses may overlap. Unfortunately, we have not been able to resolve the issue one way or the other, though

we do have a negative result for two departure masses.

n2n1

n2n1

n2n2

t t*

N

^t2t2
^ t2t1^

Figure 4: Two departure masses with both masses on the road for part of the rush hour

Lemma 4. Two departure masses with overlapping travel time intervals is inconsistent with equilibrium.

Proof. With two departure masses with overlapping travel time intervals, the rush hour is described by three

intervals, as shown in Figure 4. To avoid confusing intervals and departure masses, we shall refer to the
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three intervals in terms of time – earliest, middle, and latest. Only commuters who depart in departure mass

2 travel in the earliest interval, all commuters travel in the middle interval, and only commuters in mass 1

travel in the latest interval. To ease burden of notation, we normalize units so that α = 1, L = 1, vf = 1,

and Ω = 1. We also set θ = β
α , which by assumption is less than 1, and N = N̂

Ω . Let δ be the proportion

of the commuting distance traveled by all commuters in the middle interval. Commuters in departure mass

1 incur a normalized cost of δ
1−N for travel in the middle interval and 1−δ

1−n2
1

for travel in the latest interval.

Commuters in departure mass 2 incur a normalized cost of δ
1−N for travel in the middle interval and 1−δ

1−n2
2

for travel in the earliest interval, and incur schedule delay equal to the duration of the latest interval, at a

cost of θ(1−δ)
1−n2

1
. The condition that commuters in the two departure masses incur the same cost is

c =
1− δ

1− n2
2

+
δ

1−N
+
θ(1− δ)
1− n2

1

=
δ

1−N
+

1− δ
1− n2

1

. (10)

This requires that N ∈ (θ, 1). If N < θ then the n2
2 that solves (10) is negative, which is inconsistent with

equilibrium. And if N > 1, density in the middle interval would exceed jam density, which is inconsistent

with equilibrium. Now consider a deviating commuter who travels a distance δ solo before joining the

commuters in departure mass 2, with whom she travels a distance 1 − δ. She travels the distance δ solo at

velocity 1 and the remaining distance (1− δ) at velocity
1

1− n2
2

, and her schedule delay is
δ

1−N
+

1− δ
1− n2

1

for a trip cost of

c′ = δ +
θδ

1−N
+

1− δ
1− n2

2

+
θ(1− δ)
1− n2

1

.

Thus,

c′ − c =
δ(N − θ)

1−N
, (11)

so that her trip cost is lower than that of the other commuters if N ∈ (θ, 1). Thus for all values of N the

configuration shown in Figure 4 is inconsistent with equilibrium.

Consider a downtown area where N is growing over time, and assume that all departures occur in masses.

Initially, there is a single departure mass. As N grows, a critical N , which is derived in the next section, is

reached at which a second departure mass forms. Per Lemma 4, in equilibrium these departure masses have

contiguous travel time intervals. As N grows further, another critical N is reached at which a third departure

mass forms. Assuming that the travel time intervals associated with the first two departure masses remain

contiguous, the line of reasoning employed above can be applied to establish that the travel time interval of

the third departure mass is contiguous to that of the second departure mass, and so on.

This observation is consistent with Conjecture 2 but does not establish it, since the definition of equilib-
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n3n1n3n2

Case 4

Figure 5: Four possible departure patterns for three departure masses

rium is a static one and makes no reference to adjustment dynamics or stability. A logical next step is to

investigate whether an equilibrium exists with three departure masses with overlapping travel time intervals.

Figure 5 displays the mutually exclusive and collectively exhaustive qualitative departure patterns for three

masses with at least one overlapping travel time interval and no interval with no cars on the road.

Case 1 t̂33 < t̂3
′

3 = t̂32 < t̂31 < t̂3
′

2 < t̂3
′

1

Case 2 t̂33 < t̂32 < t̂3
′

3 < t̂31 = t̂3
′

2 < t̂3
′

1

Case 3 t̂33 < t̂32 < t̂3
′

3 = t̂31 < t̂3
′

2 < t̂3
′

1

Case 4 t̂33 < t̂32 < t̂3
′

3 < t̂31 < t̂3
′

2 < t̂3
′

1

This is as far as we have proceeded. One possibility is that all these cases can be eliminated as possible

equilibria and that the arguments used to establish this can be applied to eliminate as possible equilibria
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patterns with more than three departure masses and at least one overlapping travel time interval. If this

can be established, then applying the arguments in the limit as the number of departure masses approaches

infinity would confirm Conjecture 2. Another possibility is that there exists an equilibrium with three

departure masses and at least one overlapping travel time interval, which would disprove the conjecture.

The final possibility is that examination of these cases is inconclusive – all the above cases can be eliminated

as possible equilibria, but the arguments used to establish this cannot be applied to patterns with more than

three departure masses and at least one overlapping travel time interval. Conjecture 3 will be even more

difficult to prove or disprove.

In the remainder of the paper, we restrict analysis to the situation where the travel time intervals

associated with each departure mass are contiguous. In the next section, we prove by construction that for

all (positive) parameter values for which α > β a restricted equilibrium exists and is unique.

4 (No-toll) Equilibrium with Identical Individuals

A traffic equilibrium is a distribution of departure rates from home such that no commuter can reduce her

trip price by altering her departure time. A no-toll traffic equilibrium is a traffic equilibrium in which no toll

is applied. In this section, we assume that individuals are identical and that no late arrivals are admitted;

these assumptions are relaxed in section 6. Because it is central to this paper we highlight the following

assumption:

Assumption 1. The departure pattern takes the form of non-overlapping and contiguous time intervals over

which each corresponding departure mass travels from home to work, with the latest departure mass arriving

exactly on time.

We define a restricted equilibrium to be an equilibrium, conditional on departures satisfying assumption

1. In what follows, we shall demonstrate by construction that a restricted equilibrium exists.

4.1 Equilibrium with One or Two Departure Masses

Consider a city with a small population density relative to its road capacity, in fact sufficiently small that

in equilibrium all commuters depart at the same time in a single departure mass and arrive at work exactly

on time. No commuter has an incentive to depart earlier since the decrease in travel time cost from doing

so is more than offset by the increase in schedule delay cost. As population density increases, there is a

critical value above which a commuter has an incentive to depart earlier than the mass. At this population

density, equilibrium switches from having one departure mass to having two departure masses, and at a
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higher critical population density equilibrium switches from having two departure masses to three, etc.

Let m denote the number of departure masses, and i index a departure mass. Departure masses are

indexed in reverse order of departure time; thus, the latest mass to depart, which arrives on time, has the

index i = 1. This may seem counterintuitive, but the indexation is chosen so that the index of the departure

mass that arrives on time does not change as the number of departure masses changes. Let ĉmi (N̂) be the

trip cost of each commuter in mass i when there are m departure masses and the population density is N̂ ,

n̂mi (N̂) be the number of commuters in the ith departure mass with population density N̂ , ĉe(N̂) be the

equilibrium trip cost with population density N̂ , and N̂e
m,m+1 be the critical population density at which

equilibrium switches from having m to m+ 1 departure masses.

4.1.1 One departure mass

Since there is only the one departure mass, n̂1
1 = N̂ . Also, since this departure mass arrives on time,

commuters experience no schedule delay cost. Travel time is trip distance, L, divided by velocity,

v̂ = vf

(
1− N̂

Ω

)
,

and trip cost equals travel time times the value of travel time, α. Thus,

c11(N) =
αL

v̂
=

αL

vf

(
1− N̂

Ω

) (12)

and the departure time is

t∗ − L

vf (1− N̂
Ω )
.

To avoid notational clutter, for the rest of the paper we employ several normalizations, but record results

both with and without the normalizations. There are four units of measurement employed in the paper,

those with respect to distance, time, money, and population per unit area. The normalizations are L = 1,

vf = 1, α = 1, and Ω = 1. Thus, the normalized distance is trip distance, the normalized time unit is

the length of time it takes to travel the trip distance at free-flow velocity, the normalized money unit is

the cost of travel per normalized time unit, and normalized population density is jam density. With these

normalizations, (12) reduces to

c11(N) =
1

1−N
, (13)

the velocity of the mass is 1−N , and its travel time is
1

1−N
. With this normalization, travel in a departure

mass is congested if the size of the departure mass is less than 0.5 and hypercongested if the size of the
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departure mass is greater than 0.5. To convert from normalized units to unnormalized units, 1 normalized

distance unit equals L unnormalized distance units, 1 normalized time unit equals
L

vf
unnormalized time

units, 1 normalized money unit equals
αL

vf
unnormalized monetary units, and 1 normalized population

density unit equals Ω unnormalized population density units.12

To further simplify notation: t∗ is set equal to zero, so that time is measured relative to the desired

arrival time; θ ≡ β

α
equals the ratio of the value of time early to the value of travel time and is assumed to

be less than one; and ρ ≡ γ

α
equals the ratio of the value of time late to the value of travel time.

We now proceed with the analysis in normalized units. Consider an infinitesimal commuter who departs

a period ∆t ≤ 1 earlier than the departure mass. Since normalized free-flow velocity equals 1, she travels a

distance ∆t before encountering the departure mass. She then travels the remaining distance 1 −∆t with

the departure mass at the speed 1−N , arriving at work at

− 1

1−N
−∆t+ ∆t+

1−∆t

1−N
=
−∆t

1−N
.

Thus, her travel time is

−∆t

1−N
+ ∆t+

1

1−N
=

1

1−N
− N∆t

1−N
.

Her trip cost is therefore

c11(N)− N∆t

1−N
+

θ∆t

1−N
.

Her trip cost is therefore lower when she departs earlier than the departure mass if N > θ, and higher

otherwise. Thus, the critical population density at which equilibrium switches from having one to two

departure masses is Ne
1,2 = θ. Consistent with Assumption A-1, we assume that the deviating commuter

travels by herself in a separate departure mass that arrives at the departure time of the departure mass that

arrives on time, and that as population density increases, successive departure masses form, each departing

such that the mass arrives at work when the next (lower index) departure mass departs for work.

Let TC(m)(N) denote total trip cost with population density N conditional on there being m departure

masses, and TCe(N) denote trip cost with the equilibrium number of departure masses for population density

12It will be useful to provide some intuition for the magnitude of N . Let q denote flow, q = kv. Applying Greenshields’
Relation, the relationship between flow and density is q = kv(k) = k(1 − k). Maximum or capacity flow is 1/4. Thus, with
N = 1, the duration of the rush hour at capacity flow would be four normalized time units. In the extended example that we
shall employ, we assume that vf = 15 mph and L = 5 miles, so that the duration of a trip at free-flow speed, which is the
normalized time unit, is 20 minutes. With these parameters and N = 1, the duration of the rush hour at capacity flow would
be 80 minutes.
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N . From (13), when there is a single departure mass in equilibrium, thus when ce(N) = c11(N), total cost is

TCe(N) = TC(1)(N) = Nce(N) =
N

1−N
.

The corresponding marginal social cost and marginal congestion externality cost are therefore

MSCe(N) =
dTCe(1)

dN
=

1

(1−N)2

MCEe(N) = MSCe(N)− ce(N) =
N

(1−N)2
.

Total trip cost may be decomposed into total travel time cost, TTC, and total schedule delay cost, SDC.

With only one departure mass, since all commuters arrive exactly on time and therefore experience no

schedule delay, all of the total trip cost is total travel time cost. In this case, the marginal congestion

externality cost has a simple interpretation. It is the cost imposed on other commuters from increasing

traffic density in the single departure mass by one unit. Define the severity of congestion, s, to be the ratio

of the marginal congestion externality cost to the private trip cost. Then in equilibrium with one departure

mass

se(N) =
MCEe(N)

ce(N)
=

N

1−N
.

We bring together the above results in

Proposition 1. A restricted equilibrium with a single departure mass occurs when N ≤ θ. Over this interval

of N , ce(N) =
1

1−N
, MSCe(N) =

1

(1−N)2
, MCEe(N) =

N

(1−N)2
, and se(N) =

N

1−N
.

4.1.2 Two departure masses

Now we consider two departure masses, that is m = 2. To satisfy the trip-timing equilibrium condition, trip

cost must be the same for each departure mass. Letting nmi denote the normalized number of commuters

in departure mass i when there are m departure masses, equilibrium with two departure masses solves the

following pair of equations:

n2
1 + n2

2 = N (14)

1

1− n2
1

= c21 = c22 =
1

1− n2
2

+
θ

1− n2
1

(15)

Departure mass 1 arrives on time, so that c21 =
1

1− n2
1

. Departure mass 2 arrives immediately before

departure mass 1 departs, so that a commuter in departure mass 2 experiences travel time of
1

1− n2
2

and
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schedule delay of
1

1− n2
1

. Solving (14) and (15) gives

en2
1 =

N + θ −Nθ
2− θ

en2
2 =

N − θ
2− θ

.

(16)

Two additional conditions are required for (16) to describe an equilibrium with two departure masses. The

first is that each departure mass have a strictly positive density, which requires that N > θ. The second is

that a deviating commuter does not have an incentive to form a third departure mass. It is shown below that

this condition is that N ≤ θ(3 − θ). Thus, equilibrium entails two departure masses for N ∈ (θ, θ(3 − θ)).

For N in this interval

ce(N) = c21 =
2− θ

(2−N)(1− θ)
(17)

TCe(N) =
(2− θ)N

(2−N)(1− θ)
(18)

MSCe(N) =
2(2− θ)

(2−N)2(1− θ)
(19)

MCEe(N) =
(2− θ)N

(2−N)2(1− θ)
(20)

SDCe(N) =
en2

2θ

1− en2
1

=
θ(N − θ)

(2−N)(1− θ)
(21)

TTCe(N) = TCe(N)− SDCe(N) =
2N(1− θ) + θ2

(2−N)(1− θ)
(22)

Ne
2,3 is that N for which a commuter is indifferent between departing in departure mass 2 and departing

in departure mass 3 by herself. If she departs in departure mass 3 by herself, her travel time cost decreases

by
1

1− n2
2

− 1 and her schedule delay cost increases by
θ

1− n2
2

. The decrease in travel time cost equals the

increase in schedule cost when
1− θ
1− n2

2

= 1, which is when n2
2 = θ, implying Ne

2,3 = θ(3− θ).

Comparing (17) and (20) gives the severity of congestion

se(N) =
N

2−N
.

We bring together the results for two departure masses in

Proposition 2. A restricted equilibrium with two departure masses occurs when N ∈ (θ, θ(3−θ)). Over this

interval of N : en2
1 =

N + θ −Nθ
2− θ

, en2
2 =

N − θ
2− θ

, ce(N) =
2− θ

(2−N)(1− θ)
, MSCe(N) =

2(2− θ)
(2−N)2(1− θ)

,

MCEe(N) =
(2− θ)N

(2−N)2(1− θ)
, and se(N) =

N

2−N
.
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Figure 6: No-toll equilibrium with two departure masses

Figure 6 displays the equilibrium with two departure masses graphically. The abscissa is the normalized

time axis and the ordinate is normalized population density. Departure masses are numbered so that de-

parture mass 1 arrives on time, and departure mass 2 arrives immediately before departure mass 1 departs.

Since in equilibrium commuters in departure mass 1 have the same trip cost as commuters in departure

mass 2, and since commuters in departure mass 1 arrive on time, experiencing no schedule delay cost, while

those in departure mass 2 arrive early, experiencing schedule delay cost, travel time cost must be higher for

commuters in departure mass 1 than those in departure mass 2. Thus, the size of the departure mass, and

hence traffic density, must be higher in departure mass 1 than in departure mass 2. Travel speed is therefore

lower for commuters in departure mass 1, resulting in a longer trip duration. The sum of the normalized

population densities over the two departure masses gives the exogenous normalized population density, N .

The duration of the rush hour equals the sum of the trip durations of the two departure masses.

To illustrate the results thus far, consider a numerical example in which θ = 1/2, so that Ne
1,2 = 1/2

and Ne
2,3 = 5/4. The values of N considered are 0, 1/2, 1, and 5/4. To convert costs from normalized to

unnormalized units, the following parameter values are assumed: α = $20/hr, L = 5 miles, and vf = 15

mph. L/vf = 0.333 hrs is the assumed trip duration at free-flow speed. The numerical results are recorded in

Table 1. Complementing Table 1 is Figure 7, which plots TCe(N), ce(N), and MSCe(N), for N ∈ (0, 6/4).

Turn first to the three panels of Figure 7. The top one plots total cost against N , the middle one marginal

social cost against N , and the bottom one trip cost against N . The three panels are aligned vertically.

Starting with the bottom panel, c(1)(N) =
1

1−N
gives trip cost as a function of N when the entire

population travels in a single departure mass. Since the mass arrives on time, the entire trip cost is travel time
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cost. Trip cost is a convex function having the properties that c(1)(0) = 1, c(1)(1/2) = 2, and c(1)(1) = ∞.

Normalized trip cost is 1.0 when population is zero since trip cost equals travel time cost at free-flow speed,

which is normalized to 1; is equal to 2.0 when normalized population is 0.5 since density equals one-half

jam density, and is equal to ∞ when normalized population is Ω = 1.0 since density equals jam density.

The curve is drawn as a solid, bold line for N ∈ [0, 1/2], the interval over which the equilibrium number

of departure masses is 1, and as a dashed line outside this interval. c(2)(N) =
2− θ

(2−N)(1− θ)
is a convex

function. N = θ is the lowest population density at which the equal trip cost condition for each departure

mass is consistent with both departure masses having positive population density, while N = 2 corresponds

to jam density. c(2)(N) has the properties that c(2)(θ) = c(1)(θ) =
1

1− θ
, c(2)(1) =

2− θ
1− θ

, and c(2)(2) =∞.

The curve is drawn as a solid line for N ∈ (1/2, 5/4], the interval over which the equilibrium number of

departure masses is two, and as a dashed line outside this interval. c(3)(N) =
3θ − 3− θ2

(3−N)(1− θ)2
. Since a

switch occurs from m to m + 1 departure masses when a commuter faces the same trip cost whether she

departs in the existing departure masses, or deviates and departs in her own departure mass, the equilibrium

trip cost function, ce(N), is the lower envelope of the trip cost functions for specific numbers of departure

masses. As a result it has an escalloped shape, shown as a solid bold line.

The middle panel displays the marginal social cost functions with one, two, and three departure masses. If

the bottom and the middle panels were combined, it would be seen that each marginal social cost function lies

above the corresponding trip cost functions, with the vertical distance between the two functions measuring

the congestion externality cost. The equilibrium marginal social cost function is not the lower envelope of

the departure-mass specific marginal social cost functions. Instead, MSCe(N), which is drawn as the solid

bold line, jumps downward at each critical population density at which there is a switch from m to m + 1

departure masses in equilibrium. The reason is that at any of these critical population densities, a commuter

imposes a lower congestion externality cost if she departs in her own departure “mass”, than if she departs

in the existing departure masses.

The top panel displays total cost as a function of population density with one, two, and three departure

masses, as well as the equilibrium total cost function, which is the lower envelope of the total cost functions

for specific numbers of departure masses.

Table 1 displays the quantitative properties of equilibrium for N = 0, 1/4, 1/2, 1, 5/4, as well as higher

N , which are discussed in section 4.4. The new data presented in the table are the severity of congestion,

the ratio of total schedule delay cost to total travel time cost, trip cost in dollars, and the length of the

rush hour in hours. Observe that: i) the ratio of total schedule delay cost to total travel time cost appears

to increase monotonically with population density; ii) the severity of congestion increases with population

density over each population density interval for which the number of departure masses is constant, and
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Table 1: Numerical example for certain values of N and m

N m ce MSCe se SDCe/TTCe D̂ ĉe

normalized
population
density

number of
departure
masses

normalized
trip cost

normalized
marginal
social cost

severity
of con-
gestion

total schedule
delay cost /total
travel time cost

rush hour
length in
hrs

trip
cost
in $

0 1 1 1 0 0 1/3 20/3
1/4 1 4/3 16/9 7/3 0 4/9 80/9
1/2 1 2 4 3 0 2/3 40/3
1/2 2 2 8/3 5/3 0 1 40/3
1 2 3 6 5/2 1/5 3/2 20
5/4 2 4 32/3 29/9 1/4 2 80/3
5/4 3 4 48/7 205/105 1/4 7/3 80/3
2 3 7 21 2 11/17 49/12 140/3
17/8 3 8 192/7 17/7 7/10 14/3 160/3
17/8 4 8 256/15 17/15 7/10 5 160/3
3 4 15 60 3 49/41 225/24 100
49/16 4 16 1024/15 49/15 27/22 10 320/3
49/16 5 16 1280/31 49/31 27/22 31/3 320/3
4 5 31 165 4 159/89 961/48 620/3
129/32 5 32 5120/31 129/31 83/46 62/3 640/3
129/32 6 32 2048/21 43/21 83/46 21 640/3

Notes: 1. The money normalization is that a trip at free-flow travel speed that arrives at the common work
start time costs 1 unit. Since a trip has a length of L = 5 miles, since free-flow speed is 15 mph, since a trip
that arrives at the common work start time entails no schedule delay cost, and since the value of travel time
is $20/hr, the (unnormalized) dollar cost of a trip at free-flow speed that arrives at the common work start
time is $6.66.
2. D is the length of the rush hour in normalized time, measured from the time of the first departure to the
time of the last arrival, and D̂ is the unnormalized length. The time normalization is that a trip at free-flow
travel speed takes 1 time unit. Since a trip has a length of 5 miles and since the free-flow speed is 15 mph,
the unnormalized time unit is 20 minutes.

decreases discontinuously at each critical population density where a departure mass is added; and iii) the

length of the rush hour increases continuously with population density over population density intervals where

the number of departure masses remains constant, and increases discontinuously at each critical population

density where a departure mass is added.

Hypercongestion occurs when the normalized density of cars exceeds 1/2. For the population density

interval over which there is one departure mass in equilibrium, hypercongestion occurs when θ > N > 1/2,

and does not occur when θ ≤ 1/2; with the assumed parameter value of θ = 1/2, hypercongestion does

not occur. For the population density interval over which there are two departure masses in equilibrium,

hypercongestion occurs in departure mass 1 when n2
1 =

N + θ −Nθ
2− θ

> 1/2 and in departure mass 2 when

n2
2 =

N − θ
2− θ

> 1/2; with the assumed parameter value of θ = 1/2, hypercongestion occurs in departure mass

1 for N ∈ (1/2, 5/4), but for no values of N in the second departure mass.

The stage is now set to work out equilibrium with three or more departure masses in equilibrium.
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4.2 General Solution of Equilibrium

Fortunately, a recursive structure in the equilibrium size of adjacent departure masses permits neat, closed-

form solution for the equilibrium in cities of all sizes and with any number of departure masses. The analysis

below first solves for total trip cost, marginal social cost, and marginal congestion externality cost as functions

of m and N , such that trip cost is the same in each departure mass (even though this can entail negative

departure masses) and then determines the equilibrium m as a function of N .

With m departure masses,

cmj =
1

1− nmj
+ θ

j−1∑
i=1

1

1− nmi
. (23)

The trip-timing equilibrium condition implies that

1− nmj+1 =
1− nmj
1− θ

. (24)

Combining (24) with the condition that
∑m
j=1 n

m
j = N yields a finite series expression for nm1 . Rewriting

the finite series expression as the difference between two infinite series, and then applying standard results

on the sum of infinite series and solving for nm1 gives

nm1 = 1− m−N
1− θ
θ

1− (1− θ)m

(1− θ)m

. (25)

Combining (25) and (23) for j = 1, and noting that in equilibrium the trip cost is the same for all departure

masses, yields the equilibrium trip cost

ce(m)(N) =
1

m−N
1− θ
θ

1− (1− θ)m

(1− θ)m
. (26)

The total trip cost can then be calculated as TCe(m)(N) = Nce(m)(N):

TCe(m) =
N

m−N
1− θ
θ

[
1− (1− θ)m

(1− θ)m

]
. (27)

Differentiation of TCe(m)(N) with respect to N yields marginal social cost:

MSCe(m) =
m

N(m−N)
TCe(m).

Marginal congestion externality cost can be calculated either as MCEe(m)(N) = MSCe(m)(N) − ce(m)(N) or
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as MCEe(m)(N) = N

(
∂ce(m)(N)

∂N

)
:

MCEe(m) =
1

m−N
TCe(m).

The equilibrium number of departure masses is now calculated as a function of N . By the equal trip

cost condition, the switch from m to m+ 1 departure masses occurs for that N for which the trip cost with

m+1 departure masses equals the trip cost with m departure masses: TCe(m+1)(N
e
m,m+1) = TCe(m)(N

e
m,m+1).

Using (27), this reduces to

Ne
m,m+1 = m− 1− θ

θ

(
1− (1− θ)m

)
. (28)

This can be rewritten as a recursive relationship:

Ne
m+1,m+2 = θ(m+ 1) + (1− θ)Ne

m,m+1. (29)

Using (24) and (25), the duration of the rush hour with m departure masses and population density N is

De
(m) =

m∑
i=1

1

1− enmi
=

[
1− (1− θ)m

θ

]2
(1− θ)1−m

m−N

We also have that

TTCe(m)(N ; θ) =

m∑
i=1

enmi
1− enmi

=

m∑
i=1

(
1

1− enmi
− 1

)

=

[
1− (1− θ)m

θ

]2
(1− θ)1−m

m−N
−m

and

SDCe(m)(N ; θ) = TCe(m)(N ; θ)− TTCe(m)(N ; θ)

=
1− (1− θ)m

θ2

(1− θ)1−m

m−N
[
Nθ − 1 + (1− θ)1−m]+m

Table 2 brings together results in normalized form. Table 3 gives the corresponding results in unnormalized

form.

4.3 Comparative Static and Dynamic Properties of Equilibrium

The comparative static properties of the no-toll equilibrium are given in Table 4. Comparing Tables 2 and

3, it can be seen that some of the comparative static effects operate through the normalizations, and might

therefore be called scale effects, while the others operate via θ and N . The discreteness of departure masses
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Table 2: Algebraic results in normalized form: equilibrium with no late arrivals

population of ith
departure mass per unit area

nmi (N ; θ) = 1− m−N
(1− θ)i−1A(m, θ)

trip cost per commuter c(m)(N ; θ) =
1

m−N
A(m, θ)

total trip cost per unit area TC(m)(N ; θ) =
N

m−N
A(m, θ)

marginal social cost per unit area MSC(m)(N ; θ) =
m

(m−N)2
A(m, θ)

marginal congestion
externality cost per unit area

MCE(m)(N ; θ) =
N

(m−N)2
A(m, θ)

ratio of marginal
social cost to trip cost

MSC(m)(N ; θ)

c(m)(N ; θ)
=

m

m−N

severity of congestion se(m)(N ; θ) ≡
MCE(m)(N ; θ)

ce(N ; θ)
=

N

m−N

total travel time cost per unit area TTC(m)(N ; θ) =
1− (1− θ)m

θ

A(m, θ)

m−N
−m

total schedule delay cost per unit area SDC(m)(N ; θ) =
A(m, θ)

m−N

[
N − 1 + (1− θ)m

θ

]
+m

mass switching population densities Ne
m,m+1 = m− (1− θ)mA(m, θ)

duration of rush hour D(m)(N ; θ) =
1− (1− θ)m

θ

A(m, θ)

m−N
Note: Let A(m, θ) =

1− θ
θ

[
1− (1− θ)m

(1− θ)m

]
.

raises difficulties for comparative static analysis, since an infinitesimal change in an exogenous variable can

cause a change in the equilibrium number of departure masses, and when this occurs some endogenous

variables change discontinuously. We present the comparative static results, holding constant number of

departure masses, and in the last row of Table 4 indicate whether an increase in the exogenous parameter

can cause an increase or a decrease in the equilibrium number of departure masses.

The signs of the comparative static derivatives are the same with three or more departure masses as they

are with two. To more easily convey the intuition, we focus on the case when there are two departure masses

in equilibrium, which was presented in Section 4.1.2.

The only comparative static derivative with respect to population density worthy of remark is that the

ratio of
ˆTTC

ˆSDC
unambiguously decreases with N̂ . The intuitive reason is that schedule delay is experienced

only by those in departure mass 2, and as N̂ increases the proportion of the population in departure mass

2 increases (see (16)). The only comparative static derivative with respect to jam density worthy of remark

is that the population in departure mass 1 increases with jam density. The reason is that, as jam density

increases, the level of traffic congestion falls, so that trip costs are equalized for those traveling in the first

and second departure mass when departure mass 1 receives a larger proportion of the population. When

there is a proportional increase in N̂ and Ω, the equilibrium is unchanged except for a scaling up; all per

capita magnitudes remain unchanged.
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Table 3: Algebraic results in unnormalized form: equilibrium with no late arrivals

population of ith
departure mass per unit area

en̂mi (N̂ ; θ) = Ω
[
1−

m− N̂
Ω

(1− θ)i−1A(m, θ)

]
trip cost per commuter ĉe(m)(N̂ ; θ) =

αL

vf

(
m− N̂

Ω

)A(m, θ)

total trip cost per unit area ˆTC
e

(m)(N̂ ; θ) =
αLN̂

vf

(
m− N̂

Ω

)A(m, θ)

marginal social cost ˆMSC
e

(m)(N̂ ; θ) =
αLm

vf (m− N̂
Ω )2

A(m, θ)

marginal congestion
externality cost

ˆMCE
e

(m)(N̂ ; θ) =
αL N̂Ω

vf (m− N̂
Ω )2

A(m, θ)

ratio of marginal
social cost to trip cost

ˆMSC
e

(m)(N̂ ; θ)

ĉe(m)(N̂ ; θ)
=

m

m− N̂
Ω

severity of congestion ŝe(m)(N̂ ; θ) ≡
ˆMCE

e

(m)(N̂ ; θ)

ĉe(m)(N̂ ; θ)
=

N̂

mΩ− N̂
total travel time cost per unit area ˆTTC

e

(m)(N̂ ; θ) = αLΩ
vf

(
1

m− N̂Ω

1−(1−θ)m
θ A(m, θ)−m

)
total schedule delay cost per unit area ˆSDC

e

(m)(N̂ ; θ) = αLΩ
vf

[
A(m,θ)

m− N̂Ω

[
N̂
Ω −

1−(1−θ)m
θ

]
+m

]
mass switching population densities N̂e

m,m+1 = Ω
[
m− (1− θ)mA(m, θ)

]
duration of rush hour D̂e

(m)(N̂ ; θ) =
L

vf

1− (1− θ)m

θ

A(m, θ)

m− N̂
Ω

Notes: Let A(m, θ) =
1− θ
θ

[
1− (1− θ)m

(1− θ)m

]
. The normalized monetary unit is the cost of the time it

takes to travel trip distance at free-flow velocity; thus, to convert to unnormalized units, multiply by
αL

vf
.

The normalized time unit is the time it takes to travel the trip distance at free-flow velocity; thus, to

convert to unnormalized units, multiply by
L

vf
, trip distance divided by free-flow velocity. The normalized

population density is relative to the jam density; thus, to convert to unnormalized units, multiply by jam
density, Ω.

The comparative static properties with respect to free-flow velocity derive from Greenshields’ Relation.

Speed increases proportionally for all densities. The size of each departure mass remains unchanged, but

travel time and schedule delay shrink in the same proportion as free-flow travel time. A proportional increase

in free-flow velocity and trip distance has no effect on the listed endogenous variables. In each departure

mass, commuters travel double the distance at double the speed, resulting in no change in trip cost.

The comparative static properties with respect to α and β are a quantum level more complex. Consider

the effects of an increase in θ, holding α constant, i.e. an increase in β holding α constant. This change

causes commuters to attach more weight to reducing schedule delay, which tilts the distribution of com-

muters over departure masses towards masses that arrive less early. This increases the severity of congestion

and hypercongestion in the masses that arrive less early, leading to some counterintuitive and anomalous
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Table 4: Some Comparative Static Properties of Equilibrium (Unnormalized)

N̂ Ω prop ↑
in N̂
and Ω

vf L prop
↑ in L
and vf

θ with
α fixed

α with
β fixed

prop
↑ in α
and β

en̂mi + + + 02 02 0 +3 - 0

ĉe(m) + - 0 - + 0 + ?9 +

ˆMSC
e

(m) + - 0 - + 0 + ?9 +

ˆMCE
e

(m) + - 0 - + 0 + ?9 +

ˆMSC
e

(m)

ĉe(m)

+ - 0 0 0 0 0 0 0

se(m) + - 0 0 0 0 0 0 0

ˆTTC
e

(m) + - + - + 0 +4 ?10 +

ˆSDC
e

(m) + - + - + 0 ?5 ?11 +

ˆTTC
e

(m)

ˆSDC
e

(m)

-1 + 0 0 0 0 +6 -6 0

N̂e
m,m+1 0 + + 0 0 0 +7 -7 0

D̂e
(m) + - 0 - + 0 +8 -8 0

me ≥ 0 ≤ 0 0 0 0 0 ≤ 0 ≥ 0 0

Notes: 1. In deriving the results, we drew heavily on Hardy et al. (1952), HLP hereafter. This particular

result uses the inequality −
[

1−(1−θ)m
θ

]2
(1 − θ)1−m + m2 < 0 for m a strictly positive integer and for

θ ∈ (0, 1). 2. An increase in vf or a decrease in L has no effect on the density of the departure masses,
but travel times associated with each of the departure masses fall in the same proportion, which causes
TTC and SDC to fall in the same proportion. 3. Via an elementary inequality, A′(θ) > 0. 4. From

(2.15.6) of HLP,
d[

1−(1−θ)m
θ ]

dθ is positive. 5. The ambiguity in sign is confirmed by (21). Suppose that
θ = 1/2. Recall that with this value of θ, the number of departure masses is two in equilibrium when
N ∈ (0.5, 1.25). It follows straightforwardly from (21) that SDC is decreasing in N for N ∈ (0.5, 0.75) and
is increasing in N for N ∈ (0.75, 1.25). 6. Where E denotes an elasticity: E( TTCSDC ):θ = ETTC:θ − ESDC:θ.

ETTC:θ > E(TTC+m):θ < EA:θ. ESDC:θ < E(SDC−m):θ < EA:θ. Thus, E( TTCSDC ):θ > 0. 7. This result can be

obtained by recursion on (29). 8. The effect operates through θ. For a given number of departure masses
and a given population density, the duration of the rush hour is minimized when the departure masses have
the same size. An increase in θ causes the departure masses to become more unequal in size, which increases
the duration of the rush hour. 9. The ambiguity in sign is confirmed by (17). Writing (17) in unnormalized

form and then substituting β/α for θ gives ĉe =
α(2α− β)

(2−N)(α− β)
. The partial derivative of ĉe with respect

to α has the sign of 2α2 − 4αβ + β2, and is negative for smaller values of α relative to β, and positive for
larger values. The derivatives for MSC and MCE have the same sign as for c. 10. From (22), the partial

derivative of ˆTTC
e

has the sign of 2N − [ β
α−β ]2. With θ = 0.5, and N = 1, the equilibrium number of

departure masses is two and the derivative is positive. With θ = 0.6, and N = 1, the equilibrium number
of departure masses is two and the derivative is negative. 11. Take the case of two departure masses and
θ = 1/2. With this value of θ, equilibrium entails two departure masses when N ∈ (1/2, 5/4). From (21),
d ˆSDC/dα has the sign of (1−N)β, which is positive for N ∈ (1/2, 1) and negative for N ∈ (1, 5/4).
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comparative static results. One striking result is that an increase in β can lead to a decrease in total schedule

delay costs, which implies that schedule delay falls more than in proportion to the rise in β. Recall that in

the example presented in Section 4.1.1, a second departure mass starts to form when N = θ. Now consider

an initial situation when N0 = θ0 + ∆, where ∆ is a small, positive number. From (16), the number of

commuters in departure mass 2 is

N − θ0

2− θ0
=

∆

2− θ0
,

which is the number that experience schedule delay. An increase in β, holding α constant, causes an increase

in θ from θ0 to θ1. This causes the number of commuters in departure mass 2 to shrink from
∆

2− θ0
to

∆− (θ1 − θ0)

2− θ1
.

As θ increases, a point is reached where the number of commuters in departure mass 2, and hence

schedule delay costs, shrinks to zero, decreasing at an infinite rate, far exceeding the proportional increase

in β. Another striking result is that an increase in β causes as unambiguous increase in the duration of

the rush hour. It is paradoxical that a stronger desire to arrive closer to the desired arrival time results

in a lengthening of the rush hour. Reconciling intuition with the result combines three observations. The

first is that, holding the number of departure masses fixed, as is done in the table, an increase in β causes

population to be redistributed from earlier to later departure masses, in this sense concentrating the arrival

distribution, which is consistent with intuition. The second observation is that, because travel time is convex

in congestion, again holding fixed the number of departure masses, an increasing concentration of commuters

in later departure masses increases the total length of the rush hour. The third observation is that the result

becomes ambiguous once the number of departure masses is allowed to vary.

Another result worthy of note is that an increase in α may cause equilibrium trip cost to fall. This

is paradoxical since in other contexts an increase in the price of a factor of production (here the factor of

production is travel time) increases costs. Here inputs are not combined in a cost-minimizing way because of

externalities within the production process. More specifically, by deconcentrating departures across departure

masses, the rise in α causes travel time in departure mass 1 to fall. If travel is severely hypercongested in

departure mass 1, the proportional decrease in travel time in the mass may exceed the proportional increase

in α. The result then follows from noting that, since travelers in departure mass 1 experience no schedule

delay, their trip cost, which is the equilibrium trip cost, equals their travel time cost.

4.4 Numerical Example Extended to Higher N

N measures the population density of commuters relative to the capacity of the road network per unit area.

In most US cities, N is modest. Even though hypercongestion may occur, the rush hour is relatively short.

31



In the world’s mega-cities, however, most of which are in developing countries, N can be much larger. For

instance, a typical driver in Bangkok spent forty four hours per year sitting in gridlock (Gibbs, 1997). Earlier

in the paper, in Table 1 (section 4.1.2), we presented a numerical example, but discussed only those cases

where equilibrium entailed two departure masses. Now that we have generalized our analysis, we discuss

the remaining cases, with larger N , which provides insight into the behavior of our model under heavily

congested conditions. In the numerical example, we assumed that θ = 1/2. From (25), we have that Ne
1,2 =

1/2, Ne
2,3 = 5/4, Ne

3,4 = 17/8, Ne
4,5 = 49/16, and Ne

5,6 = 129/32.

Particularly striking is how rapidly trip cost increases with population density. At integer values of

population density, ce(N) = 2N+1 − 1. Since trip cost in departure mass 1 is entirely travel time cost, and

since the cost of travel time is normalized at 1, travel time in departure mass 1 too is related to N according

to 2N+1 − 1, while travel speed as function of N is
1

2N+1 − 1
. In particular, speed in departure mass 1, and

therefore at the peak of the rush hour, is 15 mph with N = 0, 15/3 mph with N = 1, 15/7 mph with N =

2, 15/15 mph with N = 3, and so on. The relationship between peak speed and N , which relates demand to

capacity, is specific to Greenshields’ Relation, but employing an empirically estimated relationship between

velocity and density would give a qualitatively similar result.

With θ = 1/2, as assumed in the example, for integer N , the number of departure masses in the restricted

equilibrium is m = N + 1. The severity of congestion,

se(N) =
MCEe(N)

ce(N)
=

N

m−N
,

then reduces to N . But a conceptually superior measure of the severity of congestion is the ratio of the

congestion externality cost imposed by a commuter divided by the congestion cost experienced by the

commuter, which we term the private congestion cost, PCC(N). Private congestion cost is defined as trip

cost minus trip cost with no congestion, which is normalized to one: PCC(N) = c(N) - 1. Defining this

alternative measure of the severity of congestion as S(N) ≡ MCE(N)

PCC(N)
,

S(N) =
MCE(N)

c(N)− 1
=

N

m−N
c(N)

c(N)− 1
,

which, with integer N and θ = 1/2, reduces to

S(N) =
Nc(N)

c(N)− 1
.

Thus, S(1) = 3/2, S(2) = 7/3, S(3) = 45/14. As demand relative to capacity rises, the congestion cost
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experienced by a commuter is a decreasingly small fraction of the congestion cost she imposes on others. In

this sense, as N rises not only does the absolute distortion due to unpriced congestion increase but so too

does the relative distortion. A further point to note is how rapidly the length of the rush hour increases with

N . For integer N and θ = 1
2 ,

D̂(N) =
(2N+1 − 1)(2− ( 1

2 )N )

3
.

5 Social Optimum with Identical Individuals

Our focus in this paper is on the no-toll equilibrium. A later paper is planned that focuses on the social

optimum. Here we restrict analysis of the social optimum to departure patterns in which all departures occur

in departure masses with contiguous travel time intervals, referring to the resulting allocation of commuters

to departure times as the restricted social optimum. This allows comparison with the restricted no-toll

equilibrium treated in the previous section. While we have not proved that the social optimum with no late

arrivals and a cost function that is linear in travel time and schedule delay entails departure masses, the

restricted social optimum that we consider is at least a local social optimum in the sense that the marginal

social cost of no commuter can be reduced by altering her departure time. Furthermore, we restrict our

analysis to two departure masses. We do this since, in contrast the restricted no-toll equilibrium, we have

been unsuccessful in deriving closed-form solution for more than two departure masses.13 Thus, the results

of this section are suggestive rather than exhaustive.

When a single departure mass is optimal, the social optimum coincides with the corresponding equilib-

rium. As population density increases, a critical population density is reached at which it becomes optimal

for there to be two departure masses. Determination of the social optimum with two departure masses is

analogous to that for the no-toll equilibrium except that the marginal social cost of trips in each of the two

departure masses is equalized rather than the trip cost. The optimality conditions are

n2
1 + n2

2 = N,

MSC2
1 = MSC2

2 .

Total social costs are

TC(2) =
n2

1

1− n2
1

+
n2

2

1− n2
2

+
θn2

2

1− n2
1

.

13We were able to obtain closed-form solution for the restricted no-toll equilibrium by exploiting the recursive relationship
(24), in particular by finding the infinite series solution and then calculating the finite series solution as the difference between
two infinite series solution. Unfortunately, we have been unsuccessful in applying the same “trick” to obtain closed-form solution
for the social optimum.
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The first term is the travel time cost of departure mass 1 commuters; the second is the travel time cost of

departure mass 2 commuters; and the third is the schedule delay cost of mass 2 commuters. Thus

MSC2
1 =

1

(1− n2
1)2

+
θn2

2

(1− n2
1)2

, (30)

MSC2
2 =

1

(1− n2
2)2

+
θ

1− n2
1

. (31)

The social cost of inserting an extra commuter in departure mass 1 equals the direct cost associated

with the added commuter,
1

1− n2
1

, plus the travel time externality cost imposed on other commuters in

departure mass 1,
n2

1

(1− n2
1)2

, plus the schedule delay externality cost imposed on commuters in departure

mass 2,
θn2

2

(1− n2
1)2

. The social cost of inserting an extra commuter in departure mass 2 equals the direct

cost associated with the added commuter,
1

1− n2
2

+
θ

1− n2
1

, plus the travel time externality cost imposed on

other commuters in departure mass 2,
n2

2

(1− n2
2)2

. Equating the marginal social costs for the two departure

masses and substituting in the population condition yields

1− θ(1−N)

(1− n2
1)2

=
1

(1−N + n2
1)2

,

which reduces to

∗n2
1 =

1− (1−N)A

1 +A
, where A =

√
1− θ(1−N).

Thus

∗c21 =
1

1 − ∗n2
1

=
1 +A

A(2−N)
(32)

∗n2
2 = N − ∗n2

1 =
A− (1−N)

1 +A
(33)

∗c22 =
1

1 − ∗n2
2

+
θ

1 − ∗n2
1

=
(A+ θ)(1 +A)

A(2−N)
(34)

∗MSC2
1 =

1 + θn2
2

(1− n2
1)2

=
(A+ 1 + θ)(1 +A)

A(2−N)2

∗MSC2
2 =

1

(1− n2
2)2

+
θ

1− n2
1

=
(A+ 1 + θ)(1 +A)

A(2−N)2
.

(35)

By setting ∗n2
1 = N , we obtain the critical population density at which there is a switch from one to two
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departure masses at the social optimum, N∗1,2:14

N∗1,2 =
(2 + θ)− (θ2 + 4)1/2

2
.

We next solve for N∗2,3. To calculate this, we solve for the N for which ∗MSC3(N∗2,3) =∗ MSC2(N∗2,3). Now,

when N = N∗2,3, ∗n3
3 = 0, and

∗MSC3(N∗2,3) = 1 +
θ

1 − ∗n2
2(N∗2,3)

+
θ

1 − ∗n2
1(N∗2,3)

. (36)

The first term is the marginal social travel time of a commuter in departure mass 3 when ∗n3
3 = 0 and the

last two terms are the marginal schedule delay cost of this commuter. Now, from (31),

∗MSC3(N∗2,3) = ∗MSC2
2 (N∗2,3) =

1

(1− ∗n2
2(N∗2,3))2

+
θ

1− ∗n2
1(N∗2,3)

. (37)

Comparing (36) and (37) permits a closed-form solution for ∗n2
2(N∗2,3). Substituting this into MSC2

2 (N∗2,3) =

MSC2
1 (N∗2,3) from (30) and (31) gives a closed-form solution, albeit an ugly one, for ∗n2

1(N∗2,3).

The results we have obtained for one or two departure masses are recorded below.

Result 1. eN1,2 = θ > ∗N1,2 for θ ∈ (0, 1)

The critical population density at which there is a switch from one to two departure masses is lower in the

restricted social optimum than in the restricted no-toll equilibrium, which is consistent with the downward

shift in MSCe(N) at Ne
1,2 as population increases that was noted in the previous section. In the no-toll

equilibrium with N = Ne
1,2, there are externalities associated with adding a commuter to either departure

mass 1 or departure mass 2, but the externality cost of adding a commuter to departure mass 1 is higher than

adding a commuter to departure mass 2. The travel time externality cost is higher by adding a commuter to

departure mass 1 than to departure mass 2. Furthermore, adding a commuter to departure mass 1 generates

a schedule delay externality while adding a commuter to departure mass 2 does not.

Result 2. N∗1,2 < 1/2 for θ ∈ (0, 1)

For all sets of parameters,15 in the restricted social optimum as population density increases departure

14There is a negative root and a positive root. The positive root has ∗n2
1 > 1, which does not make economic sense.

15We have imposed the restriction that θ ∈ (0, 1). As in the bottleneck model, this is a necessary condition for equilibrium to
exist. This can be seen by comparing (14) and (15) in the case of two departure masses. Since the schedule delay of departure
mass 2 equals the travel time of departure mass 1, with θ > 1 the schedule delay cost alone of traveling in departure mass 2
would exceed the trip cost of traveling in departure mass 1, which comprises only travel time cost. Thus, all commuters would
choose to travel in departure mass 1, but if N > 1 this would not be possible. In contrast, the restricted social optimum in
the isotropic model is well defined with θ > 1 (as it is in the bottleneck model). In this case, hypercongestion can arise in the
social optimum. To see this, consider the limiting case in which θ approaches infinity. With N < 1, it would be optimal for all
commuters to travel in a single mass since all would be on time.

35



mass 2 is created before hypercongestion arises in departure mass 1. In contrast, there is a single hypercon-

gested departure mass in the no-toll equilibrium when N is greater than 1
2 but less than θ.

Result 3. Ne
2,3 = 3θ − θ2 > N∗2,3 for θ ∈ (0, 1)

On the basis of the intuition provided for Result 1, it in natural to conjecture that Ne
m,m+1 > N∗m,m+1.

Result 4. 1
2 > ∗n2

1 > ∗n2
2 for θ ∈ (0, 1)

It is natural to conjecture that ∗nmi > ∗nmi+1 for all m and for all i from 1 to m−1 as in the equilibrium,

that traffic density increases monotonically during the morning rush hour. It is also natural to conjecture

that hypercongestion does not occur in the restricted social optimum for θ ∈ (0, 1).

We have already identified the externalities associated with adding a commuter to departure mass 1 and

then to departure mass 2. As is standard, the social optimum can be decentralized by imposing a congestion

toll equal to the trip externality cost, evaluated at the social optimum. Thus,

∗τ2
i = ∗MSC2

i − ∗c2i , i = 1, 2,

which can be calculated from (32), (34), and (35):

∗τ2
1 =

(1 +A)(A+N − 1 + θ)

A(2−N)2

∗τ2
2 =

(1 +A)(1 + (N − 1)(A+ θ))

A(2−N)2

We now construct a numerical example with two departure masses in the social optimum, and compare

the social optimum and the no-toll equilibrium. To obtain particular qualitative results, we assume that

θ = 0.9, in contrast to θ = 0.5, which was assumed in the earlier example. Otherwise, the parameters are

the same as in the earlier example. Per the procedure outlined above, we obtain N∗2,3 = 0.776, and assume

N = 0.75 in order to obtain almost as congested as possible a social optimum with two departure masses.

With the parameter values chosen, there are two departure masses in the social optimum but only one in

the no-toll equilibrium. Table 5 compares numerically the social optimum and the no-toll equilibrium for

these parameter values.

To put the example into perspective, recall that a normalized time unit is 20 minutes, and that, if traffic

flow were at capacity throughout the rush hour, the duration of the rush hour would be 4N = 3 normalized

time units or one hour. Thus, we are considering a small city, not a mega-city. The unit schedule delay

cost was chosen to be high so that rush hour in the no-toll equilibrium would be so concentrated that

hypercongestion would develop, resulting in substantial efficiency gains from congestion tolling. Because
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Table 5: Comparison of the no-toll equilibrium and social optimum with N = 0.75 and θ = 0.9 (normalized
units)

m n2
1 n2

2 c1 c2 MSC TC TTC SDC D
no-toll eq. 1 0.75 0 4 4 16 3 3 0 4
social opt. 2 0.4148 0.3352 1.709 3.042 3.801 1.729 1.213 0.5155 3.213

Notes: Recall that a normalized time unit equals 20 minutes, that dollar trip cost equals $6.66 times
normalized trip cost, and that the number of commuters is measured relative to jam density, so that N = 1
corresponds to a rush hour lasting 80 minutes at capacity flow.

commuters attach a high value to arriving at work close to on time, the no-toll equilibrium is highly congested.

There is only a single departure mass, which travels at only 3.75 mph – severe hypercongestion – resulting

in 80 minutes of travel time. Each commuter imposes 4 hours of delay on other commuters, resulting

in a marginal social cost of a trip, in terms of travel time of 5 hours 20 mins. In the social optimum, in

contrast, commuters distribute themselves between two departure masses. Travel speed in the more congested

departure mass is 8.778 mph compared to a free-flow travel speed of 15 mph, while that in departure mass

2 is 9.972 mph. Commuters in departure mass 1 experience a travel time of 34.17 minutes, for a normalized

cost of 1.709, while commuters in mass 2 have a 30.09 minute commute, which, along with the 34.17 minute

schedule delay, results in a normalized cost of 3.042. The marginal social cost of a trip is 3.801 normalized

time units, which is less than one-quarter of that in the no-toll equilibrium. Even though the optimum

has two departure masses, its rush hour is 64.26 minutes, significantly shorter than that in the no-toll

equilibrium. This example illustrates well a paradox of hypercongestion – even though commuters in the

no-toll equilibrium ignore the high cost that their traveling at the peak of the rush hour imposes on others,

which intuitively should result in concentration of the rush hour, the length of the rush hour is in fact higher

than in the social optimum. The resolution of the paradox is that ignoring the external cost they impose on

others causes commuters to concentrate their departure times (in fact, in the example they all depart at the

same time), but the concentration of departure times creates such severe hypercongestion that the length of

the rush hour increases. Congestion tolling, by causing commuters to face the external cost, results in them

deconcentrating their departures, eliminating hypercongestion and shortening the rush hour.

Table 5 also illustrates another point: under circumstances where the no-toll equilibrium is highly con-

gested, the efficiency gains from imposing the optimal congestion toll exceed the toll revenue raised! In the

example, the optimal toll is 2.092 ($13.93) for commuters traveling in departure mass 1 and 0.7586 ($5.05)

for those traveling in departure mass 2. In normalized units, the total revenue is 1.122, while the efficiency

gain from congestion tolling is 1.271 ($11.30 per commuter). Thus, the example illustrates the very consid-

erable efficiency gains achievable through congestion tolling even in a small city, albeit one highly prone to
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congestion.

A word of caution is in order. The parameters were chosen to keep the calculations simple (only two

departure masses at the optimum) while at the same time illustrating the very substantial efficiency gains

achievable under congestion tolling when the no-toll equilibrium is highly congested. With a more realistic

choice of θ, commuter efficiency gains from congestion tolling of the magnitude in the example would occur

only for considerably “larger” cities – cities with considerably longer rush hours.

6 Extensions

In this section we present only the most straightforward extensions and treat only the no-toll equilibrium,

not the social optimum.

6.1 Price-sensitive Demand

As in the bottleneck model, the function relating trip cost to the number of commuters in the restricted

no-toll equilibrium can be regarded as a reduced-form supply curve. The reduced-form supply function for

the restricted no-toll equilibrium is given by (26) and (28). Eq. (28) identifies the population intervals

over which there are various numbers of departure masses. For each of these population intervals, (26)

relates trip cost to population. The reduced-form supply curve is upward sloping over the entire range of

population. Adding to this a demand curve relating the number of commuters to trip cost permits solution

of the restricted no-toll equilibrium with price-sensitive demand, as shown in Figure 8. An increase in

demand results in movement up the upward-sloping reduced form supply curve, and hence to an increase

in both the equilibrium trip cost and the equilibrium number of commuters. This stands in contrast to the

stationary-state reduced-form supply curve derived in Arnott and Inci (2010), which is backward bending.

There high stationary-state (flow) demand relative to capacity could be accommodated only through the

trip price rising to a level entailing hypercongestion. Here there is the extra margin of the length of the rush

hour that adjusts to achieve equilibrium when (stock) demand for trips over the rush hour is high relative

to capacity. Thus, one may say of the no-toll equilibrium in this paper’s isotropic model of rush-hour traffic

dynamics that, while hypercongestion may exist at the peak of the rush hour (in the sense that traffic density

exceeds capacity density) it does not occur at the aggregate level (in the sense that the aggregate supply

curve for trips is upward sloping).

The social optimum with price-sensitive demand and identical commuters occurs where the marginal

social benefit of trips over the morning rush hour equals the marginal social cost. Diagrammatically, this

corresponds to the point of intersection of the demand curve for trips and the marginal social cost of trips
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Figure 8: No-toll equilibrium trip cost and marginal social cost with price-sensitive demand

(O and O′), shown in Figure 8. It is important to note that the marginal social cost curve for the social

optimum is different from that in the no-toll equilibrium. As in the bottleneck model, efficient pricing in the

isotropic model has two effects. The first is to alter the timing of departures over the rush hour, holding the

number of commuters fixed, and the second is to ensure the efficient number of trips.

A final point to note is that the reduced-form supply curve for trips in the no-toll equilibrium intersects

the marginal social cost for trips in the social optimum, as shown in Figure 8.16 For population levels

below the population level where the two curves intersect, trip price is lower and the number of trips higher

in the no-toll equilibrium than in the social optimum (E > O), and the revenue raised from the optimal

time-varying toll is greater than the welfare gains it achieves. For population levels above the population

level where the two curves intersect, trip price (trip cost plus the optimal time-varying toll) is lower and

the number of trips higher in the social optimum than in the competitive equilibrium (O′ > E′), and the

revenue raised from the optimal time-varying toll is less than the welfare gain it achieves. Thus, as in Arnott

and Inci (2010), in cities in which demand is high relative to capacity, optimal congestion tolling would be

beneficial even if the toll revenue were completely squandered.

6.2 Late Arrivals

Earlier we simply asserted that the restricted no-toll equilibrium with no late arrivals permitted is the

limiting case of the corresponding no-toll equilibrium with late arrivals permitted but an infinite value of

time late. The proof proceeds in two steps. The first step is to prove that, with the α− β − γ cost function,

there is an arrival mass at t∗. This can be proved using the same line of argument used to prove Lemma 2

in section 3.3. The discontinuity in Ṫ (t) for t corresponding to arrival at time t∗ requires that there be an

16All the points made in this paragraph were made for Arnott’s bathtub model in Arnott (2013).
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arrival mass at t∗. The second step is to show that the no-toll equilibrium derived in section 4 is achieved as

the limiting case of the equilibrium with the α − β − γ cost function as the unit time late cost approaches

infinity. We now demonstrate this somewhat informally.

To keep the indexation consistent with that earlier in the paper, we shall denote by i = −1 the first late

departure mass, i = −2 the second late departure mass, and so on, with the departure masses arriving early

or on time are indexed as before.17

We shall again restrict our analysis to two departure masses. With a low population density, there is

only a single departure mass which departs early and arrives on time. As population density grows, a critical

population density is reached at which a deviating commuter will choose to depart either in a second early

departure mass or the first late departure mass. With departure in a second early departure mass, the

deviating commuter’s trip cost is ec22 = 1 +
θ

1−N
. With late departure, her trip cost is ec2−1 = 1 + ρ (recall

that ρ ≡ γ

α
); she travels at free-flow speed, incurring one unit of travel time cost and one unit of time late

cost. Earlier we proved that, when late arrivals are not permitted, a second departure mass starts to form

when N = θ. When late arrivals are permitted, the same result holds when the second departure mass to

form is a second early departure mass. Thus, the second mass to form is a second early departure mass if

θ

1− θ
< ρ, and a first late departure mass if the inequality is reversed. Empirical work suggests that θ is

around 0.5, while ρ is around 2.0, in which case the second departure mass to form would be a second early

departure mass. On the assumption that this is the case, we can determine the third departure mass to

form. With late departure, the trip cost of a deviating commuter remains ec2−1 = 1 + ρ. With departure

in the third early departure mass and θ = 0.5, the trip cost of a deviating commuter is 4 (see Table 1).

Thus, with θ = 0.5 and ρ ∈ (1, 3), the third departure mass to form is the first late departure mass. In the

limit as γ approaches ∞, as long as population density is finite, a late departure mass never forms, and the

equilibrium is the same as when late arrivals are not admitted.

6.3 Commuters Who Differ in θ

In the no-toll equilibrium of the bottleneck model with no late arrivals, commuters order themselves over the

rush hour according to the value of β relative to α, that is according to θ, independent of the absolute size of

the units, those with a higher θ departing later. The same is true of the isotropic model. The logic that was

applied earlier to the case of identical commuters to prove that there is a mass of arrivals at t∗ can be adapted

to the case of commuters who differ in θ. Thus, there exists an equilibrium in which all departures occur in

masses with contiguous travel time intervals. The analysis is easier if we assume that there is a continuous

17It would be more intuitive to index early departure masses with a − and late departure masses with a +. We have not
done so only to achieve notational consistency in the paper.
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cumulative distribution of commuters, F (θ). In this case, as population density increases, a second departure

mass will form when the marginal commuter finds it desirable to deviate. Let ecmi (θ′) denote the equilibrium

trip cost of a commuter with θ = θ′ who travels in departure mass i when there are m departure masses,

and θi,i+1 denote the θ of the marginal commuter who is indifferent between departing in mass i and mass

i + 1. We now derive the conditions for the existence of an equilibrium with two departure masses. The

first condition is that everyone with θ > θ1,2 travel in departure mass 1, and everyone with θ < θ1,2 travel

in the second. The second condition is that the commuter with θ = θ1,2 be indifferent between traveling in

departure masses 1 and 2. And the third is that the commuter with the lowest value of θ, θ, weakly prefer

being in the second departure mass to deviating and forming her own, third departure mass.

1

1−N(1− F (θ1,2))
= ec21(θ1,2) = ec22(θ1,2) =

1

1−NF (θ1,2)
+

θ1,2

1−N(1− F (θ1,2))
(38)

1 +
θ

1−NF (θ1,2)
+

θ

1−N(1− F (θ1,2))
= ec33(θ) ≥ ec22(θ) =

1

1−NF (θ1,2)
+

θ

1−N(1− F (θ1,2))
(39)

To construct an example, we assume that the distribution of θ in the population is uniformly distributed on

the interval (0.1, 0.9), so that F (θ) = 1.25(θ − 0.1), and 1 − F (θ) = 1.125 − 1.25θ. Substituting these into

(38) yields

1− θ1,2

1−N(1.125− 1.25θ1,2)
=

1

1− 1.25N(θ1,2 − 0.1)
,

and into (39) yields

1 ≥ 0.9

1 + 0.125N − 1.25Nθ1,2
.

With N = 0.3, in equilibrium there are two departure masses and θ1,2 = 0.2198 (with this information,

all other variables of interest may be calculated). In order that commuters with the lowest value of θ not

form a third departure mass, departure mass 2 must exhibit little congestion, which requires that the bulk

of commuters travel in departure mass 1.

7 Conclusions

The bottleneck model has been the workhorse for the economic analysis of rush-hour traffic dynamics for

a quarter century. It has served our community well, having proved amenable to a rich set of extensions

and having provided a bounty of insights. However, the model has a serious deficiency. It does a bad job

of modeling downtown traffic congestion when it is at its worst. In particular, it assumes that throughput

is the same whether downtown traffic congestion is moderate or severe. Experts have long believed that

throughput falls sharply when congestion becomes severe, but only recently was this confirmed empirically.
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Since downtown traffic congestion is a critical problem when it is severe, it is time to move beyond the

bottleneck model.

Urban transportation economists have long understood how the bottleneck can be extended or replaced

to treat hypercongestion – severe congestion in which throughput falls as traffic density increases. The

problem is that, even though easy to write down, all “proper” models – those that respect rational economic

behavior and the physics of traffic congestion – have proven to be analytically intractable. All result in delay

differential equations with an endogenous delay with both an initial and a terminal condition on the state

variable, whose study is at the research frontier in applied mathematics.

Several papers have attempted to break this impasse by introducing approximations that restore tractabil-

ity. None has gained wide acceptance since their approximations have been challenged on a priori grounds.

This paper took a different tack, working out a special case that generates a closed-form solution for a no-toll

equilibrium without making any approximations. The special case adapts the simplest bottleneck model,

which has identical commuters, a trip cost function that is linear in travel time and schedule delay, and no

late arrivals, to an isotropic downtown area with flow congestion. As in the bottleneck model, the central

equilibrium condition is that no commuter can reduce her trip price by altering her departure time. This

special case has a no-toll equilibrium in which all departures are in contiguous masses, which we referred to

as a restricted no-toll equilibrium.

The big advantages of the special case are that it entails no approximations, its properties can be explored

analytically, and its economics and physics are intuitive. Thus, it provides a promising starting point.

Whether or not this promise is realized will depend on the robustness of the special case, which remains

to be explored. Robustness has several aspects: whether the restricted no-toll equilibrium is the unique

equilibrium for the special case, whether its qualitative properties are robust, and how far the special case

can be extended in the direction of realism without sacrificing closed-form solution or at least analytical

tractability. Since departure masses are not observed and would generate turbulence, which the model does

not incorporate, it remains to be seen whether the departure masses can be smoothed out – by, for example,

introducing a distribution of desired arrival times – without sacrificing tractability.

Developing a theory of rush-hour traffic dynamics that is economically and physically sound, mathemat-

ically tractable, and admits hypercongestion has proved to be difficult. This paper falls far short of fully

developing such a theory. Rather, it introduces a promising line of attack that merits further development

and exploration.
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Notational Glossary

c, ĉ normalized, unnormalized trip cost

c(t) trip cost as a functional of departure time

c equilibrium trip cost

cmi , ĉmi normalized, unnormalized trip cost in mass i conditional on m masses

c(m) common trip cost in no-toll equilibrium with m departure masses

e equilibrium

e(t) entry rate as a function of departure time

i index of departure or arrival mass

k, k̂ normalized, unnormalized density (per unit area)

m number of masses

nmi , n̂mi normalized, unnormalized population density in mass i conditional on m masses

se severity of congestion (≡MCEe/ce)

t, t̂ normalized, unnormalized time

t∗ desired arrival time (set to zero in much of the paper)

v, v̂ normalized and unnormalized velocity

vf unnormalized free-flow velocty (normalized free-flow velocity equals 1)

x(t) exit rate as a function of departure time

A intermediate variable (≡ (1− θ(1−N))1/2)

A(m, θ) constant term (≡ 1−θ
θ

[
1−(1−θ)m

(1−θ)m

]
)

D set of departure times

D(m), D̂(m) normalized, unnormalized duration of rush hour with m masses

E elasticity

E(t) cumulative number of commuters who have entered by time t

F (θ) cumulative distribution function of θ

L unnormalized trip distance (normalized trip distance equals 1)

MCE, ˆMCE normalized, unnormalized marginal congestion externality cost

MSC, ˆMSC normalized, unnormalized marginal social cost

N , N̂ normalized and unnormalized population of commuters per unit area

Nm,m+1, N̂m,m+1 normalized, unnormalized population density at which switch occurs from m to m+ 1 masses

SDC, ˆSDC normalized, unnormalized total schedule delay cost

S(N) alternative measure of the severity of congestion (≡ MCE(N)
c(N)−1 )

S(t) trip time for a driver who arrives at time t

T (t) normalized travel time as a function of normalized departure time

T̂ (t̂) unnormalized travel time as a function of departure time

TC, ˆTC normalized, unnormalized total trip cost

TTC, ˆTTC normalized, unnormalized total travel time cost

X(t) cumulative number of commuters who have exited by time t
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α unnormalized unit value of travel time (normalized unit value of travel time is 1)

β unnormalized unit value of time early (normalized unit value of time early is θ)

γ unnormalized unit value of time late (normalized unit value of time late is ρ)

θ ≡ β
α

ρ ≡ γ
α

τmi congestion toll applied to each commuter in mass i, conditional on there being m departure masses

∆ finite increment

Ω unnormalized jam density (normalized jam density is 1)

∗ social optimum
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