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Abstract

We adapt smoothing methods to histogram-valued time series (HTS) by introducing a
barycentric histogram that emulates the "average" operation, which is the key to any
smoothing filter. We show that, due to its linear properties, only the Mallows-barycenter
is acceptable if we wish to preserve the essence of any smoothing mechanism. We
implement a barycentric exponential smoothing to forecast the HTS of daily histograms
of intradaily returns to both the SP500 and the IBEX 35 indexes. We construct a one-
step-ahead histogram forecast, from which we retrieve a desired 7 -Value-at-Risk
forecast. In the case of the SP500 index, a barycentric exponential smoothing delivers a
better forecast, in the MSE sense, than those derived from vector autoregression models,
especially for the 5% Value-at-Risk. In the case of IBEX35, the forecasts from both
methods are equally good.
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1 Introduction

With the advent of very large data sets, there is a pressing need for the
development of new statistical and econometric methodologies. Sym-
bolic data analysis (Billard and Diday, 2006) provides a path in this
direction. The key insight is that the data can be organized into ob-
jects that provide information beyond that of a simple scalar variable.
Intervals and histograms are examples of symbolic data; both provide
clear graphical displays to describe dispersion as in the case of intervals,
or more generally as in the case of a histogram, centrality, dispersion
and shape of the frequency distribution of the realizations of a random
variable.

In this paper, we work with a histogram as a symbolic object. This
means that some random experiment produces realizations of a random
variable that are observed as frequency distributions, or in other words,
the “datum” is a histogram. From a cross-sectional perspective, several
authors have adapted multivariate techniques to the analysis of a set
of histograms, for instance, principal components analysis (Rodriguez
et al., 2000; Nagabhushan and Pradeep Kumar, 2007), and cluster anal-
ysis (Irpino and Verde, 2006; Verde and Irpino, 2007). From a time series
perspective, it is possible to define a histogram-valued time series (HTS)
as a collection of histograms ordered over time. A classical modelling
strategy will call for evaluating the dependence of the data and searching
for the most appropriate model. Unfortunately, the state of the art for
HTS has not yet reached that stage. However, the absence of a model
—as the basis for building a forecast— should not block the exploration
of more primitive approaches for the construction of a forecast. Going
back to basics, our view is that a forecast based on well-defined averages
of past information should provide a sensible forecast of the future under
the assumption that the world is somewhat stable. Following this argu-
ment, Arroyo and Maté (2009) adapted the k-Nearest Neighbors (k-NN)
algorithm and Arroyo et al. (2010) applied this work to forecast finan-
cial aggregates. Gonzalez-Rivera and Arroyo (2011) went further along
these lines and implemented the empirical autocorrelation function for
a HTS of financial intradaily returns. In the present work, we will focus
on the analysis of smoothing techniques to forecast HT'S. Though in the
aforementioned papers, we sketched how to adapt smoothing filters, now
we will provide a detailed analysis of the issues that arise in a forecasting
environment.

On dealing with histograms, the fundamental question behind any
smoothing mechanism is how to “sum” histograms. There is a well-
defined arithmetic of histograms proposed by Colombo and Jaarsma
(1980). Their goal was to operate with random variables for which their



“randomness” is represented by a histogram. We will argue that this
arithmetic is not suitable for forecasting purposes. With any smoothing
method, there are two key operations in the construction of a forecast:
the addition of past information and the definition of forecast errors
(subtraction operation). We provide some examples to show that, based
on the arithmetic rules, smoothing histogram data produces histograms
with non-desirable features.

Given the drawbacks of histogram arithmetic, we propose an alter-
native approach based on the notion of a barycentric histogram, which
is an average of histograms. The barycenter minimizes the sum of the
distances between itself and any other histogram in the set. We enter-
tain two distance measures: Mallows and Wasserstein. Both measures
evaluate the distances between the quantiles of any two histograms but
Mallows uses the L2norm and Wasserstein uses the L'-norm. As a
result, the Mallows-barycentric histogram is formed by averaging quan-
tiles of the histograms in the set, and the Wasserstein-barycentric his-
togram by finding their median. Based on the barycenter approach, we
adapt smoothing methods either as moving averages or as exponential
smoothing. We show that, due to its linear properties, only the Mallows-
barycenter is acceptable if we wish to preserve the natural smoothness,
which is the essence of any smoothing mechanism.

We offer a financial application of the smoothing techniques for his-
tograms. For a portfolio of assets, Value-at-Risk (VaR) is a probabilistic
measure defined as the loss that a portfolio will face in a given period
of time with a specific confidence level. The y-VaR is defined as the
conditional quantile of the distribution of returns such that the prob-
ability of returns below ~v-VaR is 4%. Thus, it seems very natural to
analyze histograms of returns within a symbolic data approach. The
main advantage of our proposal resides on the absence of parametric as-
sumptions on the conditional density as well as on the conditional mean
and variances of the return process. We will implement a barycentric ex-
ponential smoothing to eventually construct a one-step-ahead histogram
forecast, from which we will retrieve the desired y-VaR. We will com-
pare the HTS forecasts with those obtained from classical autoregressive
models.

The organization of the paper is as follows. In Section 2, we set
preliminary concepts and notation. In Section 3, we discuss histogram
arithmetic, barycentric histograms, and the adaptation of smoothing
methods. In Section 4, we predict Value-at-Risk with a barycentric
exponential smoothing filter, and in Section 5, we conclude.



2 Preliminaries

In this section, we set the notation and review the basic notions that
support the forthcoming smoothing methods.

Definition 1. Consider a histogram random variable X, and a
sample of m units (i = 1,...,m), where each 7 is described by a histogram
such as

hx, = {([zli, mir), s ([ing, Tin, )} (1)
where m;; , j = 1,...,n,, is a frequency that satisfies m;; > 0 and
> oy mij = 1; and [z];; C R, V4, j, is an interval (also known as bin) de-
fined as [z];; = [xLij, Tui;) With —oo < xp;; < 2pi; < 00 and zy; jo1 <
xri; V4,7, for j > 2.

Assuming that values in each given bin, i.e., z € [z];;, are uniformly
distributed within the interval (Billard and Diday, 2003), the cumulative
distribution function, Hy,(z), of a histogram hy, is defined as follows

O, if x < TLils
T r—1 T—TLir . f .
Hy,(z) = / hx, (z)dz = . =t T G e T ?f 5 i [x)?r7 2)
oo s I r ~ [EU”M. .

The histogram definition is flexible enough to cover any kind of
binned density estimator. Some interesting types of histogram repre-
sentations are

e Equispaced histograms, i.e., histograms with bins of the same
width.

e Equifrequency histograms, i.e., histograms where the frequency as-
sociated with each bin is the same. Boxplots, proposed by Tukey
(1977), are a popular example of this kind of histogram offer-
ing a nice representation of the subjacent distribution (Benjamini,
1988).

e Histograms with a specific partition of the histogram domain. This
representation focuses on the parts of the domain that are of in-
terest to the researcher.

e Histograms defined according to an ordered sequence of quantiles.
This representation can provide a more detailed view of some parts
of the distribution such as the tails. An example of this could be
offered by the sequence of quantiles .05, .1, .9 and .95.



Since our interest lies on forecasting, we need a notion of stochastic
process and time series.

Definition 2. A histogram-valued stochastic process is a collection
of histogram random variables that are indexed by time, i.e., {hy,} for
t € T C R, with each hy, following Definition 1.

Definition 3. A histogram-valued time series is a realization of a
histogram-valued stochastic process and it will be equivalently denoted

as {hx,} ={hx,, t=1,..,T}.
3 Smoothing methods for HTS

Given a histogram time series (HTS) {hx,} = {hx,, t = 1,...,T}, our
objective is to form a one-step-ahead forecast h Xp4qyp COnditioning on
the available information up to time 7. A classical modelling strategy
will call for evaluating the dependence of the data and searching for the
most appropriate model. Unfortunately, the state of the art for HTS has
not yet reached that stage. However, the absence of a model — as the
basis for building a forecast — should not block the exploration of more
primitive approaches for the construction of a forecast. Going back to
basics, our view is that a forecast based on well-defined averages of past
information should provide a sensible forecast of the future under the
assumption that the world is somewhat stable. In this line, a smoothing
mechanism seems to be appropriate. In this section, we propose an
adaptation of smoothing methods — moving averages and exponential
smoothing — to HTS.

The one-step-ahead forecast of HT'S based on a moving average of
order ¢ is a weighted (or unweighted) mean of the ¢ past histogram-
valued observations

IAIXtJrl :wlhxt +...—|—wqhxt_(q_l), (3)

where w; is the weight assigned to observation 1.

The one-step-ahead forecast of HT'S based on an exponential smooth-
ing filter is a weighted average of the most recent observations and its
forecast R .

h‘Xt+1 = OéhXt + (1 - a)hxt, (4)

where a € [0, 1].
By backwards substitution in (4), we could find an “equivalent” mov-
ing average with exponentially decreasing weights as

t

}AlXH_l = Z Oé(l - Oé)jithtf(];m? (5)

Jj=1



or alternatively, rearranging terms in (4), we could write the error cor-
rection equation as

iLXt+1 = }ALXt + Oé<hXt - iLXt)' (6)

In all these expressions (3), (4), (5), and (6), the key operation is the
“sum” of histograms that is essential to find the “average histogram”,
which is the basis of any smoothing procedure. We will analyze the
problem in two stages:

1. A natural proposal is to use histogram arithmetic to find the
average histogram. We will argue that, within a forecasting environment,
the available histogram arithmetic has some disadvantages that will be
apparent in the forthcoming definitions of forecast and forecast error.

2. We propose an alternative approach based on the notion of a
barycentric histogram, which is an average of histograms. This approach
requires the use of distance measures. We will show that the choice of
distance is crucial to the equivalence between expressions (4) and (5).

3.1 Histogram arithmetic

Colombo and Jaarsma (1980) proposed a histogram arithmetic that is
an extension of the interval arithmetic proposed by Moore (1966), as
histograms can be understood as a set of intervals with an associated
weight. Though their method was geared to operate with equifrequency
histograms, it is general enough to operate with any other binned density
estimator. As interval arithmetic is key to understanding histogram
arithmetic, first we show the basics of interval arithmetic.

Given two intervals [a| = [ar,ay] and [b] = [by, by], interval arith-
metic operations are given by

[a] + [b] = [ar, + b, av + by, (7)
la] — [b] = [az — by, av — bL], (8)
1= e by b el O
[a]/[b] = [a] * (1/[8]), with 1/[b] = [1/by, 1/by]. (10)

The reciprocal of an interval, 1/[b], is defined if and only if 0 & [b],
otherwise it is not defined because the resultant interval contains oo.
In summary, for 4+, —, and *, the upper and lower bounds of the resul-
tant interval are the maximum and minimum of all combinations of the
endpoints of the interval operands. Interval addition and multiplication
enjoy the associative and commutative properties but they do not satisfy
the distributive property. However, the subdistributive property always



holds, that is,
[a]([b] + [¢]) € [a][b] + [a][c], (11)

which implies that in practice [a]([b] + [c]) will be preferred because it is
a tighter interval than [a][b] + [a][c].

Colombo and Jaarsma’s histogram arithmetic considers all possible
pairs of intervals in any two histogram operands and combines them ac-
cording to the rules of interval arithmetic. More precisely, given two his-
tograms, ha = {([a];, 7,,)} with i = 1,...,n and hp = {([b];, 7;)} with
j =1,...,m, both representing a pair of independent random variables A
and B, and O being some arithmetic operator in {4, —, , /}, C'= AOB
can be represented by the unsorted histogram he = {([c]g, Tex)} with
k=1,..,n-m, where

CL,(i—-1)m+j = min{aL,iDbL,ja aU,iDbL,ja aL,z’DbUJa aU7i|:|bU,j}7 (12)
Cu,(i-1)m+j = max{aLJDbL’j, CLU’Z‘DbL,j, CLL’Z‘DbUJ', CLU7iDbU7j}, and (13)

TC,(i—-1)m+j = TAi"TB,j- (14)

As a result, the number of bins in h¢ is n - m, which may be potentially
high, and the [¢]; intervals may overlap, which is not desirable.

We provide an instance for which a direct application of the Colombo
and Jaarsma histogram arithmetic will not deliver suitable results in a
smoothing environment, where the average of histograms play a key role.

The expressions (3), (4), (5) are all weighted averages of histograms.
Without loss of generality, let us consider a simple average of histograms

such as y "
hy = x, +...+ Xn’ (15)
n

where the value n is also considered as a histogram of the following form
h = {([n,n],1)}. Suppose that we consider five histograms, all of them
identical to each other. We would like to obtain the average hg. Let us
say that hy, = {([1,2),.1),([2,3),.15),([3,4), .25), ([4,5), .5]}, Vi and i =
1,..,5. By applying the rules of the Colombo and Jaarsma arithmetic,
the average histogram hyx is given by hx = {([1,2),.002), ([2,3),.115),
([3,4),.615), ([4,5],.268)}. In Figure 1 we plot the five histograms and
their average hyx.

[FIGURE 1]

The average histogram has the same four bins as those of each his-
togram in the sum but the frequency associated with each bin has
changed. The average histogram has more mass in the central bins and
less in the extreme bins, and as a result, it is less skewed than any of the



components of the average. In a forecasting environment, if these five
identical histograms were the realizations of the last five periods, the
most natural one-step-ahead forecast would be an identical histogram
to those observed in the most recent past. However, if we were to use
(3) with w; = 1/5 as the forecasting filter, we would obtain a histogram
as that described in Figure 1.

Moreover, histogram arithmetic is not suitable to represent the fore-
cast error, hy, — h x,. For example, for the case where the prediction is
exact such that & x, = hx,, histogram arithmetic does not deliver satis-
factory results. Due to these reasons, we need to search for alternative
approaches to operationalize the sum of histograms.

We should also mention that a very important assumption in the
Colombo and Jaarsma arithmetic is that the random variables behind
the histograms are independent. This assumption is rather strong since
we should expect some dependence between the elements A, of a histogram-
valued time series. There are more sophisticated methods to operate
with histograms of random variables characterized by some types of de-
pendence, for instance, Li and Hyman (2004) and Berleant and Zhang
(2004). However, the proposed operations do not deliver a random vari-
able with a single distribution but rather some upper and lower bounds
that enclose the unknown solution.

3.2 The barycentric histogram

The barycenter of a set of histograms was proposed by Irpino and Verde
(2006) in a clustering context where the histogram barycenter represents
the centroid of a cluster of histogram-valued data. An interesting prece-
dent can be found in the work by Delon (2004a,b) that proposes a mean
histogram using the Monge-Kantorovich distance for image equalization.

The barycentric histogram hy, is defined as the histogram that
minimizes the distance between itself and a set of histograms hy, for
1=1,...,n,

min (zn: wiDp(hXi, hX}g)) ' s (16)

where w; is the weight associated with histogram hx, such that w; > 0
and ) ,w; = 1; p is a positive integer and D(hx,, hx,) is a distance
measure. The barycentric histogram hyx, is also understood as a convex
combination of the n histograms hy, considered.

Verde and Irpino (2007) analyzed different distance measures. Some,
like the Hellinger Coefficient and the Total Variation distance, are re-
jected because they do not guaranteee that the sum of weights of the
barycenter is equal to 1. Others, like the Kolmogorov or the Prokhorov



distances, produce inconclusive solutions. Only the Mallows distance
(p = 2) is considered suitable for constructing barycenters. Following
upon the ideas of Irpino and Verde, Arroyo and Maté (2009) proposed
a barycenter using the Wasserstein distance (p = 1) to construct a his-
togram forecast based on a k-NN algorithm.

Interestingly, both the Mallows and the Wasserstein distances have
a clear interpretation as they are related to the Earth Movers Distance
used in computer vision (Levina and Bickel, 2001). This distance, pro-
posed by Rubner et al. (2000), is a solution to the Monge-Kantorovich
transportation problem that determines the most efficient way of turning
one pile of dirt into another (Rachev, 1984). In our case, the probability
distributions are considered as piles of dirt and the considered distances
are the minimum cost of turning one of them into the other.

The Mallows distance between two histograms h; and hs is defined
as

Dy (hy, hy) = \//I(Hfl(l) — Hy'(1))2dl, (17)

and the Wasserstein distance as
1
Dl ) = | [Hi(e) = Ha(w)ldo = [ 1870 = Hy O, (19
R 0

where [ € [0,1] and H; *(I) is the quantile function of the histogram h;.

Proposition 1.
Let D?(hx,, hx,) be the Mallows distance and p = 2. The barycen-
tric histogram hx, that solves the optimization problem

min (Z wi/o (H;(1 (1) — Hg}(l)ydl) (19)

hx g

has a quantile function H)_(}B that satisfies

Hyl(l) = i wiHZ (1) for 1 € [0, 1]. (20)

Proof. For fixed [, the solution (20) follows directly from the first
order condition Y7 | w;(Hy, (I) — Hx!(1)) = 0.

Proposition 2.
Let DP(hx,, hx,) be the Wasserstein distance and p = 1. Define
n; = w;N, where n; is the number of times that the quantile value



H;(il(l) is repeated and N = )" | n;. The barycentric histogram hx,
that solves the optimization problem

n 1
. n; _ _
mlnzﬁ/o |Hy! (1) — Hy!(1)|dl (21)
1

hxp £

has a quantile function H)_(; that equals the median over all NV values of
{H (D)} for all n; ,i=1,...,n.

Proof. Let H)_(;(l) be an increasingly monotonic function on [. For
fixed I, and for an odd® number of observations Hy'(l), a global mini-
mum exist. Let H)_(il(l),z' =1,...,n, and let I(.) be an indicator function,
the solution of the derivative of (21),

d|Hy,, () = Hy! (D]
dHy, (1) B (22)
; 1 Hx, () > H! () — ; ML () < H ()

is the number of observations Hy!(l) below the value Hy! (I) minus
the number of observations above Hy! (I). Thus, the sample median is
the only value of H;(;(l) for which the number of observations above it
equals the number of of observations below. In practical terms, we order
the values of Hy'(l) from low to high and choose Hy! (I) as the median
quantile over all N' ordered quantile values Hy' (1) B.

In Figure 2, we illustrate the construction of the barycentric his-
togram with the Mallows and Wasserstein distances.

[FIGURE 2]

Let hy = {([1,2),0.7), (]2,3),0.2), ([3,4],0.1)} and let hy = {([11,12),0.1),
([12,13),0.2),([13,14],0.7)} be two histograms and w; = wy = 0.5. In
the top left panel, we show the histograms h; , ho and the barycen-
ter hg when the distance is Mallows; and in the top right panel, we
show their corresponding distribution functions Hy, Hy, and Hg. Note

AWith an odd number of observations the definition of the median is unambiguous.
With an even number of observations, the solution is not unique as the median will
fall between the two middle observations. The technical complications of considering
an even number of observations have no practical consequences.

BIn the singularity point, i.e., H)_(; ()= H)_Ql (1) for some %, the derivative obviously
does not exist. We can have a case in which H)_(Ilg ()= H;(ll (1) for several i, and it is
possible that the median falls into one of these values.



that for any fixed [, the quantile function H;l(l) is the average of the
quantiles functions H; '(I) and Hy '(I), and consequently, the barycen-
tric histogram hp is an average of the position, range and shape of the
histograms h; and hs. In the bottom panel, we perform a similar exercise
using the Wasserstein distance. Since the number of histograms is even,
the Wasserstein barycenter is not unique. Thus, any quantile H5"'(l)
enclosed within the quantile functions H;'(I) and H; () can be a valid
Wasserstein barycenter for h; and hsy. This behavior illustrates that only
the Mallows distance will be suitable for the adaptation of smoothing
techniques using the barycenter approach. Further explanation is pro-
vided in the forthcoming sections.

3.3 The barycenter and the moving average

Given the relation between the concepts of average and barycenter, the
histogram forecast BXt ., based on a moving average as in (3) can be
reformulated as the barycentric histogram that solves the following op-
timization problem

min Z (wz hXH17 hx, . 1))>1/p, (23)

where ¢ is the order of the moving average, D(-,-) is an appropriate
distance, and w; is the weight assigned to hth(ifl).

If D(-,-) is a Mallows distance and p = 2, then BXM will be such
that

H! (1 szHX}( (1) for 1€ [0,1]. (24)

If D(-,-) is a Wasserstein distance and p = 1, depending on whether the
number of elements in the sum (23) is even or odd, and depending on
the values of the weights w;, the median barycenter may not be unique
or it may be based on fewer than ¢ histograms. For instance, suppose
that in the expresssion iLXt+1 =whx, +...+ wthqu, we have that

wy > 0.5. Then, the Wasserstein barycenter is iLXHl = hy, because it is
calculated as the median of the quantile functions associated with the
histograms hy, , , for ¢ = 1,...,q. This median behavior induced by
the Wasserstein distance implies that the natural smoothing associated
with a moving average may be lost, and because of that, the Wasserstein
distance is less suitable than the Mallows distance.

3.4 The barycenter and exponential smoothing

By following the same arguments as in the previous section, the his-
togram forecast hy,,, based on a exponential smoothing filter as in (4)

10



can be reformulated as the barycentric histogram that solves the follow-
ing optimization problem

- N N 1/p
min (@D (hix,,,hx) + (1= @)Dl hx)) o (25)

hXt+1

where a € [0,1]. The initial value required for ¢ = 1 can be as simple
as hg = hyx, or it can be obtained by a backcasting procedure using
the reversed HTS and with an initial value hyg = hx,, where T'is the
length of the time series.

If the distance measure is a Wasserstein distance and p = 1, the
histogram forecast will be either hx, or h x, depending on the value of
a. There are three possible outcomes: (i) if « > 0.5, then fLXtJrl =
hy,; (i) if @ < 0.5, then BXtJrl = ]AZX“ which implies that, for any ¢,
iLxH_l = hx,; and (iii) if @« = 0.5, then the result is any histogram
whose cumulative distribution function is enclosed within the cumulative
distribution functions of hx, and hyx,. A reasonable choice in this case
would be to take a “mean” histogram such as the Mallows barycenter
(see the Wasserstein distance example in Figure 2). In cases (i) and (ii),
the purpose of smoothing is again lost because of the median effect.

The Mallows distance with p = 2 is preferable regardless of the value
of a. When a > 0.5, the Mallows barycenter will assign more weight to
hx, than to h x,, and when o < 0.5 the opposite will happen. In Figure
3, we report two examples with a = 0.9 and o« = 0.1.

[FIGURE 3]

It is important to note that the Mallows barycentric histogram is
identical in the two optimatization problems stated above, either as an
exponential smoothing formulation (25) or as a moving average (23) with
exponentially decreasing weights, that is,

arg Amin (aD?\/l(}AZXtH: hXt) + (1 - a)DJQW(];’XtJrl’ BXt)) (26)

h’Xt+1

= arg min Z a(l — a)j_lDi/[(hXt,(j,l)a i:LXtJ,-l)'

This equivalence is due to Proposition 1. The solution to the left hand
side of equation (26) is the Mallows barycenter with p = 2, which is
obtained from the exponential smoothing equation (25). In this way, for
each [ € [0,1], the H)}tlﬂ(l) satisfies

Hy! (1) = aH (1) + (1 —a)Hy (). (27)

Xiq1

11



In turn, the solution to the right hand of equation (26) is the Mallows
barycenter with p = 2 obtained from the moving average representation
(23). In this way, for each [ € [0, 1], the H;(tlﬂ(l) satisfies

t

Hyl () =) al—ay 'Hy! (D). (28)

Jj=1

By backward substitution in (27), we obtain (28). Thus, the solutions
to equations (27) and (28) are equivalent.

On the contrary, this equivalence will not hold with the Wasserstein
barycenter because of Proposition 2, and the solution to (25) may be
different from the solution to (23).

Finally, the exponential smoothing in its error correction formulation
(6) cannot be adapted within the barycenter approach because it is not
possible to adapt the subtraction operation between two histograms.

4 Value-at-Risk (VaR) with histogram data

The Bank for International Settlements (BIS) require that the bank-
ing industry, investment firms, and other financial institutions maintain
certain levels of capital to guard against market risk that arises from
their financial operations. The standard measurement of market risk,
supported by the Basel Committee on Banking Supervision, is Value-at-
Risk (VaR), which is not only a regulatory device but also a tool to guide
investment decisions and capital allocation. The VaR is a probabilistic
measure defined as the loss that a portfolio will face in a given period of
time with a specific confidence level or probability. Let {y;} be a time
series of returns to a portfolio. The VaR] is defined as the (conditional)
quantile of the distribution of y; such that

Pr(y; < Val}|Fi1) =1, (29)

where F;_; is the information set up to time t—1. The problem of interest
is forecasting VaR]. The simplicity of the measure is deceiving because,
in order to obtain the time-varying quantile VaR], we need to search
for an adequate model that exploits efficiently the information set F;_;.
There are numerous proposals in the literature, most of them relying
on a set of parametric assumptions about the probability distribution of
portfolio returns. For instance, if the density belongs to the location-
scale family, VaR; can be estimated from

VaR] = 11,(0) + F ;' (7)0(0), (30)

where p,(0) is the conditional mean of returns, depending upon a pa-
rameter vector 0; o7(6) is the conditional variance, also parameterized

12



by @ or a subset of §; and F;'(y) is the y-quantile of a standard-
ized cumulative distribution function f; of returns. Common choices
of F are the standard normal and the standardized Student-t distri-
butions, though other densities, parametric and nonparametric, may
be also suitable (Gonzélez-Rivera et al., 2004). Other approaches are
based on historical simulations of portfolio returns (Boudoukh et al.,
1998); on the projection of the portfolio returns on a set of factors for
which conditional means and conditional correlations must be forecasted
(J.P.Morgan, 1996); on the modelling of the tails of the density appealing
to extreme value theory (McNeil and Frey, 2000); and, on directly esti-
mating the conditional quantile appealing to quantile estimation theory
(Engle and Manganelli, 2004).

We propose an alternative or complementary measurement of VaR]
that shares some aspects of the just mentioned approaches but it departs
from them in an important dimension: the organization of the data set.
We move the analysis from classical data to symbolic data. The symbolic
object is a time series of histograms of returns. For a given frequency,
say daily, we collect the daily returns and grouped them in a histogram
at a lower frequency, say monthly. Then, the time series of monthly
histograms of daily returns is the object of analysis. For VaR] calcula-
tions, the interest resides on the tails of the distribution of returns. It
is customary to analyze the 1%, 5%, 95%, and 99% percentiles. These
will guide the choice of bins and frequencies in the construction of the
histogram. It is also possible to analyze just the quantile of interest,
either with classical methods (i.e., the y-quantile values form a classical
time series) or with symbolic data methods (i.e., the y-quantile inter-
vals form an interval-valued time series). However, we will proceed by
analyzing the full histogram because, as Gonzélez-Rivera and Arroyo
(2011) have shown, there are prediction gains from carrying information
on many quantiles as opposed to just the information contained in a
specific quantile.

In addition to the symbolic data approach, the main advantage of
our proposal resides on the absence of parametric assumptions on the
conditional density as well as on the conditional mean and variances of
the return process. On the other hand, a criticism of our approach is that
it will be substantially more difficult to find the data generating process
behind a time series of histograms as we do not have yet the tools for
model specification and testing for this type of objects. Nevertheless,
our proposal — exponential smoothing approach based on barycentric
histograms — provides a sensible exploratory tool. It is a low cost and
parsimonious tool as it relies on the estimation of just one parameter,
which helps to understand the weight of past information, and it provides
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a one-step-ahead forecast that can be evaluated with classical tests.

We analyze the time series of daily histograms of the 5-minute re-
turns® of two different stock indexes from May 1, 2008, to April 30, 2009.
The stock market indexes considered are the SP500 and the IBEX35
with 252 and 253 observations, respectively. This exercise is of interest
for those institutions engaged in high frequency trading. For each day
and for each index, we construct a daily histogram with the 5-minute
returns. There are 77 returns in each day for the case of the SP500 and
109 returns for the case of the IBEX35. Each histogram consists of 5
bins, partitioned according to the 5%, 30%, 70% and 95% quantiles. We
do not include the 1% and 99% quantiles because there is not sufficient
data in their corresponding intervals. We are interested mostly in the
one-day-ahead forecast of the 5% and 95% VaRZHl , but we also include
mid-quantiles to exploit all available information. We split the sample
into an estimation period with 200 observations (from the beginning of
May 2008 to mid-February 2009) and a forecasting period (from mid-
February 2009 to the end of April 2009) reserved for the assessment of
the one-step-ahead forecasts. The number of observations in the fore-
casting period are 52 in the SP500 and 53 in the IBEX 35.

In Figure 4, we plot the daily histograms in mid-October 2008 of the
SP500 time series. We should note that this sample period is charac-
terized by the greatest financial turmoil since the Great Depression, in
particular, the months from September 2008 to March 2009 are times of
high volatility.

[FIGURE 4]

We proceed with the estimation of the parameter « in the exponen-
tially smoothed average; see Eq. (25). We implement a one-dimensional
grid search over a € [0, 1]. For the estimation sample and for every «, we
obtain the barycentric histogram & x, (). For each estimated histogram
hx, (), we compute the value of the objective function, which is the
Mean Distance Error function, defined as

MDEy(a) = £ 3" Dalhs,, s, (a0) (31)

t=1

CThe 5-minute frequency is standard in the construction of realized volatility
measures. See, for example the work in Bollerslev et al. (2000). It gives a nice trade-
off between noise, present in ultra-high frequency observations, and information,
most likely present in lower frequencies. The construction of the 5-min VaR is geared
towards a computerized trading desk. Investment banks and other trading houses
are allowed to deploy computer-based trading desks in the major exchanges, where
trades happen in seconds and milliseconds.
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where Dy(-,-) is the Mallows distance and R is the number of obser-
vations in the estimation sample. The optimal value & is the value
that minimizes the loss function M DEj(«). To obtain the one-day-
ahead forecast, we fix & and construct the forecast one day at a time
by expanding the information set one observation at a time until we ex-
haust the forecasting sample. Since our interest is on specific quantiles,
we have retrieved the one-day-ahead 7y-quantile forecast qatflfrom the
one-day-ahead histogram forecast, and so we can compute the classical
Mean Squared Forecast Error MSFE = (1/P)3.1 (q] — QZH_I)2 for
~ =5,30,70, and 95% quantiles.

We also implement classical forecasting methods for the time series
of {¢/} for v = 5,30, 70,95. The four quantile time series are modeled by
an unrestricted Vector Autoregression (VAR) model (Liitkepohl, 2006).
The observed quantile time series are plotted in Figures 5 and 6 for the
SP500 and IBEX35 indexes, respectively. The visual inspection of both
charts clearly reveals that the SP500 was more volatile than was the
IBEX35 during the period considered.

[FIGURES 5 and 6]

In the SP500 case, model selection criteria indicate that the opti-
mal number of lags is between 1 and 8. The Akaike Information Cri-
terion (Akaike, 1974) (AIC) suggests 8, Schwarz Information Criterion
(Schwarz, 1978) (SIC) 1, and Hannan-Quinn (Hannan and Quinn, 1979)
(HQ) 2 lags. Given that the estimation sample is 200 observations, a
VAR(8) model will be excessively parameterized, thus we have chosen
two intermediate specifications, VAR(2) and VAR(4) models. Two in-
teresting findings deserve some commentary. First, the lower quantile ¢
Granger-causes (Granger, 1969) the rest of the quantiles, but not wvice
versa. Secondly, the lower quantiles are negatively correlated with the
upper quantiles; thus, a large (in magnitude) return in the lower quantile
(i.e., in the lower tail, returns are negative) is associated with a large
positive return in the upper quantile (i.e., in the upper tail, returns are
positive) making the histogram more spread out. On the contrary, the
histogram tends to narrow when either the returns in the lower or in
the upper tails are smaller in magnitude. This means that bad news in-
creases the histogram spread, but good news reduces it. In the IBEX35
case, the VAR(1) model is the best choice according to the SIC, while
VAR(5) is the model suggested by the AIC.

After estimation, we proceed to compute the one-day-ahead forecast
of the four quantile time series in the validation period and their corre-
sponding M SFE (Mean Square Forecast Error). In Tables 1 (SP500)
and 2 (IBEX35), we report the M SFE for the four quantiles estimated
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VAR(2) | VAR(4) | Exp.Sm. Naive
5% quantile | 6.33E-03 | 5.91E-03 | 4.5E-03 | 7.14E-03
30% quantile || 1.42E-03 | 1.26E-03 | 1.31E-03 | 2.1E-03
70% quantile || 0.92E-03 | 0.93E-03 | 0.65E-03 | 1.11E-03
95% quantile || 7.44E-03 | 7.71E-03 | 5.73E-03 | 10.67E-03

Table 1: Mean Square Forecast Error of the SP500 (February 17 to April

30, 2000)
VAR(1) | VAR(5) | Exp.Sm. | Naive
5% quantile | 5.21E-03 | 4.41E-03 | 4.5E-03 | 6.89E-03
30% quantile || 0.67E-03 | 0.64E-03 | 0.58E-03 | 0.91E-03
70% quantile || 0.49E-03 | 0.59E-03 | 0.65E-03 | 1.11E-03
95% quantile || 4.67E-03 | 6.17E-03 | 5.71E-03 | 5.59E-03

Table 2: Mean Square Forecast Error of the IBEX35 (February 13 to
April 30, 2009)

with four methods: two VAR models, the exponential smoothing method
with barycenters, and a naive forecast, which does not entail estimation
and claims that fAsz_l =hx, ,-

For the SP500, the exponential smoothing method delivers the small-
est MSEFFE for the 5, 70, and 95% quantiles. For the 30% quantile, the
MSFE of the VAR(4) model is the smallest (0.00126) but very close to
that of the exponential smoothing method (0.0013). For the IBEX35,
the exponential smoothing outperforms the naive method except in the
95% quantile and delivers mixed results compared to those from the
VAR models.

We statistically assess the differences in M SFFE by implementing
a test of unconditional predictive ability (Diebold and Mariano, 1995).
The null hypothesis of this test claims that there is not any difference in
the value of the M SFE function between any two methods. On reject-
ing the null hypothesis, we will claim that one method is preferred to
the other because, on average, it delivers a smaller loss over the predic-
tion period. This test is very suitable in this environment because the
methods considered, under the null hypothesis, are not nested within
each other. The hypotheses of the test are Hy : E(eZ,,,, — €Z,,) = 0 and
Hi : E(€%,., —€%,,) > 0. The results for the SP500 and the IBEX35 are
reported in Tables 3 and 4, respectively.

In the SP500 case, the test rejects very strongly the “naive” approach
as the null hypothesis is rejected at significance levels lower than the
customary 5 and 1% levels. When the exponential smoothing method
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VAR(2)-Exp.Sm.

VAR(4)-Exp.Sm.

Naive-Exp.Sm.

5% quantile

3.395 (0.0003)

1.469 (0.070)

3.108 (0.001)

30% quantile

1.137 (0.127)

~0.237 (0.406)

3.303 (0.0009)

70% quantile

1.624 (0.052)

1.511 (0.065

2.747 (0.004)

95% quantile

1.146 (0.126)

)
1.465 (0.071)

3.417 (0.006)

Table 3: Value of the t-statistic and p-value (in parentheses) of the test
of unconditional predictive ability in the SP500.

VAR(1)-Exp.Sm.

VAR(5)-Exp.Sm.

Naive-Exp.Sm.

5% quantile

1.106 (0.136)

~0.037 (0.485)

2.168 (0.017)

30% quantile

1.135 (0.13)

0.7 (0.243)

2.41 (0.009)

70% quantile

-1.365 (0.089)

-0.484 (0.315)

3.144 (0.001)

95% quantile

“1.226 (0.112)

0.471 (0.319)

~0.108 (0.457)

Table 4: Value of the t-statistic and p-value (in parentheses) of the test
of unconditional predictive ability in the IBEX35.

is compared to the VAR specifications, there are mixed results. The
exponential smoothing method generates a smaller loss than does the
VAR(4) model for the 5, 70, and 95% quantiles with a significance level
of about 6%. The 30% quantile seems to be predicted equally well by
the VAR models and by the exponential smoothing method. There
is a strong advantage when modeling the lower tail — the 5% quantile
that is regulated by the Basle Committee — by exponential smoothing.
The test strongly rejects the VAR (2) model with a p-value of 0.0003
and it rejects the VAR (4) model with a p-value of 7%. The latter
p-value is slightly higher than the customary 5% level but we should
take into consideration that the VAR(4) model carries 68 parameters to
be estimated and that the equation for the 5% quantile carries many
regressors that are statistically insignificant given that the 30, 70, and
95% quantiles do not Granger-cause the 5% quantile. This affects the
precision and the efficiency properties of the estimators that contribute
to the power of the tests.

The results of the tests in the IBEX35 are similar for the exponential
smoothing method and the VAR models. According to Table 4, the
exponential smoothing method clearly dominates the naive method for
the 5, 30, and 70% quantiles, but delivers an average loss similar to those
from the VAR models. This is an interesting result taking into account
that the forecasts of the exponential smoothing method are driven by
just one parameter, while VAR models could be highly parametrized and
require model selection and specification tests.
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In summary, the exponential smoothing method has shown a better
performance for the SP500 which is more volatile than the IBEX35. In
Figure 7, we present a graphical comparison between the 5% and 95%
quantile predictions of the VAR (4) model and the exponential smooth-
ing method together with the actual time series. Visual inspection of
this figure shows that the VAR predictions are more ragged than those
offered by exponential smoothing, which follows very closely the sharp
peaks and troughs of the realized data.

[FIGURE 7]

5 Conclusion

We have shown how to adapt smoothing techniques to forecast HTS. Our
proposal is based on the introduction of a barycentric histogram that
emulates the “average” operation, which is the key in any smoothing
filter. We have also shown that, due to its linear properties, only the
Mallows-barycenter is acceptable if we wish to preserve the essence of any
smoothing mechanism. We have also reviewed the available histogram
arithmetic and we have shown that, in a forecasting environment, it is
not suitable to calculate averages and forecast errors.

In the absence of a data generating process for HTS, exponential
smoothing methods are low-cost and parsimonious exploratory tools as
they require the estimation of just one parameter. In our empirical ap-
plication to forecast Value-at-Risk, a barycentric exponential smoothing
method shows a strong forecasting performance — especially for the 5%
quantile — when it is compared with forecasts from vector autoregression
models, which require a large number of parameters to estimate.
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Appendix

Conversion of a histogram into a quantile histogram

Let hp = ([di],m4;) with ¢ = 1,...,m be a histogram of m dis-
joint bins and let us assume that inside each bin data points are uni-
formly distributed. Histogram hp can be rearranged as a histogram
hs = {([s];,7s;)} with j = 1,...,n defined by an ordered sequence of
n + 1 quantiles {g;} where ¢; = 0 and ¢,41 = 1, and where frequencies
of hg are determined by 75, = ¢j+1 — ¢;. The rearrangement of hp as
hs can be done by means of the following pseudocode.

s_L[1]:=d_L[1];
i:=1;
for j:=1 to n do{ //Loop for each [s_j] bin
//Frequency of [s_j] bin
freq:=q(j+1)-q(j);
//Current frequency of [s_j] bin
m_s[jl:=0;
full:=false;
//Loop for each [d_<i] bin
while (i<= m) and (not full) do{
//New frequency falls behind the limit
if (w_s[jl+m_d[il<freq) then{
m_sljl:=n_s[jl+m_d[i];
i:=i+1;
}
//New frequency is precisely the limit
elseif (w_s[jl+r_d[i]l= freq) then{

full:=true;
m_s[j]:=freq;
i:=i+1;

//Upper bound of the [s_j] bin
s_U[j]:=d_U[i];
//If [s_j7] is not the last bin then..
if (j+1<= n) then{
//Lower bound of the [s_j+1] bin
s_L[j+1]:=d_U[i];
b
}
//New frequency exceeds the limit
else{
full :=true;
m_s[jl:=freq;
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//Required frequency
req_freq:=freq-n_s[j];
//Upper bound of the [s_j] bin
s_U[j]:=d_L[i]l+(req_freq/m_d[i])*(d_U[i]-d_L[i]);
//Updating the lower bound of the [d_i] bin
d_L[i]:=s_U[j];
//Updating the frequencie of the [d_i] bin
m_dl[i]l:=r_d[i]-req_freq;
//Upper bound of the [s_j] bin
s_U[4§]1:=d_U[il;
//If [s_j] is not the last bin then...
if (j+1<= n) then{
//Lower bound of the [s_j+1] bin
s_L[j+1]:=d_U[i];
b
b
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Mallows barycenter as the histogram forecast based on an exponential smoothing filter

0

1_
0.9+
0.8}
0.7}
0.6}
0.5}
0.4¢
0.3t
0.2t
0.1+

FIGURE 3

a=0.9 (left) and a=0.1 (right)

1-

0.9t
0.8¢

pred
hy, —hP

pred
hX

t+1

~ 07

0.6¢
0.5¢
0.4¢
0.3}
0.2}

0 2 4 6 8101214161820 22

ST

i

0246 810121416182022

FIGURE 4
Excerpt of the intra-daily returns HTS of the SP500 in October 2008
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FIGURE 5
Observed quantiles of the SP500

0.016 T T T T T T T T T T

0.012

0.008

0

-0.004

-0.008

-0.012

Q5 Q30 Q70 Q95

-0.016 | | | | | | | | | |
0 25 50 75 100 125 150 175 200 225 250

FIGURE 6
Observed quantiles of the IBEX35
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FIGURE 7
Quantile prediction
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