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Abstract

We propose a density forecast evaluation method in the presence of instabilities, which are defined

as breaks in any conditional moment of interest and/or in the functional form of the conditional

density of the process. We extend the battery of autocontour-based tests proposed in González-

Rivera et al. (2011, 2014) by constructing Sup- and Ave-type tests calculated over a collection of

subsamples in the evaluation period. These tests enjoy asymptotic distributions that are nuisance-

parameter free, they are correctly sized and very powerful on detecting breaks in the parameters

of the conditional mean and conditional variance. We also provide an accurate procedure to detect

the location of the breaks and the unstable periods. We analyze the stability of a dynamic Phillips

curve and find that the best one-step-ahead density forecast of changes in inflation is generated

by a Markov switching model where the unemployment coefficient is state-dependent.
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1 Introduction

Generally, instability is understood as changes in the parameters of a proposed forecasting model

over the forecasting horizon. For clarification purposes, consider a simple model yt+1 = β′xt+σεt+1

with εt ∼ i.i.d.N(0, 1). The model is unstable over time if the slope coefficients β can change over

the forecasting sample, either smoothly or abruptly to contain one or multiple breaks. We may

also entertain a time varying variance such that σ may be also subject to breaks, and we may

have different conditional probability density functions, e.g. more or less thick tails, over different

periods of time. This definition is general enough to account for most types of instability discussed

in the current applied econometric literature. Up to today, the most comprehensive survey in the

subject is Rossi (2014) in the Handbook of Economic Forecasting that reports extensive empirical

evidence of instabilities in macroeconomic and financial data. Some examples follow.

The instability of predictive regressions, in which the significance of predictive regressors varies

over different subsamples, has been documented in studies of predictability of stock returns (see

Goyal and Welch, 2003; Paye and Timmermann, 2006; Rapach and Zhou, 2014), in exchange rate

predictions (see Rossi, 2006; Rogoff and Stavrakeva, 2008) and in output growth and inflation

forecasts (see Stock and Watson, 2003; Rossi and Sekhposyan, 2010). Naturally linked to this

evidence is the econometric question on testing for parameter stability and structural breaks in

the data, which has an illustrious history. From Chow (1960) test to most recent works such as

Andrews (1993), Andrews and Ploberger (1994) , Pesaran and Timmermann (2002), among others,

testing for breaks has mainly focused on the behavior of the conditional mean. Our contribution

aims to extend testing for instabilities to the full conditional density forecast that includes not only

any conditional measure of interest, e.g. mean, variance, duration, etc. but also the functional

form of the assumed conditional density function. Our analysis is framed more closely within the

approach of Giacomini and Rossi (2009, 2010) and Rossi and Sekhposyan (2011) on the evaluation

of out-of-sample forecasts in the presence of instability. However, differently from these works, we

do not choose a particular loss function as we do not deal just with a point forecast but with the

full density model. We ask: is the density forecast stable over time? and if it is not, where are the
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breaks? and to some extent, where are they coming from?

The testing methodology that we propose is based on the AutoContouR (ACR) device introduced

by González-Rivera et al. (2011, 2012) and generalized later on in González-Rivera and Sun

(2014). The null hypothesis of our tests is a correctly specified density forecast (joint hypothesis of

correct dynamics in the moments of interest and correct functional form of the density). Following

Diebold’s (1998) seminal work, we work with Rosenblatt’s probability integral transforms (PIT)

associated with the point forecasts. Under the null, the PITs must be i.i.d uniformly distributed

U[0,1]. The Generalized AutoContouR (G-ACR) is a device (set of points) that is very sensitive to

departures from the null in either direction and consequently, it provides the basis for very powerful

tests. More specifically, for a time series of PITs, the G-ACRs are squares (in the univariate case)

or hyper-cubes (in the multivariate case) of different (probability) areas or volumes within the

maximum square or hyper-cube formed by a multidimensional uniform density [0, 1]n for n ≥ 2.

By statistically comparing the location of the empirical PITs and the volume of the empirical

G-ACRs with the location and volume of the population G-ACRs, we are able to construct a

variety of tests for correct density forecast. Since the shapes of the G-ACRs can be visualized, we

can extract information about where and how the rejection of the null hypothesis comes from. A

great advantage of our approach is that it can also be applied quite easily to multivariate random

processes of any dimension.

In a potential unstable data environment, we will form rolling subsamples within the forecasting

sample. For every subsample, we apply a battery of G-ACR tests, and to detect instabilities, we

construct a Sup- and an Ave-type statistics. Though the limiting distribution of these tests is a

function of Brownian motions, the tests are nuisance-parameter free and their distribution can be

tabulated. If the null hypothesis is rejected, we will be able to detect the timing of the break(s)

rather accurately and the unstable periods. Though precise break detection is difficult, it is very

important (Elliott and Muller, 2007) because it will help to improve the model forecast. Decisions

regarding the choice of the estimation and evaluation windows and the estimation methods (e.g.

recursive/rolling or time-varying parameter estimation) will be affected by the location of the break

(Pesaran and Timmermann, 2007). In some instances, the break process can be modeled (Pesaran,
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Pettenuzzo, and Timmermann, 2006) and added to the model forecast.

The paper is organized as follows. In section 2, we review the G-ACR approach and introduce

the new statistics with their asymptotic distributions. In section 3, we assess the finite sample

properties (size and power) of the tests, and show how to detect potential breaks. We offer an

extensive assessment by considering fixed, rolling, and recursive estimation schemes. In section

4, we apply the tests to assess the stability of the Phillips curve from 1958 on by evaluating the

models proposed in Amisano and Giacomini (2007). We conclude in section 5. The appendix

contains mathematical proofs.

2 Statistics and Asymptotic Distributions

2.1 Construction of the Statistics

The test statistics are based on the autocontour (ACR) and generalized autocontour (G-ACR)

methodology proposed by González-Rivera et al. (2011, 2012, 2014) that provides powerful tests

for dynamic specification of the conditional density model either in-sample or out-of-sample en-

vironments. In the present context, we adapt these tests to instances where instabilities may be

present in the data so that, beyond the evaluation of the density model, we will also be able to

detect unstable periods.

Let Yt denote the random process of interest with conditional density function f(yt|Ωt−1), where

Ωt−1 is the information set available up to time t−1. If the proposed predictive density model for Yt,

i.e. {f ∗t (yt|Ωt−1)}Tt=1 coincides with the true conditional density {ft(yt|Ωt−1)}Tt=1, then the sequence

of probability integral transforms (PIT) of {Yt}Tt=1 w.r.t {f ∗t (yt|Ωt−1)}Tt=1 i.e. {ut}Tt=1 must be i.i.d

U(0, 1) where ut =
∫ yt
−∞ f

∗
t (vt|Ωt−1)dvt. Thus, the null hypothesis H0 : f ∗t (yt|Ωt−1) = ft(yt|Ωt−1) is

equivalent to the null hypothesis H
′
0 : {ut}Tt=1 is i.i.d U(0, 1) (see Diebold et al., 1998). Following

González-Rivera and Sun (2014), we construct the generalized autocontours (G-ACR) under i.i.d.

uniformity of predictive densities. Under H
′
0 : {ut}Tt=1 i.i.d U(0, 1), the G-ACRαi,k is defined as the

set of points in the plane (ut, ut−k) such that the square with
√
αi-side contains αi% of observations,
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i.e.,

G-ACRαi,k = {B(ut, ut−k) ⊂ <2‖ 0 ≤ ut ≤
√
αi and 0 ≤ ut−k ≤

√
αi, s.t. : ut × ut−k ≤ αi}

We construct an indicator series Ik,αit as follows

Ik,αit = 1((ut, ut−k) ⊂ G-ACRαi,k) = 1(0 ≤ ut ≤
√
αi, 0 ≤ ut−k ≤

√
αi)

Based on this indicator, González-Rivera and Sun (2014) proposed the following t-tests and chi-

square statistics to test the null hypothesis H
′
0 : {ut}Tt=1 i.i.d U(0, 1).

(1) t-ratio testing

√
T − k(α̂i − αi)

σk,i
→ N(0, 1)

where α̂i =
∑T
t=k+1 I

k,αi
t

T−k , and σ2
k,i is the asymptotic variance of α̂i.

(2) chi-squared testing

(2.1) For a fixed autocontour αi, L
′
αi

Λ−1
αi
Lαi → χ2

K where Lαi = (`1,αi , ...`K,αi)
′

is a K × 1 stacked

vector with element `k,αi =
√
T − k(α̂i−αi), and Λαi is the asymptotic variance-covariance matrix

of the vector Lαi .

(2.2) For a fixed lag k, C′kΩ
−1
k Ck → χ2

C where Ck = (ck,1, ...ck,C)
′

is a C × 1 stacked vector with

element ck,i =
√
T − k(α̂i − αi), and Ωk the asymptotic variance-covariance matrix of the vector

Ck.

In a potential unstable environment, we will construct the tests within the following rolling sample

scheme. The total sample size T is divided into two parts: in-sample observations (R) and out-of-

sample observations (P). We form subsamples of size r from t−r+1 up to t, where t = R+r, · · · , T .

In each subsample, we evaluate the proposed predictive density by calculating three different

statistics (t, C and L). As a result, we obtain three sets of n ≡ T − r − R + 1 tests each i.e.,

{tj}nj=1, {Cj}nj=1 and {Lj}nj=1. Finally, to detect instabilities, we construct Sup-type and Avg-type
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statistics by taking the supremum (S) and the average (A) respectively over each set {|tj|}nj=1,

{Cj}nj=1 and{Lj}nj=1 so that we obtain the following six statistics: S|t|, SC , SL and A|t|, AC , AL.

2.2 Asymptotic Properties of the Statistics

Under the following set of assumptions, we provide three propositions, which proofs are provided

in the Appendix.

• A1: For T → ∞, R → ∞, P → ∞, limT→∞
P
R

= 0 and limT→∞
r−k
P

= m, as r, P → ∞,

where r is the size of the rolling subsample in the evaluation set, m ∈ (0, 1) and k is the lag

in the indicator Ik,αit .

• A2: E|Ik,αit |q < ∆ <∞ for some q ≥ 2. This assumption is trivial as the second moments of

the indicator are well defined as we will see next.

• A3: The data {yt} comes from a stationary and ergodic process 1

Proposition 1 Let J be the index that identifies a particular subsample in the evaluation period,

i.e. J = [Ps], s ∈ [m, 1], [Pm] = r − k, and let α̂i(J) =
∑R+J
t=R+1+J−r+k I

k,αi
t

r−k be the corresponding

subsample proportion based on the indicator. The Sup- and Avg-tests are

S|t| = sup
J

∣∣∣∣√r − k(α̂i(J)− αi)
σk,αi

∣∣∣∣
A|t| =

1

P − r + 1

J̄∑
J

∣∣∣∣√r − k(α̂i(J)− αi)
σk,αi

∣∣∣∣
where σ2

k,αi
= αi(1− αi) + 2α

3/2
i (1− α1/2

i )

1This assumption can be relaxed to include more general mixing processes because the relevant conditions to
invoke limiting theorems as the FCLT are those of the indicator process.
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Given assumptions A1-A3, and under the null hypothesis of i.i.d U(0, 1) PITs, the asymptotic

distribution of the tests are as follows,

S|t| −−−→
P→∞

sup
s∈[m,1]

|W (s)−W (s−m)|√
m

A|t| −−−→
P→∞

∫ s̄

s

|W (s)−W (s−m)|√
m

ds

where W (.) is a standard univariate Brownian motion.

Proposition 2 For a given lag k, write ck,i(J) =
√
r − k(α̂i(J)−αi) and stack ck,i(J) for different

autocontours levels i = 1, 2, ...C such that Ck(J) = (ck,1(J), ...ck,C(J))
′
is the C×1 stacked vector.

The Sup- and Avg-tests are

SC = sup
J

Ck(J)′Ω−1
k Ck(J)

AC =
1

P − r + 1

J̄∑
J

Ck(J)′Ω−1
k Ck(J)

where Ωk is the asymptotic variance and covariance matrix of the random vector Ck(J). Given

assumptions A1-A3, and under the null hypothesis of i.i.d U(0, 1) PITs, the asymptotic distribution

of the tests are as follows,

SC −−−→
P→∞

sup
s∈[m,1]

(W(s)−W(s−m))′(W(s)−W(s−m))

m

AC −−−→
P→∞

∫ s̄

s

(W(s)−W(s−m))′(W(s)−W(s−m))

m
ds

where W(.) is a standard C-variate Brownian motion.

Proposition 3 For a given contour αi, write `k,αi(J) =
√
r − k(α̂i(J) − αi) and stack `k,αi for

k = 1, ....K. Let Lαi(J) = (`1,αi(J), ...`K,αi(J))
′

be the K × 1 stacked vector. The Sup- and
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Avg-tests are

SL = sup
J

Lαi(J)′Λ−1
αi

Lαi(J)

AL =
1

P − r + 1

J̄∑
J

|Lαi(J)′Λ−1
αi

Lαi(J)|

where Λαi is the asymptotic variance and covariance matrix for the random vector Lαi . Given

assumptions A1-A3, and under the null hypothesis of i.i.d U(0, 1) PITs, the asymptotic distribution

of the tests are as follows,

SL −−−→
P→∞

sup
s∈[m,1]

(W(s)−W(s−m))′(W(s)−W(s−m))

m

AL −−−→
P→∞

∫ s̄

s

(W(s)−W(s−m))′(W(s)−W(s−m))

m
ds

where W(.) is a standard L-variate Brownian motion.

We tabulate the percentiles of the asymptotic distributions of the tests provided in Propositions 1 to

3. Since the distributions depend onm, which is proportion of the rolling sample to the total evalua-

tion sample, we consider the following values of m ∈ [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]. In Table

1, we report the percentiles of the distribution of the S|t| and A|t| statistics; in Table 2, those for the

SC andAC considering the 13 autocontour C = [0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99];

and in Table 3 those for the SL and AL tests considering 5 lags.

[TABLES 1-3 ABOUT HERE]

3 Monte Carlos Simulations

We perform extensive Monte Carlos simulations to assess the finite sample properties (size and

power) of the proposed statistics. For
√
R-consistent estimators of the parameters of the model,

i.e. (θ̂ − θ0) = Op(R
−1/2) with a well-defined asymptotic distribution, and under assumption

A1, R → ∞, P → ∞, and P/R → 0 as T → ∞, parameter uncertainty is asymptotically
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negligible. In this case, the critical values tabulated in Tables 1 to 3 can be used directly. In

cases where the condition P/R → 0 is violated, we can either bootstrap the variance of the tests

(and use the tabulated critical values) or the tests themselves to approximate their asymptotic

distribution. In the following simulations, we keep the ratio P/R constant and we implement a

parametric bootstrap for the distribution of the statistics. This is a sensible approach because the

null hypothesis fully specifies the parametric data generating process. We consider fixed, rolling,

and recursive forecasting schemes.

3.1 Size of the Tests

Under the null hypothesis of a stable density model, we consider the following data generating

process: yt = α1 + β1yt−1 + β2xt−1 + σεt where xt = φ1 + φ2xt−1 + εt, and εt ∼ N(0, 1), φ1 = 1.38,

φ2 = 0.77, α1 = 1.5, β1 = 0.5, β2 = 0.6, σ = 1. We consider sample sizes of T = 150 (with

evaluation sample P=60), T = 375 (with P=150), and T = 750 (with P=300) observations,

and for each sample size, we consider the proportion m = r/P equal to m = 1/3, m = 1/2 and

m = 2/3. We maintain the ratio P/R constant and equal to 2/3. In total, we run nine experiments,

of which we present here the two most extremes: small sample size with small subsample window

(T = 150,m = 1/3) and large sample size with large subsample window (T = 750,m = 2/3). The

size results of these two cases are presented in Tables 4 and 5 respectively. The remaining seven

cases are available in a “supplementary material” file. We work with 13 autocontour coverage

levels C = [0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99]. The number of Monte Carlo

replications is 1,000, and the number of bootstrap samples is 500.

[TABLES 4-5 ABOUT HERE]

The overall size of the tests is very good in the nine experiments considered. There are not

substantial differences among the fixed, rolling, and recursive estimation schemes. We find some

small size distortions (under-sized) when the sample is small (T = 150) and the autoncotour levels

are extreme (1% and 99%) but as the sample size increases, the distortion disappears. For the

individual tests Sk,αi|t| and Ak,αi|t| (k and αi fixed), the Ave-test tends to have better size than the
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Sup-test. The umbrella tests SC , AC , SL, and AL have very good size even in small samples.

3.2 Power of the Tests

To assess the power of the tests, we generate data from four different processes, all of them

containing a break point. The model that we maintain under the null hypothesis is the same

as the one considered in the study of the size properties: yt = α1 + β1yt−1 + β2xt−1 + σεt with

xt = φ1 + φ2xt−1 + εt, εt ∼ N(0, 1). The total sample size (T ) is 650, R = 350, P = 300, and

m = 1/3. The break point happens at at R + τP , where τ = 1/3. In the following experiments,

the number of Monte Carlo replications is 1000 and bootstrapped samples 500. We maintain a

nominal test size of 5%.

The four data generating mechanisms are the following:

DGP1: Break in the intercept of yt = αt + β1yt−1 + β2xt−1 + σεt, εt ∼ N(0, 1):

αt =

 α1 = 1.5 if t < break

α2 = 2 otherwise

with β1 = 0.5, β2 = 0.6, σ = 1.

DGP2: Break in the variance of yt = α + β1yt−1 + β2xt−1 + σtεt, εt ∼ N(0, 1):

σt =

 σ1 = 1.5 if t < break

σ2 = 1.8 otherwise

with α = 1.5, β1 = 0.5, β2 = 0.6.

DGP3: Breaks in the slope coefficients of yt = α + β1,tyt−1 + β2,txt−1 + σεt, εt ∼ N(0, 1):

β1,t =

 β1,1 = 0.5 if t < break

β1,2 = 0.3 otherwise
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β2,t =

 β2,1 = 0.6 if t < break

β2,2 = 0.4 otherwise

with α = 1.5, σ = 1.

DGP4: Breaks in the intercept, variance and slope coefficients of yt = αt+β1,tyt−1 +β2,txt−1 +σtεt,

εt ∼ N(0, 1):

αt =

 α1 = 1.5 if t < break

α2 = 2 otherwise

σt =

 σ1 = 1.5 if t < break

σ2 = 1.8 otherwise

β1,t =

 β1,1 = 0.5 if t < break

β1,2 = 0.3 otherwise

β2,t =

 β2,1 = 0.6 if t < break

β2,2 = 0.4 otherwise

Note that the breaks considered are not very extreme. We perform all the simulations under fixed,

rolling, and recursive estimation schemes. We report the power results for the fixed and rolling

schemes in Tables 6 to 9, and those for the recursive scheme in the supplementary material.

[TABLES 6-9 ABOUT HERE]

Under the fixed scheme, the tests are most powerful (power of about 90%) to detect breaks in

intercept and slope coefficients (DGP1, DGP3, and DGP4). Both Ave- and Sup- tests enjoy

similar performance, either for single hypothesis (S|t| and A|t|) or for joint hypothesis (SC , AC , SL,

AL). The power drops when testing for breaks in the variance (DGP2) with values of 10-60% for

the single hypothesis tests and of 60% for the joint hypothesis tests. Under the rolling scheme,

as we expected, the tests are less powerful overall because by rolling the estimation sample, the

model adjusts slowly to the new parameters values. Nevertheless, the power of SC , AC , SL and

AL is still very high (around 50-80%) for DGP1, DGP3, and DGP4, and around 40% for DGP2.

For all DGPs, the Ave-test is more powerful that the Sup. Under the recursive scheme, the tests
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performance is slightly worse than in the fixed scheme but slightly better than in the rolling scheme.

3.3 Detection of the break point

An advantage of these tests is that they are very helpful to detect the location of the break in the

data. In this section, we will show how to search for the break. We consider two cases: a break in

the intercept of the model (DGP1B) and a break in the variance (DGP2B). We generate a time

series of T = 600 observations from each of the following processes:

DGP1B: yt = αt + β1yt−1 + β2xt−1 + σεt, εt ∼ N(0, 1)

αt =

 α1 = 1.5 if t < break

α2 = 0.1 otherwise

with β1 = 0.5, β2 = 0.6, σ = 1, and the break occuring at the 480 observation, i.e. break=480.

DGP2B: yt = α + β1yt−1 + β2xt−1 + σtεt, εt ∼ N(0, 1)

σt =

 σ1 = 2 if t < break

σ2 = 0.5 otherwise

with α = 1.5, β1 = 0.5, β2 = 0.6, and break=480 observation.

We proceed by estimating the model yt = α + β1yt−1 + β2xt−1 + σεt, εt ∼ N(0, 1) and choosing

the following samples R=350, P=250, and m = r/P = 100/250 = 0.4. We implement the three

estimation schemes (fixed, recursive, and rolling). For each subsample (r = 100) in the evaluation

window P we calculate the t-ratio and C statistics for a total of 151 tests (T −R + 1− r). Next,

from the asymptotic distribution tables, we choose the 5% critical values corresponding to S|t| and

SC as the thresholds that will help to locate the first significant subsample that should contain

the break point. Given the sample windows that we have chosen, i.e. P/R = 0.71, we recommend

bootstrapping the tests S|t| and SC in order to find the 5% critical value. In Figures 1 and 2, we

plot the 151 t-tests and C-tests in a sequential fashion together with the bootstrapped 5% critical
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values corresponding to the distribution of S|t| and SC under the three estimation schemes and for

both DGP1B and DGP2B.

Regarding DGP1B, the C-tests react faster to the break than the t-tests for all estimation schemes.

For instance, under the fixed scheme, it is the 80th t-statistics that hits the threshold for the first

time (from that point on all t-tests are above the threshold) and it marks the first subsample

that contains the break, which corresponds to the interval of observations [430, 529]. For the

C-statistics, it is the 36th test hitting the threshold line for the first time, which corresponds to

the observations in the subsample [386, 485]. The break must be contained in the intersection

of these two subsamples, i.e. [430, 485]. The actual break happens at the 480th observation.

We observe that the maximum values of the t-tests and C-tests are those of the 130th statistic,

which corresponds to the subsample [480, 579]. From this point on, the values of the tests start

decreasing, which means that the break point is already passed. As expected, under the recursive

and rolling schemes, the tests react slower to the break but nevertheless they are also accurate on

pointing out the subsample where the break occurs.

Regarding DGP2B, both t-tests and C-tests react at about the same time. For instance, under

the recursive scheme, it is the 73th statistic (for both t and C tests) that hits the threshold for

the first time. This corresponds to the subsample [423, 522]. The maximum values of the t-tests

and C-tests are those of the 130th statistic, which corresponds to the subsample [480, 579], and

putting these two pieces of information together, we locate the break within the observations [480,

522].
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Figure 1: Plots of t and C Statistics for DGP1B: Break in the intercept
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Figure 2: Plots of t and C Statistics for DGP2B: Break in the variance
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4 Density Forecast Evaluation of the Phillips Curve

We apply the proposed tests to analyze the stability of the Phillips curve. Stock and Watson

(1999) found some empirical evidence in favor of the Phillips curve as a forecasting tool, they

showed that inflation forecasts produced by the Phillips curve were more accurate than forecasts

based on simple autoregressive or multivariate models but they also found parameter instabilities

across different subsamples. Rossi and Skehposyan (2010) showed that the predictive power of

the Phillips curve disappeared around the time of the Great Moderation. Based on scoring rules,

Amisano annd Giacomini (2007) compared the density forecast accuracy of several models of the

Phillips curve and concluded that the best density forecast is produced by a Markov-switching

model. Since their comparisons are based on the average forecasting performance of competing

models over time, they cannot directly address the instabilities widely documented in the literature.

In this section, we consider the models in Amisano annd Giacomini (2007) and we focus on their

absolute density forecast performance in the presence of instabilities. Our starting model is a

linear Phillips curve (Stock and Watson, 1999), in which changes of the inflation rate depend on

their lags and on lags of the unemployment rate i.e.,

∆πt = α1 + β1∆πt−1 + β2∆πt−2 + β12∆πt−12 + γut−1 + σεt

where πt = 100 × ln(CPIt/CPIt−12); CPIt is the consumer price index for all urban consumers

and all items; ut−1 is the civilian unemployment rate; and εt ∼ N(0, 1). The dats is collected from

the FRED database; monthly CPI and unemployment series are both seasonally adjusted. The

time series run from 1958M01 to 2012M01 (updated sample from 1958M01-2004M07 in Amisano

and Giacomini). Standard tests on ∆πt and ut show that they do not have a unit root. On

implementing our tests, we consider the same estimation sample as in Amisano and Giacomini,

from 1958M01 to 1987M12 (360 observations). The evaluation sample runs from 1988M01 to

2012M01 (289 observations) with subsamples of size r = 200.
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4.1 Evaluation of the Linear Phillips Curve

We present the evaluation results for the linear Phillips Curve in Table 10 under fixed and rolling

estimation schemes. The recursive case is in the supplementary material.

[TABLE 10 ABOUT HERE]

The umbrella tests SC , AC , SL, and AL indicate a clear rejection of the linear model. On examining

the individual tests S|t| and A|t|, the rejection comes from the middle autocontours, between 40%

and 70% coverage, and from the 95-99% levels (large changes in inflation). In Figure 3, we plot

the t- and C-statistics over the evaluation period in a sequential fashion. The tests break through

their corresponding critical values around the 60th statistic. From this point on, the values of the

tests keep on increasing reaching two local maxima, which points to two potential breaks: the first

in the 64th statistic for the t-tests (1993M03 to 2009M11) and in the 71th statistic for the C tests

(1993M11 to 2010M06), and the second local maximum in the 78th statistic that corresponds to

the period 1994M06 to 2011M01. All these periods include the years 1993-2007 in the so-called

Great Moderation and the years after the deep financial crisis of 2008.

4.2 Evaluation of Non-Linear Phillips Curve

Given the rejection of the linear Phillips curve, we proceed with a flexible specification by assuming

that the coefficients in the linear model vary according to a Markov switching mechanism. We

consider a two-state Markov switching model, i.e.,

∆πt = αst + βst1 ∆πt−1 + βst2 ∆πt−2 + βst12∆πt−12 + γstut−1 + σstεt

where the unobserved state variable st switches between two states,1 or 2, with transition proba-

bilities Pr(st = j|st−1 = i) = pij for i, j = 1, 2; and εt is assumed to be a standard normal variate.

Thus, this model allows for non-Gaussian density forecasts. Since all the coefficients depend on the

state variable (Model 1), the model is extremely flexible and it will adapt to potential breaks or

instabilities that may occur over time. We have run our test statistics and we fail to reject the null
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Figure 3: Plots of t-ratio (99% autocontour) and C Statistics for Linear Phillips Curve
(fixed scheme)

hypothesis of correct specification. However, we would like to investigate what coefficients are key

to understand where the nonlinear behavior comes from. We consider two additional specifications,

Model 2: ∆πt = α+βst1 ∆πt−1 +βst2 ∆πt−2 +βst12∆πt−12 +γut−1 +σεt, (intercept and unemployment

coefficient do not depend on st).

Model 3: ∆πt = αst + β1∆πt−1 + β2∆πt−2 + β12∆πt−12 + γstut−1 + σstεt, (inflation coefficients do

not depend on st).

We present the test results in Table 11.

[TABLE 11 ABOUT HERE]

For Model 2, we still fail to reject the overall model as the umbrella tests SC , AC , SL, and AL

have p-values larger than 5%. However, on a close examination of the individual tests S|t| and

A|t|, we observe a rejection of the model in the autocontours 90 to 99%. In Model 3, we allow

the intercept, the unemployment coefficient and the variance of the error to be state dependent

while the rest of the parameters are constant. In this case, all statistics (joint and individual)
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enjoy p-values larger than 5% and consequently we fail to reject the model even in the presence

of instabilities. A nonlinear Phillips curve has better predictive performance than a linear model,

which is unstable over time. The advantage comes from letting the coefficient that links inflation

and unemployment to be state-dependent.

5 Conclusion

We have provided a battery of tests to assess the stability of the density forecast over time, which

offer important advantages for the empirical researcher. These tests are nuisance-parameter free

and their asymptotic distributions can be tabulated. If the tests reject the null hypothesis of a

stable density forecast, the shapes of the empirical generalized autocontours can be visualized to

extract information regarding the direction of the rejection. Regardless of the estimation scheme

(fixed, rolling, or recursive), their finite sample properties are superior. In some instances, the

Ave-tests tend to have a slightly better size than the Sup-tests. Both types are more powerful on

detecting breaks in the intercept and slope coefficients than on detecting breaks in the variance.

In addition, we have proposed a rather accurate procedure to find the location of the breaks and

the unstable periods. The tests can also be easily applied to multivariate random processes of any

dimension. As an application of the tests, we have analyzed the stability of the Phillips curve. A

linear model is strongly rejected in favor of a non-linear specification that allows the coefficient

linking inflation changes and unemployment to be state-dependent. The break of the linear model

occurs during the Great Moderation years.
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Appendix

Proof of Proposition 1:

The indicator function Ik,αit is a Bernoulli random variable with the following moments: E(Ik,αit ) =

αi, V ar(I
k,αi
t ) = αi(1− αi) and covariance

rαih ≡ cov(Ik,αit , Ik,αit−h ) =

 0 if h 6= k

α
3/2
i (1− α1/2

i ) if h = k

Since the indicator process is stationary and ergodic, α̂i(J) satisfies the condition of global covari-

ance stationarity required for the FLCT to apply (Theorem 7.17) in White (2001). Since J = [Ps],

s ∈ [m, 1], and r − k = [Pm], we write

WP (s) ≡
√

(r − k)(α̂i(J)− αi)
σk,i

=

∑R+J
t=R+1+J−r+k(I

k,αi
t − αi)√

r − kσk,i

=

∑R+J
t=R+1(Ik,αit − αi)√

(r − k)σk,i
−
∑R+J−(r−k)

t=R+1 (Ik,αit − αi)√
(r − k)σk,i

=

√
P√
Pm

∑R+[Ps]
t=R+1 (Ik,αit − αi)√

Pσk,i
−
√
P√
Pm

∑R+[P (s−m)]
t=R+1 (Ik,αit − αi)√

Pσk,i

−−−→
P→∞

1√
m

(W (s)−W (s−m))

where W (.) is the standard Brownian motion and the limiting distribution, in the last line, is a

direct consequence of the FCLT. Finally, by the Continuous Mapping Theorem, we have:

S|t| = sup
J
|
√
r − kα̂i(J)

σk,αi
| −−−→
P→∞

sup
|W (s)−W (s−m)|√

m

A|t| =
1

P − r + 1

J̄∑
J

|
√
r − kα̂i(J)

σk,αi
| −−−→
P→∞

∫ s̄

s

|W (s)−W (s−m)|√
m

where J = [Ps] and J̄ = [P s̄].
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Proof of Proposition 2

Let Ωk be the variance-covariance matrix of Ck(J) whose typical element ωi,j is calculated as

follows

cov(ck,i, ck,j) = cov(Ik,αit , I
k,αj
t ) + cov(Ik,αit , I

k,αj
t−k ) + cov(Ik,αit−k , I

k,αj
t ) + o(1)

If i = j, by Proposition 1, ωi,i = var(
√
T − k(α̂i − αi)) = αi(1 − αi) + 2α

3/2
i (1 − α1/2

i ). If i < j,

αi < αj, and we have

cov(Ik,αit , I
k,αj
t ) = E(Ik,αit × Ik,αjt )− αi × αj = αi(1− αj)

cov(Ik,αit , I
k,αj
t−k ) = E(Ik,αit × Ik,αjt−k )− αi × αj = αi × α1/2

j − αi × αj

cov(Ik,αit−k , I
k,αj
t ) = E(Ik,αit−k × I

k,αj
t )− αi × αj = αi × α1/2

j − αi × αj

If i > j, the above expressions hold by just switching the subindexes i and j.

Since the vector Ck(J) is globally stationary, we can invoke a multivariate FLCT (see Theorem

7.29 and 7.30 in White (2001)). By following the same arguments as in Proposition 1, we have

WP (s) ≡ Ω
−1/2
k Ck(J)

−−−→
P→∞

1√
m

(W(s)−W(s−m))

where W(s) is a C-variate Brownian process. By the Continuous Mapping Theorem, we have

SC = sup
J

Ck(J)′Ω−1
k Ck(J)

−−−→
P→∞

sup
s∈[m,1]

(W(s)−W(s−m))′(W(s)−W(s−m))

m
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and

AC =
1

P − r + 1

J̄∑
J

|Ck(J)′Ω−1
k Ck(J)|

−−−→
P→∞

∫ s̄

s

(W(r)−W(r −m))′(W(r)−W(r −m))

m

Proof of Proposition 3: Let Λαi be the variance-covariance matrix of Lαi
(J) whose typical

element λj,k is calculated as

λj,k =

 αi(1− αi) + 2α
3/2
i (1− α1/2

i ) if j = k

4α
3/2
i (1− α1/2

i ) if j 6= k

Therefore, the vector Lαi
(J) is globally stationary, and we can invoke a multivariate FLCT (see

Theorems 7.29 and 7.30 in White (2001)). By following the same arguments as in Proposition 1,

we have

WP (s) ≡ Λ−1/2
αi

Lαi
(J)

−−−→
P→∞

1√
m

(W(s)−W(s−m))

where W(s) is a L-variate Brownian process. By the Continuous Mapping Theorem, we have

SL = sup
J

Lαi
(J)′Λ−1

αi
Lαi

(J)

−−−→
P→∞

sup
s∈[m,1]

(W(s)−W(s−m))′(W(s)−W(s−m))

m

21



AL =
1

P − r + 1

J̄∑
J

Lαi
(J)′Λ−1

αi
Lαi

(J)

−−−→
P→∞

∫ s̄

s

(W(s)−W(s−m))′(W(s)−W(s−m))

m
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Tables: Asymptotic Distributions

In the following six tables, the percentiles are obtained from 2000 replications with a sample size
of 20,000 observations in each replication.

Asymptotic Distribution of S|t| Statistic
m

Percentile 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
99% 3.950 3.713 3.510 3.396 3.428 3.213 3.089 3.112 2.951
95% 3.502 3.267 3.066 2.926 2.866 2.679 2.537 2.439 2.406
90% 3.292 2.987 2.845 2.642 2.571 2.361 2.240 2.121 2.015
80% 3.020 2.684 2.522 2.372 2.217 2.053 1.935 1.849 1.655
70% 2.843 2.489 2.315 2.156 1.999 1.834 1.697 1.582 1.392
60% 2.702 2.343 2.145 1.983 1.819 1.653 1.529 1.383 1.197
50% 2.569 2.203 2.015 1.830 1.664 1.515 1.365 1.221 1.021
40% 2.457 2.090 1.884 1.684 1.515 1.373 1.212 1.066 0.867
30% 2.339 1.975 1.747 1.540 1.379 1.228 1.071 0.915 0.730
20% 2.201 1.822 1.586 1.384 1.226 1.074 0.923 0.791 0.606
10% 2.033 1.629 1.420 1.199 1.055 0.901 0.761 0.631 0.479
5% 1.922 1.492 1.290 1.065 0.943 0.813 0.663 0.535 0.394
1% 1.730 1.265 1.072 0.829 0.739 0.631 0.498 0.409 0.287

Asymptotic Distribution of A|t| Statistic
m

Percentile 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
99% 1.241 1.435 1.656 1.824 2.204 2.181 2.360 2.542 2.583
95% 1.078 1.199 1.355 1.487 1.697 1.694 1.774 1.854 1.998
90% 1.004 1.088 1.206 1.300 1.418 1.406 1.490 1.586 1.666
80% 0.918 0.970 1.035 1.101 1.115 1.128 1.183 1.264 1.256
70% 0.870 0.891 0.922 0.948 0.939 0.928 0.966 1.017 1.019
60% 0.825 0.825 0.827 0.837 0.818 0.796 0.807 0.824 0.825
50% 0.789 0.760 0.760 0.741 0.710 0.685 0.682 0.675 0.661
40% 0.752 0.706 0.690 0.653 0.615 0.581 0.551 0.534 0.507
30% 0.711 0.649 0.617 0.568 0.524 0.487 0.453 0.417 0.378
20% 0.673 0.589 0.544 0.497 0.451 0.409 0.358 0.320 0.274
10% 0.608 0.517 0.465 0.409 0.359 0.319 0.269 0.234 0.186
5% 0.567 0.458 0.413 0.342 0.310 0.260 0.219 0.188 0.140
1% 0.478 0.381 0.325 0.251 0.235 0.200 0.152 0.135 0.096

Table 1: Asymptotic Distributions of S|t| and A|t| Statistics
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Asymptotic Distribution of SC Statistic
m

Percentile 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
99% 42.488 39.592 38.534 37.694 37.361 35.925 36.051 34.591 31.804
95% 37.159 34.956 32.983 32.277 30.902 29.597 29.008 27.773 25.962
90% 35.155 32.562 30.722 29.378 28.069 27.176 26.181 24.685 23.356
80% 32.624 29.964 28.071 26.673 25.329 24.182 22.935 21.621 20.175
70% 30.932 28.330 26.359 24.906 23.421 22.132 20.932 19.423 18.125
60% 29.689 26.991 24.908 23.416 21.858 20.579 19.179 17.901 16.550
50% 28.540 25.798 23.648 22.111 20.626 19.136 17.708 16.501 15.241
40% 27.482 24.522 22.468 20.900 19.254 17.672 16.440 15.111 13.829
30% 26.508 23.385 21.197 19.510 17.873 16.413 15.058 13.685 12.477
20% 25.351 22.174 19.836 18.193 16.514 14.927 13.582 12.250 10.898
10% 23.731 20.400 18.067 16.333 14.568 13.061 11.741 10.480 8.987
5% 22.376 18.902 16.821 14.879 13.338 11.876 10.383 9.037 7.852
1% 20.394 16.833 14.737 12.807 11.208 9.884 8.275 6.929 5.905

Asymptotic Distribution of AC Statistic
m

Percentile 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
99% 16.342 18.610 20.265 22.301 24.658 26.534 27.422 28.202 27.987
95% 15.298 16.576 17.794 18.927 19.924 20.838 21.866 22.084 22.533
90% 14.762 15.734 16.456 17.287 18.022 18.629 18.996 19.612 19.965
80% 14.099 14.648 15.143 15.477 16.014 16.449 16.761 16.975 17.096
70% 13.672 14.029 14.209 14.439 14.705 14.937 15.107 15.111 15.290
60% 13.295 13.393 13.478 13.566 13.597 13.552 13.629 13.790 13.772
50% 12.955 12.873 12.847 12.820 12.666 12.591 12.534 12.514 12.547
40% 12.623 12.388 12.178 12.014 11.722 11.471 11.290 11.362 11.311
30% 12.262 11.851 11.535 11.227 10.909 10.576 10.364 10.166 10.073
20% 11.828 11.264 10.837 10.423 9.991 9.555 9.288 8.965 8.786
10% 11.298 10.483 9.871 9.330 8.746 8.297 7.860 7.558 7.143
5% 10.840 9.895 9.120 8.436 7.849 7.358 6.750 6.380 5.967
1% 10.030 8.791 7.993 7.279 6.363 5.659 5.069 4.629 4.382

Table 2: Asymptotic Distribution of SC and AC Statistics (13 autocontours)
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Asymptotic Distribution of SL Statistic
m

percentile 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
99% 26.825 25.069 23.492 23.010 22.057 20.621 19.801 19.370 17.756
95% 22.719 21.121 19.941 18.372 17.199 16.042 15.645 14.470 13.631
90% 20.867 19.109 17.489 16.318 15.203 14.241 13.301 12.552 11.636
80% 18.859 16.979 15.273 14.045 12.859 11.973 11.213 10.267 9.325
70% 17.452 15.505 13.917 12.671 11.665 10.585 9.708 8.788 7.949
60% 16.389 14.279 12.920 11.587 10.492 9.537 8.610 7.765 6.927
50% 14.810 12.425 11.052 9.796 8.827 7.916 6.830 6.071 5.192
40% 15.534 13.300 11.910 10.616 9.576 8.678 7.698 6.917 6.068
30% 13.970 11.675 10.164 8.891 7.999 6.948 6.048 5.213 4.423
20% 13.066 10.697 9.249 8.023 7.039 6.054 5.113 4.388 3.646
10% 11.896 9.535 8.158 7.011 5.863 4.966 4.213 3.484 2.743
5% 11.145 8.544 7.070 6.093 5.099 4.286 3.492 2.786 2.187
1% 9.583 7.267 5.857 4.821 3.950 3.173 2.585 1.907 1.510

Asymptotic Distribution of AL Statistic
m

percentile 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
99% 7.260 8.419 9.620 10.837 12.021 12.943 13.509 14.458 14.629
95% 6.507 7.336 7.948 8.396 9.045 9.636 10.116 10.569 10.913
90% 6.122 6.673 7.034 7.503 7.961 8.313 8.562 8.929 9.220
80% 5.705 6.038 6.259 6.452 6.643 6.822 6.995 7.104 7.309
70% 5.383 5.583 5.669 5.733 5.820 5.868 5.929 5.977 6.040
60% 5.164 5.208 5.200 5.198 5.212 5.158 5.191 5.122 5.128
50% 4.742 4.604 4.468 4.361 4.224 4.021 3.885 3.817 3.767
40% 4.951 4.890 4.831 4.770 4.663 4.570 4.506 4.452 4.438
30% 4.535 4.316 4.123 3.922 3.717 3.476 3.324 3.174 3.088
20% 4.294 3.988 3.712 3.418 3.174 2.973 2.715 2.584 2.480
10% 4.017 3.539 3.189 2.922 2.602 2.320 2.086 1.927 1.746
5% 3.752 3.237 2.867 2.508 2.246 1.921 1.695 1.459 1.292
1% 3.337 2.681 2.222 1.875 1.621 1.388 1.150 0.960 0.777

Table 3: Asymptotic Distribution of SL and AL Statistics (five lags)
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Tables: Size and Power of the Tests

I. Small Sample (T ) and Small Subsample Window (m)

T=150, R=90,P=60 S1,1
|t| S1,2

|t| S1,3
|t| S1,4

|t| S1,5
|t| S1,6

|t| S1,7
|t| S1,8

|t| S1,9
|t| S1,10

|t| S1,11
|t| S1,12

|t| S1,13
|t|

fixed 0.042 0.037 0.033 0.046 0.049 0.037 0.04 0.051 0.045 0.045 0.048 0.036 0.039
rolling 0.028 0.04 0.041 0.041 0.038 0.042 0.04 0.04 0.041 0.046 0.044 0.036 0.038

recursive 0.029 0.041 0.042 0.04 0.039 0.039 0.038 0.039 0.044 0.042 0.039 0.035 0.032

A1,1
|t| A1,2

|t| A1,3
|t| A1,4

|t| A1,5
|t| A1,6

|t| A1,7
|t| A1,8

|t| A1,9
|t| A1,10

|t| A1,11
|t| A1,12

|t| A1,13
|t|

fixed 0.047 0.048 0.049 0.056 0.055 0.058 0.049 0.059 0.049 0.057 0.052 0.055 0.057
rolling 0.032 0.038 0.048 0.043 0.041 0.046 0.046 0.045 0.04 0.046 0.048 0.046 0.031

recursive 0.024 0.037 0.037 0.043 0.043 0.038 0.043 0.052 0.043 0.044 0.042 0.035 0.033

S1,13
C A1,13

C S2,7
L S3,7

L S4,7
L S5,7

L A2,7
L A3,7

L A4,7
L A5,7

L

fixed 0.059 0.051 0.06 0.06 0.052 0.045 0.063 0.063 0.058 0.055
rolling 0.038 0.043 0.045 0.052 0.042 0.042 0.051 0.05 0.045 0.045

recursive 0.033 0.043 0.044 0.055 0.053 0.052 0.052 0.058 0.039 0.033

S1,7
|t| S2,7

|t| S3,7
|t| S4,7

|t| S5,7
|t| A1,7

|t| A2,7
|t| A3,7

|t| A4,7
|t| A5,7

|t|
fixed 0.04 0.038 0.042 0.04 0.038 0.049 0.053 0.054 0.051 0.039

rolling 0.04 0.033 0.032 0.033 0.034 0.036 0.038 0.039 0.04 0.032
recursive 0.038 0.037 0.031 0.035 0.034 0.043 0.039 0.04 0.05 0.037

Notation: 13 autocontours C = [0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99].

In Sk,αi|t| and Ak,αi|t| , lag k and autocontour αi are fixed.

In Sk,αC and Ak,αC , k is fixed and α is the total number of autocontours considered.

In Sk,αiL and Ak,αiL , up to k lags are considered and αi is a fixed autocontour.

Table 4: Size of the statistics:T=150 R=90 P=T-R=60 m = 1/3 (nominal size 5%)

II. Large Sample (T ) and Large Subsample Window (m)

T=750, R=450,P=300 S1,1
|t| S1,2

|t| S1,3
|t| S1,4

|t| S1,5
|t| S1,6

|t| S1,7
|t| S1,8

|t| S1,9
|t| S1,10

|t| S1,11
|t| S1,12

|t| S1,13
|t|

fixed 0.048 0.040 0.044 0.049 0.046 0.051 0.052 0.048 0.052 0.04 0.042 0.05 0.032
rolling 0.049 0.041 0.056 0.051 0.048 0.041 0.041 0.045 0.057 0.056 0.049 0.038 0.039

recursive 0.046 0.048 0.045 0.044 0.051 0.048 0.044 0.045 0.047 0.057 0.058 0.039 0.04

A1,1
|t| A1,2

|t| A1,3
|t| A1,4

|t| A1,5
|t| A1,6

|t| A1,7
|t| A1,8

|t| A1,9
|t| A1,10

|t| A1,11
|t| A1,12

|t| A1,13
|t|

fixed 0.049 0.045 0.049 0.051 0.046 0.049 0.051 0.043 0.049 0.052 0.043 0.047 0.049
rolling 0.048 0.042 0.046 0.055 0.044 0.047 0.043 0.044 0.044 0.043 0.049 0.044 0.048

recursive 0.04 0.043 0.041 0.063 0.065 0.045 0.053 0.045 0.044 0.051 0.042 0.044 0.043

S1,13
C A1,13

C S2,7
L S3,7

L S4,7
L S5,7

L A2,7
L A3,7

L A4,7
L A5,7

L

fixed 0.045 0.049 0.047 0.044 0.053 0.05 0.049 0.042 0.046 0.051
rolling 0.045 0.044 0.043 0.064 0.063 0.044 0.048 0.041 0.044 0.05

recursive 0.043 0.047 0.045 0.057 0.052 0.048 0.048 0.048 0.051 0.048

S1,7
|t| S2,7

|t| S3,7
|t| S4,7

|t| S5,7
|t| A1,7

|t| A2,7
|t| A3,7

|t| A4,7
|t| A5,7

|t|
fixed 0.052 0.053 0.042 0.042 0.043 0.051 0.048 0.042 0.054 0.049

rolling 0.041 0.048 0.043 0.039 0.04 0.043 0.043 0.047 0.049 0.043
recursive 0.044 0.051 0.041 0.038 0.041 0.053 0.054 0.043 0.045 0.048

Notation: 13 autocontours C = [0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99].

In Sk,αi|t| and Ak,αi|t| , lag k and autocontour αi are fixed.

In Sk,αC and Ak,αC , k is fixed and α is the total number of autocontours considered.

In Sk,αiL and Ak,αiL , up to k lags are considered and αi is a fixed autocontour.

Table 5: Size of the statistics:T=750 R=450 P=T-R=300 m = 2/3 (nominal size 5%)
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Fixed Scheme Sl,1|t| Sl,2|t| Sl,3|t| Sl,4|t| Sl,5|t| Sl,6|t| Sl,7|t| Sl,8|t| Sl,9|t| Sl,10
|t| Sl,11

|t| Sl,12
|t| Sl,13

|t|
l = 1 0.14 0.45 0.765 0.956 0.979 0.987 0.995 0.992 0.987 0.976 0.938 0.867 0.589
l = 2 0.14 0.464 0.789 0.955 0.981 0.99 0.993 0.993 0.988 0.974 0.943 0.864 0.593
l = 3 0.14 0.419 0.792 0.965 0.985 0.997 0.997 0.994 0.985 0.971 0.937 0.871 0.594
l = 4 0.11 0.439 0.797 0.953 0.986 0.993 0.994 0.994 0.99 0.979 0.938 0.866 0.595
l = 5 0.12 0.453 0.796 0.952 0.984 0.992 0.994 0.993 0.989 0.971 0.938 0.867 0.598

Al,1|t| Al,2|t| Al,3|t| Al,4|t| Al,5|t| Al,6|t| Al,7|t| Al,8|t| Al,9|t| Al,10
|t| Al,11

|t| Al,12
|t| Al,13

|t|
l = 1 0.08 0.244 0.698 0.898 0.948 0.969 0.981 0.978 0.968 0.945 0.904 0.812 0.588
l = 2 0.09 0.277 0.741 0.896 0.952 0.965 0.979 0.983 0.972 0.947 0.898 0.815 0.585
l = 3 0.07 0.276 0.72 0.893 0.941 0.969 0.98 0.984 0.967 0.943 0.906 0.815 0.588
l = 4 0.07 0.319 0.702 0.887 0.957 0.971 0.979 0.981 0.971 0.944 0.904 0.817 0.586
l = 5 0.08 0.339 0.722 0.906 0.951 0.968 0.985 0.976 0.972 0.944 0.903 0.816 0.584

Sl,13
C Al,13

C

l = 1 0.961 0.921
l = 2 0.965 0.924
l = 3 0.967 0.923
l = 4 0.963 0.921
l = 5 0.965 0.921

S2,7
L S3,7

L S4,7
L S5,7

L A2,7
L A3,7

L A4,7
L A5,7

L

C = 7 0.989 0.985 0.976 0.964 0.98 0.969 0.956 0.942

Rolling Scheme Sl,1|t| Sl,2|t| Sl,3|t| Sl,4|t| Sl,5|t| Sl,6|t| Sl,7|t| Sl,8|t| Sl,9|t| Sl,10
|t| Sl,11

|t| Sl,12
|t| Sl,13

|t|

l = 1 0.18 0.12 0.308 0.416 0.459 0.394 0.42 0.264 0.21 0.08 0.119 0.092 0.08
l = 2 0.11 0.11 0.295 0.324 0.323 0.431 0.433 0.333 0.193 0.084 0.123 0.093 0.08
l = 3 0.11 0.11 0.258 0.402 0.386 0.39 0.472 0.325 0.207 0.096 0.123 0.094 0.09
l = 4 0.13 0.11 0.289 0.439 0.41 0.413 0.378 0.325 0.173 0.093 0.121 0.092 0.082
l = 5 0.16 0.11 0.262 0.445 0.418 0.423 0.438 0.318 0.171 0.091 0.121 0.092 0.083

Al,1|t| Al,2|t| Al,3|t| Al,4|t| Al,5|t| Al,6|t| Al,7|t| Al,8|t| Al,9|t| Al,10
|t| Al,11

|t| Al,12
|t| Al,13

|t|
l = 1 0.25 0.318 0.559 0.783 0.738 0.710 0.534 0.634 0.418 0.18 0.21 0.102 0.091
l = 2 0.22 0.292 0.527 0.733 0.71 0.714 0.56 0.621 0.438 0.17 0.216 0.100 0.092
l = 3 0.24 0.275 0.521 0.768 0.756 0.744 0.499 0.638 0.442 0.155 0.224 0.103 0.092
l = 4 0.25 0.28 0.519 0.806 0.775 0.759 0.611 0.638 0.421 0.133 0.21 0.101 0.092
l = 5 0.25 0.305 0.516 0.797 0.781 0.769 0.533 0.626 0.392 0.121 0.24 0.101 0.093

Sl,13,
C Al,13

C

l = 1 0.638 0.749
l = 2 0.521 0.733
l = 3 0.619 0.801
l = 4 0.641 0.822
l = 5 0.637 0.803

S2,7
L S3,7

L S4,7
L S5,7

L A2,7
L A3,7

L A4,7
L A5,7

L

C = 7 0.414 0.419 0.408 0.432 0.563 0.59 0.578 0.532

Notes: 13 autocontours C = [0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99].

Sl,7|t| ,Al,7|t| for l = 1, 2, ...5; 7 refers to the 50% autocontour.

Sl,7L ,Al,7L stacking lags up to l = 2, ....5 and considering the 50% autocontour.

Sl,13
C and Al,13

C stacking all 13 autocontours for one lag l = 1, 2, 3, 4, 5.
1000 Monte Carlo replications and 500 bootstrap samples.
T=650, R=350, P=300, m = 1/3, and break point at R + τP for τ = 1/3

Table 6: Power for DGP1 under Fixed and Rolling Schemes
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Fixed Scheme Sl,1|t| Sl,2|t| Sl,3|t| Sl,4|t| Sl,5|t| Sl,6|t| Sl,7|t| Sl,8|t| Sl,9|t| Sl,10
|t| Sl,11

|t| Sl,12
|t| Sl,13

|t|

l = 1 0.292 0.271 0.191 0.084 0.073 0.109 0.281 0.278 0.391 0.512 0.638 0.638 0.518
l = 2 0.26 0.239 0.171 0.079 0.075 0.106 0.282 0.292 0.418 0.518 0.637 0.639 0.52
l = 3 0.285 0.265 0.175 0.089 0.075 0.12 0.283 0.29 0.404 0.53 0.635 0.639 0.523
l = 4 0.311 0.26 0.162 0.088 0.063 0.096 0.282 0.284 0.399 0.512 0.624 0.636 0.526
l = 5 0.273 0.253 0.158 0.068 0.068 0.108 0.282 0.288 0.408 0.539 0.645 0.638 0.531

Al,1|t| Al,2|t| Al,3|t| Al,4|t| Al,5|t| Al,6|t| Al,7|t| Al,8|t| Al,9|t| Al,10
|t| Al,11

|t| Al,12
|t| Al,13

|t|
l = 1 0.345 0.242 0.162 0.09 0.078 0.127 0.275 0.271 0.361 0.472 0.561 0.604 0.527
l = 2 0.327 0.225 0.16 0.081 0.077 0.12 0.269 0.277 0.377 0.467 0.56 0.606 0.522
l = 3 0.347 0.239 0.167 0.089 0.087 0.123 0.272 0.286 0.374 0.468 0.558 0.6 0.527
l = 4 0.368 0.246 0.159 0.09 0.069 0.111 0.272 0.277 0.345 0.455 0.55 0.592 0.523
l = 5 0.317 0.222 0.146 0.086 0.072 0.12 0.273 0.288 0.37 0.469 0.564 0.6 0.523

Sl,13
C Al,13

C

l = 1 0.659 0.595
l = 2 0.651 0.604
l = 3 0.666 0.625
l = 4 0.644 0.625
l = 5 0.652 0.611

S2,7
L S3,7

L S4,7
L S5,7

L A2,7
L A3,7

L A4,7
L A5,7

L

C = 7 0.286 0.285 0.281 0.285 0.271 0.273 0.276 0.275

Rolling Scheme Sl,1|t| Sl,2|t| Sl,3|t| Sl,4|t| Sl,5|t| Sl,6|t| Sl,7|t| Sl,8|t| Sl,9|t| Sl,10
|t| Sl,11

|t| Sl,12
|t| Sl,13

|t|

l = 1 0.116 0.104 0.088 0.063 0.05 0.056 0.112 0.11 0.171 0.341 0.302 0.264 0.261
l = 2 0.114 0.09 0.086 0.063 0.054 0.051 0.118 0.113 0.172 0.318 0.296 0.264 0.262
l = 3 0.107 0.094 0.076 0.065 0.06 0.053 0.108 0.126 0.189 0.335 0.28 0.273 0.266
l = 4 0.113 0.104 0.072 0.054 0.058 0.049 0.175 0.114 0.167 0.329 0.287 0.266 0.267
l = 5 0.109 0.093 0.08 0.053 0.05 0.053 0.16 0.121 0.184 0.337 0.274 0.265 0.267

Al,1|t| Al,2|t| Al,3|t| Al,4|t| Al,5|t| Al,6|t| Al,7|t| Al,8|t| Al,9|t| Al,10
|t| Al,11

|t| Al,12
|t| Al,13

|t|
l = 1 0.179 0.129 0.099 0.078 0.066 0.075 0.19 0.151 0.204 0.36 0.344 0.35 0.378
l = 2 0.169 0.112 0.082 0.075 0.066 0.076 0.18 0.145 0.205 0.386 0.345 0.343 0.379
l = 3 0.175 0.139 0.092 0.07 0.067 0.077 0.196 0.159 0.228 0.378 0.352 0.348 0.378
l = 4 0.183 0.143 0.083 0.063 0.066 0.077 0.192 0.144 0.201 0.358 0.342 0.352 0.375
l = 5 0.159 0.129 0.09 0.063 0.066 0.065 0.191 0.151 0.208 0.371 0.347 0.35 0.377

Sl,13
C Al,13

C

l = 1 0.409 0.414
l = 2 0.363 0.394
l = 3 0.381 0.427
l = 4 0.398 0.431
l = 5 0.306 0.318

S2,7
L S3,7

L S4,7
L S5,7

L A2,7
L A3,7

L A4,7
L A5,7

L

C = 7 0.168 0.115 0.113 0.112 0.129 0.189 0.191 0.182

Notes: 13 autocontours C = [0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99].

Sl,7|t| ,Al,7|t| for l = 1, 2, ...5; 7 refers to the 50% autocontour.

Sl,7L ,Al,7L stacking lags up to l = 2, ....5 and considering the 50% autocontour.

Sl,13
C and Al,13

C stacking all 13 autocontours for one lag l = 1, 2, 3, 4, 5.
1000 Monte Carlo replications and 500 bootstrap samples.
T=650, R=350, P=300, m = 1/3, and break point at R + τP for τ = 1/3

Table 7: Power for DGP2 under Fixed and Rolling Schemes

31



Fixed Scheme Sl,1|t| Sl,2|t| Sl,3|t| Sl,4|t| Sl,5|t| Sl,6|t| Sl,7|t| Sl,8|t| Sl,9|t| Sl,10
|t| Sl,11

|t| Sl,12
|t| Sl,13

|t|

l = 1 0.95 0.998 0.999 0.999 0.999 1 0.97 0.985 0.961 0.849 0.449 0.33 0.29
l = 2 0.96 0.998 0.999 1 0.999 0.997 0.982 0.981 0.96 0.859 0.444 0.16 0.19
l = 3 0.97 0.997 0.998 1 0.999 0.998 0.979 0.982 0.956 0.85 0.436 0.35 0.31
l = 4 0.96 0.997 0.998 1 0.998 0.998 0.98 0.984 0.965 0.853 0.446 0.36 0.13
l = 5 0.96 0.997 1 0.999 1 0.999 0.982 0.983 0.96 0.854 0.447 0.2 0.23

Al,1|t| Al,2|t| Al,3|t| Al,4|t| Al,5|t| Al,6|t| Al,7|t| Al,8|t| Al,9|t| Al,10
|t| Al,11

|t| Al,12
|t| Al,13

|t|
l = 1 0.93 0.951 1 0.999 0.999 0.995 0.95 0.973 0.914 0.475 0.38 0.25 0.16
l = 2 0.931 0.967 0.998 1 0.999 0.994 0.952 0.974 0.896 0.518 0.34 0.22 0.17
l = 3 0.937 0.98 0.998 0.999 0.997 0.995 0.95 0.973 0.883 0.555 0.36 0.24 0.19
l = 4 0.935 0.96 1 0.998 0.997 0.994 0.95 0.968 0.908 0.487 0.31 0.32 0.22
l = 5 0.939 0.95 0.999 0.998 0.997 0.995 0.95 0.962 0.875 0.545 0.31 0.12 0.23

Sl,13
C Al,13

C

l = 1 1 0.97
l = 2 1 0.98
l = 3 0.999 0.97
l = 4 1 0.999
l = 5 1 1

S2,7
L S3,7

L S4,7
L S5,7

L A2,7
L A3,7

L A4,7
L A5,7

L

C = 7 0.98 0.98 0.98 0.98 0.97 0.969 0.97 0.97

Rolling Scheme Sl,1|t| Sl,2|t| Sl,3|t| Sl,4|t| Sl,5|t| Sl,6|t| Sl,7|t| Sl,8|t| Sl,9|t| Sl,10
|t| Sl,11

|t| Sl,12
|t| Sl,13

|t|

l = 1 0.46 0.461 0.395 0.184 0.26 0.329 0.396 0.457 0.401 0.134 0.212 0.092 0.08
l = 2 0.358 0.32 0.338 0.381 0.421 0.475 0.511 0.508 0.39 0.121 0.241 0.093 0.08
l = 3 0.437 0.398 0.389 0.442 0.465 0.524 0.524 0.518 0.385 0.099 0.223 0.094 0.09
l = 4 0.445 0.425 0.444 0.481 0.502 0.544 0.54 0.512 0.345 0.095 0.232 0.092 0.082
l = 5 0.448 0.409 0.425 0.468 0.511 0.54 0.546 0.506 0.361 0.075 0.232 0.092 0.083

Al,1|t| Al,2|t| Al,3|t| Al,4|t| Al,5|t| Al,6|t| Al,7|t| Al,8|t| Al,9|t| Al,10
|t| Al,11

|t| Al,12
|t| Al,13

|t|
l = 1 0.189 0.219 0.332 0.473 0.584 0.678 0.726 0.739 0.706 0.395 0.163 0.082 0.06
l = 2 0.585 0.628 0.686 0.788 0.808 0.834 0.826 0.815 0.716 0.356 0.171 0.081 0.06
l = 3 0.68 0.711 0.728 0.796 0.832 0.839 0.832 0.811 0.7 0.334 0.163 0.081 0.07
l = 4 0.684 0.733 0.765 0.832 0.851 0.861 0.846 0.815 0.698 0.308 0.162 0.081 0.062
l = 5 0.674 0.717 0.762 0.82 0.846 0.86 0.848 0.814 0.669 0.291 0.161 0.081 0.063

Sl,13
C Al,13

C

l = 1 0.57 0.817
l = 2 0.539 0.845
l = 3 0.53 0.814
l = 4 0.532 0.78
l = 5 0.534 0.782

S2,7
L S3,7

L S4,7
L S5,7

L A2,7
L A3,7

L A4,7
L A5,7

L

0.477 0.496 0.48 0.421 0.728 0.75 0.749 0.703

Notes: 13 autocontours C = [0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99].

Sl,7|t| ,Al,7|t| for l = 1, 2, ...5; 7 refers to the 50% autocontour.

Sl,7L ,Al,7L stacking lags up to l = 2, ....5 and considering the 50% autocontour.

Sl,13
C and Al,13

C stacking all 13 autocontours for one lag l = 1, 2, 3, 4, 5.
1000 Monte Carlo replications and 500 bootstrap samples.
T=650, R=350, P=300, m = 1/3, and break point at R + τP for τ = 1/3

Table 8: Power for DGP3 under Fixed and Rolling Schemes
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Fixed Scheme Sl,1|t| Sl,2|t| Sl,3|t| Sl,4|t| Sl,5|t| Sl,6|t| Sl,7|t| Sl,8|t| Sl,9|t| Sl,10
|t| Sl,11

|t| Sl,12
|t| Sl,13

|t|

l = 1 1 1 0.999 1 1 1 0.999 0.999 0.989 0.984 0.969 0.93 0.79
l = 2 0.999 1 0.999 0.996 1 1 1 1 0.98 0.983 0.967 0.901 0.78
l = 3 0.998 1 1 1 1 0.999 1 1 0.996 0.98 0.965 0.912 0.781
l = 4 1 0.999 1 1 0.998 1 0.999 1 0.99 0.98 0.962 0.923 0.744
l = 5 1 0.996 1 1 1 1 1 0.998 1 0.98 0.966 0.917 0.775

Al,1|t| Al,2|t| Al,3|t| Al,4|t| Al,5|t| Al,6|t| Al,7|t| Al,8|t| Al,9|t| Al,10
|t| Al,11

|t| Al,12
|t| Al,13

|t|
l = 1 0.989 1 0.995 1 1 1 0.98 0.998 0.989 0.96 0.914 0.812 0.639
l = 2 0.989 1 0.995 0.995 0.997 1 0.988 0.989 0.986 0.967 0.934 0.815 0.633
l = 3 0.99 1 1 1 1 0.997 0.985 0.99 0.986 0.966 0.914 0.815 0.622
l = 4 1 0.996 1 1 0.996 0.. 0.989 0.991 0.986 0.967 0.954 0.817 0.644
l = 5 1 0.996 1 1 1 1 0.989 0.996 0.986 0.97 0.914 0.816 0.675

Sl,13
C Al,13

C

l = 1 1 1
l = 2 1 1
l = 3 1 1
l = 4 1 1
l = 5 1 1

S2,7
L S3,7

L S4,7
L S5,7

L A2,7
L A3,7

L A4,7
L A5,7

L

C = 7 1 1 1 1 1 1 1 1

Rolling Scheme Sl,1|t| Sl,2|t| Sl,3|t| Sl,4|t| Sl,5|t| Sl,6|t| Sl,7|t| Sl,8|t| Sl,9|t| Sl,10
|t| Sl,11

|t| Sl,12
|t| Sl,13

|t|

l = 1 0.569 0.461 0.486 0.589 0.696 0.746 0.76 0.729 0.69 0.643 0.481 0.331 0.123
l = 2 0.44 0.387 0.358 0.577 0.664 0.73 0.744 0.733 0.703 0.629 0.464 0.332 0.12
l = 3 0.541 0.465 0.421 0.528 0.649 0.695 0.705 0.71 0.691 0.624 0.445 0.332 0.127
l = 4 0.586 0.514 0.48 0.525 0.639 0.698 0.703 0.694 0.663 0.618 0.447 0.319 0.131
l = 5 0.571 0.495 0.484 0.525 0.643 0.724 0.722 0.723 0.678 0.627 0.448 0.318 0.135

Al,1|t| Al,2|t| Al,3|t| Al,4|t| Al,5|t| Al,6|t| Al,7|t| Al,8|t| Al,9|t| Al,10
|t| Al,11

|t| Al,12
|t| Al,13

|t|
l = 1 0.25 0.318 0.559 0.761 0.831 0.861 0.858 0.839 0.819 0.763 0.606 0.461 0.236
l = 2 0.22 0.292 0.527 0.739 0.794 0.835 0.857 0.852 0.82 0.767 0.601 0.46 0.242
l = 3 0.24 0.275 0.521 0.705 0.789 0.835 0.85 0.854 0.819 0.767 0.609 0.45 0.237
l = 4 0.25 0.28 0.519 0.699 0.795 0.833 0.86 0.842 0.8 0.736 0.606 0.443 0.24
l = 5 0.25 0.305 0.516 0.704 0.789 0.837 0.846 0.848 0.823 0.75 0.588 0.446 0.242

Sl,13
C Al,13

C

l = 1 0.75 0.85
l = 2 0.74 0.85
l = 3 0.76 0.87
l = 4 0.76 0.83
l = 5 0.771 0.81

S2,7
L S3,7

L S4,7
L S5,7

L A2,7
L A3,7

L A4,7
L A5,7

L

C = 7 0.656 0.558 0.558 0.56 0.801 0.724 0.656 0.605

Notes: 13 autocontours C = [0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99].

Sl,7|t| ,Al,7|t| for l = 1, 2, ...5; 7 refers to the 50% autocontour.

Sl,7L ,Al,7L stacking lags up to l = 2, ....5 and considering the 50% autocontour.

Sl,13
C and Al,13

C stacking all 13 autocontours for one lag l = 1, 2, 3, 4, 5.
1000 Monte Carlo replications and 500 bootstrap samples.
T=650, R=350, P=300, m = 1/3, and break point at R + τP for τ = 1/3

Table 9: Power for DGP4 under Fixed and Rolling Schemes
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Tables: Phillips Curve
Fixed Scheme Sl,1|t| Sl,2|t| Sl,3|t| Sl,4|t| Sl,5|t| Sl,6|t| Sl,7|t| Sl,8|t| Sl,9|t| Sl,10

|t| Sl,11
|t| Sl,12

|t| Sl,13
|t|

l = 1 0.017 0.529 0.523 0.471 0.268 0.002 0.008 0.045 0.136 0.091 0.085 0.031 0.0001
l = 2 0.015 0.285 0.55 0.434 0.481 0.002 0.005 0.041 0.157 0.086 0.09 0.027 0.0001
l = 3 0.028 0.584 0.614 0.651 0.419 0.006 0.005 0.03 0.049 0.088 0.073 0.013 0.0001
l = 4 0.013 0.104 0.807 0.285 0.209 0.009 0.003 0.027 0.098 0.088 0.069 0.012 0.0001
l = 5 0.031 0.221 0.212 0.302 0.206 0.009 0.006 0.034 0.103 0.088 0.057 0.006 0.0001

Al,1|t| Al,2|t| Al,3|t| Al,4|t| Al,5|t| Al,6|t| Al,7|t| Al,8|t| Al,9|t| Al,10
|t| Al,11

|t| Al,12
|t| Al,13

|t|
l = 1 0.342 0.671 0.759 0.405 0.163 0.042 0.013 0.248 0.243 0.243 0.412 0.199 0.042
l = 2 0.335 0.453 0.621 0.352 0.972 0.043 0.022 0.336 0.297 0.223 0.332 0.25 0.04
l = 3 0.494 0.579 0.316 0.567 0.309 0.041 0.016 0.216 0.225 0.235 0.359 0.197 0.049
l = 4 0.338 0.348 0.764 0.319 0.152 0.033 0.024 0.144 0.264 0.223 0.327 0.226 0.042
l = 5 0.138 0.595 0.637 0.238 0.142 0.032 0.024 0.218 0.273 0.222 0.308 0.184 0.042

Sl,13
C Al,13

C

l = 1 0.004 0.022
l = 2 0.001 0.019
l = 3 0.003 0.016
l = 4 0.001 0.025
l = 5 0.001 0.025

S2,7
L S3,7

L S4,7
L S5,7

L A2,7
L A3,7

L A4,7
L A5,7

L

C = 7 0.006 0.009 0.012 0.01 0.027 0.018 0.027 0.029

Rolling Scheme Sl,1|t| Sl,2|t| Sl,3|t| Sl,4|t| Sl,5|t| Sl,6|t| Sl,7|t| Sl,8|t| Sl,9|t| Sl,10
|t| Sl,11

|t| Sl,12
|t| Sl,13

|t|

l = 1 0.528 0.46 0.843 0.472 0.142 0.002 0.001 0.007 0.008 0.093 0.281 0.026 0.0002
l = 2 0.258 0.35 0.58 0.251 0.229 0.007 0.004 0.009 0.002 0.081 0.24 0.024 0.0003
l = 3 0.559 0.31 0.741 0.437 0.16 0.002 0.001 0.002 0.002 0.066 0.288 0.013 0.0003
l = 4 0.38 0.31 0.479 0.463 0.17 0.001 0.001 0.003 0.008 0.088 0.275 0.021 0.0002
l = 5 0.285 0.249 0.297 0.225 0.12 0.007 0.001 0.003 0.003 0.063 0.327 0.019 0.0002

Al,1|t| Al,2|t| Al,3|t| Al,4|t| Al,5|t| Al,6|t| Al,7|t| Al,8|t| Al,9|t| Al,10
|t| Al,11

|t| Al,12
|t| Al,13

|t|
l = 1 0.789 0.801 0.853 0.656 0.143 0.001 0.023 0.033 0.032 0.145 0.297 0.271 0.024
l = 2 0.267 0.55 0.812 0.244 0.568 0.002 0.018 0.024 0.045 0.127 0.283 0.337 0.037
l = 3 0.751 0.918 0.923 0.723 0.144 0.007 0.015 0.032 0.047 0.114 0.288 0.24 0.023
l = 4 0.358 0.476 0.575 0.448 0.108 0.001 0.015 0.031 0.031 0.142 0.313 0.271 0.034
l = 5 0.305 0.655 0.576 0.251 0.129 0.009 0.018 0.031 0.039 0.13 0.286 0.288 0.033

Sl,13
C Al,13

C

l = 1 0.001 0.009
l = 2 0.0003 0.004
l = 3 0.0003 0.01
l = 4 0.0003 0.005
l = 5 0.002 0.004

S2,7
L S3,7

L S4,7
L S5,7

L A2,7
L A3,7

L A4,7
L A5,7

L

C = 7 0.008 0.008 0.006 0.009 0.038 0.025 0.019 0.031

Notes: 13 autocontours C = [0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99].

Sl,7|t| ,Al,7|t| for l = 1, 2, ...5; 7 refers to the 50% autocontour.

Sl,7L ,Al,7L stacking lags up to l = 2, ....5 and considering the 50% autocontour.

Sl,13
C and Al,13

C stacking all 13 autocontours for one lag l = 1, 2, 3, 4, 5.
500 bootstrap samples. T=649, R=360, P=289, m = 0.69

Table 10: Bootstrapped P-values: Linear Phillips Curve (Fixed and Rolling Schemes)
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Model 2 Sl,1|t| Sl,2|t| Sl,3|t| Sl,4|t| Sl,5|t| Sl,6|t| Sl,7|t| Sl,8|t| Sl,9|t| Sl,10
|t| Sl,11

|t| Sl,12
|t| Sl,13

|t|

l = 1 0.542 0.682 0.306 0.254 0.18 0.196 0.178 0.26 0.4 0.188 0.044 0.026 0.036
l = 2 0.478 0.32 0.226 0.15 0.102 0.118 0.102 0.116 0.228 0.088 0.034 0.024 0.032
l = 3 0.802 0.394 0.188 0.236 0.172 0.176 0.146 0.234 0.274 0.192 0.038 0.024 0.032
l = 4 0.496 0.65 0.524 0.296 0.188 0.2 0.19 0.284 0.422 0.21 0.042 0.024 0.034
l = 5 0.794 0.19 0.286 0.186 0.136 0.148 0.164 0.296 0.386 0.166 0.032 0.024 0.032

Al,1|t| Al,2|t| Al,3|t| Al,4|t| Al,5|t| Al,6|t| Al,7|t| Al,8|t| Al,9|t| Al,10
|t| Al,11

|t| Al,12
|t| Al,13

|t|
l = 1 0.496 0.628 0.296 0.264 0.176 0.198 0.178 0.288 0.424 0.256 0.046 0.028 0.036
l = 2 0.438 0.298 0.216 0.152 0.102 0.116 0.104 0.16 0.27 0.128 0.044 0.026 0.032
l = 3 0.372 0.374 0.298 0.24 0.168 0.17 0.148 0.246 0.288 0.22 0.046 0.026 0.032
l = 4 0.442 0.416 0.366 0.33 0.21 0.2 0.21 0.31 0.434 0.24 0.046 0.026 0.034
l = 5 0.362 0.22 0.332 0.192 0.138 0.15 0.17 0.32 0.402 0.232 0.036 0.024 0.032

Sl,13
C Al,13

C

l = 1 0.328 0.332
l = 2 0.18 0.18
l = 3 0.284 0.272
l = 4 0.32 0.328
l = 5 0.266 0.268

S2,7
L S3,7

L S4,7
L S5,7

L A2,7
L A3,7

L A4,7
L A5,7

L

C = 7 0.112 0.12 0.12 0.116 0.118 0.124 0.12 0.122

Model 3 Sl,1|t| Sl,2|t| Sl,3|t| Sl,4|t| Sl,5|t| Sl,6|t| Sl,7|t| Sl,8|t| Sl,9|t| Sl,10
|t| Sl,11

|t| Sl,12
|t| Sl,13

|t|

l = 1 0.452 0.662 0.454 0.406 0.466 0.694 0.702 0.814 0.788 0.57 0.41 0.254 0.296
l = 2 0.428 0.552 0.218 0.464 0.436 0.678 0.652 0.816 0.684 0.55 0.41 0.276 0.296
l = 3 0.476 0.784 0.454 0.424 0.466 0.66 0.602 0.874 0.782 0.582 0.43 0.206 0.296
l = 4 0.656 0.738 0.676 0.55 0.584 0.72 0.807 0.884 0.82 0.584 0.386 0.224 0.296
l = 5 0.652 0.538 0.422 0.444 0.536 0.78 0.836 0.844 0.842 0.578 0.416 0.244 0.296

Al,1|t| Al,2|t| Al,3|t| Al,4|t| Al,5|t| Al,6|t| Al,7|t| Al,8|t| Al,9|t| Al,10
|t| Al,11

|t| Al,12
|t| Al,13

|t|
l = 1 0.442 0.644 0.43 0.39 0.568 0.682 0.856 0.822 0.818 0.596 0.45 0.278 0.294
l = 2 0.402 0.446 0.318 0.362 0.326 0.488 0.674 0.834 0.72 0.57 0.446 0.308 0.296
l = 3 0.606 0.748 0.446 0.388 0.454 0.558 0.804 0.868 0.79 0.606 0.434 0.23 0.294
l = 4 0.638 0.768 0.666 0.348 0.58 0.722 0.86 0.874 0.824 0.584 0.4 0.226 0.296
l = 5 0.632 0.514 0.404 0.432 0.522 0.722 0.83 0.852 0.86 0.582 0.412 0.246 0.39

Sl,13
C Al,13

C

l = 1 0.614 0.596
l = 2 0.48 0.454
l = 3 0.494 0.482
l = 4 0.51 0.478
l = 5 0.488 0.472

S2,7
L S3,7

L S4,7
L S5,7

L A2,7
L A3,7

L A4,7
L A5,7

L

C = 7 0.518 0.566 0.548 0.598 0.534 0.578 0.564 0.618

Notes: 13 autocontours C = [0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99].

Sl,7|t| ,Al,7|t| for l = 1, 2, ...5; 7 refers to the 50% autocontour.

Sl,7L ,Al,7L stacking lags up to l = 2, ....5 and considering the 50% autocontour.

Sl,13
C and Al,13

C stacking all 13 autocontours for one lag l = 1, 2, 3, 4, 5.
500 bootstrap samples.
T=649, R=360, P=289, m = 0.69

Table 11: Bootstrapped P-values: Non-Linear Phillips Curve (Fixed Scheme)
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