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Abstract

We propose a density forecast evaluation method in the presence of instabilities, which are defined
as breaks in any conditional moment of interest and/or in the functional form of the conditional
density of the process. We extend the battery of autocontour-based tests proposed in Gonzalez-
Rivera et al. (2011, 2014) by constructing Sup- and Ave-type tests calculated over a collection of
subsamples in the evaluation period. These tests enjoy asymptotic distributions that are nuisance-
parameter free, they are correctly sized and very powerful on detecting breaks in the parameters
of the conditional mean and conditional variance. We also provide an accurate procedure to detect
the location of the breaks and the unstable periods. We analyze the stability of a dynamic Phillips
curve and find that the best one-step-ahead density forecast of changes in inflation is generated

by a Markov switching model where the unemployment coefficient is state-dependent.
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1 Introduction

Generally, instability is understood as changes in the parameters of a proposed forecasting model
over the forecasting horizon. For clarification purposes, consider a simple model y; 1 = 'z, +0e,14
with e; ~ 4.9.d.N(0,1). The model is unstable over time if the slope coefficients § can change over
the forecasting sample, either smoothly or abruptly to contain one or multiple breaks. We may
also entertain a time varying variance such that ¢ may be also subject to breaks, and we may
have different conditional probability density functions, e.g. more or less thick tails, over different
periods of time. This definition is general enough to account for most types of instability discussed
in the current applied econometric literature. Up to today, the most comprehensive survey in the
subject is Rossi (2014) in the Handbook of Economic Forecasting that reports extensive empirical

evidence of instabilities in macroeconomic and financial data. Some examples follow.

The instability of predictive regressions, in which the significance of predictive regressors varies
over different subsamples, has been documented in studies of predictability of stock returns (see
Goyal and Welch, 2003; Paye and Timmermann, 2006; Rapach and Zhou, 2014), in exchange rate
predictions (see Rossi, 2006; Rogoff and Stavrakeva, 2008) and in output growth and inflation
forecasts (see Stock and Watson, 2003; Rossi and Sekhposyan, 2010). Naturally linked to this
evidence is the econometric question on testing for parameter stability and structural breaks in
the data, which has an illustrious history. From Chow (1960) test to most recent works such as
Andrews (1993), Andrews and Ploberger (1994) , Pesaran and Timmermann (2002), among others,
testing for breaks has mainly focused on the behavior of the conditional mean. Our contribution
aims to extend testing for instabilities to the full conditional density forecast that includes not only
any conditional measure of interest, e.g. mean, variance, duration, etc. but also the functional
form of the assumed conditional density function. Our analysis is framed more closely within the
approach of Giacomini and Rossi (2009, 2010) and Rossi and Sekhposyan (2011) on the evaluation
of out-of-sample forecasts in the presence of instability. However, differently from these works, we
do not choose a particular loss function as we do not deal just with a point forecast but with the

full density model. We ask: is the density forecast stable over time? and if it is not, where are the



breaks? and to some extent, where are they coming from?

The testing methodology that we propose is based on the AutoContouR (ACR) device introduced
by Gonzélez-Rivera et al. (2011, 2012) and generalized later on in Gonzalez-Rivera and Sun
(2014). The null hypothesis of our tests is a correctly specified density forecast (joint hypothesis of
correct dynamics in the moments of interest and correct functional form of the density). Following
Diebold’s (1998) seminal work, we work with Rosenblatt’s probability integral transforms (PIT)
associated with the point forecasts. Under the null, the PITs must be i.i.d uniformly distributed
UJ0,1]. The Generalized AutoContouR (G-ACR) is a device (set of points) that is very sensitive to
departures from the null in either direction and consequently, it provides the basis for very powerful
tests. More specifically, for a time series of PITs, the G-ACRs are squares (in the univariate case)
or hyper-cubes (in the multivariate case) of different (probability) areas or volumes within the
maximum square or hyper-cube formed by a multidimensional uniform density [0, 1]* for n > 2.
By statistically comparing the location of the empirical PITs and the volume of the empirical
G-ACRs with the location and volume of the population G-ACRs, we are able to construct a
variety of tests for correct density forecast. Since the shapes of the G-ACRs can be visualized, we
can extract information about where and how the rejection of the null hypothesis comes from. A
great advantage of our approach is that it can also be applied quite easily to multivariate random

processes of any dimension.

In a potential unstable data environment, we will form rolling subsamples within the forecasting
sample. For every subsample, we apply a battery of G-ACR tests, and to detect instabilities, we
construct a Sup- and an Ave-type statistics. Though the limiting distribution of these tests is a
function of Brownian motions, the tests are nuisance-parameter free and their distribution can be
tabulated. If the null hypothesis is rejected, we will be able to detect the timing of the break(s)
rather accurately and the unstable periods. Though precise break detection is difficult, it is very
important (Elliott and Muller, 2007) because it will help to improve the model forecast. Decisions
regarding the choice of the estimation and evaluation windows and the estimation methods (e.g.
recursive /rolling or time-varying parameter estimation) will be affected by the location of the break

(Pesaran and Timmermann, 2007). In some instances, the break process can be modeled (Pesaran,



Pettenuzzo, and Timmermann, 2006) and added to the model forecast.

The paper is organized as follows. In section 2, we review the G-ACR approach and introduce
the new statistics with their asymptotic distributions. In section 3, we assess the finite sample
properties (size and power) of the tests, and show how to detect potential breaks. We offer an
extensive assessment by considering fixed, rolling, and recursive estimation schemes. In section
4, we apply the tests to assess the stability of the Phillips curve from 1958 on by evaluating the
models proposed in Amisano and Giacomini (2007). We conclude in section 5. The appendix

contains mathematical proofs.

2 Statistics and Asymptotic Distributions

2.1 Construction of the Statistics

The test statistics are based on the autocontour (ACR) and generalized autocontour (G-ACR)
methodology proposed by Gonzilez-Rivera et al. (2011, 2012, 2014) that provides powerful tests
for dynamic specification of the conditional density model either in-sample or out-of-sample en-
vironments. In the present context, we adapt these tests to instances where instabilities may be
present in the data so that, beyond the evaluation of the density model, we will also be able to

detect unstable periods.

Let Y; denote the random process of interest with conditional density function f(y:|€2;—1), where
;4 is the information set available up to time t—1. If the proposed predictive density model for Y;,
i.e. {f7(y:|%_1)}E, coincides with the true conditional density { f;(y¢|€%_1)}._,, then the sequence
of probability integral transforms (PIT) of {V;}_ | w.r.t {f7(y¢|%_1)}, i-e. {us}, must be i.i.d
U(0,1) where u, = [ f7(v¢|Q—1)dv,. Thus, the null hypothesis Hy : f7 (ye|Qu—1) = fo(ye| Q1) is
equivalent to the null hypothesis H, : {u,}/_, is i.i.d U(0,1) (see Diebold et al., 1998). Following
Gonzalez-Rivera and Sun (2014), we construct the generalized autocontours (G-ACR) under i.i.d.
uniformity of predictive densities. Under Hy : {u;}_, i.i.d U(0, 1), the G-ACR,,  is defined as the

set of points in the plane (u, u;_x) such that the square with |/a;-side contains a;% of observations,
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ie.,
G-ACR,, 1 = {Bug, uip) CR?| 0 <y < oy and 0 < wyp, < /oy, st tuy X ugp, < o}
We construct an indicator series If ¥ as follows
159 = 1((ug, w—p) € G-ACRy, 1) = 1(0 < uy < a3, 0 <y < /)

Based on this indicator, Gonzélez-Rivera and Sun (2014) proposed the following t-tests and chi-
square statistics to test the null hypothesis H, : {u,}Z, i.i.d U(0, 1).

(1) t-ratio testing

VT k(@ —a)

Ok

N(0,1)

T k,a;
~ e I : . . ~
where a; = Zt—iﬁflkt, and o}, is the asymptotic variance of @;.

(2) chi-squared testing

(2.1) For a fixed autocontour o, L, A 'La, — X3 where Lo, = ({1,4,,...lx.a,) is a K X 1 stacked
vector with element ¢y o, = VT — k(&; —;), and A, is the asymptotic variance-covariance matrix

of the vector L,,.

(2.2) For a fixed lag k, C;QI;IC;C — x% where Cj, = (¢ 1, ...c;@(;)/ is a C x 1 stacked vector with
element ¢;; = V1 — k(&; — «;), and Qy the asymptotic variance-covariance matrix of the vector

Cy.

In a potential unstable environment, we will construct the tests within the following rolling sample
scheme. The total sample size T is divided into two parts: in-sample observations (R) and out-of-
sample observations (P). We form subsamples of size r from t—r+1 up to t, where t = R+r,--- | T.
In each subsample, we evaluate the proposed predictive density by calculating three different
statistics (¢, C' and L). As a result, we obtain three sets of n = T —r — R + 1 tests each i.e.,

{ti}i=1, {C; )=, and {L;}}_,. Finally, to detect instabilities, we construct Sup-type and Avg-type
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statistics by taking the supremum (S) and the average (A) respectively over each set {|t;[}}_;,
{C;}5_, and{L;}7_; so that we obtain the following six statistics: Sy, S¢, Sp and Ay, Ac, Ap.

2.2 Asymptotic Properties of the Statistics

Under the following set of assumptions, we provide three propositions, which proofs are provided

in the Appendix.

r—k
P

e Al: For T' — 0o, R — 00, P — o0, limT_m% = 0 and limp_, =m, asr, P — oo,

where 7 is the size of the rolling subsample in the evaluation set, m € (0,1) and k is the lag

in the indicator I}

o A2: E|I[™

7 < A < oo for some g > 2. This assumption is trivial as the second moments of

the indicator are well defined as we will see next.
e A3: The data {y;} comes from a stationary and ergodic processﬂ

Proposition 1 Let J be the index that identifies a particular subsample in the evaluation period,

k,a;

ie. J=|[Ps|, s € [m,1], [Pm]=r—k, and let a;(J) = boria R“*ik“rkl be the corresponding

T

subsample proportion based on the indicator. The Sup- and Avg-tests are

Vr —k(ai(J) — ;)
St -
\I 7
r—k(ai(J) — a;)
Ay = 5—0—=
P—r+1 Ok,
where o} . = a;(1 — ;) + 2021 — a}?)

IThis assumption can be relaxed to include more general mixing processes because the relevant conditions to
invoke limiting theorems as the FCLT are those of the indicator process.



Given assumptions A1-A3, and under the null hypothesis of i.i.d U(0,1) PITs, the asymptotic

distribution of the tests are as follows,

5, oy W) =G5 = m)
P—oo s€[m,1] \/ﬁ

TW(s) = W(s —m)|
Am m / \/m ds

where W(.) is a standard univariate Brownian motion.

Proposition 2 For a given lag k, write ¢ ;(J) = vr — k(&;(J) — o) and stack ¢ ;(J) for different
autocontours levels i = 1,2, ...C such that Cy(J) = (cx1(J), ...ce.c(J)) is the C x 1 stacked vector.

The Sup- and Avg-tests are
Se = sup Cr(J)Q.'CL(J)
J
Ac = Q.1 Cr(J
¢ —r+1 ZJ: ()

where (2 is the asymptotic variance and covariance matrix of the random vector Cy(J). Given
assumptions A1-A3, and under the null hypothesis of i.i.d U(0, 1) PITs, the asymptotic distribution

of the tests are as follows,

6 s sy W) = Ws = m) (W(s) = Wi(s —m))

P—oo s€[m,1) m

to o [[ WO W m) (W)= Wi m),,

P—o0 m

where W(.) is a standard C-variate Brownian motion.

Proposition 3 For a given contour «;, write (o, (J) = vr — k(@i (J) — ;) and stack £ ,, for
k=1,...K. Let Lo,(J) = (l1.0,(]), .. LK., (J)) be the K x 1 stacked vector. The Sup- and



Avg-tests are
S, = supLq,(J)A,'Lg,(J)
J
1 J
Ay, = ——— L. (JYA 'L,
L P—T+1;| az(J) «; az(J)’

where A,, is the asymptotic variance and covariance matrix for the random vector L,,. Given
assumptions A1-A3, and under the null hypothesis of i.i.d U(0, 1) PITs, the asymptotic distribution

of the tests are as follows,

S, —— sup <W(S) — W<3 — m))'(W(s) — W(S — m))

P00 sem,1] m

b o [ mI (W)= W m),

m

P—oo

where W(.) is a standard L-variate Brownian motion.

We tabulate the percentiles of the asymptotic distributions of the tests provided in Propositions 1 to

3. Since the distributions depend on m, which is proportion of the rolling sample to the total evalua-

tion sample, we consider the following values of m € [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]. In Table

[T} we report the percentiles of the distribution of the S}, and A} statistics; in Table[2] those for the

Sc and A¢ considering the 13 autocontour C' = [0.01,0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95, 0.99];
and in Table [3 those for the S; and Ay tests considering 5 lags.

[TABLES 1-3 ABOUT HERE]

3 Monte Carlos Simulations

We perform extensive Monte Carlos simulations to assess the finite sample properties (size and
power) of the proposed statistics. For v/ R-consistent estimators of the parameters of the model,
ie. (0—06) = O,(R™'/?) with a well-defined asymptotic distribution, and under assumption

Al, R - oo, P — o0, and P/R — 0 as T" — oo, parameter uncertainty is asymptotically
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negligible. In this case, the critical values tabulated in Tables [1] to |3| can be used directly. In
cases where the condition P/R — 0 is violated, we can either bootstrap the variance of the tests
(and use the tabulated critical values) or the tests themselves to approximate their asymptotic
distribution. In the following simulations, we keep the ratio P/R constant and we implement a
parametric bootstrap for the distribution of the statistics. This is a sensible approach because the
null hypothesis fully specifies the parametric data generating process. We consider fixed, rolling,

and recursive forecasting schemes.

3.1 Size of the Tests

Under the null hypothesis of a stable density model, we consider the following data generating
process: Y = a1 + B1yi—1 + Poxi_1 + o€ where x; = ¢y + Ppoxy 1 + &4, and g, ~ N(0,1), ¢; = 1.38,
¢o = 0.77, oy = 1.5, f; = 0.5, B3 = 0.6, 0 = 1. We consider sample sizes of 7' = 150 (with
evaluation sample P=60), 7" = 375 (with P=150), and 7" = 750 (with P=300) observations,
and for each sample size, we consider the proportion m = r/P equal to m = 1/3, m = 1/2 and
m = 2/3. We maintain the ratio P/R constant and equal to 2/3. In total, we run nine experiments,
of which we present here the two most extremes: small sample size with small subsample window
(T' = 150, m = 1/3) and large sample size with large subsample window (7" = 750, m = 2/3). The
size results of these two cases are presented in Tables {4] and [5| respectively. The remaining seven
cases are available in a “supplementary material” file. We work with 13 autocontour coverage
levels C' = [0.01,0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95,0.99]. The number of Monte Carlo

replications is 1,000, and the number of bootstrap samples is 500.
[TABLES 4-5 ABOUT HERE]

The overall size of the tests is very good in the nine experiments considered. There are not
substantial differences among the fixed, rolling, and recursive estimation schemes. We find some
small size distortions (under-sized) when the sample is small (7" = 150) and the autoncotour levels
are extreme (1% and 99%) but as the sample size increases, the distortion disappears. For the

individual tests Sﬁiai and Aft’lo‘i (k and «; fixed), the Ave-test tends to have better size than the



Sup-test. The umbrella tests S¢, Ac, S, and A have very good size even in small samples.

3.2 Power of the Tests

To assess the power of the tests, we generate data from four different processes, all of them
containing a break point. The model that we maintain under the null hypothesis is the same
as the one considered in the study of the size properties: y; = a1 + B1yi—1 + P21 + 0€; with
Ty = ¢+ poxy_1 + &4, ¢ ~ N(0,1). The total sample size (T') is 650, R = 350, P = 300, and
m = 1/3. The break point happens at at R + 7P, where 7 = 1/3. In the following experiments,
the number of Monte Carlo replications is 1000 and bootstrapped samples 500. We maintain a

nominal test size of 5%.
The four data generating mechanisms are the following:

DGP1: Break in the intercept of v, = oy + S1yi—1 + Boxi—1 + o€r, €4 ~ N(0,1):

oy = 1.5 if t < break
oy —
a9 =2  otherwise

with 51 = 05, 52 = 06, o=1.

DGP2: Break in the variance of y; = o + f1y1—1 + Boxi_1 + o€y, € ~ N(0,1):

o1 =15 if ¢t < break
O =
o9 = 1.8 otherwise

with a = 1.5, 8; = 0.5, 8, = 0.6.

DGP3: Breaks in the slope coefficients of y = o + 1 4y1—1 + Boiti-1 + o€, € ~ N (0, 1):

Bi1 =05 ift < break
P =
P12 = 0.3 otherwise



By1 = 0.6 if t < break
P22 = 0.4 otherwise

Bop =

with o = 1.5, o = 1.

DGP4: Breaks in the intercept, variance and slope coefficients of v, = a; + B1,1y1—1 + B2, 711 + 0v€s,
e~ N(0,1):
oy = 1.5 if t < break

oy =
g =2 otherwise
o1 = 1.5 if t < break
Oy —
o9 = 1.8 otherwise
Bi1 =05 ift< break
By =
P12 = 0.3 otherwise
P21 = 0.6 if ¢ < break
Bay =

P22 = 0.4 otherwise

Note that the breaks considered are not very extreme. We perform all the simulations under fixed,
rolling, and recursive estimation schemes. We report the power results for the fixed and rolling

schemes in Tables [6] to [0}, and those for the recursive scheme in the supplementary material.
[TABLES 6-9 ABOUT HERE]

Under the fixed scheme, the tests are most powerful (power of about 90%) to detect breaks in
intercept and slope coefficients (DGP1, DGP3, and DGP4). Both Ave- and Sup- tests enjoy
similar performance, either for single hypothesis (S) and Ay) or for joint hypothesis (S¢, Ac, S,
Ar). The power drops when testing for breaks in the variance (DGP2) with values of 10-60% for
the single hypothesis tests and of 60% for the joint hypothesis tests. Under the rolling scheme,
as we expected, the tests are less powerful overall because by rolling the estimation sample, the
model adjusts slowly to the new parameters values. Nevertheless, the power of S¢, A¢, Sp and
Ay is still very high (around 50-80%) for DGP1, DGP3, and DGP4, and around 40% for DGP2.
For all DGPs, the Ave-test is more powerful that the Sup. Under the recursive scheme, the tests

10



performance is slightly worse than in the fixed scheme but slightly better than in the rolling scheme.

3.3 Detection of the break point

An advantage of these tests is that they are very helpful to detect the location of the break in the
data. In this section, we will show how to search for the break. We consider two cases: a break in
the intercept of the model (DGP1B) and a break in the variance (DGP2B). We generate a time

series of T' = 600 observations from each of the following processes:

DGPI1B: v = oy + f1yi—1 + oxi—1 + o€, € ~ N(0,1)

ap = 1.5 if ¢t < break
y =
ay = 0.1 otherwise

with 81 = 0.5, fo = 0.6, 0 = 1, and the break occuring at the 480 observation, i.e. break=480.
DGP2B: y; = a+ fiyi—1 + Poxi—1 + 0461, € ~ N(0,1)

o1 =2 if t < break
Oy —
o9 = 0.5 otherwise

with a = 1.5, f; = 0.5, B = 0.6, and break=480 observation.

We proceed by estimating the model y, = a + Si1y—1 + foxi—1 + o€, € ~ N(0,1) and choosing
the following samples R=350, P=250, and m = r/P = 100/250 = 0.4. We implement the three
estimation schemes (fixed, recursive, and rolling). For each subsample (r = 100) in the evaluation
window P we calculate the t-ratio and C statistics for a total of 151 tests (I'— R+ 1 — r). Next,
from the asymptotic distribution tables, we choose the 5% critical values corresponding to Sy and
Sc as the thresholds that will help to locate the first significant subsample that should contain
the break point. Given the sample windows that we have chosen, i.e. P/R = 0.71, we recommend
bootstrapping the tests S}y and S¢ in order to find the 5% critical value. In Figures |1f and , we

plot the 151 t-tests and C-tests in a sequential fashion together with the bootstrapped 5% critical
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values corresponding to the distribution of Sj;; and S¢ under the three estimation schemes and for

both DGP1B and DGP2B.

Regarding DGP1B, the C-tests react faster to the break than the t-tests for all estimation schemes.
For instance, under the fixed scheme, it is the 80th t-statistics that hits the threshold for the first
time (from that point on all t-tests are above the threshold) and it marks the first subsample
that contains the break, which corresponds to the interval of observations [430, 529]. For the
C-statistics, it is the 36th test hitting the threshold line for the first time, which corresponds to
the observations in the subsample [386, 485]. The break must be contained in the intersection
of these two subsamples, i.e. [430, 485]. The actual break happens at the 480th observation.
We observe that the maximum values of the t-tests and C-tests are those of the 130th statistic,
which corresponds to the subsample [480, 579]. From this point on, the values of the tests start
decreasing, which means that the break point is already passed. As expected, under the recursive
and rolling schemes, the tests react slower to the break but nevertheless they are also accurate on

pointing out the subsample where the break occurs.

Regarding DGP2B, both t-tests and C-tests react at about the same time. For instance, under
the recursive scheme, it is the 73th statistic (for both t and C tests) that hits the threshold for
the first time. This corresponds to the subsample [423, 522]. The maximum values of the t-tests
and C-tests are those of the 130th statistic, which corresponds to the subsample [480, 579], and
putting these two pieces of information together, we locate the break within the observations [480,

522].
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Figure 1: Plots of ¢ and C Statistics for DGP1B: Break in the intercept
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4 Density Forecast Evaluation of the Phillips Curve

We apply the proposed tests to analyze the stability of the Phillips curve. Stock and Watson
(1999) found some empirical evidence in favor of the Phillips curve as a forecasting tool, they
showed that inflation forecasts produced by the Phillips curve were more accurate than forecasts
based on simple autoregressive or multivariate models but they also found parameter instabilities
across different subsamples. Rossi and Skehposyan (2010) showed that the predictive power of
the Phillips curve disappeared around the time of the Great Moderation. Based on scoring rules,
Amisano annd Giacomini (2007) compared the density forecast accuracy of several models of the
Phillips curve and concluded that the best density forecast is produced by a Markov-switching
model. Since their comparisons are based on the average forecasting performance of competing
models over time, they cannot directly address the instabilities widely documented in the literature.
In this section, we consider the models in Amisano annd Giacomini (2007) and we focus on their
absolute density forecast performance in the presence of instabilities. Our starting model is a
linear Phillips curve (Stock and Watson, 1999), in which changes of the inflation rate depend on

their lags and on lags of the unemployment rate i.e.,
Amy = ay + B1AT 1 + Bo AT + BroAm 19 + VU1 + 0

where m; = 100 x In(C'PI,/CPI;,_13); CPI, is the consumer price index for all urban consumers
and all items; ;1 is the civilian unemployment rate; and ¢; ~ N(0,1). The dats is collected from
the FRED database; monthly CPI and unemployment series are both seasonally adjusted. The
time series run from 1958MO01 to 2012M01 (updated sample from 1958M01-2004M07 in Amisano
and Giacomini). Standard tests on Am; and u; show that they do not have a unit root. On
implementing our tests, we consider the same estimation sample as in Amisano and Giacomini,
from 1958MO01 to 1987M12 (360 observations). The evaluation sample runs from 1988MO01 to
2012MO1 (289 observations) with subsamples of size r = 200.
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4.1 Evaluation of the Linear Phillips Curve

We present the evaluation results for the linear Phillips Curve in Table (10| under fixed and rolling

estimation schemes. The recursive case is in the supplementary material.
[TABLE 10 ABOUT HERE]

The umbrella tests S¢, Ac, S, and Ay, indicate a clear rejection of the linear model. On examining
the individual tests S}, and Ay, the rejection comes from the middle autocontours, between 40%
and 70% coverage, and from the 95-99% levels (large changes in inflation). In Figure [3| we plot
the t- and C-statistics over the evaluation period in a sequential fashion. The tests break through
their corresponding critical values around the 60th statistic. From this point on, the values of the
tests keep on increasing reaching two local maxima, which points to two potential breaks: the first
in the 64th statistic for the t-tests (1993MO03 to 2009M11) and in the 71th statistic for the C tests
(1993M11 to 2010M06), and the second local maximum in the 78th statistic that corresponds to
the period 1994MO06 to 2011MO1. All these periods include the years 1993-2007 in the so-called
Great Moderation and the years after the deep financial crisis of 2008.

4.2 Evaluation of Non-Linear Phillips Curve

Given the rejection of the linear Phillips curve, we proceed with a flexible specification by assuming
that the coefficients in the linear model vary according to a Markov switching mechanism. We

consider a two-state Markov switching model, i.e.,
Amy = o™ + B' Ay + By Ao + Bi5AT 12 + YU + 07 e

where the unobserved state variable s; switches between two states,1 or 2, with transition proba-
bilities Pr(s; = j|si—1 = i) = p;; for i,j = 1,2; and ¢ is assumed to be a standard normal variate.
Thus, this model allows for non-Gaussian density forecasts. Since all the coefficients depend on the
state variable (Model 1), the model is extremely flexible and it will adapt to potential breaks or

instabilities that may occur over time. We have run our test statistics and we fail to reject the null
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Figure 3: Plots of t-ratio (99% autocontour) and C' Statistics for Linear Phillips Curve
(fixed scheme)

hypothesis of correct specification. However, we would like to investigate what coefficients are key

to understand where the nonlinear behavior comes from. We consider two additional specifications,

Model 2: Am = o+ By Am_y + B3t Amy_o + 515 AT 19 + yus—1 + o€, (intercept and unemployment

coefficient do not depend on s;).

Model 3: Am, = o + B1Am_1 + Bo Ao + B1oAmy_1o + V¥uy_1 + 04,6, (inflation coefficients do

not depend on s;).
We present the test results in Table [L1]

[TABLE 11 ABOUT HERE]

For Model 2, we still fail to reject the overall model as the umbrella tests So, Ac, Si, and A
have p-values larger than 5%. However, on a close examination of the individual tests S}, and
Ay, we observe a rejection of the model in the autocontours 90 to 99%. In Model 3, we allow
the intercept, the unemployment coefficient and the variance of the error to be state dependent

while the rest of the parameters are constant. In this case, all statistics (joint and individual)
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enjoy p-values larger than 5% and consequently we fail to reject the model even in the presence
of instabilities. A nonlinear Phillips curve has better predictive performance than a linear model,
which is unstable over time. The advantage comes from letting the coefficient that links inflation

and unemployment to be state-dependent.

5 Conclusion

We have provided a battery of tests to assess the stability of the density forecast over time, which
offer important advantages for the empirical researcher. These tests are nuisance-parameter free
and their asymptotic distributions can be tabulated. If the tests reject the null hypothesis of a
stable density forecast, the shapes of the empirical generalized autocontours can be visualized to
extract information regarding the direction of the rejection. Regardless of the estimation scheme
(fixed, rolling, or recursive), their finite sample properties are superior. In some instances, the
Ave-tests tend to have a slightly better size than the Sup-tests. Both types are more powerful on
detecting breaks in the intercept and slope coefficients than on detecting breaks in the variance.
In addition, we have proposed a rather accurate procedure to find the location of the breaks and
the unstable periods. The tests can also be easily applied to multivariate random processes of any
dimension. As an application of the tests, we have analyzed the stability of the Phillips curve. A
linear model is strongly rejected in favor of a non-linear specification that allows the coefficient
linking inflation changes and unemployment to be state-dependent. The break of the linear model

occurs during the Great Moderation years.
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Appendix

Proof of Proposition 1:

The indicator function I;"* is a Bernoulli random variable with the following moments: E(I1}>*) =

oy, Var(I™) = a;(1 — a;) and covariance

0 if h #k
a:-)’/2(1—a1/2) if h==~k

7

T = cov(]ka’ ]ka’) =

Since the indicator process is stationary and ergodic, &;(J) satisfies the condition of global covari-
ance stationarity required for the FLCT to apply (Theorem 7.17) in White (2001). Since J = [Ps],

s € [m,1], and r — k = [Pm], we write

N R+J ki
Wpls) = (r=k) (@) — ) _ S hresrn I — )
r N Ok V1 — ko,
- fjé]ﬂ(—,k’ai — ;) B Zré];l(r_k)(]f’ai — ;)
(r_k)o-kz (T—k)O'kZ

R+|[Ps] K% R+[P(s—m) 04
VP SE e —a) VP — )
VPm \/_Uk,i \/m \/_Uk,i

= =W =W —m)

where W (.) is the standard Brownian motion and the limiting distribution, in the last line, is a

direct consequence of the FCLT. Finally, by the Continuous Mapping Theorem, we have:

S = sup| > sup
J Ok,a; P—oo
J A
4 Vr —ka(J !W m)|
t g
\ | —r + r Uk,ai P—oo

where J = [Ps] and J = [P3].

19



Proof of Proposition 2

Let €, be the variance-covariance matrix of Cy(J) whose typical element w;; is calculated as
follows

cov(Cr.iy Crj) = cov(Itk’o‘i, [tk’aj) + cov(Itk’o‘i, Iff;j) + cov([ff}‘j, [tk’aj) +o(1)

Z:], y roposmon ,wi7i:var — o; — O = — Q5 + (6% —Ozl. . Z<]7
Ifi=4j by P ition 1 T — k(&) 1 20321 — o). I i < j

%

a; < aj, and we have

cou(IF 1) = B(IP™ < I;'™) = ai x o = (1 — @)

ki phajy k,a; ko _ 1/2
cov(I; ™ L)) = BE(I; X I,7))) —ay X aj = o X o) " — a; X @

Ik,ai ]k:,Otj _ E Ik,ai ]k,aj _ 1/2
cov(I, 29, 17 ) = E(L29 < I ) — i X aj = o X @' " — a X

If « > j, the above expressions hold by just switching the subindexes ¢ and j.

Since the vector Cy(J) is globally stationary, we can invoke a multivariate FLCT (see Theorem

7.29 and 7.30 in White (2001)). By following the same arguments as in Proposition 1, we have

Wp(s) = 02Cu())
T =Wl = Wis —m)

where W(s) is a C-variate Brownian process. By the Continuous Mapping Theorem, we have

SC = Sl}p Ck(c])lﬂlzlck(l])
W) = W = m) (W) = W(s = m)
P=oo seim,1] m
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and

o = Fo L ICU9IC)
J
m 5 (W(T’) - W(T - m)znl(W(T) — W(r — m))

Proof of Proposition 3: Let A,, be the variance-covariance matrix of L,,(JJ) whose typical
element \; is calculated as
ai(l—a;) + 22721 —al?)  ifj=k

)\.’k _ ) 7
’ 40(13/2(1 — 041/2) if j #£k

7

Therefore, the vector Ly, (J) is globally stationary, and we can invoke a multivariate FLCT (see
Theorems 7.29 and 7.30 in White (2001)). By following the same arguments as in Proposition 1,

we have

where W (s) is a L-variate Brownian process. By the Continuous Mapping Theorem, we have

S, = supLg,(J)A; ' La,(J)
e (W)= Wl - m) (W)~ Ws = m)
P=oo selm,1] m
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1 d IA—1
- P—r+1 ;Lai((ﬂ Aai Lo, (J)
_, *(W(s) — W(s— m)i;l(W(s) —W(s—m))
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Tables: Asymptotic Distributions

In the following six tables, the percentiles are obtained from 2000 replications with a sample size
of 20,000 observations in each replication.

Asymptotic Distribution of S} Statistic
m

Percentile 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
99% 3.950 3.713 3.510 3.396 3.428 3.213 3.089 3.112 2.951
95% 3.502 3.267 3.066 2.926 2.866 2.679 2.537 2.439 2.406
90% 3.292 2987 2.845 2.642 2.571 2.361 2240 2.121 2.015
80% 3.020 2.684 2.522 2.372 2217 2.053 1.935 1.849 1.655
70% 2.843 2.489 2.315 2.156 1.999 1.834 1.697 1.582 1.392
60% 2.702 2.343 2.145 1.983 1.819 1.653 1.529 1.383 1.197
50% 2.569 2.203 2.015 1.830 1.664 1.515 1.365 1.221 1.021
40% 2.457 2.090 1.884 1.684 1.515 1.373 1.212 1.066 0.867
30% 2.339 1.975 1.747 1.540 1.379 1.228 1.071 0.915 0.730
20% 2.201 1.822 1.586 1.384 1.226 1.074 0.923 0.791 0.606
10% 2.033 1.629 1.420 1.199 1.055 0.901 0.761 0.631 0.479
5% 1.922 1492 1.290 1.065 0.943 0.813 0.663 0.535 0.394
1% 1.730 1.265 1.072 0.829 0.739 0.631 0.498 0.409 0.287

Asymptotic Distribution of A}, Statistic
m

Percentile 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
99% 1.241 1.435 1.656 1.824 2.204 2.181 2.360 2.542 2.583
95% 1.078 1.199 1.355 1.487 1.697 1.694 1.774 1.854 1.998
90% 1.004 1.088 1.206 1.300 1.418 1.406 1.490 1.586 1.666
80% 0.918 0970 1.035 1.101 1.115 1.128 1.183 1.264 1.256
70% 0.870 0.891 0.922 0.948 0.939 0.928 0.966 1.017 1.019
60% 0.825 0.825 0.827 0.837 0.818 0.796 0.807 0.824 0.825
50% 0.789 0.760 0.760 0.741 0.710 0.685 0.682 0.675 0.661
40% 0.752 0.706 0.690 0.653 0.615 0.581 0.551 0.534 0.507
30% 0.711 0.649 0.617 0.568 0.524 0.487 0.453 0.417 0.378
20% 0.673 0.589 0.544 0.497 0.451 0.409 0.358 0.320 0.274
10% 0.608 0.517 0.465 0.409 0.359 0.319 0.269 0.234 0.186
5% 0.567 0.458 0.413 0.342 0.310 0.260 0.219 0.188 0.140
1% 0.478 0.381 0.325 0.251 0.235 0.200 0.152 0.135 0.096

Table 1: Asymptotic Distributions of Sj;; and Ay Statistics
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Asymptotic Distribution of S¢ Statistic

m
Percentile 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
99% 42.488 39.592 38.534 37.694 37.361 35.925 36.051 34.591 31.804
95% 37.159 34.956 32.983 32.277 30.902 29.597 29.008 27.773 25.962
90% 35.155  32.562 30.722 29.378 28.069 27.176 26.181 24.685 23.356
80% 32.624 29964 28.071 26.673 25.329 24.182 22.935 21.621 20.175
70% 30.932 28.330 26.359 24.906 23.421 22.132 20.932 19.423 18.125
60% 29.689 26.991 24.908 23.416 21.858 20.579 19.179 17.901 16.550
50% 28.540 25.798 23.648 22.111 20.626 19.136 17.708 16.501 15.241
40% 27.482 24.522 22468 20.900 19.254 17.672 16.440 15.111 13.829
30% 26.508 23.385 21.197 19.510 17.873 16.413 15.058 13.685 12.477
20% 25.351 22.174 19.836 18.193 16.514 14.927 13.582 12.250 10.898
10% 23.731 20.400 18.067 16.333 14.568 13.061 11.741 10.480  8.987
5% 22.376  18.902 16.821 14.879 13.338 11.876 10.383  9.037  7.852
1% 20.394 16.833 14.737 12.807 11.208 9.884 8.275 6.929  5.905
Asymptotic Distribution of A Statistic
m
Percentile 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
99% 16.342 18.610 20.265 22.301 24.6568 26.534 27.422 28.202 27.987
95% 15.298 16.576 17.794 18.927 19.924 20.838 21.866 22.084 22.533
90% 14.762 15.734 16.456 17.287 18.022 18.629 18.996 19.612 19.965
80% 14.099 14.648 15.143 15477 16.014 16.449 16.761 16.975 17.096
70% 13.672 14.029 14.209 14.439 14.705 14.937 15.107 15.111 15.290
60% 13.295 13.393 13.478 13.566 13.597 13.552 13.629 13.790 13.772
50% 12.955 12.873 12.847 12.820 12.666 12.591 12.534 12.514 12.547
40% 12.623 12.388 12.178 12.014 11.722 11.471 11.290 11.362 11.311
30% 12.262 11.851 11.535 11.227 10.909 10.576 10.364 10.166 10.073
20% 11.828 11.264 10.837 10.423 9.991 9.555 9.288  8.965 8.786
10% 11.298 10.483 9.871 9.330 8.746 8297 7.860 7.558  7.143
5% 10.840 9.895 9.120 8.436 7.849 7.358 6.750 6.380  5.967
1% 10.030  8.791 7.993 7.279 6.363 5.659 5.069 4.629 4.382

Table 2: Asymptotic Distribution of S¢ and A¢ Statistics (13 autocontours)
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Asymptotic Distribution of S; Statistic

m
percentile 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
99% 26.825 25.069 23.492 23.010 22.057 20.621 19.801 19.370 17.756
95% 22.719 21.121 19.941 18.372 17.199 16.042 15.645 14.470 13.631
90% 20.867 19.109 17.489 16.318 15.203 14.241 13.301 12.552 11.636
80% 18.859 16.979 15.273 14.045 12.859 11.973 11.213 10.267  9.325
70% 17.452 15.505 13.917 12.671 11.665 10.585 9.708  8.788  7.949
60% 16.389 14.279 12.920 11.587 10.492 9.537 8.610 7.765  6.927
50% 14.810 12.425 11.052 9.796 8827 7916 6.830 6.071  5.192
40% 15.534 13.300 11.910 10.616 9.576 8.678 7.698  6.917  6.068
30% 13.970 11.675 10.164 8891 7.999 6.948 6.048 5.213 4.423
20% 13.066 10.697 9.249 8.023 7.039 6.0564 5.113 4.388  3.646
10% 11.896 9.535 8.158 7.011 5863 4.966 4.213 3.484  2.743
5% 11.145 8544 7.070 6.093 5.099 4286 3492 2.786  2.187
1% 9.583  7.267 5.857 4.821 3950 3.173 2.585 1.907 1.510
Asymptotic Distribution of Ay Statistic
m
percentile 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
99% 7.260 8.419 9.620 10.837 12.021 12.943 13.509 14.458 14.629
95% 6.507 7.336 7.948 8396 9.045 9.636 10.116 10.569 10.913
90% 6.122 6.673 7.034 7.503 7.961 8313 8562 8929 9.220
80% 5.705 6.038 6.259 6.452 6.643 6.822 6.995 7.104  7.309
70% 5.383 5.583 5.669 5.733 5820 5868 5.929 5977  6.040
60% 5.164 5.208 5.200 5.198 5212 5.158 5.191 5.122  5.128
50% 4.742 4.604 4.468 4.361 4.224 4.021 3.885 3.817 3.767
40% 4951 4.890 4.831 4.770 4.663 4.570 4.506  4.452  4.438
30% 4535 4.316 4.123 3.922 3.717 3476 3.324 3.174  3.088
20% 4.294 3.988 3.712 3418 3.174 2973 2.715 2584 2480
10% 4.017 3.539 3.189 2922 2.602 2.320 2.086 1.927 1.746
5% 3.752 3.237 2.867 2.508 2246 1.921 1.695 1.459 1.292
1% 3.337 2.681 2222 1.875 1.621 1.388 1.150 0.960 0.777

Table 3: Asymptotic Distribution of Sy, and A, Statistics (five lags)
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Tables: Size and Power of the Tests

1. Small Sample (7') and Small Subsample Window (m)

Tilr)(] Rig() Piﬁ() Sl.l Sl.2 Sl.3 SlA Sl.5 Sl.fi Sl.7 Sl.?i Sl.g Sl,l() Sl,ll SL12 Sl,l3
=150, R=90,P= Sl S S Sd S S S S S Sd S S
fixed 0042 0.037 0.033 0.046 0049 0037 0.04 0051 0.045 0045 0043 0.036 0.039
rolling 0.028 004 0041 0.041 0038 0.042 0.04 004 0.041 0046 0.044 0.036 0.038
recursive 0.020 0.041 0.042 004 0039 0039 0.038 0039 0.044 0042 0039 0.035 0.032
1,1 1,2 1.3 14 1.5 1.6 1,7 1.8 1.9 1,10 1,11 1,12 1,13
A A A Ay AP AP Ay Ay Ay A A A Ay
fixed 0.047 0.048 0.049 0.056 0.055 0.058 0.049 0050 0.049 0.057 0052 0.055 0.057
rolling 0.032 0.038 0.048 0.043 0041 0.046 0.046 0.045 0.04 0.046 0.048 0.046 0.031
recursive 0.024 0.037 0.037 0.043 0043 0.038 0.043 0052 0.043 0044 0.042 0.035 0.033
Sé‘,lS A]C;K} Si,';’ 52,7 52,7 52,7 Ai,'? ‘43[/,7 Al,'? 44:27
fixed 0059 0.05] 0.06 0.6 0052 0.045 0.063 0.063 0.058 0.055
rolling 0.038 0.043 0.045 0.052 0042 0.042 0.051 0.05 0.045 0.045
recursive 0.033 0.043 0.044 0.055 0053 0.052 0.052 0.058 0.039 0.033
1,7 2.7 3.7 4,7 5.7 17 27 3.7 a7 57
Sd S S S S Ag Ay Ay Ay Ay
fixed 0.04 0038 0.042 0.04 0033 0.049 0053 0.054 0.051 0.039
rolling 0.04 0033 0.032 0033 0034 0.036 0038 0039 0.04 0.032
recursive 0.038 0.037 0031 0.035 0034 0.043 0.039 004 005 0.037

Notation: 13 autocontours C' = [0.01,0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95,0.99].
In S"‘;““‘ and A‘kt‘“ , lag k and autocontour «; are fixed.

In Sé‘“ and Alz;". k is fixed and « is the total number of autocontours considered.

In Sf’% and AI;J’O”, up to k lags are considered and «; is a fixed autocontour.

Table 4: Size of the statistics:T=150 R=90 P=T-R=60 m = 1/3 (nominal size 5%)

11. Large Sample (7') and Large Subsample Window (m)

T=750, R=450,P=300 S‘lt.‘l gLz gls  gla gls gle  gLT gLE g9 glio  glll gli2 glI3

t| |t] t t] Mt a Mt t t| a t| t
fixed 0.048 l).l)‘4‘0 (|.04‘4 l).OL’i‘Q 0.04‘6 ().()‘5‘1 0,0‘5‘2 0.()‘4‘8 0.0‘5‘2 ()‘.(‘)4 O.l‘)lLZ ()‘.(‘)5 l).l‘)(‘SZ
rolling 0.049 0.041 0.056 0.051 0.048 0.041 0.041 0.045 0.057 0.056 0.049 0.038 0.039
recursive 0.046  0.048 0.045 0.044 0.051 0.048 0.044 0.045 0.047 0.057 0.058 0.039 0.04

T T G L
fixed 0.049 0.045 0.049 0.051 0.046 0.049 0.051 0.043 0.049 0.052 0.043 0.047 0.049
rolling 0.048 0.042 0.046 0.055 0.044 0.047 0.043 0.044 0.044 0.043 0.049 0.044 0.048
recursive 0.04 0.043 0.041 0.063 0.065 0.045 0.053 0.045 0.044 0.051 0.042 0.044 0.043
SLB AL G2T G AT gBT 2T g3T a7 gan
fixed 0.045 0.049 0.047 0.044 0.053 0.05 0.049 0.042 0.046 0.051
rolling 0.045 0.044 0.043 0.064 0.063 0.044 0.048 0.041 0.044 0.05
recursive 0.043 0.047 0.045 0.057 0.052 0.048 0.048 0.048 0.051 0.048
ST STosTosyosy a7 ap e Ay oy
fixed 0.052 0.053 0.042 0.042 0.043 0.051 0.048 0.042 0.054 0.049
rolling 0.041 0.048 0.043 0.039 0.04 0.043 0.043 0.047 0.049 0.043
recursive 0.044 0.051 0.041 0.038 0.041 0.053 0.054 0.043 0.045 0.048

Notation: 13 autocontours C' = [0.01,0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95, 0.99].
In Sﬁ“‘ and Aﬁ"“‘ , lag k and autocontour «; are fixed.
In S&* and AE®, k is fixed and « is the total number of autocontours considered.

Ko ki § . : .
In S and A7, up to k lags are considered and o; is a fixed autocontour.

Table 5: Size of the statistics:T=750 R=450 P=T-R=300 m = 2/3 (nominal size 5%)
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Fixed Scheme | S Si7  si S sy sk S shosiosyt st ospE s
=1 0.14 0.45 0.765 0.956 0.979 0.987 0.995 0.992 0.987 0.976 0.938 0.867 0.589
=2 0.14 0464 0.789 0.955 0.981 0.99 0.993 0.993 0.988 0.974 0.943 0.864 0.593
=3 0.14 0419 0.792 0.965 0.985 0.997 0.997 0.994 0.985 0971 0.937 0871 0.594
=4 0.11 0439 0.797 0.953 0.986 0.993 0.994 0994 099 0979 0.938 0.866 0.595
=5 0.12 0453 0.796 0.952 0.984 0.992 0.994 0.993 0.989 0.971 0.938 0.867 0.598

Ay Ay AT Ay AT AR AT AR AT A AT AT AP
=1 0.08 0.244 0.698 0.898 0.948 0.969 0.981 0.978 0.968 0.945 0.904 0.812 0.588
=2 0.09 0.277 0.741 0.896 0.952 0.965 0.979 0.983 0.972 0.947 0.898 0.815 0.585
=3 0.07 0276 0.72 0.893 0.941 0.969 0.98 0.984 0.967 0.943 0.906 0.815 0.588
=4 0.07 0319 0.702 0.887 0.957 0.971 0.979 0.981 0.971 0.944 0.904 0.817 0.586
l=5 0.08 0.339 0.722 0906 0.951 0.968 0.985 0.976 0.972 0944 0.903 0.816 0.584
Sélii Al(,}&
=1 0.961 0.921
=2 0.965 0.924
=3 0.967 0.923
=4 0.963 0.921
l=5 0.965 0.921
U U I VI v
c=7 0.989 0.985 0.976 0.964 0.98 0.969 0.956 0.942

Rolling Scheme | S  Sif S St Sa  So Sd  Sw S8 Sa® Sa St S
=1 0.18 0.12 0.308 0416 0459 0.394 042 0.264 0.21 0.08 0.119 0.092 0.08
=2 0.11 0.11 0.295 0.324 0.323 0431 0433 0.333 0.193 0.084 0.123 0.093 0.08
=3 0.11 0.11 0258 0.402 0.386 0.39 0.472 0.325 0.207 0.096 0.123 0.094 0.09
= 0.13 0.11 0.289 0.439 041 0413 0.378 0.325 0.173 0.093 0.121 0.092 0.082
l=5 0.16 0.11 0.262 0.445 0418 0423 0.438 0.318 0.171 0.091 0.121 0.092 0.083

Ay Ay Ay AY Ay AT AT AR A AP A A AP
=1 0.25 0.318 0.559 0.783 0.738 0.710 0.534 0.634 0.418 0.18 0.21 0.102 0.091
=2 0.22 0.292 0.527 0.733 0.71 0.714 0.56 0.621 0.438 0.17 0.216 0.100 0.092
=3 0.24 0.275 0.521 0.768 0.756 0.744 0.499 0.638 0.442 0.155 0.224 0.103 0.092
=4 0.25 0.28 0.519 0806 0.775 0.759 0.611 0.638 0.421 0.133 0.21 0.101 0.092
=5 0.25 0.305 0.516 0.797 0.781 0.769 0.533 0.626 0.392 0.121 0.24 0.101 0.093
Sl,lS, Al,13
C C
=1 0.638 0.749
=2 0.521 0.733
=3 0.619 0.801
l=4 0.641 0.822
l=5 0.637 0.803
S I I VI v
c=7 0.414 0.419 0.408 0.432 0.563 0.59 0.578 0.532

Notes: 13 autocontours C' = [0.01,0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95,0.99].
SET AT for [ = 1,2,...5; 7 refers to the 50% autocontour.

[t >0

527,1427 stacking lags up to [ = 2,....5 and considering the 50% autocontour.
SZC’13 and AZCLB stacking all 13 autocontours for one lag | = 1,2, 3,4, 5.
1000 Monte Carlo replications and 500 bootstrap samples.
T=650, R=350, P=300, m = 1/3, and break point at R+ 7P for 7 =1/3

Table 6: Power for DGP1 under Fixed and Rolling Schemes
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Fixed Scheme | S SiF  si S sy sk s s osiosyt st ospE s
=1 0.292 0.271 0.191 0.084 0.073 0.109 0.281 0.278 0.391 0.512 0.638 0.638 0.518
=2 0.26 0.239 0.171 0.079 0.075 0.106 0.282 0.292 0.418 0.518 0.637 0.639 0.52
=3 0.285 0.265 0.175 0.089 0.075 0.12 0.283 0.29 0.404 0.53 0.635 0.639 0.523
=4 0.311 0.26 0.162 0.088 0.063 0.096 0.282 0.284 0.399 0.512 0.624 0.636 0.526
=5 0.273 0.253 0.158 0.068 0.068 0.108 0.282 0.288 0.408 0.539 0.645 0.638 0.531

Ay Ay AT Ay AG Ay Ag AR AN AT At A A
=1 0.345 0.242 0.162 0.09 0.078 0.127 0.275 0.271 0.361 0.472 0.561 0.604 0.527
=2 0.327 0.225 0.16 0.081 0.077 0.12 0.269 0.277 0.377 0.467 0.56 0.606 0.522
=3 0.347 0.239 0.167 0.089 0.087 0.123 0.272 0.286 0.374 0.468 0.558 0.6 0.527
=4 0.368 0.246 0.159 0.09 0.069 0.111 0.272 0.277 0.345 0.455 0.55 0.592 0.523
l=5 0.317 0.222 0.146 0.086 0.072 0.12 0.273 0.288 0.37 0.469 0.564 0.6 0.523
5813 Al(,}&
=1 0.659 0.595
=2 0.651 0.604
=3 0.666 0.625
=4 0.644 0.625
l=5 0.652 0.611
S I I VI v
c=7 0.286 0.285 0.281 0.285 0.271 0.273 0.276 0.275

Rolling Scheme | S  Sif S S S Sw Sd  Sw  S@ Sa® Sa St S
=1 0.116 0.104 0.088 0.063 0.05 0.056 0.112 0.11 0.171 0.341 0.302 0.264 0.261
=2 0.114 0.09 0.086 0.063 0.054 0.051 0.118 0.113 0.172 0.318 0.296 0.264 0.262
=3 0.107 0.094 0.076 0.065 0.06 0.053 0.108 0.126 0.189 0.335 0.28 0.273 0.266
=4 0.113 0.104 0.072 0.054 0.058 0.049 0.175 0.114 0.167 0.329 0.287 0.266 0.267
=5 0.109 0.093 0.08 0.053 0.05 0.063 0.16 0.121 0.184 0.337 0.274 0.265 0.267

Ay Ay Ay AG Ay AT AT AR A A AT A AP
=1 0.179 0.129 0.099 0.078 0.066 0.075 0.19 0.151 0.204 0.36 0.344 0.35 0.378
=2 0.169 0.112 0.082 0.075 0.066 0.076 0.18 0.145 0.205 0.386 0.345 0.343 0.379
=3 0.175 0.139 0.092 0.07 0.067 0.077 0.196 0.159 0.228 0.378 0.352 0.348 0.378
=4 0.183 0.143 0.083 0.063 0.066 0.077 0.192 0.144 0.201 0.358 0.342 0.352 0.375
=5 0.159 0.129 0.09 0.063 0.066 0.065 0.191 0.151 0.208 0.371 0.347 0.35 0.377
Sél‘% Alg%
=1 0.409 0.414
=2 0.363 0.394
=3 0.381 0.427
l=4 0.398 0.431
l=5 0.306 0.318
SptoosT ST ST AT AT AT Ay
c=7 0.168 0.115 0.113 0.112 0.129 0.189 0.191 0.182

Notes: 13 autocontours C' = [0.01,0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95,0.99].
SET AT for [ = 1,2,...5; 7 refers to the 50% autocontour.

[t >0l

527,1427 stacking lags up to [ = 2,....5 and considering the 50% autocontour.
SZC’13 and Al(}lg stacking all 13 autocontours for one lag | = 1,2, 3,4, 5.
1000 Monte Carlo replications and 500 bootstrap samples.
T=650, R=350, P=300, m = 1/3, and break point at R+ 7P for 7 =1/3

Table 7: Power for DGP2 under Fixed and Rolling Schemes
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Fixed Scheme S|l£|1 S\lif Sft"g Sllt’f Sllt’ls S‘lt"‘ﬁ Sf;f S|lt’|8 S\li\g S\li\m S\li\“ S\li\IQ S|li|13
=1 0.95 0.998 0.999 0.999 0.999 1 097 0985 0.961 0.849 0.449 0.33 0.29
=2 0.96 0.998 0.999 1 0.999 0.997 0982 0981 096 0.859 0444 0.16 0.19
=3 0.97 0.997 0.998 1 0.999 0998 0979 0.982 0956 0.85 0436 0.35 0.31
l=4 0.96 0.997 0.998 1 0.998 0.998 0.98 0.984 0.965 0.853 0.446 0.36 0.13
l=5 0.96 0.997 1 0.999 1 0.999 0982 0.983 0.96 0.854 0447 0.2 0.23

Ay Ay AT Ay Ag AR Ay Ay Ay AT A AT A
=1 0.93 0.951 1 0.999 0.999 0995 0.95 0.973 0914 0475 0.38 0.25 0.16
=2 0.931 0.967 0.998 1 0.999 0994 0.952 0.974 0.896 0.518 0.34 0.22 0.17
=3 0.937 098 0998 0.999 0.997 0.995 0.95 0.973 0.883 0.555 0.36 0.24 0.19
=4 0.935 0.96 1 0.998 0.997 0.994 095 0.968 0.908 0.487 0.31 0.32 0.22
l=5 0939 095 0999 0998 0.997 0995 095 0.962 0.875 0.545 031 0.12 0.23
Sél‘& Alél?)
=1 1 0.97
=2 1 0.98
=3 0.999 0.97
=4 1 0.999
l=5 1 1
Sptoospt st oSpT AT AT AT Ay
c=7 098 098 098 098 097 0969 097 097

Rolling Scheme | Sy S S S S5 Sa Sd Sw Sa S® Sa St S
=1 0.46 0.461 0.395 0.184 0.26 0.329 0.396 0.457 0.401 0.134 0.212 0.092 0.08
=2 0.358 0.32 0.338 0.381 0.421 0475 0.511 0.508 0.39 0.121 0.241 0.093 0.08
=3 0.437 0.398 0.389 0.442 0.465 0.524 0.524 0.518 0.385 0.099 0.223 0.094 0.09
=4 0.445 0.425 0.444 0481 0.502 0.544 0.54 0.512 0.345 0.095 0.232 0.092 0.082
1=5 0448 0409 0.425 0468 0511 0.54 0.546 0.506 0.361 0.075 0.232 0.092 0.083

Ay Ay Ay A AG AT AT A A4S A4S Ay A7 AP
=1 0.189 0.219 0.332 0473 0.584 0.678 0.726 0.739 0.706 0.395 0.163 0.082 0.06
=2 0.585 0.628 0.686 0.788 0.808 0.834 0.826 0.815 0.716 0.356 0.171 0.081 0.06
l= 0.68 0.711 0.728 0.796 0.832 0.839 0.832 0.811 0.7 0.334 0.163 0.081 0.07
=4 0.684 0.733 0.765 0.832 0.851 0.861 0.846 0.815 0.698 0.308 0.162 0.081 0.062
=5 0.674 0.717 0.762 0.82 0.846 0.86 0.848 0.814 0.669 0.291 0.161 0.081 0.063
Séw AZC,'B
=1 0.57 0.817
=2 0.539 0.845
=3 0.53 0.814
l= 0.532 0.78
=5 0.534 0.782
Spoost ST ST AT AT AT Ay
0477 0.496 0.48 0421 0.728 0.75 0.749 0.703

Notes: 13 autocontours C' = [0.01,0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95,0.99].
SET AT for [ = 1,2,...5; 7 refers to the 50% autocontour.

[t >0l

527,1427 stacking lags up to [ = 2,....5 and considering the 50% autocontour.
SZC’13 and Al(}lg stacking all 13 autocontours for one lag | = 1,2, 3,4, 5.
1000 Monte Carlo replications and 500 bootstrap samples.
T=650, R=350, P=300, m = 1/3, and break point at R+ 7P for 7 =1/3

Table 8: Power for DGP3 under Fixed and Rolling Schemes
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Fixed Scheme | S SiF  si S sy sk s s osiosyt st ospE s
=1 1 1 0.999 1 1 1 0.999 0.999 0.989 0.984 0.969 0.93 0.79
=2 0.999 1 0.999 0.996 1 1 1 1 0.98 0.983 0.967 0.901 0.78
=3 0.998 1 1 1 1 0.999 1 1 0.996 0.98 0.965 0.912 0.781
=4 1 0.999 1 1 0.998 1 0.999 1 099 098 0962 0.923 0.744
=5 1 0.996 1 1 1 1 1 0.998 1 098 0.966 0917 0.775

Ay A AT A AT AR A AR A4S AT AT AT A
=1 0.989 1 0.995 1 1 1 0.98 0.998 0.989 096 0914 0.812 0.639
=2 0.989 1 0.995 0.995 0.997 1 0.988 0.989 0.986 0.967 0.934 0.815 0.633
=3 0.99 1 1 1 1 0.997 0.985 0.99 0.986 0.966 0.914 0.815 0.622
=4 1 0.996 1 1 0.996 0. 0.989 0.991 0.98 0.967 0.954 0.817 0.644
=5 1 0.996 1 1 1 1 0.989 0.996 0986 0.97 0914 0.816 0.675
5813 Al(,}&
=1 1 1
=2 1 1
=3 1 1
=4 1 1
l=5 1 1
L VA VI VI v
c=7 1 1 1 1 1 1 1 1

Rolling Scheme | Sy S S S S5 Sa Sd Sw Sa S® Sa St S
=1 0.569 0.461 0.486 0.589 0.696 0.746 0.76 0.729 0.69 0.643 0.481 0.331 0.123
=2 0.44 0387 0.358 0.577 0.664 0.73 0.744 0.733 0.703 0.629 0.464 0.332 0.12
=3 0.541 0.465 0.421 0.528 0.649 0.695 0.705 0.71 0.691 0.624 0.445 0.332 0.127
=4 0.586 0.514 0.48 0.525 0.639 0.698 0.703 0.694 0.663 0.618 0.447 0.319 0.131
=5 0.571 0.495 0.484 0.525 0.643 0.724 0.722 0.723 0.678 0.627 0.448 0.318 0.135

Ay Ay Ay Ay Ay AT AT A AY A4S Ay A AP
=1 0.25 0.318 0.559 0.761 0.831 0.861 0.858 0.839 0.819 0.763 0.606 0.461 0.236
=2 0.22 0.292 0.527 0.739 0.794 0.835 0.857 0.852 0.82 0.767 0.601 0.46 0.242
=3 0.24 0.275 0.521 0.705 0.789 0.835 0.85 0.854 0.819 0.767 0.609 0.45 0.237
=4 025 0.28 0.519 0.699 0.795 0.833 086 0.842 0.8 0.736 0.606 0.443 0.24
l=5 0.25 0.305 0.516 0.704 0.789 0.837 0.846 0.848 0.823 0.75 0.588 0.446 0.242
Sél‘% Alg%
=1 0.75 0.85
=2 0.74 0.85
=3 0.76  0.87
l=4 0.76  0.83
=5 0.771 0.81
SpoosT ST ST AT AT AT Ay
cC=7 0.656 0.558 0.558 0.56 0.801 0.724 0.656 0.605

Notes: 13 autocontours C' = [0.01,0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95,0.99].
SET AT for [ = 1,2,...5; 7 refers to the 50% autocontour.

[t >0l

527,1427 stacking lags up to [ = 2,....5 and considering the 50% autocontour.
SZC’13 and Al(}lg stacking all 13 autocontours for one lag | = 1,2, 3,4, 5.
1000 Monte Carlo replications and 500 bootstrap samples.
T=650, R=350, P=300, m = 1/3, and break point at R+ 7P for 7 =1/3

Table 9: Power for DGP4 under Fixed and Rolling Schemes
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Tables: Phillips Curve

Fixed Scheme ‘ Sl,l Sl,? 51,3 51,4 Sl75 Sl,ﬁ 51,7 Sl,8 Sl,9 Sl,lo Sl,ll Sl712 51,13

[¢] [¢] [¢] l¢] I¢] [¢] I¢] [¢] I¢] [¢] It [¢] I¢]

I=1 0.017 0.529 0.523 0471 0.268 0.002 0.008 0.045 0.136 0.091 0.085 0.031 0.0001
1=2 0.015 0.285 0.55 0.434 0481 0.002 0.005 0.041 0.157 0.086 0.09 0.027 0.0001
1=3 0.028 0.584 0.614 0.651 0.419 0.006 0.005 0.03 0.049 0.088 0.073 0.013 0.0001
1=4 0.013 0.104 0.807 0.285 0.209 0.009 0.003 0.027 0.098 0.088 0.069 0.012 0.0001
l=5 0.031 0.221 0.212 0.302 0.206 0.009 0.006 0.034 0.103 0.088 0.057 0.006 0.0001
Ay Ay AT Ay AG AR AT Ay Ap AT A AR A
=1 0.342 0.671 0.759 0.405 0.163 0.042 0.013 0.248 0.243 0.243 0.412 0.199 0.042
=2 0.335 0.453 0.621 0.352 0.972 0.043 0.022 0.336 0.297 0.223 0.332 0.25 0.04
=3 0.494 0.579 0.316 0.567 0.309 0.041 0.016 0.216 0.225 0.235 0.359 0.197 0.049
l=4 0.338 0.348 0.764 0.319 0.152 0.033 0.024 0.144 0.264 0.223 0.327 0.226 0.042
l=5 0.138 0.595 0.637 0.238 0.142 0.032 0.024 0.218 0.273 0.222 0.308 0.184 0.042
Sél‘& Alc’«l?)
=1 0.004 0.022
=2 0.001 0.019
=3 0.003 0.016
=4 0.001 0.025
l=5 0.001 0.025
S U I I v
c=7 0.006 0.009 0.012 0.01 0.027 0.018 0.027 0.029

Rolling SCheme Sl,l Sl,2 Sl,S 51,4 Sl,s Sl,ﬁ Sl,7 Sl,8 Sl,g Sl,lo Sl,ll Sl,l? Sl,13

I¢] I¢] I¢] I¢] I¢] I¢] [¢] I¢] [¢] I¢] I I¢] I¢]

I=1 0.528 0.46 0.843 0.472 0.142 0.002 0.001 0.007 0.008 0.093 0.281 0.026 0.0002
1=2 0258 035 0.58 0251 0.229 0.007 0.004 0.009 0.002 0.081 0.24 0.024 0.0003
1=3 0.559 031 0.741 0437 0.6 0.002 0.001 0.002 0.002 0.066 0.288 0.013 0.0003
I=4 0.38 031 0479 0463 0.7 0.001 0.001 0.003 0.008 0.088 0.275 0.021 0.0002
1=5 0.285 0.249 0.297 0.225 0.12 0.007 0.001 0.003 0.003 0.063 0.327 0.019 0.0002
Ay A Ay Ay Ay AY Ag AT AR ALY AT AR AP
=1 0.789 0.801 0.853 0.656 0.143 0.001 0.023 0.033 0.032 0.145 0.297 0.271 0.024
=2 0.267 0.55 0.812 0.244 0.568 0.002 0.018 0.024 0.045 0.127 0.283 0.337 0.037
=3 0.751 0.918 0.923 0.723 0.144 0.007 0.015 0.032 0.047 0.114 0.288 0.24 0.023
=4 0.358 0.476 0.575 0.448 0.108 0.001 0.015 0.031 0.031 0.142 0.313 0.271 0.034
=5 0.305 0.655 0.576 0.251 0.129 0.009 0.018 0.031 0.039 0.13 0.286 0.288 0.033
Szc,m Agls
=1 0.001  0.009
=2 0.0003 0.004
=3 0.0003 0.01
=4 0.0003 0.005
l=5 0.002 0.004
S TV VA Vi
c=7 0.008 0.008 0.006 0.009 0.038 0.025 0.019 0.031

Notes: 13 autocontours C' = [0.01,0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95,0.99].
S\lig ,A@T for I =1,2,...5; 7 refers to the 50% autocontour.
SE 7AlL’7 stacking lags up to [ = 2,....5 and considering the 50% autocontour.

Slc"13 and AIC’13 stacking all 13 autocontours for one lag [ = 1,2, 3,4, 5.
500 bootstrap samples. T=649, R=360, P=289, m = 0.69

Table 10: Bootstrapped P-values: Linear Phillips Curve (Fixed and Rolling Schemes)
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Model 2 Sl71 SZ,Z 51,3 Sl,4 SZ,S SZ,G Sl,7 SZ,S Sl,9 Sl,lO Sl,ll 51712 51,13

[¢] [¢] l¢] [¢] [¢] [¢] [¢] I¢] [¢] It [¢] [¢] [¢]

=1 0.542 0.682 0.306 0.254 0.18 0.196 0.178 0.26 04 0.188 0.044 0.026 0.036
=2 0478 0.32 0.226 0.15 0.102 0.118 0.102 0.116 0.228 0.088 0.034 0.024 0.032
=3 0.802 0.394 0.188 0.236 0.172 0.176 0.146 0.234 0.274 0.192 0.038 0.024 0.032
=4 0496 0.65 0.524 0.296 0.188 0.2 0.19 0.284 0422 0.21 0.042 0.024 0.034
=5 0.794 0.19 0.286 0.186 0.136 0.148 0.164 0.296 0.386 0.166 0.032 0.024 0.032

AT AT AL QLA QL5 QIS LT A8 g9 ALI0 LI T2 LT3
[¢] I¢| [t] [¢] [¢] I¢| ] [¢] I¢| It [l [¢] l¢]
=1 0.496 0.628 0.296 0.264 0.176 0.198 0.178 0.288 0.424 0.256 0.046 0.028 0.036
=2 0.438 0.298 0.216 0.152 0.102 0.116 0.104 0.16 0.27 0.128 0.044 0.026 0.032
=3 0.372 0.374 0.298 0.24 0.168 0.17 0.148 0.246 0.288 0.22 0.046 0.026 0.032
=4 0.442 0.416 0.366 0.33 0.21 0.2 021 031 0434 0.24 0.046 0.026 0.034

=5 0.362 0.22 0332 0.192 0.138 0.15 0.17 032 0402 0.232 0.036 0.024 0.032

Sléw AIC,}S
=1 0.328 0.332
=2 0.18 0.18
=3 0.284 0.272
=4 0.32  0.328
=5 0.266 0.268

s B § s 2,7 3.7 47 5,7
SPToSyT syt oSyt AT AT AT A
c=7 0.112 0.12 0.12 0.116 0.118 0.124 0.12 0.122

Model 3 Sl,l 51,2 Sl,3 Sl,4 Sl,S SZ,G Sl,7 SI,S SZ,Q Sl,lo Sl,ll Sl,lZ Sl,13

I¢] It [¢] [¢] [¢] I¢] [¢] [¢] It [¢] [¢] I¢]

=1 0.452 0.662 0.454 0.406 0.466 0.694 0.702 0.814 0.788 0.57 0.41 0.254 0.296
=2 0.428 0.552 0.218 0.464 0.436 0.678 0.652 0.816 0.684 0.55 041 0.276 0.296
=3 0.476 0.784 0.454 0.424 0.466 0.66 0.602 0.874 0.782 0.582 0.43 0.206 0.296
=4 0.656 0.738 0.676 0.55 0.584 0.72 0.807 0.884 0.82 0.584 0.386 0.224 0.296
=5 0.652 0.538 0.422 0.444 0.536 0.78 0.836 0.844 0.842 0.578 0.416 0.244 0.296

AT AT A3 QA AP QIS AT A4S ALY ALI0 LT T2 4nI3
[¢] I¢] [t [¢] [¢] l¢| [t [¢] I¢] I¢] [t [¢] I¢]
=1 0.442 0.644 043 039 0.568 0.682 0.856 0.822 0.818 0.596 0.45 0.278 0.294
=2 0.402 0.446 0.318 0.362 0.326 0.488 0.674 0.834 0.72 0.57 0.446 0.308 0.296
=3 0.606 0.748 0.446 0.388 0.454 0.558 0.804 0.868 0.79 0.606 0.434 0.23 0.294
=4 0.638 0.768 0.666 0.348 0.58 0.722 0.86 0.874 0.824 0.584 04 0.226 0.296

=5 0.632 0.514 0404 0432 0522 0722 083 0.852 0.86 0.582 0.412 0.246 0.39

Slé13 Alc,13
=1 0.614 0.596
=2 0.48 0.454
=3 0.494 0.482
=4 0.51 0478
=5 0.488 0.472

ST SToST AT AT AT A7
c=r7 0.518 0.566 0.548 0.598 0.534 0.578 0.564 0.618

Notes: 13 autocontours C' = [0.01,0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95,0.99].
S‘lt‘g ,AM for I =1,2,...5; 7 refers to the 50% autocontour.

SZ 7AIL’7 stacking lags up to [ = 2,....5 and considering the 50% autocontour.

Slc’13 and AZC’13 stacking all 13 autocontours for one lag [ = 1,2, 3,4, 5.

500 bootstrap samples.

T=649, R=360, P=289, m = 0.69

Table 11: Bootstrapped P-values: Non-Linear Phillips Curve (Fixed Scheme)
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