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1 Introduction

Over the past two decades, there has been a substantial aafaoterest in model averaging.
Within the Bayesian paradigm, model averaging has long lbegopular approach; see, for ex-
ample,Hoeting et al.(1999 for a comprehensive review. In recent years, within thguentest
paradigm, model averaging methods has been proposeddimgluweighting strategies using
scores of information criteriadBuckland et al. 1997 Claeskens et 3l2006 Hjort and Claeskens
2003 Zhang and Liang2011, Zhang et al.2012, asymptotically optimal methodslansen2007,
Hansen and Racin@012 Liang et al, 2011, Liu and Okuj 2013, plug-in model averagind-{u,
2015, model averaging marginal regressidn €t al., 2015, among others. Frequentist model
averaging technique has also been utilized in many consextis as constructing optimal instru-
ments Kuersteiner and OkyR010, autoregressive modeldéansen2010, mixed-effects models
(Zhang et al.2014), factor augmented regression mod€ls¢ng and Hansef015, and quantile
regression modeld ¢ and Syu2015, seeUllah and Wand2013 for a recent review.

It is well known that the estimation based on a “small” mods e more efficient than that

based on a “large” model, but the former one can lead to sotistdiases. Model averaging
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aims to a trade-off between efficiency and biases. Howewemast of the existing literature,
model averaging methods were generally compared asyroailgtior by simulation performance,
and there was no analytical finite sample study on the camdiunder which a model averaging
estimator dominates the ordinary least squares (OLS) agimwith respect to mean squared error

(MSE).

RecentlyHansen(2014 developed grouped model averaging methods, in which tressors
are firstly grouped in sets and then a model averaging methiogplemented based on these sets.
Assume there aré/ groups of regressors and let, denote the size of the™ group. He proved
that when the conditio,, > 4 for m = 2,..., M is satisfied, the asymptotic MSE (i.e., the
MSE depending on an asymptotic distribution) of the groudatlows model averaging (GMMA)
estimator is globally smaller than that of the OLS estimattis is a very inspiring result because
the condition is very simple and does not depend on any unkparameter. However, his result is
asymptotic and it is based on the assumption of local misispa&tion in which some coefficients
are of ordem /2 wheren is the sample size. This is a useful procedure, althougtsdt etaws
criticism because of its realism; see, for example, theudisions inlshwaran and Ra¢2003
andRaftery and Zheng2003. In Hansen(2014), although the asymptotic theory was developed
under the local mis-specification assumption, to make strar experiments correspond to actual

econometric practice, the author sets the coefficients fixee.

The main contribution of this paper is to develop new resniftgshe exact dominance of the
grouped model average estimators over the OLS estimatdeveloping these results, local mis-
specification assumption is not used. Also, the results)aetén the sense that they are valid for
any sample size, especially when the sample size is smalkxXample, in China, most of annual
data began in 1978 when the reform and opening-up policies l@menched. When the sample
size tends to infinity we show that Hansen'’s (2014) resulticed as a special case of our exact
results. Also, our results show that for the finite sampleagion, Hansen’s (2014) asymptotic
dominance conditiok,, > 4 form = 2,..., M is not sufficient. In view of this, based on a slight
modification of Mallows’ criterion, a class of grouped modeéraging estimatorg;class, is then

introduced , and it is shown that a member of this class hasahm exact dominance condition
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over the OLS as the Hansen’s (2014) asymptotic dominanagdittmm Furthermore, we apply the
group model averaging methods in analysis of the grain autpta of China, which has only 35
observations.

The remainder of this paper is organized as follows. Se@imtroduces some estimators and
basic theoretic results. Section 3 presents the MSE coesgrabetween the GMMA estimator
(and its modified versions) and the OLS estimator, and pesvitie sufficient conditions under
which these grouped model averaging estimators dominat®H$ estimator. Ay-class grouped
model averaging estimator is also presented. Sections % anavide simulation examples and a
real data analysis, respectively. Section 6 concludesdbperp Technical proofs are contained in

an Appendix.
2 Estimation

We are concerned with a linear regression model:
yi =% B+e;, e ~ Normal0,c?), 1=1,....n (1)

wherey; is a scalar dependent variable(p x 1) are independent variable§(p x 1) is a coef-
ficient vector,e; is an error term, andly;, x;) fori = 1,...,n are assumed to be independent. To
simplify notation we treat the independent variables agifiket the theory applies also to random
independent variables if proper conditions are imposeanairix notation, the modell§ can be
rewritten as

y =XB +e, (@)

wherey = (y1,...,yn)T, X = (x1,...,x,)T, e = (ey,...,e,)" ~ Normal0, ¢%L,), andl, is an

n x n identity matrix. We assume that has full column rank < n. The OLS estimator of is
Bos = (XTX)'XTy ~ Normal{ 3, o*(X™X) '} . 3)

The variance? is estimated b2 = (n—p)~![| X3, — y||?, where]|-|* stands for the Euclidean

norm. It is well known thafi‘OLS ando? are independent and
(n—p)g*o?~X*n-p), E@)=0"  var(c®)=2(n—p) 0", (4)
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Suppose that we havil groups of regressors. We combiné nested sub-models of)
candidate models, and the" candidate model includes the first groups of variables ok,
denoted byX,,,. Denote the group size of the" group byk,,. Letv,, = Z;”Zl k;, and thusy,, is
the number of variables used in thé' candidate model and is also the number of columnX,of

LetII,, be a selection matrix so th&k,, = (I,,,,0,, x(p—v,,)) and thusX,, = XII},. Define
ap x p matrix A, = I} (X X,,)~'11,,,(X"X). Under them™ candidate model, the restricted

OLS estimator of3 is

1L, (X, X)Xy

X
3
Il

= II} (X! X,,) ', X"y
= H%(X%XW)_lnmXTXBOLs

= AmBOLS' (5)

For theM™ candidate modeﬁM = BOLS. The grouped model averaging estimato3ak
~ M ~
m=1

wherew,, is the weight corresponding to the" candidate model and = (wy, ..., wy)", be-
longing to weight sel = {w c 0,1 M w,, = 1}.
Letv = (vy,...,vy)T. Hansen(2007) proposed choosing weights by minimizing Mallows’

criterion
~ 2
C(w) = HXB(W) — yH +26%w'v. (6)
Let
W = (Wy,...,Wy)" = argming,, C(wW),

so that the combined estima@(v?r) is the grouped Mallows model averaging (GMMA) estimator

of 3.

Next, similar toHansen(2014), we define cumulative weights

wr =Wy + - Wy
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andw* = (w},...,w},)T. Thenw,, = w’, —w? | form > 2,w; = w}, andw € H is equivalent

to

w*eH*z{w*e[0,1]M:0§w;<...gw;4:1}

and the grouped model averaging estim%{m) can be rewritten as

M
Bw) = Y (wh, —wh 1)B,, +wiB

(7)

m=2
M N M—-1 N
= Zw:nﬁm_ w,, /Bm—i—l
m=1 m=1
= ﬁOLS Z wm(Berl ﬁm) (8)
m=1
Let@;.kn :1/1;1 ++@m’6‘}* = ({ET)"'?{E;/I)T’
—~ 2
and
M—-1
CH(w") = {w?? (b — byugr) — 26°w} k1 } - (10)
m=1
From Lemma 1 oHansen(2014, we have
C(w) = C*(W*) + bys + 2620y (11)
and
W = argming. . C*(W"). (12)
Hence, from %) and 0)-(12), we know that bottw andw* depend ory throughfi'OLS ando?.
Since weightsuy, . . ., w,; are determined by data, the indexes of candidate modelspagh

itive weights are random. We uden:(y), ..., m,u)(y)} to denote the indexes set, whekgy)

andm; ) (y) depend ory. By the analysis of the above paragraph, we knowHat) depends on

y throughg3,,; anda?, so we can write/ (y) andm; ) (y) asJ (Bo.s, 02) andmj(BOLSﬁQ)(inLs, a2).
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Instead, for simplicity, we write them akandm, although they are random. Thua;*nj ==

wy, .y andwy, = 1. From the proof of Theorem 1 ¢fansen(2014, we have

M-1
Ccr(w") = {wan(bm — byg1) — 207w} ki }
m=1
J—1mj+1—1 M—1
- {w;?(beer — be) — 26%wkesr } + Y {w;*(beyr — be) — 26%w] ks }
j=1 f=m; l=mj
J—1

= {w;knjz(bmj+l o bmj) - 232w:nj (Umj+1 o Umj)} + (bM - bmJ) - 2‘/7\2(“1\/[ - UTﬂJ)’

which is minimized by

~2 .
@, =2 évmf“ bv’”j), =1, 01, (13)

J

Mj+1

whenw* € ‘H* (see {) for the definition of{*).
3 MSE Comparison

3.1 MSE of the GMMA estimator

Let

1(Bos#) = I(my < M) {202<UM ~v,) ||XBy - XB,,

+o Z { n—p-— 2 (n _p)il(vmﬁ-l B Umj) B 4} (Um]‘+1 B Umj)

2 9

~

HXﬁm]'+1 - Xﬁm]

whereI(-) denotes the indicator function as usual. For any estimatof 3, its MSE is defined

~ 2
by E HXﬁ _ XﬂH .

Theorem 1. E HXB(VAV) -

{4Boss5)}-

See AppendipA.1 for the proof of Theorem. From Theoreni, we have the following result.

Corollary 1. If (n —p —2)(n — p) 'k, > 4 for all m > 2, then

~ 2 —~ 2
B||XB(W) - X8| < B|XBas - X8

)

i.e, B(w) dominates 3, ..
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See AppendiA.2 for the proof of Corollaryl. We note that the result in Corollafyprovides
the exact dominance condition for the GMMA estimator over@LS estimator in the MSE sense.
Corollary 3 ofHansen2014) is a special case of Corollafiyabove whem tends to infinity, i.e.,
a sufficient condition for the GMMA estimator dominating yagtotically) the OLS estimator is
k., > 4 for all m > 2. Irrespective of sample size, our Corollaryndicates that there is a scale
(n—p—2)(n—p)~! < 1 associated witlt,, and when(n —p—2)(n—p)~'k,, > 4forallm > 2,

the GMMA estimator dominates the OLS estimator.

3.2 MSE of g-Class Grouped Model Averaging Estimators

In the Mallows’ criterion 6), the first term measures the model fit, while the second teeastres
the model complexity and serves as a penalty, where the aidristan be viewed as a tuning

parameter. To be more general, we consider weight choition as follows:

~ 2
Cw,g) = |[XBw) - y| +205%w"v,
where the tuning parametgiis multiplied by a positive constagt Obviously,
C(w,1) =C(w).
Let w, = argmin,, .y 6’(W,g), B(va) be theg-class grouped model averaging estimator which
1
J—-1
+0_4 Z g {2 g n—p+ 2)(” p) 1} (Um]+1 Uzmy) B 4} <Umj+1 - Umj) )
<0 |

{#Bos5™)}

See AppendiA.3 for the proof of Theoren2. From Theoren® and the proof of Corollary,

is equal tq@(vAv) (GMMA estimator) forg = 1, i.e.,w; = w. Define

i(Basi ) = 1<mJ<M>{202<vM—va>—\)XBM—XBW

Theorem 2. E HXB(%) -

it is straightforward to obtain the following results.

Corollary 2. 1f 0 < g < 2(n— p)(n — p+2) " (kn, — 2)k;;! for all m > 2, then B(w,) dominates
/BOLS'



Some special cases gfare described below.

Corollary 3. Wheng = (n — p + 2)"'(n — p), fi(vNVg) dominates EOLS given that k,,, > 4 for all

m > 2.

Motivated by Corollary3, we define a new model averaging method with weight vector

Wo=(n—p+2)~1(n—p)-

This method dominates the OLS under the condition Ahat- 4 for all m > 2 is satisfied, which
is free from the sample size and number of regressors. Simea imodified version of GMMA,
we term it MGMMA.

RecentlyZhang et al(2015 proposed choosing weights by minimizing the following Kalck-

Leibler criterion
KL(w) = [XBw) —y [ + 20— p)n —p — 25w,

soC{w,(n—p)(n—p—2)"'} = KL(w). Definew, = arg ming,.,, KL(w). This method
is called grouped Kullback-Leibler model averaging (GKLMAnNd it is a member of-class
grouped model averaging estimators with= (n — p)(n — p — 2)~'. From Corollary2, it is

straightforward to obtain the following result.
Corollary 4. When (n — p — 6)(n — p — 2)~'k,,, > 4 for all m > 2, B(W,, ) dominates 3,,..

We have observed above that for special caseg ef 1, ¢ = (n — p)(n — p + 2)~!, and
g = (n—p)(n—p-2)""we get GMMA, mGMMA, and GKLMA estimators, respectively. It
will be an interesting topic to find the optimum valuegfn the g-class grouped model averaging
estimator, for which MSE is minimum. However, this is extedynchallenging and out of scope

of this paper
4  Simulation Examples

In this section, we use simulation examples to verify thetbgcal results of the previous section.

Specifically, we should have the following findings:
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Findingl. When(n —p—2)(n—p) 'k, > 4and(n —p—6)(n—p—2)"'k,, > 4 forallm > 2,
the GMMA and GKLMA will always yield smaller MSEs than the OLS

Finding Il. When(n — p — 2)(n — p) 'k, < 4 for anym > 2, the GMMA can perform worse
than the OLS; whelin — p — 6)(n — p — 2) "'k, < 4 for anym > 2, the GKLMA can perform
worse than the OLS.

Finding Il11. Whenk,, > 4 for m > 2, the mGMMA will always yield smaller MSEs than the
OLS.

Findings I-11 will verify Corollaries1 and4. Finding Il will verify Corollary 3.

The simulation setting is frorAlansen2014); that is
p—1
yi:ﬁo—i‘ZBjxﬂﬂLei, i=1,...,n
j=1

with e; ~ Normal0,1) (i = 1,...,n), z;; ~ Normal0,1), 50 =0,5; =cj * (1 =1,...,p—1),
anda € {0,1,2,3}. The coefficient is selected to vary the populatidt? in {0.1,0.2,...,0.9,0.98}.
We use the following configurations of p andk,,:

l. n=12, p=5, k=1, ky=4

. n=16, p=9, k=1, ko=4, ky=4;

. n=30, p=6, k=1, ky=25;

IV. n=35 p=11, k=1, ky=05, k3=05>.

All MSEs in estimating3 = (5, . .., 8,-1)" are calculated by using 10,000 replications. The
MSEs of model averaging methods are normalized by that oD@ estimator, so a MSE below
one indicates that the estimator has smaller MSE than the ®Big8resl1-4 show the MSEs for
a=0,1,2,3, respectively.

In Configurations llI-1V,(n—p—2)(n—p) 'ky = 4.583 > 4and(n—p—6)(n—p—2) " 1ky =
4.091 > 4. Itis seen from bottom two panels of Figurkeg that the GMMA and GKLMA always
lead to smaller MSE than the OLS. This is Finding I.

In Configurations I-1l(n —p —2)(n —p) 'ky = 3.667 <4and(n—p—6)(n—p—2)"Lky =
3.273 < 4. Itis seen from top two panels of Figurés! that the GMMA and GKLMA sometimes
lead to larger MSE than the OLS. This is Finding II.
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Figuresl-4 show that the mGMMA always lead to smaller MSE than the OLSs |®Finding
1.

In addition, we find that for all grouped model averaging et their MSEs can be much
lower than that of the OLS, especially wh&Ais small, i.e., residual variance is high. This finding

is encouraging in view of the fact that is often small in many cross sectional models.

5 Analysis of Real Data

In China, annul data are often very short, most of which bagih978, or even later. Hence in
this section, we applied the grouped model averaging msttiad have good statistical properties
under finite sample size case to the analysis of the grairub(tpns) data of China.

The data consists of the annul observations from 1978 to #0h2National Bureau of Statis-
tics of China at http://www.stats.gov.cn. The grain in@sdice, wheat, corn bean, and tubers.
The logarithm grain output (GO) is shown in Figuse Four independent variables collected are
sown area of grain crops (SAGC) (hectares), employed psrdi) (persons), total agricultural
machinery power (TAMP) (kw), and consumption of chemicatilieger (CCF) (tons). Figureés

illustrates logarithm of these variables. We used a linegrassion model

fori = 1979,...,2012, whereAA; = A; — A;,_1. When implementing the grouped model aver-
aging methods, we let the intercept as a group and the remganariables as a group, 9 = 1
andk, = 4 in this case.

Tablel shows the estimates by the OLS and the three grouped modabavg methods, where
the standard errors of the grouped model averaging essmateobtained by bootstrap. It is seen
that all methods indicate that the sown area of grain crop&@E has positive impact on the grain
output. We further evaluated these methods by an out-sapnptiction. We used observations
before 2001 to estimate parameters (so the sample size a@3)se the remaining observations
to calculate mean squared prediction errors (MSPE). Taplesents the results. It is seen that all
model averaging methods perform similarly and better therQLS. This performance is reason-

able in view of the facts that the adjusted-Rsquare in thenatibn is 0.453 and our simulation
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results show that the grouped model averaging methodsrperfauch better than the OLS when

R?is small.

6 Concluding Remarks

Firstly we have developed new results on deriving the camditnder which the GMMA estimator
dominates the OLS estimator in the exact MSE sense. Thig egadition depends on the sample
size and the number of regressors. In a special case, whends to infinity, we have shown
that the exact dominance condition reduces to the conditewived byHansen(2014 based on
an asymptotic MSE. This condition is free from sample size #oe number of regressors. The
g-class grouped model averaging estimator is also intratland its exact dominance condition is
obtained, which depends on the sample size and number essegs. It is shown that a member
of this class has an exact dominance condition free from dhgpte size and number of regres-
sors, and it is the same as the asymptotic dominance comditibBlansen(2014). Secondly we
remark that asdansen(2014), our theory is also confined to the context of nested modeis.
tension of the current analysis to non-nested models willdrg challenging. Thirdly, the MSE
comparison of the current paper is built under the normaByjributed and homoscedastic error.
Developing MSE comparison under other error cases is alsataresting topic for future re-
search. Lastly , the grouped model averaging is based onsuppsed grouping structure. The
existing grouping procedures such as octagonal shrinkadielastering algorithm for regression

(Bondell and Reich2008 may be utilized in applications.
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Appendices

A.1 Proof of Theorem 1

Note that the sefm,, ..., m;} which contains indexes of candidate models with positivigits
is random and depends (ﬁ&s ando?. Whenfi‘OLS anda? vary, the setm,,...,ms} can also
vary, but it is a piecewise constant functionfiy‘LS ands? and is almost differentiable in the sense
of Stein(1981) except for a finite number of points. Hence, in the followprgof, when taking
derivatives with respect tBOLS ando?, we take{m,, ..., m;} be a constant set.

Since modetin; is nested within modet, 4, it is easily to obtain the following results

(XB,,, — XB,, )" (XBy — XB,,,) =0 (A1)
and

2 R —~ 2
_ Hxﬁij - XB,, (A.2)

2 ~
|,

Oy = by = HXEmJJrl
It follows from (3), (5)-(13), (A.1)-(A.2), Stein Lemma $tein 1981, and the independence be-

tweeng, . ands? that

2

E foa(vv) '

M—1
= B|XBos = XB = ) ©,(XBp1 — XB,)
m=1
2
R J—1 mj+171 N . M—-1 R R
= E|[XBos—XB—D_ > @[(XByyy —XBy) —L(my < M) Y (XByy; — XBy)
j=1 {=m; l=mj
R J—1 R R R R 2
j=1
J—1 ~9
~ 0 (U, Vm;) o ~
= E||XBos — XB — b = b (X/ij+1 ﬁmy)
j=1 mj+1 mj
~ 2
—I(m; < M)(XB), —XB,,,)
R J-1 /0_\2(Um7_+1 _ Um]-) R .
=B X/BOLS - XB - Z — - 2 (Xﬁmﬂl - X/Bm7>
=1 || XBm, 1, B,
~ ~ 2
—I(my < M)(XBy — XB,,,)
J-1 o~y 2
0 (Vi — Um;) ~ ~ 2
. 1 ' +E{I(mJ <M)HX[3M—X[3mJ }

i %
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_2F {I(mJ < M)(XB,, — XBmJ)}T X (Bogs — B)}

- T
0 (Umyyy — Um;) ~ ~ ~
—2F ~ - 2 (Xﬁmj+l - Xﬁmj) X(IBOLS - ﬁ)
i=1 | XB,., — XBp,
J-1 5
mit1 Um ~ -~ 2
o2p+ B {5t G - {I(mJ < M) HXﬁM ~XB,,, }

j=1

XijH N X’@mj
—20%E [I(m; < M)trace{(Ay — A,,,)" X X(X"X) "' }]

T
~2 — (Um7'+1 - Um]‘) = -~ -~ ~9
2 — ~ Q(Xﬁm]‘-H - Xﬁm]-) X(IBOLS - ﬂ)|0’
i=1 | XB,,, — XB,
J-1 B 5
o’p+ E {5 (Um0 = Umy)

~ —~ 2
i x|

+E {I(mJ < M) {HXEM X, ||| - 20%(0ns - “””)H

1
(Umj+1 - Umj )

—20°F |5* R e trace{ (A, — An,) XTX(XTX) "}
j=1 Xﬁm]'+1 - Xﬁm]
2 — o (Vmy — Umy)
+40°F Z o — — 7l

xtrace{ (AT XTXA

mMj41 mj+1

J—1
2 ~4 (Umys1 — Um,)
oc‘’p+EQo Z

J=1

XBrmy i = XBm,

2

2

+E {I(mJ < M) {HXBM ~XB,,,

S 902 (v — vm)H

R I (Vs = U ) J71A2 Umisy — U,
—20%E { 5* 2 s +402E20 —= . (A.3)
S TN ) R

Leta = 27 (n — p)o?oc~2 anda = 27!(n — p). From @), we have

a~ Gamma{2~'(n —p),1} (A.4)

with meana. So, by the independence betweféggLS ando? and Lemma 2 ofShen and Huang
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(2006, we obtain that for any constanaind any functions q@OLS, fl(,ABO S) fr 1(5’ )
LS/ - oLs/?

J-1
E {/0'\2 Z(Umj+1 - Umj)cfj (BOLS)}
=1
J-1
{ o’ UmJH 'Um] f](/BOLS)‘ﬂOLS}]
j=1

J-1
=0’E { (/Umj+1 - Umj)cfj</BOLS)} (A.5)

j=1
and
J—1
E {84 Z(Um7+1 Uy )ij (/BOLS) }
=1
' J-1
=F|FE {(/7\4 (Um7+1 Umj)cfj(BOLS)|IBOLS}]
=1
J—1 !
= o*F { (Um]+1 Um]')cfj (ﬁOLS)}
j=1
\ J—-1
+4o ( ) ’E E{ a—a a+a Z Umj1 — Um] f](ﬂOLS)|/BOLS}]
J—-1 "
= o'FE { (Um]+1 Um]-)cfj (BOLS)}
j=1
+404(n p)izE {GZ Umijiq /Umj>cfj(EOLS)‘ﬂOLS}]
J—1
= o'F { (Um]+1 Umj>cf] (Ems)}
j=1
J—1
+202(n p)_lE E {02 Z(Um7+1 - Um]-)cfj (ﬁOLS)|IBOLS}]
4 o
=0 {1 + 2(” o p)il} E { (Umj+1 o Umj)cfj(BOLs)} : (A-G)
j=1
In addition,

2(Vmy 1y — Umy)” —
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= (Umj+1 - Umj) {Q(Umj-u - Um]’) —4 - (TL —p+ 2)(” - p)_l(vmj-u - Um]’)}
= (Um]--H - Umj) {(TL —pP— 2)(” - p)_l(vmj+1 - Um]’) - 4} : (A7)

The result of Theoren is implied by the aboveA.3)-(A.7) and the definition of;(BOLS, a?).

A.2 Proof of Corollary 1

From (A.4) and Lemma 2 oShen and Huan(2006, we have
E{(©* — 0*)I(m; < M)(vsr — Um,)} = 0. (A.8)
Similar to the derivation of (28) illansen2014), we can obtain that ifn; < M, then
bar — b, §32('UM—'UmJ). (A.9)

It is seen from A.2), (A.8)-(A.9) and the definition ofy(BOLS, o?%) that when(n — p — 2)(n —
p) 'k, > 4forallm > 2, we have
1]

E{4(Bos”)} > E [r<mJ < M) {202<UM ~tm,) ~ ||XBas ~ XB,,
= F [I(mJ < M) {32 (U — Um,) — bar — bmJ}}
—E{I(m; < M)(@* = 0*)(vsr — ) }
+o?E{I(m; < M)(var — v, )}
> o*E{I(my; < M)(vy —vm,)}- (A.10)

Whenm,; < M, I(m; < M)(va — v, ) is larger than zero, which, along witi (10), implies
the result of Corollaryl.

A.3 Proof of Theorem 2

By using the same steps @%.6) and (A.6), we have

J—1 J-1
E {9/0_\2 Z(Um]’+1 . Umj)cfj(ﬁms } = gg {Z Umjp1 — Um7 f](IBOLS)}

j=1 7j=1

and

J—1
E {9284 Z(Umj-u - Umj)cfj(BOLS)}
j=1

—1

<

=g 04{1+2n P) 1}E{ (Umj+1_vmj)cfj(/BOLS)}'

1

<.
Il
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In addition,
QQ(Um]‘-H - Umj)Q - 4g(vmj+1 - Umj) - 92 {1 + 2(” - p)_l} (Umj+1 - Umj)Q
= 9(Vm; 1 — VUm;) [{2 —gn—p+2)(n— p)_l} (Vmyer — Umy) — 4} )

From above formulas, the definition @EOLS, o), and the proof of Theorerh we can obtain the
result of Theoren?.
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Table 1: Estimates (Est.) and standard errors (s.e.) oficegits in the real data model4).

OLS GMMA GKLMA MGMMA
Variables Est. s.e. | Est. s.e.| Est. s.e. | Est. s.e.
Intercept 0.015 0.018 0.016 0.023 -0.025 0.023 0.023 0.023

Alog(SAGC) | 1.682 0.328 1.503 0.341 0.782 0.343 1.430 0.340

Alog(TAMP) | 0.103 0.176 0.092 0.193 -0.344 0.192 0.185 0.194

Alog(CCF) |-0.177 0.314 -0.158 0.358 0.507 0.356 -0.243 0.360
Alog(EP) 0.357 0.157, 0.319 0.187, 0.073 0.186/ 0.169 0.188

Table 2: Mean squared prediction errors (MSPE) in predictibthe grain outputs from 2001 to
2012.

OLS GMMA GKLMA mGMMA
MSPE| 6.659 5.969 5.927 6.010
s.e. | 1.712 1.690 1.701 1.684
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Figure 2: Simulation resulty = 1
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Figure 5: Dependent variable in application: logarithm i&ig output (tons).
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Figure 6: Independent variables in application. Top-lefhal is logarithm of sown area of grain
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(tons), bottom-left penal is logarithm of total agricuiimachinery power (TAMP) (kw), and
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