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Abstract 
There has recently been considerable interest in cruising for curbside parking as a major 

contributor to traffic congestion in the downtown areas of major cities.  The density of 

cars cruising for parking in the downtown area is related to the rate at which cars in 

transit in the downtown area start cruising for parking and the expected search time of a 

car that starts cruising for parking. This paper focuses on this expected search time.  The 

literature has employed three different approaches to estimate expected cruising-for-

parking time: direct measurement, inference based on the equilibrium condition that (for 

the marginal parker) the expected cost of curbside parking equals the expected cost of 

garage parking, and inference based on the observed occupancy rate of curbside parking 

and an assumed statistical relationship between expected cruising-for-parking time and 

the curbside parking occupancy rate.    The last approach typically obtains estimates of 

expected cruising-for-parking times that are lower, and with high occupancy rates much 

lower, than those estimated using the other two approaches. This paper takes a step 

towards resolving this inconsistency by demonstrating, through computer simulation of 

cars cruising for parking around a circle in stochastic steady state, that an approximating 

assumption in the derived statistical relationship between expected cruising-for-parking 

time and the curbside parking occupancy rate leads to underestimation of average 

cruising-for-parking time, and at high occupancy rates very considerable 

underestimation.  
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Cruising for Parking around a Circle
1
 

 
The pioneering work of Donald Shoup (2005) has stimulated considerable discussion of 

cruising for curbside parking as a major contributor to traffic congestion in the downtown 

areas of major cities.  The literature contains estimates that the proportion of cars 

traveling on downtown city streets during the business day that are cruising for parking is 

30% or even higher.  Such estimates are not obtained from sidewalk observation since 

cars that are cruising for parking cannot be distinguished from cars in transit, but are 

instead obtained either by following a sample of cars or through model-based inference.   

 

The density of cars cruising for parking in the downtown area is related to the rate at 

which cars in transit in the downtown area start cruising for parking and the expected 

search time of a car that searches for parking.  This paper focuses on this expected search 

time.  The literature has employed three different approaches to estimate expected 

cruising-for-parking time: direct measurement, inference based on the equilibrium 

condition that (for the marginal parker) the expected full price (which equals the money 

price plus the opportunity cost of time) of curbside parking equals that of garage parking, 

                                                 
1
 The authors would like to thank the U.S. Department of Transportation and Caltrans for 

their financial support of this research under a UCCONNECT grant (Department of 

Transportation Contract No. 65A0528), and Matthew Fitzgerald for excellent research 

assistance.   Arnott would like to thank Tian Qiong for participating in earlier, 

preliminary joint analytical and simulation work on the topic, when, from April 2012 to 

April 2013, he was an academic visitor to UCR.  In that work, he and the author treated 

the problem from the perspective of multi-server queuing theory. After Qiong returned to 

China, Derek Qu, then a graduate student in computer science at the University of 

California, Riverside, very ably continued the computer simulations for a short period of 

time. Arnott would also like to thank Amihai Glazer for having taken him to task in a 

seminar at the University of California, Irvine for the inconsistency in the approximations 

he employed in calculating expected cruising-for-parking times between Arnott and 

Rowse (1999) and Arnott and Rowse (2009).   
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and inference based on a derived statistical relationship between expected cruising-for-

parking time and the curbside parking occupancy rate.   

 

Most of the studies that employ direct measurement of cruising for parking are reviewed 

in Shoup (2005, Chapter 11).  There are two reasons to be skeptical of the results.  The 

first is that it is difficult to identify cars that are cruising for parking.  One approach is to 

delineate a study area, follow random cars that enter the study area, identify them as 

searching for parking if they park curbside in the study area, and measure their cruising-

for-parking times within the study area. This approach fails to identify cars that are 

indeed searching for parking in the study area but end up parking either outside the study 

area or in a parking garage.  It also fails to identify when cars that park curbside in the 

study area initiate cruising for parking.  The second reason to be skeptical of the results is 

that the study areas were not randomly selected, but were chosen instead because cruising 

for parking was perceived to be a severe problem there.   

 

The second approach to estimate expected cruising-for-parking time was employed in 

Arnott and Rowse (2009, 2013).  It is based on a model in which risk-neutral drivers 

choose between ubiquitous curbside and garage parking.  Curbside parking is fully 

saturated, so that a car enters a curbside parking space immediately after it is vacated by 

the previous car parked there
2
, while garage parking can be obtained without search. In 

                                                 
2
 Arnott and Rowse assumed that each car cruising for parking experiences a vacant 

parking space according to a Poisson process with a rate equal to the turnover rate of 

parked cars per unit area divided by the stock of cars cruising for parking per unit area.  

When parking durations are negative exponentially distributed, the authors conjecture 
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equilibrium, drivers sort between curbside and garage parking such that their full prices 

are the same for "marginal" parkers -- those who are indifferent between curbside and 

garage parking.  In most cities except those in the Netherlands, curbside parking is 

considerably cheaper than garage parking.  An alternative statement of the parking 

equilibrium cost condition is then that, for a marginal parker, the curbside cruising-for-

parking time cost equals the savings in the money cost from parking curbside. In the case 

of identical individuals, the expected cruising-for-parking time equals the savings in the 

money cost from curbside parking divided by the common value of time.  When drivers 

differ according to visit length and the value of time, the calculation of expected cruising-

for-parking time is more complicated.  Consider an example with identical drivers in 

which the parking duration is one hour, the meter rate is
3
 $1.000/hr, the one-hour garage 

parking fee is $10.00, and the value of time is $30.00. Since the saving in the money cost 

of curbside parking is $9.000, the equilibrium expected cruising-for-parking time is 

0.3000 hrs.  

 

The third approach considers a situation in which curbside parking is not saturated but is 

instead described by an expected occupancy rate.  The central assumption is that the 

probability that each curbside parking space is occupied equals the expected occupancy 

rate, independent of history and of the occupancy status of neighboring curbside parking 

spaces.  We term this the binomial approximation.  It generates a geometric distribution 

for the number of parking spaces searched before finding a vacant space (including the 

                                                                                                                                                 

that the simulation model of this paper has this property in the limit as the expected 

occupancy rate approaches 100%.   
3
 Throughout the paper, numbers are presented to the fourth significant digit.  



 5 

vacant space). The number of parking spaces searched corresponds to the number of balls 

drawn from an urn with replacement (or with an infinitely large number of balls) before a 

"vacant" ball is drawn.  Let q denote the probability that a ball is labeled "occupied", so 

that 1 - q is the probability that a ball is labeled "vacant". The probability of finding the 

first vacant space on the first draw (i.e., the first parking space searched) is 1 - q; the 

probability of finding the first vacant space on the second draw is q(1 - q), which is the 

probability that the first space searched is occupied times the probability that the second 

space searched is vacant, etc.  The expected number of parking spaces searched before 

finding a vacant space (including the vacant space) is
4
 1/(1 - q).  Thus, the expected 

numbers of parking spaces searched with curbside parking vacancy rates of 20%, 10%, 

5%, and 1% are 5, 10, 20, and 100 respectively.   Expected cruising-for-parking time can 

then be obtained by applying estimates of the average distance between parking spaces 

and of cruising-for-parking speed. As an example, assume that the distance between 

curbside parking spaces is 21.12 ft (1/250 ml) and that cruising-for-parking speed is 

8.000 mph.  Then the average cruising-for-parking time between parking spaces is 1/2000 

hrs or 1.800 seconds.  Shoup (2006) has proposed
5
 that curbside meter rates be set to 

                                                 
4
 Let the expected number of draws before drawing a vacant ball (including the draw with 

the vacant ball) be S. S = (1)(1 - q) + (2)[q(1 - q)] + (3)[q
2
(1 - q)] --- = (1 - q){1 + 2q + 

3q
2
 ---}. Multiplying both sides by q yields qS = (1 - q){q + 2q

2
 + 3q

3
 ---}. Subtracting 

qS from S yields (1 - q)S = (1 - q){1 + q + q
2 

--- }.  Since the value of the infinite sum in 

the curly brackets is 1/(1 - q), S = 1/(1 - q). 

 The variance, (Pearson's) skewness, and (Pearson's) kurtosis of the geometric 

distribution are q/(1 - q)
2
, (1 + q)/q

1/2
, and 6 + (1 - q)

2
/q (Wikipedia: Geometric 

distribution). 
5
 Shoup's work has stimulated a number of downtown parking experiments. The best 

known is SFpark.  The City of San Francisco has been adjusting curbside meter rates by 

block and by time of day to achieve a target curbside parking occupancy rate.  Shoup 

(2006) originally proposed a target curbside parking occupancy rate of 85%. The City has 

been adjusting this rate by block and time of day to achieve what it judges to be optimal 
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achieve a curbside parking occupancy rate of 85%.  Under the binomial approximation 

and the above parameter assumptions, applying the Shoup rule would generate expected 

cruising-for-parking time of only 12.00
.
seconds (1.800 X 1/(1 - 0.8500)).  

 

All the recent papers that derive the expected number of parking spaces searched before 

finding a vacant space from the occupancy rate, including Arnott and Rowse (1999), 

Anderson and de Palma (2004), Geroliminis (2015), and Du and Gong (2016) have 

employed the binomial approximation.   

 

Levy, Martens, and Benenson (2012) simulates a situation in which drivers search for 

parking in a residential neighborhood on their return from work, and in which therefore 

the occupancy rate increases as the evening proceeds.  They compare the average realized 

number of parking spaces searched in their simulation model, PARKAGENT, as a 

function of the realized occupancy rate, to the expected number of parking spaces 

searched under the binomial approximation, as a function of the expected occupancy rate.  

When the realized occupancy rate in their simulation model is above 85%, the simulated 

average number of parking spaces searched is considerably higher than the expected 

number under the binomial approximation with that occupancy rate.  Though their 

analysis is not steady state, and though their conclusions rest on the soundness of their 

simulation model, the discrepancy between their simulated numbers and those obtained 

under the binomial approximation is sufficiently large to cast doubt on the accuracy of 

the binomial approximation.  

                                                                                                                                                 

rates.  They vary substantially but the average is considerably lower than 85% (Pierce 

and Shoup, 2013). 
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There are further reasons to doubt the accuracy of the binomial approximation. 

1. The binomial approximation takes the occupancy rate as being constant over time.  

But even in a stochastic steady state, in which entry occurs according to a time-invariant 

Poisson process, the local occupancy rate fluctuates because of the stochasticity of 

demand at the local level. Adapting the binomial approximation to treat this complication 

only would lead to a higher expected number of parking spaces searched
6
. 

2. The binomial approximation is based on the assumption that the occupancy 

probabilities of adjacent parking spaces are statistically independent. But common sense 

and experience suggest that, to the contrary, they are both spatially and temporally 

correlated.  Suppose, for example, that, purely by chance, at a point in time parking on a 

block becomes fully occupied.   This will have a ripple effect in space-time. Because that 

block is fully occupied, cars that have destinations on that block will have to continue 

their search to neighboring blocks, which will increase the expected occupancy rates on 

those blocks later in time.  

3. When there are fluctuations in the entry rate, the expected number of parking 

spaces searched from the perspective of the user is different from that of an external 

observer, since users disproportionately travel at times when demand is high.  

4. There are other, more practical reasons why the binomial approximation results in 

underestimation of expected cruising-for-parking time.  First, there is history dependence 

in local demand, which amplifies stochastic fluctuations in the local occupancy rate.  If 

                                                 
6
 The expected number of parking spaces searched before finding a vacant parking space 

would equal the reciprocal of the harmonic mean of the vacancy rate, which is greater 

than the reciprocal of the average vacancy rate.   
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the demand for parking on a block is higher than average, it may be due to a special event 

that will result in demand being higher than average over a period of time. Second, traffic 

is not in stochastic steady state but rather has systematic fluctuations over any period 

time, which increase the expected number of parking spaces searched.   Third, practically 

an average curbside occupancy rate is measured over a period of time and over an area of 

space, with variation over time and over space.  

5. The expected cruising-for-parking times generated by the binomial approximation 

square neither with experience nor with policy discussion.  In particular, the expected 

cruising-for-parking times under the binomial approximation seem consistently too low.   

Experience suggests that on blocks where the average occupancy rate is, say, 80%, it may 

quite frequently be difficult to find a parking space on that block.  In contrast, under the 

binomial approximation, the expected number of parking spaces searched before finding 

a vacant space in only five. Policy discussion in Shoup
7
 (2005) and elsewhere indicates 

that cruising for parking is perceived to be a serious problem in downtown areas, and yet 

the expected cruising-for-parking times under the binomial assumption are modest, 

except as the occupancy rate approaches one. 

 

In this paper, we consider a stylized model that abstracts from the practical complications 

considered under 4. above.  It is depicted in Figure 1. Space is the circumference of a 

circle of finite length, which we refer to as "the track". Parking spaces are evenly spaced 

                                                 
7
 Table 11-5 in Shoup (2005) reports that average cruising-for-parking time over the 16 

studies of cruising for parking that he located was 8.1 minutes, about 500 seconds.  Our 

calibration of the numerical simulations, presented below, implies that it takes about 

1.800 seconds to travel from one parking space to the next.  Applying this figure implies 

that the expected number of parking spaces searched is 278.  Under the binomial 

approximation, this corresponds to an occupancy rate of 99.64%. 
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points around the track.  The arrival of drivers is generated by a time-independent and 

space-independent Poisson process.  Each driver cruises clockwise around the track at an 

exogenous speed and takes the first vacant parking space she encounters, parks there for a 

period of time that is determined by a draw from a time- and space-independent 

probability distribution (which may or may not be negative exponential), and then exits 

the system. The expected curbside parking occupancy rate is calculated as the expected 

total time that cars are parked around the track per unit time divided by the maximum 

total time that cars can be parked around the track per unit time.  The expected total time 

that cars are parked per unit time equals the Poisson arrival rate of drivers times the 

expected parking duration, and the maximum total time per unit time simply equals the 

number of parking spaces round the circle.  The natural measure of a unit of time in the 

model, which we adopt, is the time it takes to travel from one parking space to the next.  

 

Figure 1: Depiction of a Sample State of the Simulation Model 

Notes: Cars travel from left to right, one parking space per time unit.  The space is in fact 

circular, so that a car that exits on the right simultaneously enters on the left.  

 The number in a yellow box is the number of cars that pass by the space during 

the current time unit. Together these cars are termed a cohort. 
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Our model incorporates three important simplifying assumptions. First, it is spatially 

symmetric (except that parking spaces are points). Second, its equilibrium describes a 

(stochastic) steady state with exogenous, time- and space-independent Poisson (and 

therefore history-independent) processes generating entry to the track and exit from a 

parking space, conditional on entry to it
8
.  Third, as modeled, a driver's parking search 

"strategy" is trivial; she starts searching for parking as soon as she enters, and keeps on 

driving in the same direction until she encounters a vacant parking space. In reality, even 

one-dimensional parking search is more complicated than this. With an exact destination, 

a rational driver does not start cruising for parking until a certain distance from her 

destination (Arnott and Rowse, 1999; Arnott, 2014); also, if parking search is not 

unidirectional, a driver may decide to turn around and backtrack. Parking search strategy 

in two dimensions is considerably more complex.   

 

We chose our assumptions to achieve a balance between comprehensibility, accuracy,  

and realism.  We could have made the model even simpler.  First, we could have 

described space more simply as a spatially ordered set of discrete parking spaces, and 

time as discrete, in which case cruising for parking would be modeled as a multi-server 

queuing system, with unserved users moving from one server to the next between time 

periods
9
.  We decided not to do so since the discretization of time and space causes 

                                                 
8
 The exit rate from an individual parking space, conditional on entry to it, is generated 

by a time- and space-independent Poisson process.  However, the process of entry into 

parking spaces depends on the history of the system. 
9
 Indeed, this is how Qiong and Arnott, and Qu and Arnott, modeled the problem in their 

work. 
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artificial difficulties in the between period modeling of events
10

.  Second, we could have 

ignored that servers are spatially ordered, or even have collapsed the multi-server queue 

into a single-server queuing, but both simplifications might affect the qualitative 

properties of equilibrium.  

 

The central issue that the paper addresses is whether, in stochastic steady state, the 

interaction between the time- and space-independent Poisson entry process, and the time- 

and space-independent process of exit from a parking space, conditional on entry to it, 

and cruising for parking generates a time- and space-independent vacancy generation 

process.  If it does, the binomial approximation is sound.  But the process of curbside 

parking search may make entry into a particular parking space dependent on the state of 

the system, which makes the unconditional exit process history dependent, which in turn 

may cause the distribution of the expected number of curbside parking spaces searched 

not to be geometric.   

 

We originally explored exact analytical solution of the model, but had no substantive 

success.  In the next section, we cast our model in the context of Markov chains, and then 

explain the difficulties in exact analytical solution. We then had the choice between 

                                                 
10

 For example, the modeler needs to make the choice as to which happens first between 

time periods (between the "current" period and the "next" period), the vacation of parking 

spaces that occurred during the current period or the assignment of drivers who were 

waiting in a queue at the beginning of the current period. The modeler also needs to make 

the choice as to whether entrants to the system between periods are treated in the same 

way as drivers who were waiting in a queue at the beginning of the period.  Since these 

sequencing decisions are not present in a continuous time model, they are an artifact of 

discretization.  They may affect the qualitative properties of equilibrium, and even if they 

do not they invite confusion. 
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investigating analytical solution under simplifying assumptions or proceeding to 

simulation.  We decided to employ simulation since, without an analytical solution of the 

proper model, we would have no way of judging how accurate were the analytical 

solutions under the approximations.   

 

Our basic finding is that the binomial approximation is a bad one.  The base case 

parameter values are recorded in Table 1 below. There are 100 parking spaces around the 

track.  The Poisson entry rate to the system is 1/30 per time unit, the distribution of 

parking times (stay lengths) is negative exponential with mean 2000 (or put alternatively 

the Poisson exit rate from an occupied parking space is 1/2000 per time unit).  The 

expected total parking duration per unit of time equals the entry rate times expected 

parking duration, which equals 66.67.  The maximum parking duration per unit of time is 

simply equal to the number of parking spaces, 100.  Thus, the expected occupancy rate is 

2/3.  A unit of time is the period it takes to travel from one parking space to the next.  

Accordingly, the expected time it takes for an entering car to reach the first parking space 

is 0.5000 time units, the second parking space is 1.500, ----.  Thus, expected cruising-for-

parking time equals the expected number of curbside parking spaces searched (including 

the last, successful search) minus 0.500.  Under the binomial approximation, with an 

occupancy rate of 2/3, the expected number of curbside parking spaces searched is 3.000 

(see fn. 2), which corresponds to an expected cruising-for-parking time of 2.500.  In 

contrast, for the central base case run the simulated mean cruising-for-parking time is 

3.602, so that the ratio of the simulated mean cruising-for-parking time to the expected 

value obtained under the binomial approximation is 1.441.   The variance of the cruising-
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for-parking time under the binomial approximation is 6.000 (see fn. 2) and in the 

simulation is 23.92, for a ratio of 3.987.   

  

Number of parking spaces P 100 

Distance between parking spaces  1 (normalized distance unit) 

Travel time between parking spaces  1 (normalized time unit) 

Poisson entry rate to track  1/30 (per normalized time unit) 

Poisson exit rate from occupied parking 

space 
 1/2000 (per normalized time unit) 

(Implied) expected occupancy rate Q 2/3 

 

Table 1: Base Case Parameter Values 

Notes: We have taken a normalized distance unit to be 1/250 ml (21.12 ft), and a 

normalized time unit to be 1/2000 hr (1.800 seconds)  

 

As the expected occupancy rate increases (generated by a proportional increase in the 

entry rate), so too does the ratio of the simulated mean cruising-for-parking time to the 

expected value obtained under the binomial approximation.  With an expected occupancy 

rate of 11/12, the expected cruising-for-parking time under the binomial assumption is 

11.50 and the corresponding simulated mean 97.62, giving a ratio of 8.489. The 

corresponding variances are 132.0 and 86560, for a ratio of 651.5.  Thus, the binomial 

approximation gets worse as the expected occupancy rate increases.   

 

Since we were unsuccessful in obtaining analytical results, we can only go so far in 

explaining why the probability distribution of simulated cruising-for-parking differs from 

the distribution obtained under the binomial approximation.  Consequently, the paper 

focuses on describing the simulation results and the ways in which the simulated results 

differ from those obtained under the binomial approximation, from a variety of statistical 

perspectives. 
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Section 2 places the model in the context of queuing and Markov process theory.  Section 

3 presents the simulation model, section 3.1 presenting the simulation algorithm and 

section 3.2 the model's parameterization.  Section 4 records the quantitative results of the 

central base-case simulation and compares them to the results obtained under the 

binomial approximation, using a variety of statistical approaches.  Section 5 undertakes a 

variety of comparative stochastic steady-state exercises, examining how the simulated 

probability distributions of search times change with changes in exogenous parameters.  

Section 6 discusses directions for future research, and presents some concluding remarks, 

including comments on the policy insights from the research.  

 

 

2. Placing the Model in the Context of Queuing and Markov Process  

  Theory 
 

This section draws heavily on Gross, Shortle, Thompson, and Harris (2008).   

 

2.1 Queuing Theory 

 

There is a standard notation used in the queuing theory literature. A queuing process is 

described by a series of symbols and slashes, such as A/B/X/Y/Z, where A indicates the 

arrival-time distribution, B the probability distribution of service time, X the number of 

parallel service channels, Y the restriction of system capacity, and Z the queue discipline.   

In our parking model: i) since arrivals at the track are generated by a time-independent 

Poisson process, the arrival-time distribution is negative exponential with the exponent 

equal to the Poisson arrival rate, so that, according to queuing theory notation, A = M (for 
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Markovian); ii) since each parking space is a separate service channel, X = P, where P is 

the number of parking spaces round the track; iii) in the base case, the probability 

distribution of service time is negative exponential with mean equal to the expected 

parking stay time or duration, so that B = M; iv) since there is no restriction on capacity, 

Y = ; and v)  the queue discipline is not a conventional one
11

, so that we set Z = ?. Thus, 

the parking model is similar to a M/M/P//? queuing process.  In the standard multi-

server queuing process, the servers are assumed to be parallel, by which is meant there is 

a single queue for all the servers together.  However, the parking model here has a 

different multi-server queuing process
12

. Thus, though our parking model can be viewed 

as a queuing model, it is not a standard queuing model, and indeed we have found no 

queuing models in the literature that describe it.   

 

2.2 Markov Process Theory  

A Markov process is a memoryless stochastic process, in the sense that the stochastic 

evolution of the system after time t is completely determined by the state of the system at 

time t.  Markov processes are classified according to the index set of the process (whether 

                                                 
11

 Among cars that are currently between a particular parking space and its clockwise 

neighbor, the car that is closest to the clockwise neighbor parking space will have priority 

in parking; the queue discipline is FCFS in this respect.  However, if a car enters the 

system between that parking space and its clockwise neighbor, its queuing priority is 

determined by the location where it enters relative to the location of other cars in the 

clockwise neighbor's queue; since the location of the entering car is random, the queue 

discipline is in this respect random access.   
12

 From the perspective of a driver cruising for parking, the servers are moving in a 

counter-clockwise direction and the driver is served by the first vacant server that passes 

him by.  From the perspective of a server, the cars cruising for parking are moving in a 

clockwise direction.  If the server is full, the cars cruising for parking just pass on by, 

while, if the server is vacant, the first car to reach the server takes the vacant parking 

space.  
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time is discrete or continuous) and the nature of the state space of the process (whether 

there is a finite or infinite number of states of the system).  When the parking stay time is 

a negative exponential distribution, our parking model describes a continuous-time, 

infinite Markov process. Since there are no absorbing states, we conjecture but have not 

proved that our model has a limiting distribution
13

 (hence, the model has a stationary 

distribution and the Markov process is ergodic).  We are interested in the distribution of 

curbside parking search times associated with the limiting distribution of states of the 

system. Since our simulations are finite, we do not observe the limiting distribution but 

rather a sample of the probability distribution of states conditional on the starting state.   

 

The dimension of the state space in our model is very high.  When the parking stay time 

is a negative exponential distribution, as it is in our base case, the state of the system is 

described by the occupied/vacant status of the spatially ordered parking spaces (which 

entails 2
P 

permutations) and the positions of all the cars that are cruising for parking 

(which may be infinite), each of which is described over the continuous space of the 

track.  

 

As we indicated earlier, we could reduce the number of states of the system by 

discretizing space and time. A state would then be indexed by the spatially ordered 

parking spaces, and then, for each parking space, by its occupancy status and the number 

of cars queued at it.  The state transition from one period to the next would then be 

                                                 
13

 Let s index the possible states.  Starting with state s0, let ps,s0(t) denote the probability 

that the system will be in state s at time t.   If in the limit as time approaches infinity, 

these probabilities are independent of the initial state of the system, these probabilities 

describe the limiting distribution of the system.   
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determined by the number of entries at each parking space, change in the occupancy 

status of each parking space, and the movement of cars queued at each space to its 

rightmost neighbor (representing the cruising of cars).  The limiting distribution of the 

probabilities of the various states and of the cruising-for-parking search times would then 

be calculated from the corresponding transition matrix.  We have not done this is in the 

paper since the discretization applies approximations that might alter the qualitative 

properties of the limiting distributions.   

 

The following cartoon has three parts.  The top part illustrates one of many possible state 

transitions that can occur moving forward in time.  The middle part and the bottom part 

display the very large number of different state transitions that may occur at a particular 

parking space over a single time step.  The dashed circle in the middle part of the cartoon 

indicates the particular parking space whose possible set of state transitions are illustrated 

in the bottom part.  The left side of the bottom panel shows the situation at time t. There 

are k cruising for parking between parking spaces i and i +1 (and which therefore pass 

space i + 1 between t and t +1), and parking space i + 1 may be occupied or vacant.  

 

The right side of the bottom panel shows four qualitatively different states at time t + 1. 

In the first, all k searching cars find parking space i + 1 occupied, and no entering cars 

pass by space i + 1 between t and t + 1.  Thus, at time t + 1, there are k cars cruising for 

parking between spaces i + 1 and i + 2.  In the second, one of the k cars (not necessarily 

the first) finds parking space i + 1 vacant and occupies it at least until time t + 1, and no 

entering cars pass by space i + 1 between t and t + 1, so that at time t + 1 there are k -1 
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cars cruising for parking between spaces i + 1 and i + 2.  In the third, all k searching cars 

find parking space i + 1 occupied, and p (one, two, three, ---) entering cars pass by space i 

+ 1 between t and t + 1, all finding it occupied, so that at time t +1 there are k + p cruising 

cars for parking between spaces i + 1 and i +2.  In the fourth, one of the k + p cars that 

pass space i + 1 finds it vacant and occupies it at least  
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Figure 2: Cartoon of Possible State Transitions from One Time Unit to the next 
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until time t + !, so that at time t + 1 there are k + p -1 cars cruising for parking between 

spaces i + 1 and i +2.   The above enumeration of state transitions is not exhaustive, since 

a parking space may become occupied more than once during a time period.     

 

3. The Simulation Algorithm and Parameterization of the Model 

Section 3.1 describes the solution algorithm and section 3.2 the parameterization of the 

model. 

 

3.1 The Solution Algorithm 

 

The algorithm simulates a circular street (the "track") of fixed length with a fixed number 

of evenly-spaced parking spaces, cars arriving at a time- and location-independent 

Poisson rate, cruising for a vacant parking space at an exogenous speed, taking the first 

vacant space that becomes available, and then exiting that parking space and leaving the 

track at a different time- and location-independent Poisson rate.   

 

Since it was written to conserve on storage space, the actual algorithm is quite complex.  

To make it easier to understand, we proceed in three steps.  The first step presents a 

cartoon of the algorithm, treating time and space as being discrete, though in the actual 

algorithm both are treated as continuous.  The second step presents pseudocode for the 

algorithm, and the third step is the actual python code
14

, which is presented in Appendix 

                                                 
14

 Floating point values in python are stored in double precision floating point format and 

follow the IEEE 754 standard, which is documented here 

https://en.wikipedia.org/wiki/Double-precision_floating-point_format 

https://en.wikipedia.org/wiki/Double-precision_floating-point_format
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1, along with a hyperlink to the source code, 

http://math.ucr.edu/~parker/CruisingForParking/.   

 

 The cartoon 

Figure 1 displayed a cartoon in the spirit of the algorithm, imagining a pair of lanes 

divided into boxes, the top lane being the road and the bottom being the curbside. A 

white box in the bottom lane is a vacant parking space, and a blue box in the bottom lane 

is an occupied parking space. A cohort is a group of cars that are queued at a particular 

parking space.  A white box in the top lane indicates that there are no cars queued at the 

corresponding parking space.  A yellow box in the top lane indicates that there are cars 

queued at the corresponding parking space, with the number of cars queued indicated by 

the number in the yellow box.  Figure 3 illustrates how the state of the system (the pattern 

of cruising cars and occupied/vacant spaces) might evolve over four time units.  The 

snapshots are taken at the end of each time unit. Between time units: 

 Each yellow box advances to the right one unit space. 

 Some of the parked cars may exit their parking spaces.  Each of the spaces 

that was occupied becomes vacant (switching from blue to white). 

 Having advanced, if the cohort is above an occupied space, the cars in the 

cohort queue at that space for the unit of time.  If, alternatively, the cohort 

is above a vacant space, one of the cars in the cohort takes the vacant space, 

and the remaining cars in the cohort queue at that space for a unit of time.  

 Some cars may enter the system. A car that enters the system at a vacant 

parking space and is the only car to enter at that vacant space occupies that 

http://math.ucr.edu/~parker/CruisingForParking/
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parking space.  If more than one car enters the system at a vacant parking 

space, one of the cars occupies that parking space and the rest become a 

cohort of cars at that space (so that the corresponding road box becomes a 

yellow box with a number equal to the size of the rest of the cohort).  A car 

that enters the system at an occupied space either becomes a cohort of one 

(so that space becomes a yellow box with 1 in it) or joins the existing 

cohort at that space (so that the number of cars in the cohort increases by 

one). 

 

 

Notes:  The space is in fact circular, so that a car that exits on the right simultaneously 

enters on the left. 

 The number in a yellow box is the number of cars in the cohort that are queued at 

the corresponding occupied parking space during the time unit.  

 During time unit 1, there are 7 occupied spaces on the track, which has 16 spaces, 

with two cars in a cohort queued at occupied space 3 and three cars in a cohort at 

occupied space 14.  Between times 1 and 2, both of these cohorts advance, no cars exit, 

and no cars enter, so that during time unit 2, there are again 7 occupied spaces on the 

track, with two cars in a cohort queued at space 4 and three cars in a cohort at space 15.  

Between times 2 and 3, both of these cohorts advance, one car exits at space 10, and one 

car enters at occupied space 3, so that during time unit 3, there are 7 occupied spaces, 

with one car queued at space 3, two cars queued at space 5, and two cars queued at space 

16 (between times 2 and 3 the cohort at space 15 advanced to vacant space 16 and one car 

Time 1

Time 2

Time 3

Time 4

2 3

32

1 2

11

2

2
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in the cohort occupied the vacant space, reducing the number of cars in the cohort to 2).  

Between times 3 and 4, all three cohorts advance one space (with the cohort that) was at 

space 16 advancing to space 1), one car exits at space 14, and no cars enter, so that during 

time unit 4, there are 7 occupied spaces, with two cars queued at space 1, one car queued 

at space 4, one car queued at space 6 (between times 3 and 4 the cohort at space 5 

advanced to vacant space 6, one of which occupied the vacant space, reducing the 

number of cars in the cohort to 1).  

  

Note that the evolution of the system from one period to the next depends on the 

sequencing of events between periods, which is an awkward artifact of the discretization 

of time.  In contrast, in the actual program the location of parking spaces is discrete, but 

entry can occur anywhere on the circle, and time is continuous.  The resolution of the 

state of the system is done one time step at a time.   

 

 The pseudocode 

1 Create a list of parking space objects with a linear order, occupancy status and vacancy 

time, initialized with respective parameters for the model, called "spaces". 

 

2 T = 1 

 

3 Make sure the Poisson process governing the arrival times and locations has generated 

enough arrivals that go beyond the next time step. Then add car objects to a list called 

"cars" with these arrival times and locations. 

 

4 Resolve all events that occur between time T and T-1 using the lists cars and spaces of 

objects in “continuous” time, comparing times at which a car in the cars list passes by a 

space and at which time a space is vacant. Cars cruise for parking by travelling in one 

direction around a circle taking the first vacant parking space they encounter. Record (T-

Arrival time) for any car that finds parking. 

 

5 Update all vacancy flags, and generate new vacancy times for spaces that have become 

occupied. 

 

6 Record ambient statistics at time T, including occupancy rate and number of cars 

currently searching. 

 

7 Should the desired number of observations not be met, set T = T + 1 and go to 3. 
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3.2 Parameterization of the Model 

The parameters of the base case simulation model were reported in Table 1.  For the 

initial conditions of each simulation, all parking spaces are initialized as occupied, with a 

time until available that is exponentially distributed with the mean stay length of 2000 

time units (the same as for the entering cars).  We start recording simulation results when 

10,000 time units (5 hours in unnormalized time units) have passed since the start time.  

We made this choice early in the research, on the assumption that, after five hours of run 

time, the distribution of cruising-for-parking times should be little affected by the 

assumed starting point. In most of the simulations, we ran 10
6
 cars through the system, 

which corresponds to approximately 10
6
 X 30 X 1.8/3600 = 15,000 hrs of traffic.  This 

might seem like overkill, but as we shall see, it was not.   

 

We have undertaken a large number of simulation runs. To avoid a tedious cataloguing of 

results, we have decided to proceed by examining in the next section the central base case 

simulation from several different statistical perspectives, and then in the subsequent 

section by presenting the effects of varying one parameter at a time using a more limited 

set of statistics. 

 

 

4. The Central Base Case Simulation: Different Statistical Perspectives 

We start in Table 2 by comparing the moments of the distribution of cruising-for-parking 

times for the central base case simulation to the theoretical distribution based on the 
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binomial approximation.  All the numbers presented are in normalized time units.  The 

simulated results are based on a simulation length of 10
6
 cars, which corresponds to 

15,000 hours, with the results from the first five hours dropped in order to ensure that the 

recorded results are little affected by the assumed initial conditions. 

 

 Mean  Variance Pearson 

Skewness  

Fisher  

Kurtosis 

Simulated 3.602 23.92 4.031 42.20 

Binomial 

Approximation 

2.500 6.000 2.041 6.167 

 

Table 2: Moments of the Probability Distribution of the Cruising-for-Parking Time for 

 the Central Base Case in Normalized Time Units 

Notes: Pearson skewness equals the third moment of the distribution, normalized by 

dividing by the second moment of the distribution to the 3/2 power.  Fisher kurtosis 

equals the fourth moment of the distribution, normalized by dividing by the second 

moment of the distribution squared.   

  

 

Thus, as was noted earlier, the mean from the simulations is 1.441 times as large as the 

mean calculated under the binomial assumption, and the variance, Pearson skewness, and 

Fisher kurtosis are all larger too, indicating that the simulated distribution has a fatter tail.  

 

We could now compare the cdf's for the simulated distribution and the theoretical 

distribution.  We have chosen not to do so since the probability mass is so concentrated 

for just a few parking spaces searched.  The cdf's show that the simulated distribution 

first-order stochastically dominates the theoretical distribution, consistent with the results 

in Table 2.  We found a "ratio plot" of the number of occupied parking spaces searched 

before finding a vacant space (excluding the vacant space) to be a more informative way 

of comparing the two distributions.  A ratio plot plots a ratio against the number of 
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curbside parking spaces searched. For n curbside parking spaces searched, the numerator 

in the ratio is the realized proportion of cars that encountered n occupied parking spaces 

before finding a vacant parking space, while the denominator is the corresponding 

expected proportion based on the binomial approximation
15

. Figure 4 displays the ratio 

plot for the central base case simulation. It gives a vivid representation of how much 

fatter the tail is in the distribution obtained from the simulation than in the theoretical 

distribution.  Consider for example n = 17.  Under the binomial approximation, the 

probability that n = 17 is (2/3)
17

(1/3) = 3.383 X 10
-4

 implying that, out of 10
6
 cars, the 

expected number of cars to encounter 17 occupied parking spaces before finding a vacant 

one is 338.3.  The number obtained from the simulation is about 10 times as large.  With 

n = 25, the corresponding numbers are 13.20 and a number that is about 100 times as 

large.    

                                                 
15

 As was noted earlier, where q is the expected occupancy rate, the expected proportion 

of cars that encounter 0 occupied parking spaces before finding a vacant space is (1 - q), 

1 space is q(1 - q), 2 spaces is q
2
(1-q), etc., which with an occupancy rate of 1/3 gives the 

proportions 1/3 for n = 0, 2/9 for n = 1, 4/27 for n = 2, etc.  

 Note the distinction between the number of occupied curbside parking spaces 

searched before finding a vacant space, and the number of curbside parking spaces 

searched before finding a vacant space (including the vacant space). They differ by one.  

We have shown that with a curbside occupancy rate of 2/3, the mean of the latter 

distribution is 3 (1/(1 - q)) while that of the former is 2 (1/(1 - q) - 1). 
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Figure 4: Ratio Plot for Occupancy Rate 2/3 

Notes: The number on the y-axis is the ratio of the probability for the simulation run to 

the corresponding probability under the binomial approximation. 

 

 

 

Whatever the probability distribution of the number of occupied parking spaces searched  

before finding a vacant space, the probability of n = 0 equals the vacancy rate.  When the 

expected occupancy rate is 2/3, so that the expected vacancy rate is 1/3, a car that has just 

entered the track should find the first parking space to be vacant with probability 1/3.  All 

of our simulation runs are consistent with this observation. 

 

What is causing the simulated density function for cruising-for-parking time to have tails 

that are so much fatter than the tails of the density function implied by the binominal 
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approximation? Unfortunately, as explained earlier, even though our model specifies the 

stochastic process generating occupancies and vacancies, we have been unable to solve 

analytically for the implied stationary distribution of cruising-for-parking times.  We can, 

however, identify several possible effects, each of which tells part of the story. 

 

1.  Intuitively, the directed nature of search for a vacant parking space may lead to 

spatial autocorrelation, which we term the bunching effect. One measure of this effect is 

the expected number of occupied parking spaces in a row before a vacant space is 

encountered
16

. To illustrate how this effect works, compare the number of occupied 

parking spaces searched before finding a vacant parking space under the repeated pattern 

VOOVOOVOO -- with that under VVOOOOVVOOOO --- , both of which have an 

occupancy rate of 2/3. In the former situation, the distribution of the number of occupied 

parking spaces searched before finding a vacant space is 0 with probability 1/3, 1 with 

probability 1/3, and 2 with probability 1/3, for an expected value of 1.  In the latter 

situation, the corresponding probabilities are 0 with probability 1/3, 1 with probability 

1/6, 2 with probability 1/6, 3 with probability 1/6, and 4 with probability 1/6, for an 

expected value of 10/6. Another measure of this effect is the expected number of 

occupied spaces in a bunch.  In the former example, this number is 2; in the latter 

example, it is 4; and under the binomial approximation, it is 3.
17

  In the central base case 

                                                 
16

 Note that this is a measure of bunching from the perspective of a stationary observer, 

which is different from a measure from the perspective of a searching car. To illustrate 

the difference, suppose that bunches moved at the same speed as cars. Then an entering 

car that found the first parking space it encountered to be occupied would continue to 

encounter occupied spaces.   
17

 Start with an occupied space whose leftmost neighbor is vacant.  The probability that 

there is one occupied space in the bunch is the probability that the space after the 
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simulation, the mean size of a bunch of occupied spaces is 3.887 (and the variance is 

19.24), which indicates that bunches are significantly more clustered than under the 

binomial approximation.   

 

To get an idea of the importance of the bunching effect, assume for the sake of argument 

that the mean number of parking spaces searched (including the vacant space) equals the 

expected number of occupied parking spaces in a bunch, which holds under the binomial 

approximation. Then the expected cruising-for-parking time in the central base case 

simulation would be 3.887 - 0.5000 = 3.387, and the bunching effect would explain a 

proportion (3.387 - 2.500)/(3.602 - 2.500) = 0.8049 of the difference between the mean 

cruising-for-parking time between the central base case simulation and that obtained 

under the Poisson assumption. While the validity of the assumption is certainly open to 

question, this back-of-the-envelope calculation does indicate the potential importance of 

the bunching effect in explaining the discrepancies between the simulation results and 

those obtained under the binomial approximation.  

 

Above we have documented the bunching effect for the central base case simulation, and 

taken a first pass at gauging its importance in explaining the discrepancy between the 

simulated mean cruising-for-parking time and that generated under the Poisson 

approximation.  But we have not investigated how the bunching effect differs across 

                                                                                                                                                 

occupied space is vacant, which is 1/3; the probability that there are two occupied spaces 

in the bunch is 2/3(1/3), ---.  Thus, the expected value is 1/3 + 2(2/9) + 3(4/27) + 4(8/81) 

--- , which can be shown to equal 3.  
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simulation runs.  Nor have we developed theory that explains either how the bunching 

effect occurs or how it affects the discrepancy
18

.  

 

2. Intuitively, if the track has an infinite number of parking spaces around it, by 

some law of large numbers the occupancy rate should remain at 2/3.  With a finite track, 

however, the occupancy rate is stochastic.  Suppose, for example, that the occupancy rate 

is q0 = 1/2 half the time and q1 = 5/6 the other half.  If the stochastic process otherwise 

satisfies the binomial approximation, then the expected number of occupied parking 

spaces encountered before finding a vacant space is 1/2(1/(1 - q0) - 1) + 1/2(1/(1 - q1) - 1) 

= 3, whereas it would be 1/(1 - q) - 1 = 2 with an occupancy rate of 2/3 all the time.  This 

result is an application of Jensen's Inequality
19

 since, under the binomial approximation, 

the function relating the expected number of occupied parking spaces searched to the 

occupancy rate is convex.  Intuition suggests that this convexity property should hold for 

the simulations too.  Thus, we term this effect the Jensen's Inequality effect.   

 

To get an idea of the quantitative importance of the Jensen's Inequality effect, assume for 

the sake of argument that the current mean cruising-for-parking time depends on the 

contemporaneous vacancy rate.  Then the expected number of parking spaces searched 

                                                 
18

 A useful place to start might be to define the strength of the bunching effect as the ratio 

of the simulated mean bunch length to the corresponding number obtained under the 

binomial approximation, and then to measure how the strength of the bunching effects is 

related to the simulation model's parameters.  If there is no bunching effect, the strength 

of the bunching effect, so defined, equals 1.0, which is appropriate for the multiplicative 

decomposition of effects.  
19

 In the probabilistic context, Jensen's Inequality states that if X is a random variable and 

f is a convex function, the expected value of f is greater than f evaluated at the expected 

value of X; here X is the occupancy rate, and f is the function relating the expected 

number of occupied parking spaces searched to the occupancy rate. 
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before finding a vacant space (including the vacant space) would equal the reciprocal of 

the harmonic mean of the vacancy rate
20

, and the expected cruising-for-parking time 

would equal this number minus 0.5000.  Figure 5 displays the frequency distribution of 

the occupancy rate for the central base case simulation.  

 

Figure 5: Frequency Distribution of the Occupancy Rate: Central Base Case 

 

The corresponding harmonic mean of the vacancy rate for this simulation is 0.3082.  

Adjusting the binomial approximation by replacing the expected vacancy rate with the 

harmonic mean of the realized vacancy rate gives an expected number of parking spaces 

                                                 
20

 Thus, the strength of the Jensen's Inequality effect may be measured as the ratio of the 

arithmetic mean of the vacancy rate and the harmonic mean.  If indeed expected cruising-

for-parking time is a convex function of the occupancy rate, this ratio has a minimum 

value of 1, which is appropriate for multiplicative decomposition, and a higher number 

represents a stronger effect.  
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searched before finding a vacant parking space (including the vacant parking space) of 

1/0.3082 = 3.245, and an expected cruising-for-parking time of 2.745.  Thus, this 

interpretation of the Jensen's Inequality effect would explain a proportion  (2.745 - 

2.500)/(3.602 - 2.500) = 0.2223 of the difference between the simulated mean cruising-

for-parking time and that obtained via the binomial approximation.  This interpretation of 

the Jensen's Inequality effect likely overestimates its importance since it assumes that 

each car faces an occupancy rate over its entire search equal to the occupancy rate at the 

time it entered the track.  If, to the contrary, fluctuations in the occupancy rate are of very 

high frequency, then each car would face an occupancy rate over its entire search equal to 

the expected occupancy rate, in which case the Jensen's Inequality effect would 

disappear.  Thus, the importance of the Jensen's Inequality effect depends negatively on 

the frequency of fluctuations in the vacancy rate. 

 

Figure 6 gives some insight into the importance of short relative to long waves in 

determining the difference between the arithmetic and harmonic means of the occupancy 

rates, which is at the heart of the Jensen's Inequality effect. Panel A plots a moving 

average of the occupancy rate for the central base case simulation run, where the average 

is over the 100 time units (3 minutes); panels B and C do the same but with an average 

over 1000 time units (30 minutes) and 10,000 time units (5 hours).  Together the panels 

give an idea of the periodicity of fluctuations in the occupancy rate.  Recall that the 

average cruising-for-parking time for the central base case simulation run is 3.602 time 

units (6.484 seconds).  Over such a small time period, during which, on average, only 

0.1201 cars  
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Figure 6: Different Moving Averages of the Occupancy Rate 

Notes: Panel A: moving average over 100 time units; Panel B: moving average over 1000 

time units; Panel C: moving average over 10,000 time units, each subsampled at 100 time 

units  

 

 

enter the track, with the same average number leaving the track, the occupancy rate will 

only change marginally. Since the average variation in the occupancy rate over a trip is 

small, it appears that that the Jensen's Inequality effect explains some 20% of the 

discrepancy between the mean cruising-for-parking time in the central base case 

simulation and the expected cruising-for-parking time obtained under the binomial 

approximation. 

 

3. A searching car's probability of encountering a parking space that has recently 

been vacated is inversely proportional to the number of cars circling the track.  We term 

this the competition effect.  The binomial approximation for the expected cruising-for-

parking time ignores this effect.  
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Figure 7 displays a time series of the number of cars on the track, sampled at intervals of 

100. 

 

 

Figure 7: Time Series for the Number of Cars Currently Searching at Occupancy Rate 2/3 

Notes: The simulation run has 10,000 time steps. 

 

We now explore the distribution of the number of cars circling the track under the 

approximating assumption that the underlying stochastic process determining the number 

of cars cruising the track is a birth-and-death process with birth rate  and death rate n(1 - 

q), where n is now the number of cars cruising for parking.  Cars enter the track at 

Poisson rate . Under the binomial approximation, each of the n cars cruising for parking 

finds a vacant parking space at the Poisson rate 1 - q, and since, also under the binomial 
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approximation, these Poisson rates are independent, the rate at which cars cruising for 

parking find a vacant parking space is n(1 - q). Let pn(t) be the probability that the 

number of cars cruising for parking at time t is n.  Then we have that  

pn(t + dt) = pn(t)(1 - n(1 - q)dt - dt)  + pn-1(t)dt + pn+1(t)(n + 1)(1 - q)dt for n = 1, ---,  

 p0(t + dt) = p0(t)(1 - dt) + p1(t)(1 - q)dt     (1) 

The interpretation of the second equation is as follows. During the increment of time dt, it 

is infinitely more likely that one state transition will occur than more than one state 

transition. The probability that the number of cars cruising for parking is zero at time t + 

dt is therefore (the probability that zero cars were cruising for parking at time t multiplied 

by the probability that there was no entry to the track during the increment of time, 1 - 

dt) plus (the probability that one car was cruising for parking at time t multiplied by the 

probability that the car found a vacant parking space, (1- q)dt).  The interpretation of the 

first equation is similar. Letting pn be the steady-state probability that the number of cars 

cruising for parking is n, (1) implies the recursion 

 pn = (/[n(1 - q)])pn-1 for n = 1, ---, .     (2) 

From this, we obtain the infinite series  

 n=0


pn = 1 = p0(1 + z + z
2
/2! ---- ) where z  /(1 - q).   (3) 

The value of the infinite series is e
z
.  Thus, p0 = e

-z
, p1 = ze

-z
, p2 = z

2
e

-z
/2!, etc. The mean 

number of cars cruising for parking is therefore 

 m = 0e
-z

 + 1(ze
-z

) + 2(z
2
e

-z
/2!) + 3(z

3
e

-z
/3!) --- = z.    (4) 

In the base case, z = /(1 - q) = (1/30)/(1/3) = 0.1, which implies that m = 0.10, p0 = 

0.9048, p1 = 0.9048E-1, p2 = 0.4524E-2, p3 = 0.1508E-3, p4 = 0.377E-5, ---. The variance 

is 
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 var = z
2
e

-z
 + (1- z)

2
(ze

-z
) + (2 - z)

2
(z

2
e

-z
/2!) ---,  

which after some tedious algebra can be shown to reduce to z, which equals 0.1 in the 

base case.  

 

The above approximation ignores that, on average, a car travels 0.5000 distance units 

before encountering a parking space, taking 0.5000 time units.  With a Poisson entry rate 

of 1/30 cars per time unit, the expected number of cars on the track that have not yet 

reached the first parking space is 0.5000/30 = 0.01667. Taking this into account, the 

adjusted binomial approximation of the expected number of cars cruising for parking is 

0.1167.  

 

The corresponding mean for the central base case simulation run is 0.1038. Thus, at least 

for the central base case simulation, the birth-and-death/Poisson approximation for the 

expected number of cars cruising for parking is quite accurate. As we shall note later, 

however, this is not the case for the simulation run with an expected occupancy rate of 

5/6, and may not be the case for other simulation runs with an expected occupancy rate of 

2/3. 

 

The above calculations may be employed to estimate the number of other cars on the 

track when a car is cruising for parking.  Under the Poisson/birth-and-death 

approximation, this equals the expected number of cars cruising for parking conditional 

on at least one car cruising for parking, minus one, which can be shown to equal 0.05083.  

Under the binomial approximation, from the perspective of a car cruising for parking, the 
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probability that the next parking space will be vacant is 1/3, so that the probability that 

the next parking space will be vacant and that no other cruising car reaches it before the 

car in question is (1/3)(1 - 0.05083/100) = 0.3332. Under these assumptions, therefore, 

with an occupancy rate of 2/3, the competition effect is quantitatively unimportant.  

Applying the same logic but with the observed distribution of the number of cars cruising 

for parking (recorded in Table 3) in the central base simulation gives an expected number 

of other cars on the track when a car is cruising for parking of 0.07474, for which the 

competition effect is also quantitatively unimportant.  Again, as we shall note later, the 

competition effect does become important for high occupancy rates, where the mean 

number of cars cruising for parking is considerably higher, and may be significant for 

some simulation runs with an expected occupancy rate of 2/3.  

 

4. To illustrate the next effect, suppose that there are only 10 parking spaces round 

the track, that the expected occupancy rate is 2/3, that a driver has circled the track 

without finding a vacant space, and that the driver is and remains the only car cruising for 

parking. Under our assumed distribution of parking stay times, conditional on his having 

circuited the track without having found a vacant space, the probability that the first 

parking space he encountered upon entering the track is still occupied on his second 

circuit is one minus the probability that it was vacated during his first circuit (that 

probability is 0
10 
e

-t 
dt = 0.004988, where  = 1/2000 is the Poisson rate at which a 

parking space is vacated), which equals e
-1/200 

  0.9950.  The same argument applies to 

the second and so on occupied spaces that he encountered upon entering the track, and 

also to his subsequent circuits of the track. The obvious term for this effect is the 
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circling-the-block effect.  Since, by assumption, the rates at which occupied parking 

spaces are vacated are statistically independent, we can proceed further.  The probability 

that a car makes a second circuit of the track without encountering a vacant parking 

space, contingent on its not having found a vacant space on the first circuit, is 

approximately (0.995)
10

 = 0.9512. The probability that it makes an n+1
st
 circuit of the 

track without encountering a vacant parking space on the n
th 

circuit is the same.  

 

In the central base case simulation, only 7 cars out of the one million circled the block, 

and only 1 of the 7 circled twice. Thus, in this simulation the cruising-the-block effect is 

of negligible importance.  As we shall see, however, this may not be the case for other 

simulations with the same parameter values. The circling-the-block effect is more 

important the higher is the expected occupancy rate and the smaller the number of 

parking spaces. 

 

5. Thus far we have identified four different effects, each of which goes part of the 

way towards explaining why the simulated mean cruising-for-parking time significantly 

exceeds that obtained under the binomial approximation: the bunching effect, the Jensen's 

Inequality effect, the competition effect, and the cruising-the-block effect.  We 

considered each of these effects in isolation.  But there may also be important interaction 

effects.    
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These interaction effects may cause the combination of pairs of effects on mean cruising-

for-parking time to be subadditive or superadditive.  There are six pairs of effects.  Here 

we shall consider only three. 

 

The most obvious of the pairwise interaction effects is that between the competition 

effect and the cruising-the-block effect.  Suppose that there is and continues to be a single 

car cruising for parking, and that that the track has all 10 of its parking spaces occupied. 

We argued above that, if parking stay times are negative exponentially distributed with 

mean 2000, the probability that the cruising car will make a full circuit of the track 

without finding a vacant space is (0.995)
10

 = 0.9512, which is the probability that none of 

the 10 spaces is vacated in one circuit.  Now, suppose that there are two cars cruising for 

parking with all of the track's parking spaces occupied, and that no cars enter on the next 

circuit.  The probability that a particular car will make a full circuit of the track without 

finding a vacant space equals the probability that none of the 10 spaces is vacated in one 

circuit, plus one-half the probability that one is vacated: 0.9512 + 

(0.5)(10)(0.995)
9
(0.005) = 0.9751.  Put alternatively, when the number of cars cruising 

for parking increases from one to two, and when initially all parking spaces are occupied, 

the probability that a particular car will find a vacant space on a full circuit of the track 

falls from 0.04877 to 0.02488.   

 

We term the interaction between these two effects the multiplication effect because, if the 

number of cars cruising for parking were to persist, expected cruising-for-parking time 
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would equal the expected cruising for-parking-time with one car cruising for parking 

multiplied by the number of cars cruising for parking.  

 

The next pairwise interaction effect we consider is that between the Jensen's Inequality 

effect and the competition effect. Both intuition and the earlier discussion suggest that the 

number of cars cruising for parking and the realized occupancy rate are positively 

correlated. This is demonstrated in Table 3, which for the central base case run (which 

has an expected occupancy rate of 2/3) displays the mean occupancy rate and the realized 

probability distribution of the number of cars cruising for parking, conditional on the 

number of cars cruising for parking. The positive correlation between the number of cars 

cruising for parking and the occupancy rate conditional on the number of cars cruising for 

parking fattens the right tail of the distribution of cruising-for-parking times.  For want of 

a better term, we term this the correlation effect.  A statistical accident in which fewer 

than the expected number of cars vacate their parking spaces has a direct positive effect 

on the realized occupancy rate, which in turn increases the expected number of cars 

cruising for parking.  A statistical accident in which more than the expected number of 

cars enter the track has a direct effect on both the realized occupancy rate and the number 

of cars cruising for parking. Thus, the Jensen's Inequality effect and the competition 

effect on the expected cruising-for-parking time are super-additive.  

 

Number of 

Cars 

Searching, k 

0 1 2 3 4 5 

Probability 

of  k Cars 

0.9034 0.08983 0.006322 0.0004220 0.0000193 0.0000023 

Mean 

Occupancy 

0.6620 0.6988 0.7425 0.8074 0.8343 0.8871 
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Table 3: Probability of k Cars Searching and Mean Occupancy Rate with k Cars   

 Searching with Occupancy Rate 2/3 

 

 

 

The final interaction effect we consider is that between the two effects that appear to be 

of dominant importance when the occupancy rate is 2/3, the bunching effect and the 

Jensen's inequality effect. Earlier we defined the strength of the bunching effect to be the 

ratio of the simulated mean number of cars in a bunch to the corresponding expected 

number under the binomial approximation, and the strength of the Jensen's Inequality 

effect to be the ratio of the arithmetic mean of the vacancy rate to the harmonic mean. We 

now undertake a multiplicative decomposition of the effects.  Letting A denote the ratio 

of the simulated mean cruising-for-parking time to the corresponding expected number 

under the binomial approximation, B denote the strength of the bunching effect as 

defined earlier, J denote the strength of the Jensen's inequality effect as defined earlier, 

and R denote the strength of the residual effect, defined to equal 1 when the residual 

effect is neither positive nor negative.  It can be shown that A  BJR. Applying this 

formula for the central base case simulation gives R = (3.602/2.5) 

[(0.3333/0.3082)](3.887/3.000)] = 1.02816. Since the competition effect, the circling-

the-block effect, and their interaction effects, are negligible for the central base case 

simulation, then the residual effect reduces to the interaction effect between the bunching 

effect and the Jensen's Inequality effect. That the residual effect is only slightly greater 

than 1.000 suggests that the bunching effect and the Jensen's inequality effect are only 

very slightly super-additive. 

 



 43 

When we started our simulations, we fixed the simulation time at 10
6
 time units.  But 

then, unexpectedly, we found that the mean cruising-for-parking time was substantially 

different from run to run, so we switched to simulation runs in which 10
6
 cars were 

simulated, which as noted earlier corresponds in unnormalized time units to about 15,000 

hours. To investigate how different the mean cruising-for-parking time is across runs, we 

reran the base case simulation for 10
5 

observations (not the 10
6
 observations that were 

used in the central base case simulation) 1000 times. The probability density function of 

both the mean and the variance of the means are presented in Figure 8.  The only 

explanation that we can think of for why the results differ substantially from run to run, 

despite the large number of cars on each run, is "disasters" -- very low probability but 

extreme events. Even for one hundred thousand observations, there may not even be a 

minor disaster, but a major disaster may increase mean cruising-for-parking time 

substantially.  A major disaster is "a perfect storm" that comes about purely by chance,  
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Figure 8, Panel A: Distribution of the Number of Parking Spaces Searched for 1000 

 Simulations with Occupancy Rate = 2/3 

   Panel B: Distribution of the Variance of the Number of Parking Spaces   

Notes: Each simulation is for 10
5
 time units.  

 Mean of means: 3.633.  95% confidence interval of means
21

 (3.527, 3.745) 

 Mean of variances: 26.79. 95% confidence interval of variances (22.32, 36.53). 

 

 

 

when stochastic realizations are such that not only does parking become almost 

completely blocked but also it takes an exceptionally long period for parking to unblock 

(either because the realized entry rate is exceptionally high, or because the rate at which 

parking spaces are vacated is exceptionally low, or because the number of cars cruising 

for parking is exceptionally high).  The few major disasters that occurred in this set of 

simulation runs can be identified as the right-tail outliers in the Figures.  Thus, even 

though the competition effect and the cruising-the-block effect were of negligible 

importance in the central base case simulation, the same may not be the case for other 

simulations with the same exogenous parameter values. 

 

We conclude this section by further exploring the bunching effect.  We started with the 

broad intuition that, if the parking on an entire block becomes fully occupied, whether by 

statistical accident or by some special event, it will have ripple effects in space-time.  

Cars that were intending to park on that block will move to neighboring blocks in their 

search for curbside parking.  This got us to thinking about how bunches of occupied 

parking spaces evolve over space-time.  We started with a snapshot of the track, such as 

that shown in Figure 9 below.  

                                                 
21

 Computed so that 2.5% of the probability mass lies to the left of the interval and 2.5% 

of the mass lies to the right of the interval. 
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Figure 9: Snapshot of Street with Mean Occupancy Rate 2/3 

Notes: White spaces are occupied, black spaces are vacant.  There are 70 occupied spaces 

and 30 vacant spaces. The vacant spaces are 2, 3, 4, 6, 7, 14, 17, 21, 23, 24, 25, 26, 27, 

28, 29, 31, 33, 35, 37, 38, 48, 50, 54, 60, 63, 70, 71, 73, 78, 87. 

 

 

We then aimed to examine how bunches evolve -- expanding, contracting, forming, and 

dissolving.  Examining this analytically, we uncovered one result.  Bunches tend to move 

clockwise over time since there is a higher than average probability that the first vacant 

space after a bunch of occupied spaces becomes occupied, and a lower than average 

probability that the first vacant space before a bunch of occupied spaces becomes 

occupied. Under the binomial approximation, the unconditional arrival rate of a car at a 

particular parking space is Poisson with arrival rate at the entire track, 1/30, divided by 

the number of parking spaces around the track, which is 100, times the expected number 

of parking spaces searched before finding a vacant space (including the vacant space), 

which is 3.0, for a total of 1/1000.  But conditional on an initial situation where at time t 

there is a bunch of six occupied spaces followed by a vacant space, the rate at which cars 

arrive at the vacant parking space is different.  The probability that a car that entered the 

track in the previous time unit passes that vacant space in time interval [t, t + dt] is 

dt/3000; the probability that a car that entered the track in the time unit before that  
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Figure 10, Top Panel: Snapshots of the Circle Every 1000 Time Steps with Occupancy 

Rate = 2/3 

                  Bottom Panel: Snapshots of the Circle Every 1000 Time Steps with 

Occupancy Rate = 5/6 

Notes: White is occupied, black is vacant 
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passes that vacant spot in that increment of time is dt/3000 times that the probability that 

the left-side neighbor was occupied at time t - 1 (conditional on its being occupied at time 

t), which is approximately 1999/2000; ---. Thus, the expected rate at which cars arrive at 

the vacant parking space is somewhat less than 7/3000.  This is the rate at which the front 

edge of a bunch of seven occupied spaces moves forward. By an analogous argument, if 

there is a string of vacant parking spaces before the first of a bunch of occupied parking 

spaces,  the rate at which the rightmost of the vacant spaces is occupied is lower than 

1/1000. 

 

Unfortunately, we were unsuccessful in uncovering a body of literature on spatio-

temporal statistics that address the spatio-temporal evolution of bunches. The best we 

could do was to take snapshots of the track every so many time steps. Figure 10 displays 

such a snapshot, taken every 1000 time steps (every half hour) with occupancy rate 2/3 

(top panel) and 5/6 (bottom panel). Bunching shows up as positive horizontal correlation 

between white spaces (or black spaces); standard autocorrelation as positive vertical 

correlation; and the type of spatio-temporal autocorrelation discussed in the previous 

paragraph as positive correlation in a northeast direction. To the naked eye, bunching and 

clumping of vacant spaces are evident, but not standard autocorrelation nor positive 

correlation in the northeast direction
22

.  

 

We could have undertaken considerably more statistical analysis of the central base case 

run, and we could have proceeded more formally.  Nevertheless, we judge that the 

                                                 
22

 While we have not investigated this, at high occupancy rates intuitively bunching 

should also occur among cars cruising for parking. 
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statistical evidence we have accumulated makes a compelling case that the binomial 

approximation is a poor one, and that the expected cruising-for-parking time calculated 

using it significantly underestimates the true expected cruising-for-parking time.  The 

next section investigates the effects of parameter changes one at a time.  Among other 

things, it will: i) show the binomial approximation becomes increasingly poor as the 

occupancy rate increases; ii) provide strong evidence of the circling-the-block effect; and 

iii) present evidence that the behavior of the parking system is insensitive to the turnover 

rate, holding constant the occupancy rate, and is somewhat sensitive to the distribution of 

stay times, holding constant the average stay time. 

 

5.  Comparative Stochastic Steady States 

We start off by examining how the stochastic steady state changes as the Poisson entry 

rate changes, ceteris paribus.  A change in the Poisson entry results in a proportional 

increase in the expected occupancy rate. Table 4 shows the moments of the distribution 

of cruising-for-parking times when the vacancy rate is successively halved.  In the central 

base case, the occupancy rate is 2/3 and the vacancy rate is 1/3; a halving of the vacancy 

rate to 1/6 results in an increase in the occupancy from 2/3 to 5/6; and a further halving of 

the vacancy rate to 1/12 results in an increase in the occupancy rate from 5/6 to 11/12.  

For each occupancy rate, the results are for only single simulation runs of a million cars, 

and, as we have seen, the results for each case can be quite different across simulation 

runs. The number in each cell is computed from the corresponding simulation run.  The 

number in parenthesis in a cell gives the corresponding number according to the binomial 

approximation.   
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Occupancy Rate Mean Variance Pearson 

Skewness 

Fisher 

Kurtosis 

2/3 (base case) 3.614 

(2.500) 

23.74 

(6.000) 

3.685 

(2.041) 

27.87 

(6.167) 

5/6 16.84 

(5.500) 

3575 

(30.00) 

15.25 

(2.640) 

423.1 

(6.033) 

11/12 97.63 

(11.50) 

86600 

(132.0) 

8.248 

(2.760) 

117.6 

(6.008) 

 

Table 4: Moments of the Distribution of Cruising-for-Parking Times in Normalized Time 

   Units 

Notes: For each case, the principal numbers are from a single simulation with 10
6
 cars; 

the numbers in parenthesis are those generated by the binomial approximation. 

 

 

Table 4 demonstrates that the ratio of the mean cruising-for-parking time for a simulation 

to the corresponding expected value obtained from the binomial approximation becomes 

increasingly large as the expected occupancy rate increases.  In other words, the binomial 

approximation underestimates the mean cruising-for-parking time by an increasingly 

large proportion, the higher is the expected occupancy rate.  

 

We were curious concerning the accuracy of the binomial approximation when the 

expected rate is low.  Figure 11 displays our now-standard ratio plot when the occupancy 

rate is 0.1.  The mean cruising-for-parking time is 0.6172.  The expected cruising-for-

parking time according to the binomial approximation is 1/0.9 - 0.5 = 0.6111. Even 

though the binomial approximation provides an accurate approximate of the actual mean 

cruising-for-parking time, it still sharply underestimates the fatness of the right tail of the 

distribution. 
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Figure 11: Ratio Plot with a Mean Occupancy Rate = 0.1 

 

Figure 12 presents two pairs of panels.  The upper panel on the left shows a smoothed 

(moving average over 100 time steps or 3 minutes) time series for the occupancy rate and 

the bottom panel the corresponding time series for the number of cars on the track, both 

for the case where the expected occupancy rate is 2/3, between 30,000 and 40,000 time 

units into the simulation (15 hours and 20 hours, respectively).  The corresponding panels 

on the right are for the case where the expected occupancy rate is 5/6.  With an expected 

occupancy rate of 2/3, over the entire simulation the mean cruising-for-parking time was 

3.614, the mean number of cars searching for parking was shown earlier to be 0.1038 (in 

contrast to 0.1167 according to the Poisson approximation), with only 7 cars out a million 

making more than a complete circle of the track.  With an expected occupancy rate of  
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Figure 12: Smoothed Time Series for Number of Cars on the Track against the 

 Occupancy Rate  

Notes: The upper panel on the left shows the smoothed time series for the number of cars 

on the track, and the lower panel on the left shows the time series for the occupancy rate, 

both with the occupancy rate = 2/3.  The panels on the right show the same with the 

occupancy rate = 5/6. 

  

 

5/6, over the entire simulation the mean cruising-for-parking time is 16.84, with a 

maximum of around 403, and the expected number of cars searching for parking is 

0.5067 (in contrast to 0.2167 according to the Poisson approximation).  Also, while not 

shown in the Figure, there are rare events in which the number of cars simultaneously on 

the track exceeds twenty, and one point in time at which the number exceeds 40.  Our 

conjecture is that these rare events occur when parking around the track becomes almost 
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completely occupied and an accumulation of cars cruising for parking develops, resulting 

in a significant number of cars circling the block.   

 

Table 5 gives the moments for three cases that differ only in the number of parking 

spaces around the track.  The first row repeats the results for the central base case 

simulation in which the number of parking spaces is 100, the second row gives the results 

when the number of parking spaces equals 1000, and the third row the results when the 

number equals 10.   

 

Parameters  Mean  Variance Pearson 

Skewness 

Fisher 

Kurtosis 

Central Base Case  

P = 100 

3.614 23.74 3.684 27.87 

Base Case except 

P = 1000 and 

Arrival Rate = 1/3 

3.609 23.72 3.589 23.31 

Base Case except 

P = 10 and 

Arrival Rate = 

1/300 

108.6 1681 7.353 85.01 

 

Table 5: Moments of the Distribution of Cruising-for-Parking Times in Normalized Time 

 Units with Occupancy Rate 2/3 

 

 

Increasing the number of parking spaces around the track by a factor of 10 relative to the 

base case, holding their spacing the same has little effect on the moments.  However, 

decreasing the number of parking spaces around the track by a factor of 10 strongly 

increases both the mean and variance of cruising-for-parking times.  The obvious 

conjecture is that this is due to the circling-the-block effect being important with P = 10 

but not with P = 100 (as we have shown) or with P = 1000.  The ratio plots for these 
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cases, which are shown in Figure 13, confirm this conjecture.  For P = 10, the circling-

the-block effect would result in a sharp drop in the ratio between space 9 (since the 

number of spaces searched excludes the successful space searched, this corresponds to 

successful search on the last space before circling the block) and space 10 (successful 

search on the first space after circling the block), and that is what is observed. 

 

Figure 13: Ratio Plots: Number of Parking Spaces = 10, 100, and 1000 and Expected 

 Occupancy Rate = 2/3 

 

Let us consider the parking system when, after a long series of statistical accidents, it 

finds itself in a situation where all 10 parking spaces are occupied and 5 cars are cruising 

for parking.  Each of the 10 parking spaces is vacated at the rate 1/2000, for a Poisson 

death rate of occupied parking spaces of 1/200.  The Poisson entry rate is 1/300.  Thus, 
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the parking logjam will eventually break up, but it may take a long time.  From the 

perspective of a driver, the Poisson rate at which she will be the first to pass by a recently 

vacated parking space is 1/1000.  If the situation were to persist, the expected cruising-

for-parking time for the driver would be 1000 (1/2 hour).  But the situation will likely not 

persist.  In the next increment of time, dt, the probability is dt/200 that the system will 

make a transition from 5 cars circling the block to 4, and dt/300 that it will make a 

transition from 5 cars circling the block to 6. We refer to parking as being saturated when 

a vacated parking space is taken almost immediately by one of the cars that is cruising the 

block.  In this saturated state, since each of the cars cruising round the circle has the same 

probability of being the first to encounter the single parking space that has just been 

vacated, the queue discipline is random access, so that the parking system behaves like an 

M/M/1//RSS queuing system.  The common probability of encountering a parking 

space in an increment of time dt is (Pλ/n)dt, where Pλdt is the probability that some space 

is vacated so that Pλ/n is the probability that a recently-vacated space is taken by a 

particular car among the n that are cruising for parking
23

. 

 

Table 6 compares the moments of the cruising-for-parking time distribution for three 

situations.  The first row displays the results for the central base case.  The second row 

                                                 
23

 The reader might be inclined to dismiss the "small-P" case as unrealistic. In most real-

world situations, P is large, but also parking spaces are differentiated according to 

distance to the parker's destination, and many parkers are averse to walking long 

distances from their parking space to their destination.  Consequently, many parkers do 

follow a circling-the-block strategy (often supplemented with a decision to garage park 

after a certain number of unsuccessful circles of the block), even though they should 

recognize that the probability of finding a parking space on the second circuit of the 

block is typically much smaller than on the first circuit.  
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displays the results for a case that is identical to the base case except that the entry rate is 

doubled and the mean stay rate halved (while maintaining the negative exponential 

distribution of stay times), resulting in no change in the expected occupancy rate but a 

doubling of the turnover rate.  The mean is not significantly different from that of the 

base case. Nor either is the corresponding ratio plot, which is displayed in Figure 14, 

Panel A. This result is qualitatively consistent with the binomial approximation in which 

the expected cruising-for-parking time is independent of the turnover rate, holding 

constant the occupancy rate. 

 

Parameters Mean Variance Pearson 

Skewness 

Fisher 

Kurtosis 

Base Case 3.614 

 

23.74  

 

3.685  

 

27.87  

 

Base Case but 

Doubling the 

Turnover Rate 

3.597  

 

24.42  5.422  123.3  

Base Case but 

Constant Stay 

Time 

4.188 34.25 4.096 60.08 

 

Table 6: Moments of the Distribution of Cruising-for-parking Times in Normalized Time  

 Units 

Notes: For each case, the numbers are from a single simulation with 10
6
 cars. 
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Figure 14: Ratio Plots 

Notes: Panel A: Base case compared with base case but double the turnover rate. 

 Panel B: Base case compared with base case but constant parking duration. 
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The third row displays the results for the case that is identical to the base case except that 

the stay length is constant at one hour rather than being negative exponentially distributed 

with a mean of one hour (in terms of the queuing theoretic notation introduced earlier, B 

= D(deterministic) rather than M (Markovian)).  The mean cruising-for-parking time with 

a constant stay time is significantly higher than that with a stay time that is negatively 

exponentially distributed, which is visually evident in the corresponding ratio plot in 

Figure 14, Panel B.   Our conjecture is that short stay times of some of the cars with the 

negative exponential distribution  allow a blockage to unlock more quickly. 

 

At the risk of oversimplification, it appears that the parking system we have examined 

has four phases.  In the first phase, the expected parking occupancy rate is modest and the 

system behaves in much the way predicted by the binomial approximation. The binomial 

approximation still severely underestimates the fatness of the right tail of the distribution 

of cruising-for-parking times but there is little probability weight there.  In the second 

phase, the expected occupancy rate rises to the point that, via Jensen's Inequality, 

stochastic fluctuations in arrivals and exits generate stochastic fluctuations in the realized 

vacancy rate that raise the expected cruising-for-parking time substantially above that 

predicted according to the binomial approximation.  Bunching is a related phenomenon, 

reflecting localized variations in the realized vacancy rate.  In this phase, the circling-the-

block effect and the competition effect are unimportant.  In the fourth phase, by statistical 

accident, parking becomes saturated, with an accumulation of cars circling the track 

hoping to be the first to pass by a parking space that has just been vacated.  In this fourth 
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phase, the circling-the-block effect and the competition effect dominate the behavior of 

the parking system, which is relatively easy to describe.  The third phase, which lies 

between the second and the fourth phases, is the most complicated.  Even though parking 

is not saturated, there is still a sufficient accumulation of cars cruising for parking that 

circling the block becomes significant.  If stochastic realizations are favorable, the system 

moves out of this phase into phase two; if they are unfavorable, the system moves into 

phase four.   

 

6. Concluding Comments 

This paper reported on a voyage of discovery into cruising for parking.  It examined 

cruising for parking in about the simplest context possible -- cruising for parking at a 

constant speed around a circle with evenly spaced parking spaces in a stochastic steady 

state, with a temporally and spatially invariant Poisson entry rate and negative 

exponentially distributed parking stay times.  Even such a simple model appears to be 

analytically intractable.  To investigate its properties, we employed stochastic simulation 

modeling without resort to any ad hoc assumptions.  This is in contrast to most previous 

work on cruising for parking which has employed what we termed the "binomial 

approximation", that the probability that each parking space is vacant equals the mean 

vacancy rate, independent of history and the current state of parking around the track. 

 

The exploration generated considerable data. Even though we analyzed them with only 

crude statistical tools, our results make a compelling case that, except in low occupancy 

rate situations where cruising for parking is not a problem, the binomial approximation 
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causes significant, and in high occupancy situations severe, underestimation of expected 

cruising-for-parking times.  The exploration also uncovered many results that to us at 

least were unexpected, and raised more questions than it answered.     

 

There are a number of obvious directions for future research. We proceeded on the 

principle that it is important to understand the basics before adding complications in the 

direction of realism.  Along these lines, an obvious direction is to apply more 

sophisticated statistical tools to analyze the data generated by both the simulation runs we 

undertook (which are accessible via the hyperlink 

http://math.ucr.edu/~parker/CruisingForParking/) and similar runs.  For queuing 

theorists, an obvious direction is to apply the full arsenal of queuing theory to our model, 

or to simplified variants of it, attempting to obtain analytical results regarding the 

properties of our model and better analytical approximations for the distribution of 

cruising-for-parking times.     

 

The next bold step forward will be to generalize the paper's model to an isotropic, two-

dimensional space.  This generalization is challenging because it qualitatively changes 

the nature of the problem.  In the one-dimensional problem we analyzed, a driver is 

simply a cellular automaton who keeps on driving round the circle until he finds a vacant 

parking space.  In the two-dimensional problem, in contrast, the driver can adopt a wide 

variety of strategies in his search for a curbside parking space.  Attempting to solve for a 

Bayesian Nash equilibrium is unrealistically ambitious.  A simple approach is to compare 

the equilibria when all drivers adopt the same strategy.  A more sophisticated approach is 

http://math.ucr.edu/~parker/CruisingForParking/
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to apply evolutionary game theory, looking for an evolutionarily stable mix of strategies. 

Following Arnott (2014), taking into account that most drivers have a specific destination 

and a desired arrival time, and will decide when to depart and when to start cruising for 

parking trading off in-transit travel time, cruising-for-parking time, walking time, 

schedule delay, and parking costs, would improve the model's realism. 

 

Because of the difficulty of treating non-stationary dynamics, the analysis of most 

queuing models focuses on the steady state. But it is important to analyze cruising for 

parking in the context of rush-hour congestion dynamics since the expected occupancy 

rate varies systematically over the rush hour (indeed Geroliminis, 2015, does this under 

the binomial approximation).  Practically, the best that can be hoped for is simulation 

models that endow cellular automata with some degree of sophistication rather than full 

rationality.  

 

The paper's model assumes that drivers just keep on cruising for curbside parking until 

they find a vacant space. But realistically since cruising becomes increasingly frustrating 

and costly, cruisers develop stopping rules. What those stopping rules are depends on the 

alternatives -- balking (just returning home), changing the sequencing of the day's 

activities, parking in a garage
24

, and changing the search location.  If stopping rules are 

not considered, cruising-for-parking models will consistently overestimate the 

probabilities of extreme cruising-for-parking times.  

 

                                                 
24

 While the paper has cast cruising for parking in the context of curbside parking, 

cruising for parking in parking lots and in parking garages is also important.  
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It is important to take account of spatial inhomogeneity.  Much of the spatial 

inhomogeneity most relevant to cruising for parking is highly localized, pointing to a 

network simulation approach using complete street networks. 

 

Another obvious direction for future research is to provide an integrated treatment of 

cruising for parking and traffic congestion. Cruising for parking affects traffic 

congestion, and traffic congestion affects the speed at which cars cruise for parking. 

Some work along these lines has been undertaken in Gerolominis (2015).  

 

Thus far the paper has made no mention of economics. In cruising for parking, a driver 

not only increases the expected cruising-for-parking time of other cruisers but also 

contributes to traffic congestion.  Parking pricing should account for both these 

externalities. Capacity is the other main category of parking policy.  How should the rules 

proposed (e.g., in Arnott, Inci, and Rowse, 2016) to choose the amounts of curbside, 

public garage, and private garage parking be modified to account for the more 

sophisticated treatment of cruising for parking that this paper investigates?   

 

The simulation results reported in the paper indicate how much extreme stochastic events 

can affect expected cruising-for-parking times.  An analogous phenomenon in the context 

of traffic congestion has recently been receiving considerable attention, with policy 

discussion focusing on how hypercongestion (situations in which traffic become so 

congested that traffic flow falls as traffic density rises) should be nipped in the bud 

through enlightened traffic management policies, such as diverting traffic via signal 
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phase timing around locations where severe hypercongestion is imminent.  How can the 

analogous phenomenon of near-gridlock in curbside parking in a downtown locale (in 

which a stock of cruisers for parking has accumulated) be avoided? The problem is made 

more difficult by the inability to distinguish between cars in transit and cars cruising for 

parking. Over sixty years ago Vickrey (1954) proposed (truly
25

) responsive curbside 

parking pricing, in which the price of curbside parking on a block is continuously 

adjusted so that at least one parking space is almost always available.  At the time the 

policy was impractical, but now, with cell phone apps permitting curbside parking 

reservations (Du and Gong, 2016), such a policy might be implementable without causing 

drivers excessive frustration. 

 

In the context of cruising for parking, Levy et al. (2013) characterized the binomial 

approximation as "working with averages", in contrast to their simulation model, which 

took explicit account of stochastic fluctuations.  They emphasized the importance of 

taking stochasticity into account, and this paper's simulations have underscored their 

message. The enlightened management of curbside parking needs to take into account 

temporally and spatially localized stochasticity.  The same is no doubt true of downtown 

traffic congestion more generally.  How to accommodate such stochasticity in the design 

of downtown transportation policy is an important challenge for transportation 

researchers. 

                                                 
25

 Vickrey used the term "responsive pricing" to pricing that adjusts automatically and in 

real time to stochastic realizations. Shoup uses the term differently, to refer to ex ante 

pricing that is adjusted periodically on the basis of average performance but not in 

response to stochastic realizations 
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Appendix 1: Source Code 

Source code, available at http://math.ucr.edu/~parker/CruisingForParking/ 

 
from __future__ import division 
import numpy as np 
 
#model variables 
#length of block 
n = 100 
#arrival rate 
arrivalRate = 30 
#stay duration 
S = 2000 
#stabilization cutoff. Dont record data before this timestep 
sCutoff = 10000 
#desired number of observations 
numObs = 1000000 
 
#car object 
class car: 
 
    def __init__(self, 
                 startingLocation, 
                 startingTime, 
                 currentTime, 
                 carId, 
                 startedSearching, 
                 foundParking 
                 ): 

http://math.ucr.edu/~parker/CruisingForParking/
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        self.startingLocation =startingLocation 
        self.presentLocation =startingLocation 
        self.startingTime = startingTime 
        self.currentTime = currentTime 
        self.carId = carId 
        self.startedSearching = False 
        self.foundParking = False 
    def startinglocation(self): 
        return self.startingLocation 
    def presentLocation(self): 
        return self.presentLocation 
    def startedSeartching(self): 
        return self.startedSearching 
    def foundParking(self): 
        return self.foundParking 
    def currentTime(self): 
        return self.currentTime 
    def __repr__(self): 
        return "Car id "  \ 
               + str(self.carId) \ 
               + " started at " \ 
               + str(int(round(self.startingLocation))) \ 
               + " at time " \ 
               + str(self.startingTime) \ 
               + " Currently at " \ 
               + str(int(round(self.presentLocation))) \ 
               + " with found parking status " \ 
               + str(self.foundParking) \ 
               + " and started searching status " \ 
               + str(self.startedSearching) 
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#parking space object 
class parkingSpace: 
 
    def __init__(self, 
                 location, 
                 occupied, 
                 emptyBy 
                 ): 
        self.location = location 
        self.occupied = True 
        self.emptyBy = np.random.exponential(S) 
 
#objects required for simulation that are not model parameters 
#array of searchtimes. 
searchTimes = [] 
occupancyRate = [] 
cars = [] 
currentlySearching = [] 
parkingSpaces = [] 
nextArrival = np.random.exponential(arrivalRate) 
 
#array of cars start it with 15 
for i in range(0,15): 
    cars.append(car(np.random.uniform(0,n),nextArrival,nextArrival,i,False,False)) 
    i +=1 
    nextArrival = nextArrival + np.random.exponential(arrivalRate) 
 
#array of parking spaces 
for l in range(0,n): 
    parkingSpaces.append(parkingSpace(l,True,np.random.exponential(S))) 
    print('starting with space ' 
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          + str(l) 
          + ' filled, it will be empty by ' 
          + str(parkingSpaces[l].emptyBy)) 
step = 0 
while( len(searchTimes) < numObs ): 
 
    print("Currently on step " 
          + str(step) 
          + " with " 
          + str(len(searchTimes)) 
          + " observations") 
    #if we run low on cars add more 
    if(len(cars) < 10): 
        cars.append(car(np.random.uniform(0,n),nextArrival,nextArrival,i,False,False)) 
        i+=1 
        nextArrival = nextArrival + np.random.exponential(arrivalRate) 
 
    #move cars that begin to search from cars array to currentlySearching 
    for c in cars: 
        if((c.startingTime < step) and c.startedSearching == False): 
            c.startedSearching = True 
            currentlySearching.append(c) 
            print("Car " 
                  + str(c.carId) 
                  + " has begun to search ") 
 
    #see if the cars in current cars are on empty spaces 
    for cs in currentlySearching: 
        if(cs.foundParking == False) and (parkingSpaces[int(np.floor(cs.presentLocation))].emptyBy < cs.currentTime): 
            #found parking 
            cs.foundParking = True 
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            #fill the space 
            parkingSpaces[int(np.floor(cs.presentLocation))].occupied = True 
            print("parking space " 
                  + str(np.floor(cs.presentLocation)) 
                  + " is now taken ") 
            #get a new exit time 
            parkingSpaces[int(np.floor(cs.presentLocation))].emptyBy = (np.random.exponential(S) + cs.currentTime) 
            #if we are far enough along record it 
            if(step > sCutoff): 
                searchTimes.append(step - cs.startingTime) 
            #output for console 
            print("Car " 
                  + str(cs.carId) 
                  + " found parking at time " 
                  + str(step) 
                  + " in location " 
                  + str(np.floor(cs.presentLocation)) 
                  + " having searched for time " 
                  + str(step - cs.startingTime)) 
        else: 
            #space was full, advance the car 
            print("Car " 
                  + str(cs.carId) 
                  + " advanced from location " 
                  + str(cs.presentLocation) 
                  + " to location " 
                  + str((cs.presentLocation +1)%n)) 
            cs.presentLocation = (cs.presentLocation +1)%n 
            cs.currentTime +=1 
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    #cleanup - remove cars that have found parking, allow new cars to merge onto street in order 
    currentlySearching[:] = [x for x in currentlySearching if (x.foundParking == False)] 
    cars[:] = [y for y in cars if (y.startedSearching == False)] 
    if(len(currentlySearching) != 0): 
        currentlySearching = sorted(currentlySearching,key = car.presentLocation) 
 
    currentSpacesTaken = 0 
    #empty out spaces that were not taken 
    for p in parkingSpaces: 
        if(p.emptyBy < step) and (p.occupied == True) : 
            p.occupied = False 
            print("Space " 
                  + str(p) 
                  + " is now available") 
        if(p.occupied == True): 
            currentSpacesTaken +=1 
    #reord ambient data 
    if(step > sCutoff): 
        occupancyRate.append([currentSpacesTaken/100,len(currentlySearching)]) 
 
    step +=1 
 
searchTimesToBeSaved = np.array(searchTimes) 
np.save('1Mobservatoins23S',searchTimesToBeSaved) 
occupancyRateToBeSaved = np.array(occupancyRate) 
np.save('1Mobservations23TimeSeries',occupancyRateToBeSaved)
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Appendix 2: Generated Simulation Data 

Directory of files 

On http://www.math.ucr.edu/~parker/CruisingForParking/ there are the following files 

 

Cruising_For_Parking.py This is the simulation file. Simulation parameters are at the top 

of the file with a comment section indicating as such. The parameters you may change are 

the arrival rate, the stay length, the number of spaces on the street, and the begin to record 

time. 

 

Ratio_Plot.py This is an example of the ratio plots  

 

The Table is a list of the data from which we worked. 

 

 

Code 

Filename Output 

Cruising_For_Parking.py Two numpy arrays, Search times and Time 

Series. Contents are explained in the Data 

Contents Table 

Ratio_Plot.py An image of a ratio plot 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.math.ucr.edu/~parker/CruisingForParking/
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Data 

Filename Figure/Table 

in Paper 

Number of 

Observations 
Occupancy 

Rate 
Stay Length Arrival 

Rate 
SearchTimes110.

npy  
Figure 11  1M 1/10 Exponential, 

Mean 2000 
Poisson 

Rate 30 
SearchTimes1112

.npy  
Table 4  1M 11/12 Exponential, 

Mean 2000 
Poisson 

Rate 30 
SearchTimes23.n

py  
Table 2 

Figure 4  

1M 2/3 Exponential, 

Mean 2000 
Poisson 

Rate 30 

SearchTimes2310

00spaces.npy  
Table 5 

Figure 13  

1M 2/3 Exponential, 

Mean 2000 
Poisson 

Rate 30 

SearchTimes2310

spaces.npy  
Table 5 

Figure 13  

1M 2/3 Exponential, 

Mean 2000 
Poisson 

Rate 30 

SearchTimes23C

onstantStay2000.

npy 

Table 6 

Figure 14  

1M 2/3 Constant 

2000 
Poisson 

Rate 30 

SearchTimes23D

oubleEntryHalfSt

ay.npy 

Table 6 

Figure 14  

1M 2/3 Exponential, 

Mean 1000 
Poisson 

Rate 15 

SearchTimes56.n

py 
Table 4  1M 5/6 Exponential, 

Mean 2000 
Poisson 

Rate 30 
Parameters23.npy Figure 8  1K 2/3 Exponential, 

Mean 2000 

Poisson 

Rate 30 

Snapshots23.npy Figure 10  100 2/3 Exponential, 

Mean 2000 

Poisson 

Rate 30 

Snapshots56.npy Figure 10  100 5/6 Exponential, 

Mean 2000 

Poisson 

Rate 24 

OccupancyRate23

Series.npy 

Figure 5  29976647 2/3 Exponential, 

Mean 2000 

Poisson 

Rate 30 

NumberOfCarsSe

archingVacancyR

ate23.npy 

Table 3  100k 2/3 Exponential, 

Mean 2000 

Poisson 

Rate 30 
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Data Content 

Data 

Filename Figure/Table 

in Paper 

Description Columns Data 

SearchTimes11

0.npy  
Figure 11 Search times 1 Step – Starting time 

SearchTimes11

12.npy  
Table 4 Search times 1 Step – Starting time 

SearchTimes23.

npy  
Table 2 

Figure 4 

Search times 1 Step – Starting time 

SearchTimes23

1000spaces.npy  
Table 5 

Figure 13 

Search times 1 Step – Starting time 

SearchTimes23

10spaces.npy  
Table 5 

Figure 13 

Search times 1 Step – Starting time 

SearchTimes23

ConstantStay20

00.npy 

Table 6 

Figure 14 

Search times 1 Step – Starting time 

SearchTimes23

DoubleEntryHa

lfStay.npy 

Table 6 

Figure 14 

Search times 1 Step – Starting time 

SearchTimes56.

npy 
Table 4 Search times 1 Step – Starting time 

Parameters23.n

py 

Figure 8 1000 runs of the 2/3 

model with 100k 

observations each 

2 First column is mean 

of simulation. Second 

column is variance of 

simulation 

Snapshots23.np

y 

Figure 10 100 snapshots of the 

road in the 2/3 

occupancy rate model 

100 Column i corresponds 

to parking space i, 1 

if occupied 0 if 

unoccupied 

Snapshots56.np

y 

Figure 10  

 

100 snapshots of the 

road in the 5/6 

occupancy rate model 

100 Column i corresponds 

to parking space i, 1 

if occupied 0 if 

unoccupied 

OccupancyRate

23Series 

Figure 5 In the process of 

getting 1M 

observations 

occupancy rates were 

saved at each step 

2 First column is 

occupancy rate, 

second is time. Note 

time begins after 

record cutoff. (10K) 

NumberOfCars

SearchingVacan

cyRate23.npy 

Table 3 Separate from the 

central base case, this 

records number of 

cars searching and 

vacancy rate for 

100K time steps 

3 Number of cars 

searching, vacancy 

rate, time step 

 


