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ABSTRACT 

In this paper we propose a new battery of test statistics for dynamic specification and 

density functional form in a wide range of multivariate time series models including linear and 

non-linear VAR specifications with multivariate GARCH disturbances. The tests are applied to 

the vector of generalized errors that must be i.i.d. with a certain parametric multivariate 

probability density function under the null hypothesis of correct specification. The basic idea of 

the proposed methodology is to calculate the percentage of observations contained within the 

probability autocontour plots corresponding to the assumed multivariate density of the vector of 

independent innovations, and compare it to the population percentage. We develop t-tests based 

on a single autocontour and also more powerful chi-squared tests based on multiple 

autocontours. In the spirit of goodness-of-fit tests, we also propose an additional test that 

focuses on the multivariate density functional form of the vector of innovations. We explicitly 

consider parameter uncertainty and show that a simple bootstrap procedure overcomes this 

problem. We perform Monte-Carlo simulations to investigate the size and power properties of 

the test statistics in finite samples. We apply our tests to multivariate GARCH models fitted to 

excess returns on portfolios sorted according to market capitalization. 

 

JEL Classification: C12, C15, C16, C22. 

Keywords: Probability Contour Plot, Autocontour, Specification Test, Parameter Uncertainty, 

Bootstrap. 
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1. INTRODUCTION 

Even though there is an extensive literature on specification tests for univariate time series 

models, the development of new tests for multivariate models has been very slow. As an 

example, in the ARCH literature we have numerous univariate specifications for which we 

routinely scrutinize the standardized residuals for possible neglected dependence and 

deviation from the assumed conditional density. However, for multivariate GARCH 

models we rarely test for the assumed multivariate density and for cross-dependence in the 

residuals. Given the inherent difficulty of estimating multivariate GARCH models, the 

issue of dynamic misspecification at the system level -as important as it may be- seems to 

be secondary. Though univariate specification tests can be performed in each equation of 

the system, these tests are not independent from each other, and an evaluation of the 

system will demand adjustments in the size of any joint test that combines the results of the 

equation-by-equation univariate tests. Bauwens, Laurent, and Rombouts (2006) survey the 

latest developments in multivariate GARCH models and they also acknowledge the need 

for further research on multivariate diagnostic tests. There are some portmanteau statistics 

for neglected multivariate conditional heteroskedasticity as in Ling and Li (1997), Tse and 

Tsui (1999), and Duchesne and Lalancette (2003). Some of these tests have unknown 

asymptotic distributions when applied to the generalized GARCH residuals. Tse (2002) 

proposes another type of misspecification test that is based on regressions of the 

standardized residuals on some explanatory variables. In that case, the usual OLS 

asymptotics do not apply, but it is possible to construct some statistics that are 

asymptotically chi-squared distributed under the null of no dynamic misspecification. 

None of these tests are concerned with the specification of the multivariate density. 

However, the knowledge of the density functional form is of paramount importance for 

density forecast evaluation, which is needed to assess the overall adequacy of the model. 

Recently, Bai and Chen (2008) adopted the empirical process based testing approach of 

Bai (2003), which is developed in the univariate framework, to multivariate models. They 

use single-indexed empirical processes to make computation feasible, but this causes loss 

of full consistency. Kalliovirta (2007) also takes an empirical process based approach and 
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proposes several test statistics for checking dynamic misspecification and density 

functional form.  

We propose a new battery of tests for dynamic specification and density functional 

form in multivariate time series models. We focus on the most popular models for which 

all the time dependence is confined to the first and second moments of the multivariate 

process. Multivariate dynamics in moments further than the second are difficult to find in 

the data and, to our knowledge, there are only a few attempts in the literature restricted to 

upmost bivariate systems.  Our approach is not based on empirical processes, so we do not 

require probability integral transformations as opposed to the above mentioned studies 

testing for density specification. This makes dealing with parameter uncertainty relatively 

less challenging on theoretical grounds. When parameter estimation is required, we will 

adopt a quasi-maximum likelihood procedure as opposed to strict maximum likelihood, 

which assumes the knowledge of the true multivariate density. If the true density were 

known, it would be possible to construct tests for dynamic misspecification based on the 

martingale difference property of the score under the null. However, if the density function 

is unknown, a quasi-maximum likelihood estimator is the most desirable to avoid the 

inconsistency of the estimator that we would have obtained under a potentially false 

density function. The lack of consistency may also jeopardize the asymptotic distribution 

of the tests. Our approach is less demanding than any score-type testing in the sense that 

once quasi-maximum likelihood estimates are in place, we can proceed to test different 

proposals on the functional form of the conditional multivariate density function. 

The proposed tests are based on the concept of “autocontour” introduced by González-

Rivera, Senyuz, and Yoldas (2007) for univariate processes. Our methodology is 

applicable to a wide range of models including linear and non-linear VAR specifications 

with multivariate GARCH disturbances. The variable of interest is the vector of 

generalized innovations ),,,( 21 ′= ktttt εεεε K  in a model tttt εθHθµy )()( 02
2/1

01 += , 

where ty  is a 1×k  vector of variables with conditional mean vector tµ  and conditional 

covariance matrix tH . Under the null hypothesis of correct dynamic specification the 

vector tε  must be i.i.d. with a certain parametric multivariate probability density function 
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(.)f . Thus, if we consider the joint distribution of two vectors tε  and ltε − , then under the 

null we have )()(),( lttltt εfεfεεf −− = . The basic idea of the proposed tests is to calculate 

the percentage of observations contained within the probability autocontour planes 

corresponding to the assumed multivariate density of the vector of independent 

innovations, i.e. )()( ltt εfεf − , and to statistically compare it to the population percentage. 

We develop a battery of t-tests based on a single autocontour and also more powerful chi-

squared tests based on multiple autocontours, which have standard asymptotic 

distributions. Without parameter uncertainty the test statistics are all distribution free, but 

under parameter uncertainty there are nuisance parameters affecting the asymptotic 

distributions. We show that a simple bootstrap procedure overcomes this problem and 

yields the correct size even for moderate sample sizes. We also investigate the power 

properties of the test statistics in finite samples. 

Since the null is a joint hypothesis, the rejection of the null begs the question on what 

is at fault. Thus, it is desirable to separate i.i.d-ness from density function. In the spirit of 

goodness-of-fit tests, we also propose an additional test that focuses on the multivariate 

density functional form of the vector of innovations. Following a similar approach, we 

construct the probability contours corresponding to the hypothesized multivariate density, 

)( tεf , and compare the sample percentage of observations falling within the contour to the 

population percentage. The goodness-of-fit tests are also constructed as t-statistics and chi-

squared statistics with standard distributions. 

The organization of the paper is as follows. In Section 2, we describe the battery of 

tests, which follow from González-Rivera, Senyuz, Yoldas (2007), and the construction of 

the multivariate contours and autocontours. In Section 3, we offer some Monte Carlo 

simulation to assess the size and power of the tests in finite samples. In Section 4, we apply 

the tests to the generalized residuals of GARCH models with hypothesized multivariate 

Normal and multivariate Student-t innovations fitted to excess returns on five size 

portfolios. In Section 5, we conclude. 
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2. TESTING METHODOLOGY 

2.1 Test Statistics 

Let ),,( 1 kttt yyy K=  and suppose that ty  evolves according to the following process 

 

,,,1,)()( 02
2/1

01 TtεθHθµy tttt K=+=                                    (1) 

 

where (.)tµ  and (.)2/1
tH  are both measurable with respect to time 1−t  sigma field, 1−ℑt , 

(.)tH  is positive definite, and  }{ tε  is an i.i.d. vector process with zero mean and identity 

covariance matrix. The conditional mean vector, (.)tµ , and the conditional covariance 

matrix, (.)tH , are fully parameterized by the parameter vector ),( 02010 ′′′= θθθ , which for 

now we assume to be known, but later on we will relax this assumption to account for 

parameter uncertainty. 

If all the dependence is contained in the first and second conditional moments of the 

process ty , then the null hypothesis of interest to test for model misspecification is 

 

(.)densitywithi.i.d.is:0 fεH t . 

 

The alternative hypothesis is the negation of the null. Though we wish to capture all the 

dynamic dependence of ty  through the modeling of the conditional mean and conditional 

covariance matrix, there may be another degree of dependence that is built in the assumed 

multivariate density, (.)f . In fact, once we move beyond the assumption of multivariate 

normality, for instance when we assume a multivariate Student-t distribution, the 

components of the vector tε  are dependent among themselves and this information is only 

contained within the functional form of the density. This is why, among other reasons, it is 

of interest to incorporate the assumed density function in the null hypothesis. 

Let us consider the joint distribution of two 1×k  vectors tε  and ltε − , ∞<= Ll ,,1K . 

Define a 12 ×k  vector ),( ′′′= −lttt εεη  and let (.)ψ  denote the associated density function. 
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Under the null hypothesis of i.i.d. and correct probability density function, we can write 

)()()( lttt εfεfηψ −= . Then, under the null, we define the α-autocontour, αlC , , as the set 

of vectors ),( ltt εε −′′  that results from slicing the multivariate density, (.)ψ , at a certain 

value to guarantee that the set contains %α  of observations, that is, 

 







 ≤ℜ⊂= ∫∫ αηηηψηSC

k

k

g

h tktt

g

h

k
tαl

2

2

1

1
,21

2
, dd)()( KL ,                    (2) 

 

where the limits of integration are determined by the density functional form so that the 

shape of the probability contours is preserved under integration, e.g. when the assumed 

density is normal, then the autocontours are 2k-spheres (a circle when 1=k ). We construct 

an indicator process defined as 

 



 ∉

=
otherwise0

if1 ,, αltαl
t

Cη
I .                                                  (3) 

 

The process }{ ,αl
tI  forms the building block of the proposed test statistics. Let αpα −≡1 . 

Since the indicator is a Bernoulli random variable, its mean and variance are given by 

α
αl

t pIE =][ ,  and )1()( ,
αα

αl
t ppIVar −= . Although }{ tε  is an i.i.d. process, }{ ,αl

tI  

exhibits some linear dependence because αl
tI
,  and αl

ltI
,
−  share common information 

contained in ltε − . Hence, the autocovariance function of }{ ,αl
tI  is given by 

 





 =−==

= −

otherwise0

if)1,1( 2,, lhpIIP
γ α

αl
ht

αl
tα

h . 
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Proposition 1. Define ∑ −
=

−−=
lT

t

αl
t

l
α IlTp

1

,1)(ˆ . Under the null hypothesis, 

 

)1,0(N
)ˆ(

,
, d

αl

α
l
α

αl
σ

pplT
t →

−−
= ,                    (4)  

 

where α
lαααl γppσ 2)1(2

, +−= . 

 

Proof: See González-Rivera, Senyuz, and Yoldas (2007) for all mathematical proofs. 

 

Now let us consider a finite number of contours, ),,( 1 nαα K , jointly. Let 

),,(
1

′=
nααα ppp K  where iα αp

i
−=1 , and define ∑ −

=
−−=

lT

t

αl
t

l
α

i

i
IlTp

1

,1)(ˆ  for 

ni ,,1K= . We then collect all the l
αi

p̂ ’s in a 1×n  vector, )ˆ,,ˆ(ˆ 1 ′= n
l
α ppp K . 

 

Proposition 2: Under the null hypothesis, 

 

)Ξ,0(N)ˆ( dα
l
α pplT →−− , 

 

where the elements of Ξ  are ),(),min(
,, ji

jiji

αl

lt
αl

tααααij IICovppppξ −+−=  

),(
,,
ij αl
lt

αl

t IICov −+ . Then, it directly follows that 

 

)()ˆ(Ξ)ˆ)(( 21 nχpppplTJ dα
l
αα

l
α

l
n →−′−−= −

.        (5) 

 

A complementary test to those described above can be constructed in the spirit of 

goodness-of-fit. Suppose that we consider only the vector tε  and we wish to test in the 

direction of density functional form. We construct the probability contour sets αC  
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corresponding to the probability density function that is assumed under the null hypothesis. 

The set is given by 

 







 ≤ℜ⊂= ∫∫ αεεεfεSC

k

k

g

h kttt

g

h

k
tα dd)()( 1

1

1

KL .                         (6) 

 

Then, as before, we construct an indicator process as follows 

 



 ∉

=
otherwise0

if1 αtα
t

Cε
I ,                                                     (7) 

 

for which the mean and variance are αIE α
t −=1][  and  )1()( ααIVar α

t −= , respectively. 

The main difference between the sets αlC ,  and αC  is that the latter does not explicitly 

consider the time-independence assumed under the null and, therefore, the following tests 

based on αC  will be less powerful against independence. There is also a difference in the 

properties of the indicator process. Now, the indicator is also an i.i.d. process, and the 

analogous tests to those of Propositions 1 and 2 will have a simpler asymptotic 

distribution. 

Let αpα −=1  and define an estimator of αp  as ∑ =
−=

T

t

α
tα ITp

1

1~ . Under the null 

hypothesis the distribution of the analogue test statistic to that of Proposition 1 is 

 

)1,0(N
)1(

)~(
d

αα

αα
α

pp

ppT
t →

−
−

= .                                            (8) 

 

If, as in Proposition 2, now we jointly consider a finite number of contours and define the 

vectors ),,(
1

′=
nααα ppp K  and )~,,~(~

1
′=

nααα ppp K , where iα αp
i

−=1  and 
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∑ =
−=

T

t

α
tα
i

i
ITp

1

1~ . Then )Ξ,0(N)~( dαα ppT →−  where the elements of Ξ  simplify 

to  
jiji ααααij ppppξ −= ),min(  and, it follows that 

  

)()~(Ξ)~(
~ 21 nχppppTJ dααααn →−′−= −

. 

 

Note that to make these tests operational we replace the covariance terms by their 

sample counterparts. Furthermore, the asympotic normality results established above still 

hold under parameter uncertainty as shown by González-Rivera, Senyuz, and Yoldas 

(2007). However, one needs to deal with nuisance parameters in the asymptotic covariance 

matrices to make the statistics operational. They suggest using a parametric bootstrap 

procedure, which imposes all restrictions of the null hypothesis to estimate asymptotic 

covariance matrices under parameter uncertainty. Specifically, after the model is estimated, 

bootstrap samples are generated by using the estimated model as the data generating 

process where innovation vectors are drawn from the hypothesized parametric distribution. 

Their Monte-Carlo simulations indicate that this approach provides satisfactory results. 

Hence, in this paper we take the same approach in our applications. 

 

2.2. Multivariate Contours and Autocontours 

Multivariate Normal Distribution 

In this case the density function is )5.0exp()2()( 2/
tt

k
t εεπεf ′−= −

. Let αf  denote the 

value of the density such that the corresponding probability contour contains %α  of the 

observations. Then the equation describing this contour is 

 

22
2

2
1 ktttttα εεεεεq +++≡′= L , 

 

where ))2(ln(2 2/k
αα πfq ×−= . Hence, the αC  contour set is defined as follows 
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





 ≤′−ℜ⊂= ∫∫ −

−
−

αεεεεπεSC
k

k

g

g ktttt
kg

g

k
tα dd)5.0exp()2()( 1

2/1

1

KL , 

 

where λqg =1 , ∑ −
=

−=
1

1

2i

j jtλi εqg  for ki ,,2K= , and αλ ≤ . We need to determine 

the mapping αq  in order to construct the indicator process. Let ttt εεx ′= , then )(~ 2 kχxt  

and we have })(:inf{ αqFqq
txα ≥≡ , where 

tx
F  is the cumulative distribution function of 

a chi-squared random variable with k degrees of freedom. As a result, the indicator series is 

obtained as follows 

 



 >′

=
otherwise0

if1 αttα
t

qεε
I . 

 

To construct the autocontour αlC , , we consider the joint distribution of tε  and ltε − . 

Let ),( ′′′= −lttt εεη , then the density of interest is given by )5.0exp()2()( tt
k

t ηηπηψ ′−= −
. 

Hence, the autocontour equation is given by 

 

2
,2

2
1 tktttα ηηηηd ++≡′= L , 

 

where ))2(ln(2 k
αα πψd ×−= . Following the same arguments as above, the corresponding 

indicator process is 

 



 >′

=
otherwise0

if1, αttαl
t

dηη
I , 

 

where })(:inf{ αdFdd
txα ≥≡ , ttt ηηx ′= , and 

tx
F  is the cumulative distribution function 

of a chi-squared random variable with k2  degrees of freedom. 
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Student-t Distribution 

The multivariate density function is 

 

[ ] 2/)(
)2/(1),()(

vk
ttt vεεvkGεf

+−−′+= , 

 

where )}2/(Γ)]2(/{[]2/)[(Γ),( 5.0 vvπkvvkG k−+= . Then the equation for the α-

probability contour is 

 

)2/(1 −′+= vεεq ttα , 

 

where .)],(/[ 2/)( vk
αα vkGfq +=  As a result, the αC  contour set is defined as 

 







 ≤−′+ℜ⊂= ∫∫ −−

αεεvεεvkGεSC
k

k

g

g ktttt

g

g

k
tα dd))2/(1)(,()( 1

1

1

KL , 

 

where )2)(1(1 −−= vqg λ , ∑ −
=

−−−=
1

1

2)2)(1(
i

j jtλi εvqg  for ki ,,2K= , and αλ ≤ . 

Now let )2/(1 −′+= vεεx ttt , then tt wvkx )/(1+≡  where tw  has an F-distribution with 

),( vk  degrees of freedom. Consequently, we have }]/)1([:inf{ αkqvFqq
twα ≥−≡ . Then 

the indicator series is defined as 

 



 >−′+

=
otherwise0

)2/(1if1 αttα
t

qvεε
I . 

 

To construct the autocontour αlC , , we consider the joint distribution of tε  and ltε −  

under the null hypothesis, which is 

 

( )( )[ ] .)2/(1)2/(1),(),(
2/)(2 vk

ltltttltt vεεvεεvkGεεψ
+−

−−− −′+−′+=  
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Then, the equation for the α-probability autocontour is given by 

 

2)2/())(()2/()(1 −′′+−′+′+= −−−− vεεεεvεεεεd ltltttltltttα . 

 

Let 2)2/())(()2/()(1 −′′+−′+′+= −−−− vεεεεvεεεεx ltltttltltttt , then  we have )/(1 vkxt +=  

[ ]))(/()( 2121 tttt wwvkww ++×  where tw1  and tw2  are independent random variables with 

an F-distribution with ),( vk  degrees of freedom. Similar to the previous case, we have 

})(:inf{ αdFdd
txα ≥≡ , but we do not have readily available results for the quantiles of 

tx  as before. A plausible solution is using Monte-Carlo simulation to approximate the 

quantiles of interest as we already know that tx  is a specific function of two independent 

F-distributed random variables. 

As an illustration, we provide sample contour and autocontour plots under normal and 

Student-t (with 5=v ) distributions in Figure-1. Due to the graphical constraints imposed 

by high dimensionality, we consider  2=k  and 1=k  for αC  and αlC ,  respectively. Note 

that while αC  and αlC ,  are of identical shape under normality, since the product of two 

independent normal densities yields a bivariate normal density, this is not the case under 

the Student-t distribution. 

 

Figure-1: Contour and Autocontour Plots under Normal and Student-t Distributions 

αC  under bivariate Normal and Student-t Distributions }99.0,9.0,7.0,5.0{∈α  
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αlC ,  under bivariate Normal and Student-t Distributions }99.0,9.0,7.0,5.0{∈α  

 

 

 

 

 

 

 

 

 

 

 

3. MONTE-CARLO SIMULATIONS 

We investigate the size and power properties of the proposed tests in finite samples by 

Monte Carlo simulations for two cases: when the parameters of the model are known and 

when they are unknown and need to be estimated. 

 

3.1 Size Simulations 

For the size experiments we consider two alternative distributions for the innovation 

process: a multivariate Normal, )I,0(Ni.i.d.~ ktε , and a multivariate Student-t with 5 

degrees of freedom, )5,I,0(ti.i.d.~ ktε . Under parameter uncertainty, we consider a 

simple multivariate location-scale model: tt εHµy 2/1+=  where we set 0=µ  and 

kIH = . We consider both distributions under parameter uncertainty and apply the tests to 

the estimated standardized residual vector, )ˆ(ˆˆ 2/1 µyHε tt −= − , where we obtain 2/1H  by 

using the Cholesky decomposition
1
. The asymptotic variance of the tests is obtained by the 

simple parametric bootstrap procedure outlined above (see Section 2.1). The number of 

Monte Carlo replications is equal to 1000, and the number of bootstrap replications is set 

                                                 
1 Alternative decompositions can be used to calculate the square-root matrix. We conjecture that the choice 

of the decomposition technique is not critical for application of our tests. 
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to 500. We consider 13 autocontours ( 13=n ) with coverage levels (%): 1, 5, 10, 20, 30, 

40, 50, 60, 70, 80, 90, 95, and 99, spanning the entire density function
2
. We start with a 

sample size of 250 and consider increments of 250 up to 2,000 observations. In all 

experiments, the nominal size is 5%. 

In Tables 1a and 1b we present the simulated size results for the l
nJ -statistics. We 

consider a system of 2 equations ( 2=k ) and a system of 5 equations ( 5=k ). For a small 

sample of 250 observations, the l
nJ -statistics are oversized for both densities and both 

systems. However, under parameter uncertainty, the bootstrap procedure seems to correct 

to some extent the oversize behavior. For samples of 1000 and more observations, the 

simulated size is within an acceptable range of values. There are no major differences 

between the results for the small versus the large systems of equations indicating that the 

dimensionality of the system is not an issue for the implementation of these tests. 

 

Table 1a: Size of the 
l

nJ -statistics 

T 1
13J  2

13J  3
13J  4

13J  5
13J   1

13J  2
13J  3

13J  4
13J  5

13J  

 Panel a: Normal ( 2=k )  Panel b: Student-t ( 2=k ) 

250 11.3 11.3 11.6 8.8 11.8  10.5 11.0 10.5 12.3 9.4 

500 6.5 6.0 5.8 5.9 8.0  7.5 5.8 5.9 7.0 6.2 

1000 6.8 5.0 6.2 5.3 4.9  7.2 5.2 5.1 5.4 6.0 

2000 6.4 5.1 5.7 4.1 4.8  7.2 5.8 5.5 6.4 6.4 

 Panel a: Normal ( 5=k )  Panel b: Student-t ( 5=k ) 

250 12.7 11.8 11.5 14.0 12.9  10.4 11.7 12.3 10.3 11.6 

500 9.2 8.4 6.9 7.6 8.3  7.3 6.6 7.3 7.9 8.1 

1000 6.3 7.1 5.5 6.0 6.4  5.9 4.8 6.6 5.7 7.8 

2000 5.3 5.6 5.3 3.4 6.5  6.9 4.8 5.7 5.5 5.4 

 

 

                                                 
2 Our choice of the contour coverage levels is motivated by the need of covering the entire range of the 

density, from the tails to the very center as we do not have a theoretical result indicating the optimal choice 

of the number of contours to guide our practice. The flexibility of our approach permits considering different 

types of coverage levels depending on the purpose of application, e.g. concentrating on tails for risk models. 

Note also that the Monte-Carlo results presented below provide guidance as to how far one can go in the tails 

and the center of the denisty without losing precision in finite samples. Additional Monte-Carlo simulations, 

not reported here to save space, also indicate that the size and power results are robust to the number of 

contours as long as the range considered is identical, i.e. a finer grid does not change the results. 
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Table 1b: Size of the 
l

nJ -statistics under Parameter Uncertainty 

T 1
13J  2

13J  3
13J  4

13J  5
13J   1

13J  2
13J  3

13J  4
13J  5

13J  

 Panel a: Normal ( 2=k )  Panel b: Student-t ( 2=k ) 

250 8.1 6.1 7.3 7.5 6.9  6.8 6.4 7.8 6.5 6.0 

500 7.5 5.9 5.8 7.3 7.4  7.5 6.7 8.3 8.0 8.1 

1000 8.1 5.8 8.0 7.3 6.6  8.5 6.9 8.8 8.3 7.6 

2000 5.7 5.4 7.7 6.4 4.8  6.2 7.6 7.6 6.4 7.0 

 Panel a: Normal ( 5=k )  Panel b: Student-t ( 5=k ) 

250 10.5 9.3 7.7 9.2 8.1  7.1 7.3 6.3 7.2 6.3 

500 7.7 6.9 6.3 6.9 7.6  6.8 5.5 6.0 6.9 6.4 

1000 5.9 6.1 7.1 5.5 5.5  6.4 5.7 6.8 7.5 6.6 

2000 8.0 8.0 7.4 6.8 7.1  7.0 6.5 7.3 6.3 7.9 

 

In Tables 2a and 2b we show the simulated size for the nJ
~

-statistics, which should be 

understood primarily as goodness-of-fit tests as they do not explicitly take into account the 

independence of the innovations over time. The sizes reported in Table 2a are very good, 

though those in Table 2b tend to be slightly larger than 5% mainly for small samples. 

However, when we consider the tests with individual contours (see Table 3 below), the 

size distortion tends to disappear. 

 

Table 2a: Size of the nJ
~
-statistics (n = 13) 

 Normal Student-t 

T 2=k   5=k  2=k  5=k  

250 5.7 6.3 4.3 6.6 

500 4.9 5.3 3.1 5.1 

1000 5.7 5.7 5.6 5.3 

2000 5.6 6.2 4.9 5.6 
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Table 2b: Size of the nJ
~
-statistics (n = 13) under Parameter Uncertainty 

 Normal Student-t 

T 2=k   5=k  2=k  5=k  

250 6.9 9.1 7.3 6.8 

500 7.0 6.1 6.8 6.7 

1000 6.7 5.5 6.7 5.6 

2000 6.4 7.4 6.8 5.7 

 

For the t-tests, which are based on individual contours, the simulated sizes are very 

good. In Table 3, we report these results for the case of parameter uncertainty. The major 

size distortions occur for small samples at the extreme contour 13t  (99% coverage), but this 

is not very surprising since we do not expect enough variation in the indicator series for 

small samples. 

 

Table 3: Size of the t-statistics under Parameter Uncertainty 

T 1t  2t  3t  4t  5t  6t  7t  8t  9t  10t  11t  12t  13t  

 Panel a: Normal ( 2=k ) 

250 5.0 4.6 5.2 5.1 6.5 6.7 5.7 4.9 5.2 4.6 6.0 4.8 2.0 

500 4.3 4.2 5.3 5.4 4.1 4.6 4.5 5.1 5.3 5.2 5.1 4.7 6.4 

1000 4.7 4.2 5.2 5.8 5.4 5.5 5.2 5.7 5.7 4.6 5.9 7.6 3.7 

2000 5.4 3.9 5.1 4.0 5.0 5.3 5.3 6.2 4.8 5.9 4.3 6.4 4.9 

 Panel b: Normal ( 5=k ) 

250 4.5 6.2 5.3 5.0 4.5 5.2 5.3 5.8 5.5 5.1 6.1 6.7 2.1 

500 4.1 4.8 5.8 4.8 6.0 5.6 5.3 6.4 6.5 4.3 6.3 6.0 6.3 

1000 3.8 5.3 5.7 5.3 4.9 5.2 3.8 3.3 4.6 5.3 6.0 4.7 3.9 

2000 4.5 5.3 5.0 5.0 4.6 4.1 5.4 6.0 4.6 5.5 5.5 4.4 6.5 

Panel c: Student-t ( 2=k ) 

250 4.5 5.1 5.3 4.9 4.9 6.0 4.8 4.6 4.5 5.4 5.7 4.3 8.7 

500 4.5 6.1 5.9 4.8 4.5 4.2 4.9 5.3 4.2 5.3 6.1 5.9 4.9 

1000 4.3 5.9 6.4 5.8 5.7 5.5 6.6 6.4 5.9 5.8 5.5 6.0 6.3 

2000 5.7 5.0 5.2 5.4 5.5 4.7 5.4 5.9 5.5 5.0 4.9 5.2 4.8 

Panel d: Student-t ( 5=k )  

250 4.5 5.5 4.8 4.6 5.8 6.0 7.6 6.7 7.0 6.6 5.8 4.1 8.4 

500 4.6 5.4 6.4 4.9 4.9 6.6 5.8 7.1 7.7 6.5 5.4 5.0 5.9 

1000 3.4 4.2 4.9 5.5 4.7 6.2 5.8 5.3 5.2 6.0 5.2 4.7 3.7 

2000 5.1 5.6 5.3 5.2 5.2 5.0 5.3 4.4 5.3 6.1 5.0 5.1 3.8 
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3.2 Power simulations 

We investigate the power of the tests by generating data from a system with two equations 

that follows three different stochastic processes. We maintain the null hypothesis as 

tt εHµy 2/1+= , where ),0(Ni.i.d.~ kt Iε , and consider the following DGP’s: 

DGP 1: ,2/1
tt εHµy +=  where )5,I,0(ti.i.d.~ 2tε , 0=µ , and 2I=H . In this case, we 

maintain the independence hypothesis and analyze departures from the hypothesized 

density function by generating i.i.d. observations from a multivariate Student-t distribution 

with 5 degrees of freedom. 

DGP 2: ,2/1
1 ttt εHAyy += −  where )I,0(Ni.i.d.~ 2tε , 7.011 =a , ,1.012 =a  ,03.021 =a  

85.022 =a , and 2I=H . In this case, we maintain the same density function as that of the 

null hypothesis and analyze departures from the independence assumption by considering a 

linear VAR(1). 

DGP 3: ,2/1
ttt εHy =  ),I,0(Ni.i.d.~ 2tε  with GHGAyyACH tttt 111 −−− ′+′′+=  and 

parameter values 2
2/1 I1.0 ×=A , 2

2/1 I85.0 ×=G , and VGGVAAVC ′−′−=  where V is 

the unconditional covariance matrix with 12211 == vv  and 5.012 =v . In this case, we 

analyze departures from both independence and density functional form by generating data 

from a system with multivariate conditional heteroscedasticity. 

In Table 4 we report the power of the l
nJ -statistic. The test is the most powerful to 

detect departures from density functional form (DGP 1) as the rejection rates are almost 

100% even in small samples. For departures from independence, the test has better power 

to detect dependence in the conditional mean (DGP 2) than in the conditional variance 

(DGP 3). As expected, in the case of the VAR(1) model (DGP 2), the power decreases as l 

becomes larger indicating first order linear dependence. The power is also very good 

(69%) for small samples of 250 observations. In the case of the GARCH model (DGP 3), 

the rejection rate reaches 60%  for sample sizes of 500 observations and above. 
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Table 4: Power of the 
l

nJ -statistics under Parameter Uncertainty 

T 1
13J  2

13J  3
13J  4

13J  5
13J  

 Panel a: DGP 1 

250 98.6 98.2 98.6 97.8 98.3 

500 100.0 100.0 100.0 100.0 100.0 

1000 100.0 100.0 100.0 100.0 100.0 

2000 100.0 100.0 100.0 100.0 100.0 

 Panel b: DGP 2 

250 68.9 40.2 26.6 19.3 16.5 

500 93.6 60.0 38.1 27.9 20.4 

1000 99.9 84.8 58.0 39.2 28.9 

2000 100.0 99.4 83.7 59.8 40.6 

Panel c: DGP 3 

250 35.5 36.0 32.9 31.9 31.9 

500 62.8 61.6 60.5 61.4 60.3 

1000 90.5 88.8 88.1 86.9 86.7 

2000 99.4 99.6 99.7 98.9 99.2 

 

As expected, in Table 5 we observe that the goodness-of-fit test, nJ
~

, has the largest 

power for DGP 1 and it is not very powerful for DGP 2. It has reasonable power against 

DGP 3 mainly for samples of 1000 observations and above. 

 

Table 5: Power of the nJ
~
-statistics (n = 13) under Parameter Uncertainty 

T DGP 1  DGP 2 DGP 3 

250 99.1 12.4 19.7 

500 100.0 12.1 44.5 

1000 100.0 12.9 70.2 

2000 100.0 14.2 94.7 

 

We find a similar message in Table 6 when we analyze the power of the t-statistics. 

The tests are the most powerful to detect DGP 1, the least powerful to detect DGP 2, and 

acceptable power against DGP 3 for samples of 1000 observations and above. There is a 

substantial drop in power for the 11t  test (90% contour) for the cases of DGP 1 and DGP 3. 

This behavior is similar to that encountered in the univariate tests of González-Rivera, 
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Senyuz, and Yoldas (2007). This is a result due to the specific density under the null. In the 

case of DGP 1, for some contour coverage levels the normal density and the Student-t are 

very similar. Hence it is very difficult for any test to discriminate the null from the 

alternative with respect to the coverage level of those contour planes. A similar argument 

applies to DGP 3 as well, since the GARCH structure in the conditional covariance matrix 

is associated with a non-normal unconditional density. 

 

Table 6: Power of the t-statistics under Parameter Uncertainty 

T 1t  2t  3t  4t  5t  6t  7t  8t  9t  10t  11t  12t  13t  

 Panel a: DGP 1 

250 23.1 55.3 76.6 91.8 96.1 97.7 98.0 96.6 89.9 59.6 8.5 33.7 85.2 

500 32.3 80.6 95.3 99.5 100.0 100.0 100.0 100.0 99.4 85.6 8.6 57.8 98.5 

1000 49.7 97.4 99.9 100.0 100.0 100.0 100.0 100.0 100.0 98.9 14.0 78.7 100.0 

2000 75.4 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 16.2 94.9 100.0 

 Panel b: DGP 2 

250 3.3 4.7 8.4 11.2 11.1 12.4 13.4 11.0 7.3 6.7 9.7 11.6 3.5 

500 3.6 5.6 7.6 11.5 12.8 11.5 11.8 11.0 8.9 7.0 7.2 10.9 13.1 

1000 5.1 6.4 8.4 11.2 13.5 14.0 11.7 11.9 9.6 7.1 7.9 11.9 13.2 

2000 4.4 6.7 9.2 10.8 13.3 15.3 14.6 11.6 9.5 8.7 8.7 12.3 14.0 

Panel c: DGP 3 

250 5.6 7.2 10.7 12.8 15.3 17.6 18.5 18.7 14.6 8.3 6.3 9.0 17.0 

500 7.2 11.9 17.7 25.5 33.4 38.3 41.5 41.1 32.6 15.6 5.3 20.0 48.0 

1000 8.1 20.5 31.4 46.3 58.6 64.3 68.7 67.1 59.1 32.1 8.6 34.8 70.4 

2000 13.5 35.3 56.8 77.7 86.7 91.5 92.8 91.8 85.4 54.7 9.5 60.0 93.5 

 

4. EMPIRICAL APPLICATIONS 

In this section we apply the proposed testing methodology to the generalized residuals of 

multivariate GARCH models fitted to U.S. stock return data. Our data set consists of daily 

excess returns on five size portfolios, i.e. portfolios sorted with respect to market 

capitalization in an increasing order.
3
 The sample period runs from January 2, 1996 to 

December 29, 2006, providing a total of 2770 observations. A plot of the data is provided 

in Figure-2. 

                                                 
3 Data is obtained from Kenneth French’s website: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french. 

We are grateful to him for making this data publicly available. 
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Figure-2: Daily Excess Returns on Five Size Portfolios (1/2/996-12/29/2006) 

(From the smallest quintile portfolio to the largest quintile portfolio) 
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Since we are working with daily data we assume a constant conditional mean vector. 

In terms of the multivariate GARCH specifications, we consider two popular alternatives: 

the BEKK model of Engle and Kroner (1995) and the DCC model of Engle (2002). Define 

µyu tt −=  where µ is the constant conditional mean vector. Then the ),1,1(BEKK K  

specification for the conditional covariance matrix, ]|[ 1−ℑ′≡ tttt uuEH , is given by 

 

∑∑ = −= − ′+′′+′=
K

j jtj
K

j jttjt GHGAuuACCH
1 11 1 .                              (9) 

 

In our applications we set 1=K  and use the scalar version of the model due to parsimony 

considerations where kIαA = , kIβA = , and α and β are scalars. We also use variance 

targeting to facilitate estimation, i.e. we set  VGGVAAVCC ′−′−=′  where ][ ttuuEV ′= , 

e.g. Ding and Engle (2001). 

In the DCC specification, conditional variances and conditional correlations are 

modeled separately. Specifically, consider the following decomposition of the conditional 

covariance matrix: tttt DRDH =  where },,{ 2/1
,

2/1
,11 tkktt hhdiagD K= , and each element of 

tD  is modeled as an individual GARCH process. In our applications, we consider the 

standard GARCH (1,1) process: 

 

kjhβuαωh tiiitiiitii ,,1,1,
2

1,, K=++= −− . 

 

Now define ttt uDz 1−= , then 11 }{}{ −−= tttt QdiagQQdiagR  where 

 

11)1( −− +′+−−= tttt QβuuαQβαQ ,                                    (10) 

 

and ][ 1−′= tt zzEQ . 

Under both BEKK and DCC specifications, we consider two alternative distributional 

assumptions that are most commonly used in empirical applications involving multivariate 
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GARCH models: multivariate Normal and multivariate Student-t distributions. Under 

multivariate normality, the sample log-likelihood function, up to a constant, is given by 

 

∑∑ ==
′−−=

T

t ttt
T

t tT uHuHθL
11 2

1
)]ln[det(

2

1
)( .                             (11) 

 

In the case of the DCC model, a two-step estimation procedure is applicable under 

normality as one can write the total likelihood as the sum of two parts where the former 

depends on the individual GARCH parameters and the latter on the correlation parameters. 

Under this estimation strategy, consistency is still guaranteed to hold. For further details on 

two-step estimation in the DCC model, the interested reader is referred to Engle (2002), 

and Engle and Sheppard (2001). Under the assumption of multivariate Student-t 

distribution, we do not need to estimate the model with the corresponding likelihood since 

the estimates obtained under normality are consistent due to quasi maximum likelihood 

interpretation. Therefore, we obtain the standardized residual vectors under normality and 

then simply test the Student-t assumption on these residuals.
4
 One remaining issue in the 

case of Student-t distribution is the choice of the degrees of freedom. We follow Pesaran 

and Zaffaroni (2008) and obtain estimates of the degrees of freedom parameters for all 

series separately and then consider an average of the individual estimates for the 

distributional specification in the multivariate model. 

The results are summarized in Figures 3 through 6 and Table 7. From the figures we 

observe that under both GARCH specifications, the l
nJ -statistics are highly statistically 

significant when multivariate normality is the maintained distributional assumption. The 

l
nJ -Statistics of the BEKK model are larger than those obtained under the DCC 

specification. Furthermore, there is an obvious pattern in the behavior of the statistics as a 

function of the lag order, especially under the BEKK specification. This indicates that the 

rejection is partly due to remaining dependence in the model residuals. When we switch to 

                                                 
4 Note that in the specification of the multivariate Student-t distribution (see Section 2), the covariance matrix 

is already scaled to be an identity matrix, thus no re-scaling of residuals is necessary to implement the test, 

e.g. Harvey, Ruiz and Santana (1992). 
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the multivariate Student-t distribution with 11 degrees of freedom,
5
 the l

nJ -statistics go 

down substantially under both multivariate GARCH specifications. Hence, we can argue 

that the distributional assumption plays a greater role in the rejection of both models under 

normality. The l
nJ -statistics are barely significant at 5% level for only a few lag values 

under the DCC specification coupled with multivariate Student-t distribution. However, 

under the BEKK specification, l
nJ -statistics are significant at early lags, even at 1% level. 

Table-10 reports individual t-statistics and the nJ
~

-statistics. Both types of test statistics 

indicate that normality is very strongly rejected under both GARCH specifications. Similar 

to the case of l
nJ -statistics, the results dramatically change when the distributional 

assumption is altered to multivariate Student-t. The DCC model produces better results 

with respect to both types of test statistics, but especially chi-squared test strongly supports 

the DCC specification compared to the BEKK model. Combining the information from all 

test statistics we can conclude that multivariate normality is a bad assumption to make 

regardless of the multivariate GARCH specification. Furthermore, the DCC model with 

multivariate Student-t distribution does a good job in terms of capturing dependence and 

producing a reasonable fit with respect to density functional form. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
5 This value is obtained by averaging individual degrees of freedom estimates obtained from individual 

GARCH models under Student-t density. 
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Figure 3: 
l
J13 -statistics of BEKK Model under Multivariate Normal Distribution 
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Figure 4: 
l
J13 -statistics of DCC Model under Multivariate Normal Distribution 

0

100

200

300

400

500

600

1 5 9 13 17 21 25 29 33 37 41 45 49

Lag
 

 

Figure 5: 
l
J13 -statistics of BEKK Model under Multivariate Student-t Distribution 
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Figure 6: 
l
J13 -statistics of DCC Model under Multivariate Student-t Distribution 
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Table 7: Individual t and  13J
~
-statistics for Estimated GARCH Models 

 
BEKK 

Normal 

DCC 

Normal 

BEKK 

Student-t 

DCC 

Student-t 

1t  -1.85 -2.17 2.78 2.30 

2t  -8.52 -10.18 -0.31 -0.38 

3t  -9.97 -12.26 1.00 -0.64 

4t  -9.37 -11.22 0.84 -0.10 

5t  -10.34 -11.81 2.47 0.18 

6t  -11.54 -10.95 1.13 0.95 

7t  -9.28 -10.03 0.09 0.50 

8t  -6.85 -7.19 0.25 0.59 

9t  -2.74 -5.70 0.92 -0.32 

10t  0.24 -1.52 0.66 -0.89 

11t  5.39 2.17 0.08 -3.51 

12t  8.23 5.58 1.00 -1.30 

13t  12.18 12.50 1.26 0.74 

         

13

~
J  351.47 388.54 30.07 24.35 
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5. CONCLUDING REMARKS 

Motivated by the relative scarcity of tests for dynamic specification and density functional 

form in multivariate time series models, we proposed a new battery of tests based on the 

concept of “autocontour” introduced by González-Rivera, Senyuz, and Yoldas (2007) for 

univariate processes. We developed t-tests based on a single autocontour and also more 

powerful chi-squared tests based on multiple autocontours, which have standard 

asymptotic distributions. We also developed a second type of chi-squared test statistic, 

which is informative as a goodness-of-fit test when combined with the first type of chi-

squared test. Monte-Carlo simulations indicate that the tests have good size and power 

against dynamic misspecification and deviations from the hypothesized density. We 

applied our methodology to multivariate GARCH models and showed that the DCC 

specification of Engle (2002) coupled with a multivariate Student-t distribution provides a 

fine model for multivariate time dependence in a relative large system of stock returns. 
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