
Grouped Model Averaging for Finite Sample Size

Xinyu Zhang and Aman Ullah∗

Chinese Academy of Sciences and University of California, Riverside

Abstract: This paper studies grouped model averaging methods for finite sample

size situation. Sufficient conditions under which the grouped model averaging es-

timator dominates the ordinary least squares estimator areprovided. A class of

grouped model averaging estimators,g-class, is introduced, and its dominance con-

dition over the ordinary least squares is established. All theoretical findings are

verified by simulation examples. We also apply the methods tothe analysis of the

grain output data of China.
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1 Introduction

Over the past two decades, there has been a substantial amount of interest in model averaging.

Within the Bayesian paradigm, model averaging has long beena popular approach; see, for ex-

ample,Hoeting et al.(1999) for a comprehensive review. In recent years, within the frequentest

paradigm, model averaging methods has been proposed, including weighting strategies using

scores of information criteria (Buckland et al., 1997; Claeskens et al., 2006; Hjort and Claeskens,

2003; Zhang and Liang, 2011; Zhang et al., 2012), asymptotically optimal methods (Hansen, 2007;

Hansen and Racine, 2012; Liang et al., 2011; Liu and Okui, 2013), plug-in model averaging (Liu,

2015), model averaging marginal regression (Li et al., 2015), among others. Frequentist model

averaging technique has also been utilized in many contextssuch as constructing optimal instru-

ments (Kuersteiner and Okui, 2010), autoregressive models (Hansen, 2010), mixed-effects models

(Zhang et al., 2014), factor augmented regression models (Cheng and Hansen, 2015), and quantile

regression models (Lu and Su, 2015), seeUllah and Wang(2013) for a recent review.

It is well known that the estimation based on a “small” model can be more efficient than that

based on a “large” model, but the former one can lead to substantial biases. Model averaging
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aims to a trade-off between efficiency and biases. However, in most of the existing literature,

model averaging methods were generally compared asymptotically, or by simulation performance,

and there was no analytical finite sample study on the condition under which a model averaging

estimator dominates the ordinary least squares (OLS) estimator with respect to mean squared error

(MSE).

Recently,Hansen(2014) developed grouped model averaging methods, in which the regressors

are firstly grouped in sets and then a model averaging method is implemented based on these sets.

Assume there areM groups of regressors and letkm denote the size of themth group. He proved

that when the conditionkm ≥ 4 for m = 2, . . . ,M is satisfied, the asymptotic MSE (i.e., the

MSE depending on an asymptotic distribution) of the groupedMallows model averaging (GMMA)

estimator is globally smaller than that of the OLS estimator. This is a very inspiring result because

the condition is very simple and does not depend on any unknown parameter. However, his result is

asymptotic and it is based on the assumption of local mis-specification in which some coefficients

are of ordern−1/2 wheren is the sample size. This is a useful procedure, although it also draws

criticism because of its realism; see, for example, the discussions inIshwaran and Rao(2003)

andRaftery and Zheng(2003). In Hansen(2014), although the asymptotic theory was developed

under the local mis-specification assumption, to make simulation experiments correspond to actual

econometric practice, the author sets the coefficients to befixed.

The main contribution of this paper is to develop new resultson the exact dominance of the

grouped model average estimators over the OLS estimator. Indeveloping these results, local mis-

specification assumption is not used. Also, the results are exact in the sense that they are valid for

any sample size, especially when the sample size is small. For example, in China, most of annual

data began in 1978 when the reform and opening-up policies were launched. When the sample

size tends to infinity we show that Hansen’s (2014) result reduces as a special case of our exact

results. Also, our results show that for the finite sample situation, Hansen’s (2014) asymptotic

dominance conditionkm ≥ 4 for m = 2, . . . ,M is not sufficient. In view of this, based on a slight

modification of Mallows’ criterion, a class of grouped modelaveraging estimators,g-class, is then

introduced , and it is shown that a member of this class has thesame exact dominance condition
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over the OLS as the Hansen’s (2014) asymptotic dominance condition. Furthermore, we apply the

group model averaging methods in analysis of the grain output data of China, which has only 35

observations.

The remainder of this paper is organized as follows. Section2 introduces some estimators and

basic theoretic results. Section 3 presents the MSE comparison between the GMMA estimator

(and its modified versions) and the OLS estimator, and provides the sufficient conditions under

which these grouped model averaging estimators dominate the OLS estimator. Ag-class grouped

model averaging estimator is also presented. Sections 4 and5 provide simulation examples and a

real data analysis, respectively. Section 6 concludes the paper. Technical proofs are contained in

an Appendix.

2 Estimation

We are concerned with a linear regression model:

yi = xT
i β + ei, ei ∼ Normal(0, σ2), i = 1, . . . , n (1)

whereyi is a scalar dependent variable,xi(p × 1) are independent variables,β(p × 1) is a coef-

ficient vector,ei is an error term, and(yi,xi) for i = 1, . . . , n are assumed to be independent. To

simplify notation we treat the independent variables as fixed, but the theory applies also to random

independent variables if proper conditions are imposed. Inmatrix notation, the model (1) can be

rewritten as

y = Xβ + e, (2)

wherey = (y1, . . . , yn)
T, X = (x1, . . . ,xn)

T, e = (e1, . . . , en)
T ∼ Normal(0, σ2In), andIn is an

n× n identity matrix. We assume thatX has full column rankp < n. The OLS estimator ofβ is

β̂OLS = (XTX)−1XTy ∼ Normal
{
β, σ2(XTX)−1

}
. (3)

The varianceσ2 is estimated bŷσ2 = (n−p)−1‖Xβ̂OLS−y‖2, where‖·‖2 stands for the Euclidean

norm. It is well known that̂βOLS andσ̂2 are independent and

(n− p)σ̂2σ−2 ∼ X 2(n− p), E(σ̂2) = σ2, var(σ̂2) = 2(n− p)−1σ4. (4)
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Suppose that we haveM groups of regressors. We combineM nested sub-models of (2)

candidate models, and themth candidate model includes the firstm groups of variables ofX,

denoted byXm. Denote the group size of themth group bykm. Let vm =
∑m

j=1 kj , and thusvm is

the number of variables used in themth candidate model and is also the number of columns ofXm.

Let Πm be a selection matrix so thatΠm = (Ivm , 0vm×(p−vm)) and thusXm = XΠT
m. Define

a p × p matrixAm = ΠT
m(X

T
mXm)

−1Πm(X
TX). Under themth candidate model, the restricted

OLS estimator ofβ is

β̂m = ΠT
m(X

T
mXm)

−1XT
my

= ΠT
m(X

T
mXm)

−1ΠmX
Ty

= ΠT
m(X

T
mXm)

−1ΠmX
TXβ̂OLS

= Amβ̂OLS. (5)

For theM th candidate model,̂βM = β̂OLS. The grouped model averaging estimator ofβ is

β̂(w) =
M∑

m=1

wmβ̂m,

wherewm is the weight corresponding to themth candidate model andw = (w1, . . . , wM)T, be-

longing to weight setH =
{
w ∈ [0, 1]M :

∑M
m=1wm = 1

}
.

Let v = (v1, . . . , vM)T. Hansen(2007) proposed choosing weights by minimizing Mallows’

criterion

C(w) =
∥∥∥Xβ̂(w)− y

∥∥∥
2

+ 2σ̂2wTv. (6)

Let

ŵ = (ŵ1, . . . , ŵM)T = argmin
w∈H C(w),

so that the combined estimatorβ̂(ŵ) is the grouped Mallows model averaging (GMMA) estimator

of β.

Next, similar toHansen(2014), we define cumulative weights

w∗

m = w1 + · · ·+ wm
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andw∗ = (w∗
1, . . . , w

∗
M)T. Then,wm = w∗

m−w∗
m−1 for m ≥ 2,w1 = w∗

1, andw ∈ H is equivalent

to

w∗ ∈ H∗ ≡
{
w∗ ∈ [0, 1]M : 0 ≤ w∗

1 ≤ · · · ≤ w∗

M = 1
}

(7)

and the grouped model averaging estimatorβ̂(w) can be rewritten as

β̂(w) =

M∑

m=2

(w∗

m − w∗

m−1)β̂m + w∗

1β̂1

=
M∑

m=1

w∗

mβ̂m −
M−1∑

m=1

w∗

mβ̂m+1

= β̂OLS −

M−1∑

m=1

w∗

m(β̂m+1 − β̂m). (8)

Let ŵ∗
m = ŵ1 + · · ·+ ŵm, ŵ∗ = (ŵ∗

1, . . . , ŵ
∗
M)T,

bm =
∥∥∥Xβ̂m

∥∥∥
2

, (9)

and

C∗(w∗) =

M−1∑

m=1

{
w∗

m
2(bm − bm+1)− 2σ̂2w∗

mkm+1

}
. (10)

From Lemma 1 ofHansen(2014), we have

C(w) = C∗(w∗) + bM + 2σ̂2vM (11)

and

ŵ∗ = argmin
w∗∈H∗ C∗(w∗). (12)

Hence, from (5) and (9)-(12), we know that botĥw andŵ∗ depend ony throughβ̂OLS andσ̂2.

Since weightŝw1, . . . , ŵM are determined by data, the indexes of candidate models withpos-

itive weights are random. We use
{
m1(y), . . . , mJ(y)(y)

}
to denote the indexes set, whereJ(y)

andmj(y)(y) depend ony. By the analysis of the above paragraph, we know thatC(w) depends on

y throughβ̂OLS andσ̂2, so we can writeJ(y) andmj(y)(y) asJ(β̂OLS, σ̂
2) andmj(β̂OLS,σ̂

2)(β̂OLS, σ̂
2).
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Instead, for simplicity, we write them asJ andmj , although they are random. Thus,w∗
mj

= · · · =

w∗
mj+1−1 andw∗

mJ
= 1. From the proof of Theorem 1 ofHansen(2014), we have

C∗(w∗) =
M−1∑

m=1

{
w∗

m
2(bm − bm+1)− 2σ̂2w∗

mkm+1

}

=
J−1∑

j=1

mj+1−1∑

ℓ=mj

{
w∗

ℓ
2(bℓ+1 − bℓ)− 2σ̂2w∗

ℓkℓ+1

}
+

M−1∑

ℓ=mJ

{
w∗

ℓ
2(bℓ+1 − bℓ)− 2σ̂2w∗

ℓkℓ+1

}

=
J−1∑

j=1

{
w∗

mj

2(bmj+1
− bmj

)− 2σ̂2w∗

mj
(vmj+1

− vmj
)
}
+ (bM − bmJ

)− 2σ̂2(vM − vmJ
),

which is minimized by

ŵ∗

mj
=

σ̂2(vmj+1
− vmj

)

bmj+1
− bmj

, j = 1, . . . , J − 1, (13)

whenw∗ ∈ H∗ (see (7) for the definition ofH∗).

3 MSE Comparison

3.1 MSE of the GMMA estimator

Let

q(β̂OLS, σ̂
2) = I(mJ < M)

{
2σ2(vM − vmJ

)−
∥∥∥Xβ̂M −Xβ̂mJ

∥∥∥
2
}

+σ4
J−1∑

j=1

{
(n− p− 2)(n− p)−1(vmj+1

− vmj
)− 4

}
(vmj+1

− vmj
)

∥∥∥Xβ̂mj+1
−Xβ̂mj

∥∥∥
2 ,

whereI(·) denotes the indicator function as usual. For any estimatorβ̃ of β, its MSE is defined

by E
∥∥∥Xβ̃ −Xβ

∥∥∥
2

.

Theorem 1. E
∥∥∥Xβ̂(ŵ)−Xβ

∥∥∥
2

= σ2p− E
{
q(β̂OLS, σ̂

2)
}
.

See AppendixA.1 for the proof of Theorem1. From Theorem1, we have the following result.

Corollary 1. If (n− p− 2)(n− p)−1km ≥ 4 for all m ≥ 2, then

E

∥∥∥Xβ̂(ŵ)−Xβ

∥∥∥
2

< E

∥∥∥Xβ̂OLS −Xβ

∥∥∥
2

,

i.e., β̂(ŵ) dominates β̂OLS.
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See AppendixA.2 for the proof of Corollary1. We note that the result in Corollary1 provides

the exact dominance condition for the GMMA estimator over the OLS estimator in the MSE sense.

Corollary 3 ofHansen(2014) is a special case of Corollary1 above whenn tends to infinity, i.e.,

a sufficient condition for the GMMA estimator dominating (asymptotically) the OLS estimator is

km ≥ 4 for all m ≥ 2. Irrespective of sample size, our Corollary1 indicates that there is a scale

(n−p−2)(n−p)−1 < 1 associated withkm and when(n−p−2)(n−p)−1km ≥ 4 for all m ≥ 2,

the GMMA estimator dominates the OLS estimator.

3.2 MSE of g-Class Grouped Model Averaging Estimators

In the Mallows’ criterion (6), the first term measures the model fit, while the second term measures

the model complexity and serves as a penalty, where the constant 2 can be viewed as a tuning

parameter. To be more general, we consider weight choice criterion as follows:

C̃(w, g) =
∥∥∥Xβ̂(w)− y

∥∥∥
2

+ 2gσ̂2wTv,

where the tuning parameter2 is multiplied by a positive constantg. Obviously,

C̃(w, 1) = C(w).

Let w̃g = argmin
w∈H C̃(w, g), β̂(w̃g) be theg-class grouped model averaging estimator which

is equal toβ̂(ŵ) (GMMA estimator) forg = 1, i.e.,w̃1 = ŵ. Define

q̃(β̂OLS, σ̂
2) = I(mJ < M)

{
2σ2(vM − vmJ

)−
∥∥∥Xβ̂M −Xβ̂mJ

∥∥∥
2
}

+σ4
J−1∑

j=1

g
[
{2− g(n− p+ 2)(n− p)−1} (vmj+1

− vmj
)− 4

]
(vmj+1

− vmj
)

∥∥∥Xβ̂mj+1
−Xβ̂mj

∥∥∥
2 .

Theorem 2. E
∥∥∥Xβ̂(w̃g)−Xβ

∥∥∥
2

= σ2p− E
{
q̃(β̂OLS, σ̂

2)
}
.

See AppendixA.3 for the proof of Theorem2. From Theorem2 and the proof of Corollary1,

it is straightforward to obtain the following results.

Corollary 2. If 0 < g ≤ 2(n− p)(n− p+2)−1(km − 2)k−1
m for all m ≥ 2, then β̂(w̃g) dominates

β̂OLS.
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Some special cases ofg are described below.

Corollary 3. When g = (n − p + 2)−1(n − p), β̂(w̃g) dominates β̂OLS given that km ≥ 4 for all

m ≥ 2.

Motivated by Corollary3, we define a new model averaging method with weight vector

w̃g=(n−p+2)−1(n−p).

This method dominates the OLS under the condition thatkm ≥ 4 for all m ≥ 2 is satisfied, which

is free from the sample size and number of regressors. Since it is a modified version of GMMA,

we term it mGMMA.

Recently,Zhang et al.(2015) proposed choosing weights by minimizing the following Kullback-

Leibler criterion

KL(w) =
∥∥∥Xβ̂(w)− y

∥∥∥
2

+ 2(n− p)(n− p− 2)−1σ̂2wTv,

so C̃ {w, (n− p)(n− p− 2)−1} = KL(w). DefineŵKL = argmin
w∈H KL(w). This method

is called grouped Kullback-Leibler model averaging (GKLMA), and it is a member ofg-class

grouped model averaging estimators withg = (n − p)(n − p − 2)−1. From Corollary2, it is

straightforward to obtain the following result.

Corollary 4. When (n− p− 6)(n− p− 2)−1km ≥ 4 for all m ≥ 2, β̂(ŵKL) dominates β̂OLS.

We have observed above that for special cases ofg = 1, g = (n − p)(n − p + 2)−1, and

g = (n − p)(n − p − 2)−1 we get GMMA, mGMMA, and GKLMA estimators, respectively. It

will be an interesting topic to find the optimum value ofg, in theg-class grouped model averaging

estimator, for which MSE is minimum. However, this is extremely challenging and out of scope

of this paper

4 Simulation Examples

In this section, we use simulation examples to verify the theoretical results of the previous section.

Specifically, we should have the following findings:
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Finding I. When(n− p− 2)(n− p)−1km ≥ 4 and(n− p− 6)(n− p− 2)−1km ≥ 4 for all m ≥ 2,

the GMMA and GKLMA will always yield smaller MSEs than the OLS.

Finding II. When(n − p − 2)(n − p)−1km < 4 for anym ≥ 2, the GMMA can perform worse

than the OLS; when(n − p − 6)(n − p − 2)−1km < 4 for anym ≥ 2, the GKLMA can perform

worse than the OLS.

Finding III. Whenkm ≥ 4 for m ≥ 2, the mGMMA will always yield smaller MSEs than the

OLS.

Findings I-II will verify Corollaries1 and4. Finding III will verify Corollary 3.

The simulation setting is fromHansen(2014); that is

yi = β0 +

p−1∑

j=1

βjxji + ei, i = 1, . . . , n

with ei ∼ Normal(0, 1) (i = 1, . . . , n), xji ∼ Normal(0, 1), β0 = 0, βj = cj−α (j = 1, . . . , p− 1),

andα ∈ {0, 1, 2, 3}. The coefficientc is selected to vary the populationR2 in {0.1, 0.2, . . . , 0.9, 0.98}.

We use the following configurations ofn, p andkm:

I. n = 12, p = 5, k1 = 1, k2 = 4;

II. n = 16, p = 9, k1 = 1, k2 = 4, k3 = 4;

III. n = 30, p = 6, k1 = 1, k2 = 5;

IV. n = 35, p = 11, k1 = 1, k2 = 5, k3 = 5.

All MSEs in estimatingβ = (β0, . . . , βp−1)
T are calculated by using 10,000 replications. The

MSEs of model averaging methods are normalized by that of theOLS estimator, so a MSE below

one indicates that the estimator has smaller MSE than the OLS. Figures1-4 show the MSEs for

α = 0, 1, 2, 3, respectively.

In Configurations III-IV,(n−p−2)(n−p)−1k2 = 4.583 ≥ 4 and(n−p−6)(n−p−2)−1k2 =

4.091 ≥ 4. It is seen from bottom two panels of Figures1-4 that the GMMA and GKLMA always

lead to smaller MSE than the OLS. This is Finding I.

In Configurations I-II,(n− p− 2)(n− p)−1k2 = 3.667 < 4 and(n− p− 6)(n− p− 2)−1k2 =

3.273 < 4. It is seen from top two panels of Figures1-4 that the GMMA and GKLMA sometimes

lead to larger MSE than the OLS. This is Finding II.
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Figures1-4 show that the mGMMA always lead to smaller MSE than the OLS. This is Finding

III.

In addition, we find that for all grouped model averaging methods, their MSEs can be much

lower than that of the OLS, especially whenR2 is small, i.e., residual variance is high. This finding

is encouraging in view of the fact thatR2 is often small in many cross sectional models.

5 Analysis of Real Data

In China, annul data are often very short, most of which beginin 1978, or even later. Hence in

this section, we applied the grouped model averaging methods that have good statistical properties

under finite sample size case to the analysis of the grain output (tons) data of China.

The data consists of the annul observations from 1978 to 2012from National Bureau of Statis-

tics of China at http://www.stats.gov.cn. The grain includes rice, wheat, corn bean, and tubers.

The logarithm grain output (GO) is shown in Figure5. Four independent variables collected are

sown area of grain crops (SAGC) (hectares), employed persons (EP) (persons), total agricultural

machinery power (TAMP) (kw), and consumption of chemical fertilizer (CCF) (tons). Figure6

illustrates logarithm of these variables. We used a linear regression model

∆log(GOi) = β1+β2∆log(SAGCi)+β3∆log(TAMPi)+β4∆log(CCFi)+β5∆log(EPi)+ ei,

for i = 1979, . . . , 2012, where∆Ai = Ai − Ai−1. When implementing the grouped model aver-

aging methods, we let the intercept as a group and the remaining variables as a group, sok1 = 1

andk2 = 4 in this case.

Table1 shows the estimates by the OLS and the three grouped model averaging methods, where

the standard errors of the grouped model averaging estimates are obtained by bootstrap. It is seen

that all methods indicate that the sown area of grain crops (SAGC) has positive impact on the grain

output. We further evaluated these methods by an out-sampleprediction. We used observations

before 2001 to estimate parameters (so the sample size is 23)and use the remaining observations

to calculate mean squared prediction errors (MSPE). Table2 presents the results. It is seen that all

model averaging methods perform similarly and better than the OLS. This performance is reason-

able in view of the facts that the adjusted-Rsquare in the estimation is 0.453 and our simulation
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results show that the grouped model averaging methods perform much better than the OLS when

R2 is small.

6 Concluding Remarks

Firstly we have developed new results on deriving the condition under which the GMMA estimator

dominates the OLS estimator in the exact MSE sense. This exact condition depends on the sample

size and the number of regressors. In a special case, whenn tends to infinity, we have shown

that the exact dominance condition reduces to the conditionderived byHansen(2014) based on

an asymptotic MSE. This condition is free from sample size and the number of regressors. The

g-class grouped model averaging estimator is also introduced and its exact dominance condition is

obtained, which depends on the sample size and number of regressors. It is shown that a member

of this class has an exact dominance condition free from the sample size and number of regres-

sors, and it is the same as the asymptotic dominance condition of Hansen(2014). Secondly we

remark that asHansen(2014), our theory is also confined to the context of nested models.Ex-

tension of the current analysis to non-nested models will bevery challenging. Thirdly, the MSE

comparison of the current paper is built under the normally distributed and homoscedastic error.

Developing MSE comparison under other error cases is also aninteresting topic for future re-

search. Lastly , the grouped model averaging is based on a pre-supposed grouping structure. The

existing grouping procedures such as octagonal shrinkage and clustering algorithm for regression

(Bondell and Reich, 2008) may be utilized in applications.
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Appendices

A.1 Proof of Theorem 1

Note that the set{m1, . . . , mJ} which contains indexes of candidate models with positive weights

is random and depends on̂βOLS and σ̂2. Whenβ̂OLS and σ̂2 vary, the set{m1, . . . , mJ} can also

vary, but it is a piecewise constant function ofβ̂OLS andσ̂2 and is almost differentiable in the sense

of Stein(1981) except for a finite number of points. Hence, in the followingproof, when taking

derivatives with respect tôβOLS andσ̂2, we take{m1, . . . , mJ} be a constant set.

Since modelmj is nested within modelmj+1, it is easily to obtain the following results

(Xβ̂mj+1
−Xβ̂mj

)T(Xβ̂M −Xβ̂mJ
) = 0 (A.1)

and

bmj+1
− bmj

=
∥∥∥Xβ̂mj+1

∥∥∥
2

−
∥∥∥Xβ̂mj

∥∥∥
2

=
∥∥∥Xβ̂mj+1

−Xβ̂mj

∥∥∥
2

. (A.2)

It follows from (3), (5)-(13), (A.1)-(A.2), Stein Lemma (Stein, 1981), and the independence be-

tweenβ̂OLS andσ̂2 that

E

∥∥∥Xβ̂(ŵ)−Xβ

∥∥∥
2

= E

∥∥∥∥∥Xβ̂OLS −Xβ −

M−1∑

m=1

ŵ∗

m(Xβ̂m+1 −Xβ̂m)

∥∥∥∥∥

2

= E

∥∥∥∥∥∥
Xβ̂OLS −Xβ −

J−1∑

j=1

mj+1−1∑

ℓ=mj

ŵ∗

ℓ (Xβ̂ℓ+1 −Xβ̂ℓ)− I(mJ < M)
M−1∑

ℓ=mJ

(Xβ̂ℓ+1 −Xβ̂ℓ)

∥∥∥∥∥∥

2

= E

∥∥∥∥∥Xβ̂OLS −Xβ −
J−1∑

j=1

ŵ∗

mj
(Xβ̂mj+1

−Xβ̂mj
)− I(mJ < M)(Xβ̂M −Xβ̂mJ

)

∥∥∥∥∥

2

= E

∥∥∥∥∥Xβ̂OLS −Xβ −

J−1∑

j=1

σ̂2(vmj+1
− vmj

)

bmj+1
− bmj

(Xβ̂mj+1
−Xβ̂mj

)

−I(mJ < M)(Xβ̂M −Xβ̂mJ
)
∥∥∥
2

= E

∥∥∥∥∥∥∥
Xβ̂OLS −Xβ −

J−1∑

j=1

σ̂2(vmj+1
− vmj

)
∥∥∥Xβ̂mj+1

−Xβ̂mj

∥∥∥
2 (Xβ̂mj+1

−Xβ̂mj
)

−I(mJ < M)(Xβ̂M −Xβ̂mJ
)
∥∥∥
2

= σ2p+ E

J−1∑

j=1

σ̂4(vmj+1
− vmj

)2
∥∥∥Xβ̂mj+1

−Xβ̂mj

∥∥∥
2 + E

{
I(mJ < M)

∥∥∥Xβ̂M −Xβ̂mJ

∥∥∥
2
}
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−2E

[{
I(mJ < M)(Xβ̂M −Xβ̂mJ

)
}T

X(β̂OLS − β)

]

−2E








J−1∑

j=1

σ̂2(vmj+1
− vmj

)
∥∥∥Xβ̂mj+1

−Xβ̂mj

∥∥∥
2 (Xβ̂mj+1

−Xβ̂mj
)





T

X(β̂OLS − β)




= σ2p+ E




σ̂4

J−1∑

j=1

(vmj+1
− vmj

)2
∥∥∥Xβ̂mj+1

−Xβ̂mj

∥∥∥
2





+ E

{
I(mJ < M)

∥∥∥Xβ̂M −Xβ̂mJ

∥∥∥
2
}

−2σ2E
[
I(mJ < M)trace

{
(AM −AmJ

)TXTX(XTX)−1
}]

−2E


σ̂2E








J−1∑

j=1

(vmj+1
− vmj

)
∥∥∥Xβ̂mj+1

−Xβ̂mj

∥∥∥
2 (Xβ̂mj+1

−Xβ̂mj
)





T

X(β̂OLS − β)|σ̂2







= σ2p+ E




σ̂4

J−1∑

j=1

(vmj+1
− vmj

)2
∥∥∥Xβ̂mj+1

−Xβ̂mj

∥∥∥
2





+E

[
I(mJ < M)

{∥∥∥Xβ̂M −Xβ̂mJ

∥∥∥
2

− 2σ2(vM − vmJ
)

}]

−2σ2E


σ̂2

J−1∑

j=1

(vmj+1
− vmj

)
∥∥∥Xβ̂mj+1

−Xβ̂mj

∥∥∥
2 trace

{
(Amj+1

−Amj
)TXTX(XTX)−1

}



+4σ2E

J−1∑

j=1




σ̂2 (vmj+1

− vmj
)

∥∥∥Xβ̂mj+1
−Xβ̂mj

∥∥∥
4





×trace
{
(AT

mj+1
XTXAmj+1

−AT
mj
XTXAmj

)β̂OLS(Xβ̂mj+1
−Xβ̂mj

)TX(XTX)−1
}

= σ2p+ E




σ̂4

J−1∑

j=1

(vmj+1
− vmj

)2
∥∥∥Xβ̂mj+1

−Xβ̂mj

∥∥∥
2





+E

[
I(mJ < M)

{∥∥∥Xβ̂M −Xβ̂mJ

∥∥∥
2

− 2σ2(vM − vmJ
)

}]

−2σ2E




σ̂2

J−1∑

j=1

(vmj+1
− vmj

)2
∥∥∥Xβ̂mj+1

−Xβ̂mj

∥∥∥
2





+ 4σ2E

J−1∑

j=1

σ̂2 vmj+1
− vmj∥∥∥Xβ̂mj+1
−Xβ̂mj

∥∥∥
2 . (A.3)

Let â = 2−1(n− p)σ̂2σ−2 anda = 2−1(n− p). From (4), we have

â ∼ Gamma
{
2−1(n− p), 1

}
(A.4)

with meana. So, by the independence betweenβ̂OLS and σ̂2 and Lemma 2 ofShen and Huang
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(2006), we obtain that for any constantc and any functions of̂βOLS, f1(β̂OLS), . . . , fJ−1(β̂OLS),

E

{
σ̂2

J−1∑

j=1

(vmj+1
− vmj

)cfj(β̂OLS)

}

= E

[
E

{
σ̂2

J−1∑

j=1

(vmj+1
− vmj

)cfj(β̂OLS)|β̂OLS

}]

= σ2E

{
J−1∑

j=1

(vmj+1
− vmj

)cfj(β̂OLS)

}

+E

[
E

{
(σ̂2 − σ2)

J−1∑

j=1

(vmj+1
− vmj

)cfj(β̂OLS)|β̂OLS

}]

= σ2E

{
J−1∑

j=1

(vmj+1
− vmj

)cfj(β̂OLS)

}
(A.5)

and

E

{
σ̂4

J−1∑

j=1

(vmj+1
− vmj

)cfj(β̂OLS)

}

= E

[
E

{
σ̂4

J−1∑

j=1

(vmj+1
− vmj

)cfj(β̂OLS)|β̂OLS

}]

= σ4E

{
J−1∑

j=1

(vmj+1
− vmj

)cfj(β̂OLS)

}

+4σ4(n− p)−2E

[
E

{
(â− a)(â + a)

J−1∑

j=1

(vmj+1
− vmj

)cfj(β̂OLS)|β̂OLS

}]

= σ4E

{
J−1∑

j=1

(vmj+1
− vmj

)cfj(β̂OLS)

}

+4σ4(n− p)−2E

[
E

{
â

J−1∑

j=1

(vmj+1
− vmj

)cfj(β̂OLS)|β̂OLS

}]

= σ4E

{
J−1∑

j=1

(vmj+1
− vmj

)cfj(β̂OLS)

}

+2σ2(n− p)−1E

[
E

{
σ̂2

J−1∑

j=1

(vmj+1
− vmj

)cfj(β̂OLS)|β̂OLS

}]

= σ4
{
1 + 2(n− p)−1

}
E

{
J−1∑

j=1

(vmj+1
− vmj

)cfj(β̂OLS)

}
. (A.6)

In addition,

2(vmj+1
− vmj

)2 − 4(vmj+1
− vmj

)−
{
1 + 2(n− p)−1

}
(vmj+1

− vmj
)2
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= (vmj+1
− vmj

)
{
2(vmj+1

− vmj
)− 4− (n− p+ 2)(n− p)−1(vmj+1

− vmj
)
}

= (vmj+1
− vmj

)
{
(n− p− 2)(n− p)−1(vmj+1

− vmj
)− 4

}
. (A.7)

The result of Theorem1 is implied by the above (A.3)-(A.7) and the definition ofq(β̂OLS, σ̂
2).

A.2 Proof of Corollary 1

From (A.4) and Lemma 2 ofShen and Huang(2006), we have

E
{
(σ̂2 − σ2)I(mJ < M)(vM − vmJ

)
}
= 0. (A.8)

Similar to the derivation of (28) inHansen(2014), we can obtain that ifmJ < M , then

bM − bmJ
≤ σ̂2(vM − vmJ

). (A.9)

It is seen from (A.2), (A.8)-(A.9) and the definition ofq(β̂OLS, σ̂
2) that when(n − p − 2)(n −

p)−1km ≥ 4 for all m ≥ 2, we have

E
{
q(β̂OLS, σ̂

2)
}

≥ E

[
I(mJ < M)

{
2σ2(vM − vmJ

)−
∥∥∥Xβ̂M −Xβ̂mJ

∥∥∥
2
}]

= E
[
I(mJ < M)

{
σ̂2(vM − vmJ

)− bM − bmJ

}]

−E
{
I(mJ < M)(σ̂2 − σ2)(vM − vmJ

)
}

+σ2E {I(mJ < M)(vM − vmJ
)}

≥ σ2E {I(mJ < M)(vM − vmJ
)} . (A.10)

WhenmJ < M , I(mJ < M)(vM − vmJ
) is larger than zero, which, along with (A.10), implies

the result of Corollary1.

A.3 Proof of Theorem 2

By using the same steps of (A.5) and (A.6), we have

E

{
gσ̂2

J−1∑

j=1

(vmj+1
− vmj

)cfj(β̂OLS)

}
= gσ2E

{
J−1∑

j=1

(vmj+1
− vmj

)cfj(β̂OLS)

}

and

E

{
g2σ̂4

J−1∑

j=1

(vmj+1
− vmj

)cfj(β̂OLS)

}

= g2σ4
{
1 + 2(n− p)−1

}
E

{
J−1∑

j=1

(vmj+1
− vmj

)cfj(β̂OLS)

}
.
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In addition,

2g(vmj+1
− vmj

)2 − 4g(vmj+1
− vmj

)− g2
{
1 + 2(n− p)−1

}
(vmj+1

− vmj
)2

= g(vmj+1
− vmj

)
[{
2− g(n− p+ 2)(n− p)−1

}
(vmj+1

− vmj
)− 4

]
.

From above formulas, the definition ofq̃(β̂OLS, σ̂
2), and the proof of Theorem1, we can obtain the

result of Theorem2.
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Table 1: Estimates (Est.) and standard errors (s.e.) of coefficients in the real data model (14).

OLS GMMA GKLMA mGMMA

Variables Est. s.e. Est. s.e. Est. s.e. Est. s.e.

Intercept 0.015 0.018 0.016 0.023 -0.025 0.023 0.023 0.023

∆log(SAGC) 1.682 0.328 1.503 0.341 0.782 0.343 1.430 0.340

∆log(TAMP ) 0.103 0.176 0.092 0.193 -0.344 0.192 0.185 0.194

∆log(CCF ) -0.177 0.314 -0.158 0.358 0.507 0.356 -0.243 0.360

∆log(EP ) 0.357 0.157 0.319 0.187 0.073 0.186 0.169 0.188

Table 2: Mean squared prediction errors (MSPE) in prediction of the grain outputs from 2001 to

2012.

OLS GMMA GKLMA mGMMA

MSPE 6.659 5.969 5.927 6.010

s.e. 1.712 1.690 1.701 1.684
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Figure 1: Simulation result:α = 0
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Figure 2: Simulation result:α = 1
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Figure 3: Simulation result:α = 2
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Figure 4: Simulation result:α = 3
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Figure 5: Dependent variable in application: logarithm of grain output (tons).
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Figure 6: Independent variables in application. Top-left penal is logarithm of sown area of grain
crops (SAGC) (hectares), top-right penal is logarithm of consumption of chemical fertilizer (CCF)
(tons), bottom-left penal is logarithm of total agricultural machinery power (TAMP) (kw), and
bottom-right penal is logarithm of employed persons (EP) (persons).
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