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Abstract. In many economic, political and social situations, circumstances

change at random points in time, reacting is costly, and reactions appropri-

ate to present circumstances may become inappropriate upon future changes,

requiring further costly reaction. Waiting is informative if arrival of the next

change has non-constant hazard rate. We identify two classes of situations:

in the first, delayed reaction is optimal only when the hazard rate of further

changes is decreasing; in the second, it is optimal only when the hazard rate of

further changes is increasing. These results in semi-Markovian decision theory

provide motivations for building delay into decision systems.
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A handful of patience is worth more than a bushel of brains. - Dutch Proverb

Patience has its limits. Take it too far, and it’s cowardice. - George Jackson

The essential ingredient of politics is timing. - Pierre Trudeau

Timing is everything - Attributed to various authors

1. Introduction

In many social, economic and political situations, there is a stochastic environ-

ment that changes at random points in time and and responding to these changes

entails significant costs. Given that a new state may give way to yet another,

potentially making today’s optimal action again obsolete, and given that actions
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are costly, the question is whether to respond to a change in the environment or

to delay.

Variants of this problem have been extensively analyzed in economics (for ex-

ample Boyarchenko and Levendorskĭı [2007], Stokey [2009] and the references

therein). However, a crucial aspect of most existing analyses is that the passage

of time by itself does not reveal any information. By contrast, we study prob-

lems in which the passage of time without a change contains information about

the arrival time of the next change, problems in which there may be value to

delaying decisions beyond the usual option value of waiting.1 We begin with ex-

amples where the length of time which a change has survived may be of crucial

importance to its future longevity.

1.1. Political Change. Political processes in a democratic system are driven by

‘political issues’ and the configuration of opinions and attitudes of the polity on

these issues. Such configurations are hardly, if ever, static. There are slow and

gradual changes that take place side by side with rapid and explosive changes.

Some changes are long-lasting, some short-lived. As Carmines and Stimson [1990]

say:

. . . we shall see that issues, like species, can evolve to fit new niches

as old ones disappear. But, unless they evolve to new forms, all

issues are temporary. Most vanish at their birth. Some have the

same duration as the wars, recessions, and scandals that created

them. Some become highly associated with other similar issues or

with the party system and thereby lose their independent impact.

And some last so long as to reconstruct the political system that

produced them . . . .

The Vietnam War and the Watergate scandal seem to have very little traces

left today either in public attitude or legislative response to the issues of war and

executive power respectively, but they were the biggest issues of their day. On the

other hand, the Civil Rights Movement and its aftermath marked a fundamental

realignment in US politics. In general, some ideas and opinions “wear out their

welcome” after a time, perhaps through changes in the conditions that gave rise to

them, perhaps by the accumulation of counterarguments to their veracity. Hence,

1See McGuire and Kable [2012, 2013] for experimental evidence on how hazard rate patterns
affect delay of gratification behavior.
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the likelihood that such an idea would become irrelevant increases with time. By

contrast, some types of issues or opinions tend to get more entrenched the longer

they live. Political actors in various capacities try to cope and make decisions

in the face of such ‘issue evolution’ [Carmines and Stimson, 1990]. Legislatures

choose whether or not to change a law, Supreme Courts decides whether or not

to re-interpret or overturn past precedents, political parties decide whether or

not to realign politically and redefine the agenda. Oftentimes, the most crucial

ingredient in such decisions is the aspect of timing.

Each of these decisions entails some fixed cost either to the society at large

or the actor herself.2 One would have to trade off the immediate gains with

substantial future losses if the initial change that triggered the costly action turns

to be relatively short-lived.

Another class of political decisions have to do with effective but costly response

to a possibly impending crisis. Again, timing is of the essence, but in a very

different way. When it appears that a costly prevention or crisis-averting action

might need to be taken, the crux of an executive decision then becomes how to

delay the cost as much as possible, without being too late to actually prevent, or at

least lower the likelihood or the cost of, the crisis. Impending wars, international

conflicts, painful and unpopular reforms or a system overhaul, all of these are

examples.

The following two subsections discuss examples drawn from arenas of political

decision making where the need for deliberation and caution interplay with the

need for quick and decisive action, and one of the challenges of institution design

turns out to be the demarcation of the different spheres where one should be

emphasized at the expense of the other.

1.1.1. Constitutional Amendments. Constitutions establish the fundamental le-

gal structures of a society. They are meta-institutions through which institutions

are introduced, reformed and interpreted [Ostrom, 1990]. A constitution and

the legal order it creates must have the support of, or at least tacit approval

of, the governed to have legitimacy. Maintaining the legitimacy and relevance

of a constitution requires a certain degree of adaptability or flexibility to change

2In case of legislative changes and court decisions, the citizens have to re-adjust and re-optimize
with respect to the new rules. In case of a political party, realignment may mean losing a
traditional support base and adjusting to a new one.
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because technology, environment and public opinion are forever changing. On

the other hand, the basic value of a constitution lies in its stability because it

coordinates the actions and expectations of people and reduces the uncertainty in

the environment [Hardin, 2003]. Hence the basic tradeoff between ‘commitment’

and ‘flexibility’ lies at the heart of the constitution design problem, as encap-

sulated in the famous exchange between Thomas Jefferson and James Madison

in Smith [1995].3 It is also costly to change the constitution because it acts

as a coordination device for peoples’ behavior, and changes are likely to impose

large adjustment costs on significant parts of the population and disrupt ancillary

institutions that grow around the constitution [Hardin, 2003].

From these perspectives, it is reasonable to presume that an optimal rule for

constitutional change should be more sensitive to long-lasting changes than to

transitory changes. It is clear that waiting longer will help answer whether a

change will have a longer or shorter total life, but what matters for decisions is

the longer or shorter future life of the change. One tradeoff is between costly

unneeded or ultimately unwanted changes (e.g. Prohibition) and undermining

the legitimacy of the constitutional regime by ignoring new realities. It is from

this perspective that we study the general question of why some changes in laws

should be more difficult to implement, and what this should depend on.

Under study is a class of explanations that we regard as complementary to

the many previously offered ones, a class of explanations based on the observa-

tion that the persistence of changes in sentiment have predictive power for the

future length of time the changes will last. For us the question becomes “How

much longer should one wait before acting?” The dynamically consistent answer

depends both on the costliness of the action and the costliness of its reversal.

The US constitution has had four different amendments that have extended

voting rights to different parts of the population: Amendment XV (1870), which

was passed at the end of the Civil War, extended suffrage to men independent of

race or previous condition of servitude; XIX (1920) extended suffrage to women;

XXIV (1964) made poll taxes illegal; and XXVI (1971) extended suffrage to those

eighteen years of age or older. These formalized long-lived widely-shared changes

3For interesting empirical evidence to the effect that flexibility actually helps the sustainability
of constitutions, see Elkins et al. [2009], for an analysis of the ways in which flexibility must
be structured for the functioning and survival of formal systems that must adjust to changing
circumstances, see Stinchcombe [2001].
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in sentiment, but Amendment XVIII (1919), Prohibition, was an expensive and

short-lived failure, being repealed fourteen years later by Amendment XXI (1933)

(Amar [2006] is a detailed history of the amendments to the U.S. Constitution).

If one dates the beginning of the women’s suffrage movement to the 1848 Seneca

Falls Convention, it took 72 years for Amendment XIX to pass.4 At various points

in the political process, there was evidence that the recognition of women’s rights

to vote would be long-lasting: the passage of suffrage at the state level in western

states by the early 20’th century;5 the nation’s westward expansion and the Civil

War leading to an expanded need for women both in industrial settings and as

teachers; the gradual increase in the numbers of college educated and professional

women; unionization movements among female professions in the late 1800’s and

early 1900’s. Even after one could perhaps clearly see that general sentiment had

shifted in favor of the Nineteenth Amendment, there was (much) further delay

in implementing what turns out to have been a long-lasting change in sentiment.

This is perhaps consistent with unwillingness to believe that so drastic a change

could be long-lasting, but our analysis suggests that the relatively high cost of

depriving a class of people of liberties, once granted, exaggerates the effects of

such doubts.

By contrast, Prohibition proved to be very costly to society, and was short-

lived, repealed fourteen years later.6 The Temperance Movement had as long

a history as the women’s suffrage movement, and was used by some women’s

suffrage organizers as an occasion to teach women the necessity of having a voice

in politics in order to achieve changes [Flexner, 1996]. The implementation of

Prohibition very quickly gave rise to a host of social problems accompanied by

a marked increase in crimes associated with illegal selling and consumption of

alcohol. Public opinion quickly turned against it. From our point of view, this

was a change of action that led to a change in the distribution of the time until

general sentiment was reversed.

4Flexner [1996] make an argument for an earlier date for the beginning of the movement,
emphasizing the experience of female abolitionists and agitators for women’s education in the
early 1800’s as the roots of the suffrage movement.
5By 1915, Arizona, California, Colorado, Idaho, Illinois, Kansas, Montana, Nevada, Oregon,
Utah, Washington, and Wyoming had granted full women’s suffrage, and several other states
or municipalities had granted suffrage in primary elections.
6Prohibition was repealed by Amendment XXI, the only amendment passed by state ratifying
conventions rather than by the votes of state legislatures, sparing the legislators from re-election
campaigns against a dedicated cadre of single-issue voters.
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1.1.2. Executive Power. The US constitution has separation of powers between

the executive and the legislative branches. While an extensive discussion of the

virtues of such an approach, as opposed to one in which the two branches co-

incide, as in the United Kingdom, is outside our purview, one aspect of this

separation is relevant to our motivating question here. Congress is the delib-

erative body, and congressional procedures are markedly more inclined towards

caution and restraint against hasty decisions, in comparison with the structure

of executive power, which enables and empowers the president to act in a quick

and decisive fashion if need arises. Our observation is that it is one way to in-

stitutionally demarcate between decision problems where built-in delay could be

desirable (making legislative actions more attuned to longer lasting changes), and

those where not being too-late-to-be-of-any-good is the real concern (executive

decisions, where delay, if at all, should come only out of prudence, not structural

limitations).

We now turn to other settings in which our general methodology could be

fruitfully applied.

1.2. Marketing Strategy. Research in consumer behavior has shown that when

and how consumers switch brands depend on the last purchased brand and time

since the last purchase. The inter-purchase time may exhibit increasing or de-

creasing hazard rates depending on consumer characteristics like “inertia” or

“variety seeking tastes” [Chintagunta, 1998]. It has been suggested that optimal

timing of targeting consumers for marketing should depend on such considera-

tions instead of the traditional demographic variables [Gonul and Ter Hofstede,

2006, gives an empirical approach to optimal timing for catalog mailing]. The

class of optimization models under study here are directly applicable to such

situations.

1.3. Labor Search. One of the issues relating to long-term unemployment is

depletion of human capital, which might make a candidate less and less attractive

to the potential employers as the duration of unemployment gets longer and

longer. This factor would have important implications for standard labor search

models, as the value of the future discounted wage and thus the reservation

wage for a job seeker would be affected. Ortego-Marti [2012] uses this insight to

explain observed wage dispersion in the labor market. Also, the possibility that

a long period searching without finding a job is taken, by potential employers,
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as an indication that there is something wrong with the person, would mean a

decreasing rate of arrival of a job of any given quality. This is independent of

decay of human capital, and pushes the acceptance threshold downwards. One

of the key ingredients of the standard Diamond, Mortensen, Pissarides (DMP)

model is a stochastic description of labor turnover, along with a model of labor-

market tightness, and a bargaining model of wage determination (Diamond [2011],

Mortensen [2011], Pissarides [2011], Hall [2012] and the references therein). Our

model results would be relevant for an attempt to capture non-stationarities in

the first component. Recent empirical work based on the DMP model, (e.g.

Shimer [2005]), highlights various aspects of the wage determination phenomenon

that are not well explained by the stationary DMP models so far. It would be

interesting to introduce non-stationarities in the job-arrival process and work out

the implications. Our framework provides a minimal way of attempting that.

1.4. Currency Unions, International Treaties. The benefits of joining cur-

rency unions or international treaties are variable over time and leaving a currency

union or abrogating a treaty is a costly decision. These two factors combine to

provide the context for countries trying to devise strategies for entry, exit and

crisis management. The recent crisis in the European Monetary Union (EMU)

has rekindled the discussion around the impacts of countries exiting currency

unions. Opinion is sharply divided, although the majority opinion seems to be

that breaking up of the Euro will be disastrous [Eichengreen, 2010]. On the

other hand, historically, there have been regular instances of countries leaving

currency unions [Rose, 2012]. From the design perspective, one of the interesting

features of the EMU is that there are no exit clauses. Omission of a well-defined

exit clause, at the least, significantly raises the procedural cost of exiting the

union, and thus can be seen as a mechanism to avoid hasty reaction by individ-

ual countries that could potentially threaten all the other members as a group.

Overall, the European currency crisis and the responses to it by various parties

highlight the importance of the main facets of our model: the trade-off between

reacting quickly and flexibly on one hand, and the need to avoid precipitating a

fast-moving crisis by unnecessarily hasty actions on the other.

1.5. Outline of the Paper. The next section contains three simple examples

that give a sense of what is involved in the more general analyses that follow.

The essential aspects of the model include: a starting state and action, i0 and
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a0; random times Yk+1 at which the state changes from Ik to Ik+1 according to a

partly controlled, imbedded Markov process; and the option to engage in costly

changes in actions during the inter-arrival stochastic intervals, that is, between

Yk and Yk+1.

The within-interval maximization problems will be central to the dynamic anal-

ysis. The first two examples in the next section concern problems with only one

interval, how long to search and how long to delay precautionary measures. With

the intuitions about how the optimality conditions work for a single interval in

place, the last example demonstrates how the value functions for an entire dy-

namic problem interact with the maximization problems within intervals.

The general model, existence of optima, and their recursive characterization

through the value function are in the following section. The penultimate section

develops the corresponding first order conditions (Euler equations) for a broad

range of problems and discusses the implications of the results in the context of

our examples. The last section concludes.

2. Three Examples

Three non-stationary problems demonstrate the essential features of the opti-

mization problems under study and of their solutions: the optimal delay before

abandoning search involves searching until the hazard rate for search success is

low enough and falling; the optimal hesitation before implementing expensive

precautionary measures involves waiting until the hazard rate is high enough and

increasing; and optimal adaptations to changing circumstances involves solving

a sequence of problems much like the first two. We use the first two examples

in analogy with the two classes of decision problems that we described in our

discussion of political change.

We assume throughout that waiting times, W , have continuous densities, f ,

on (0,∞), and, possibly, an atom at ∞. If W has an atom at ∞, it is called an

incomplete distribution, corresponding e.g. in search problems, to the object of

search not existing or not being findable. Associated with W is the cdf, F (t) =∫ t
0
f(x) dx, with limt↑∞ F (t) < 1 for incomplete distributions, and the hazard

rate, h(t) := f(t)
1−F (t)

.

The first and second order conditions (FOCs and SOCs) have common features:

the net benefits to delaying from t to t+dt take the form (a+b·h(t))dt; solving the
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FOCs requires h(t∗1) = −a/b; this in turn requires that a and b have opposite signs.

When a is negative, the costs of delay are certain and the benefits stochastic, when

a is positive, this is reversed, there is a sure benefit to delay and a stochastic cost.

Further, as the net benefits must be positive before t∗1 and negative afterwards,

the SOCs require h′(t∗1) < 0 if a < 0 and b > 0, and h′(t∗1) > 0 if a > 0 and b < 0.

2.1. Hesitating to Cut Off Search. At a flow cost of c ≥ 0, one can keep

searching for a source of higher profits (a low cost source of a crucial input, a

process breakthrough, a new product). If found, expected net flow profits of π

result. If one abandons the search, the decision is, by assumption, irreversible,

and the known alternative yields expected net flow profits of π, π > π > 0.

The non-stationary choice problem is “At what time, t1, does one stop searching

and accept the lower π?” The results we give here are special cases of Theorem

2 (below), but we give an intuitive development here.

FOCs. The net benefits of waiting an extra instant dt at a pre-W time t1 are (a+

b ·h(t1))dt where: a = −(c+π) incorporates the flow cost, c, and π is forgone flow

value of the known alternative; and delay gives a probability h(t1)dt of moving the

flow payoffs upward, which is worth, in present value terms, b = 1
r
(π− π). At an

interior optimum, 0 < t∗1 <∞, the FOCs are therefore h(t∗1) = r(c+ π)/(π − π).

SOCs. In order for the solution just given to be a local maximum rather than a

local minimum, the net benefits of waiting, 1
r
(π − π) · h(t1) − (c + π), must be

positive for t1 < t∗1 and negative for t > t∗1. As (π − π) > 0, for this to be true,

the hazard rate must be decreasing at t∗1, h′(t∗1) < 0.

Comparative statics. Because the hazard rate is decreasing, the optimal t∗1 is:

higher for higher π, it is worth searching longer when the reward is larger; lower

for higher c, one searches less if searching is more costly; lower for higher r, one

searches less if one is more impatient; lower for higher π, one searches less when

the fallback option is better; and higher for uniform upward shifts in h(·), one

searches more if search is more productive.7

2.2. Hesitating to Innoculate. Present utility flows are u > 0. At issue is the

optimal timing of a costly innoculation or precautionary measure: an evacuation

before a hurricane landfall; or a politically painful reform of a banking system

7One can also arrive at the FOCs and SOCs by explicitly writing the integrals giving the
expected payoffs and differentiating. Details of the calculations for all three models in this
section can be found in the online supplement.
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before the next financial crisis. If the measure is not in place before W , then u

will be reduced to a utility flow normalized to 0. If the measure is in place, W

will reduce utility flows to u, with u > u > 0. As well as reducing the damages

in case of crisis, innoculation at time t1 reduces the probability of a crisis by

changing the arrival density from f(w) to

fθ(w; t1) =

f(w) if w < t1

(1− θ)f(w) if w ≥ t1.
(1)

After the innoculation, θ
∫∞
t1
f(w) dw of the probability shifts to the mass point

at infinity, that is, to the disaster not arriving so that θ ∈ [0, 1] measures the

efficacy of the innoculation.8 The non-stationary timing question is, “How long

should one hesitate before incurring the cost of innoculation?”

FOCs. The net benefits of waiting an extra instant dt at a pre-W time t are rCdt−
(1
r
[θu+ (1− θ)u]−C)h(t)dt because rC is the annuitized flow value of the fixed

cost C, and if W arrives in the instant (t, t+dt), which happens with probability

h(t)dt, one loses the expected net benefit of innoculation, (1
r
[θu+ (1− θ)u]−C).

This gives the FOCs h(t∗1) = rC/(1
r
[θu+ (1− θ)u]− C).

SOCs. Since the decision problem involves postponing the cost C as long as this

outweighs the hazard of losing the benefits of innoculation, the SOCs require

h′(t∗1) > 0. One should wait until W is both imminent enough and becoming

more so.

Comparative statics. Because the hazard rate is increasing at an optimum, in-

creases in the cost, C, or in the rate at which the future is discounted, r, make

a longer delay optimal, and one sees the same effect if the innoculation is less

effective, that is, if (1
r
[θu− (1− θ)u]− C) is smaller.

2.3. Hazard Rate Patterns. It is useful to examine the interactions of the first

and second order conditions with several non-constant hazard rate patterns.

2.3.1. Decreasing and Increasing Hazard Rates. For search problems, a decreasing

hazard rate corresponds to a problem in which one searches in places in decreas-

ing order of likelihood and/or the likelihood of the object never being found is

8If θ = 1, then the precautionary measure precludes the arrival of the next crisis, e.g. an
innoculation with a 100% success rate. If θ = 0, then the precautionary measure has no effect
on the likelihood of the disaster, e.g. if W is the landfall of a hurricane and the precautionary
measure is an evacuation.
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increasing over time, for innoculation timing problems, an everywhere decreasing

hazard rate corresponds to being past the worst.9 For search problems with an

everywhere decreasing hazard rate, satisfying the FOCs at t∗1 gives the global

payoff maximum, and conditional on having already searched until any T ≥ t∗1, it

is optimal to stop immediately. By contrast, for innoculation problems, satisfy-

ing the FOCs gives the global payoff minimum, the optimum is either at t∗1 = 0,

immediate innoculation, or t∗1 = ∞, never innoculating. Further, if immediate

innoculation is optimal, then conditional on not having innoculated yet, imme-

diate innoculation is optimal until the time T ◦ > 0 at which one is indifferent

between innoculating now and never innoculating.

These patterns are reversed for everywhere increasing hazard rates (e.g. Weibulls

with parameters λ > 0 and 0 < γ < 1). For innoculation problems, satisfying

the FOCs at t∗1 gives the global payoff maximum and if innoculation has been

delayed to any T ≥ t∗1, it is optimal to innoculate immediately. For search prob-

lems, satisfying the FOCs at t∗1 gives the global payoff minimum, the optimum is

either at t∗1 = 0 or at t∗1 =∞, if at t∗1 = 0, then immediate abandonment of search

is optimal until the time T ◦ > 0 at which one is indifferent between abandoing

search and continuing to search forever.

2.3.2. Some Mixed Cases. In quality control, one often sees a “bathtub shaped”

hazard rate pattern: early failures are due to manufacturing flaws and tail off;

late failures are due to systems wearing out, and increase over time.10 For search

problems, a bathtub hazard rate pattern corresponds to a search process that first

checks the likely and easy to check locations, and if the object is not found, then

the remaining locations, however unlikely or difficult to check, must be where

the object is located. If the first order conditions are first met at t′1 at which

the hazard rate is decreasing, then t′1 is a local maximum. If the FOCs are not

satisfied at a later time, then t′1 must also be the global maximum. If the FOC

are satisfied at a (necessarily single) later time, this is a local minimum, and t′1
must be compared to t1 = ∞ — early abandonment of search may be optimal,

or unbounded search may be optimal.

9A tractable class of distributions with an everywhere decreasing hazard rate are the Weibulls
with parameters λ > 0, γ > 1, i.e. W = Xγ where X is a negative exponential with parameter

λ. The hazard rate is h(t) = λt
1−γ
γ /γ.

10This is often used as a quality control screen — overload elements for long enough that the
first kinds of failures are weeded out [e.g. Rausand and Høyland, 2004, Ch. 2].
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For search problems, a “hump-shaped” hazard rate pattern corresponds to a

search process that needs time to begin to function well, but once the likely and/or

easy-to-search locations have been exhausted, it becomes clearer and clearer that

the object was not there in the first place. If the first order conditions are met

while the hazard rate is increasing, this is a local minimum, so either t∗1 = 0

is optimal or some later time will be optimal. If a later time, t′1, corresponds

to satisfying the FOCs a second (and necessarily last) time, then t′1 is a local

maximum, and if any search is optimal, it has a limited duration.

For innoculation problems, the hump-shaped hazard rate pattern corresponds

to facing a gathering storm that may, or may not, yield a disaster, but if one is

lucky enough to get through the most hazardous times without a disaster, the

storm passes and the likelihood diminishes. If the first order conditions are met

at a t′1 where the hazard rate is increasing, then t′1 is gives the locally optimal

tradeoff between delay of expensive preparations and imminent danger. Further,

the next time the FOCs are satisfied will be a local minimum so that either t∗1 = t′1
or it is t∗1 =∞ is optimal — evacuate if the danger is imminent enough, otherwise

try to ride it out and hope for the best.

2.4. Optimal Adaptation to Circumstances. We now study a simple model

of the optimal timing of adaptations to a stochastic dynamic state. Solving the

entire problem involves solving a sequence of single interval problems.

2.4.1. States and Actions. The first ingredients in the model are a state space,

S = {i, j}, an action space, A = {a, b}, and a set of flow utilities to be dis-

counted and integrated: for the ‘matched’ state action pairs (i, a) and (j, b), we

set u(i, a) = 1 and u(j, b) = 2; for the ‘mis-matched’ pairs, we set u(i, b) =

u(j, a) = 0.

2.4.2. Change Costs. In our general model, change-of-action costs depend on the

present action, the action one changes to in the set of available actions, and the

present state. For the present model, there are four such costs. For simplicity

here, we assume one can switch from a to b or back in either state, and all four

switching costs are equal to C > 0.

2.4.3. Change Times. The states will change at random times. It is the costs of

switching actions that may make instantaneous adjustment of the action to the

state suboptimal — if another change in the state is expected soon, it may not

12



be worth incuring the cost to enjoy the extra flow. The non-stationary timing

question is, “How long to hesitate before reacting?”

The state change times are random variables Yk, k = 0, 1, . . . with Y0 ≡ 0,

Yk ∈ (0,∞] for k ≥ 1, and P (Yk < Yk+1) = 1 if Yk < ∞. With Ik denoting

the state of the system for the k’th state change time, starting state is i0, and

the future states Ik, k ≥ 1. The waiting time for the k’th change is defined as

Wk := Yk − Yk−1, and P (Wk = ∞) > 0 corresponds to the k’th waiting time

having an incomplete distribution and there being a positive probability that

there is never a transition away from the state Ik−1. A policy is semi-stationary

if it depends only on the initial state-action pair and the within-interval time,

and we will see that such policies are optimal. For any such policy, the random

sequence (i0,W1), (I1,W2), . . . is a Markov process taking values in S × (0,∞]

that ‘ends’ at the first k, if any, at which Wk =∞.

In the general model, the distribution of each Wk will depend on the state-

action pair that is in effect at the start of each interval and the time path of

action changes that occur within the interval. In this simpler version of the

model, the distribution of the Wk depends only on the state-action pair, (i, a),

that prevails at Yk−1, and the time, Yk−1 + t1, t1 ∈ [0,∞], at which the action is

first changed. Because at most one change of action can be optimal and there is

only one possible action to change to, a plan for an interval, denoted p, can be

specified by a single change time, t1 ∈ [0,∞]. Further, the stochastic structure

can be summarized in a class of possibly incomplete probability density functions

(pdfs) on (0,∞), fi0,a0(·; t1)t1∈[0,∞], (i0, a0) ∈ S×A. Because changes of actions at

t1 can affect the future but not the past, we assume that for all s ≤ t1 < t′1 ≤ ∞
and all (i0, a0), fi0,a0(s; t1) = fi0,a0(s; t

′
1). To put it another way, the single pdf

fi0,a0(·;∞) governs arrival the time of the state change up until a change of action,

but the distribution of what happens after that change of action can depend on

the time at which it occured.

2.4.4. Expected Utility. All random variables are defined on a probability space

(Ω,F , P ). A stochastic interval is a subset of Ω×[0,∞) of the form [[Yk, Yk+1[[=

[[Yk, Yk + Wk[[ := {(ω, t) : Yk(ω) ≤ t < Yk+1(ω)}. If the interval starts with the

action being ak, we specify a plan to change from ak to a′k at a within-interval

time t1 using a left continuous t 7→ p(t) with p(t) = ak for all t ≤ t1 and p(t) = a′k
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for all t > t1. This means that p(Yk+1 − Yk) is the action being used when the

new interval, [[Yk+1, Yk+2[[ starts.

For an interval [[Yk, Yk+1[[ starting in the state-action pair (ik, ak) and a plan

pk, the expected payoffs during the interval are defined as∫∞
0

[
∫ Yk+w

Yk
u(ik, p(t))e−rt dt− C

∑
τ∈Tp 1(τ,∞)(w)e−rτ ]fik,ak(w; t1) dw

= E
[∫ Yk+1

Yk
u(ik, p(t))e−rt dt− C

∑
τ∈Tp 1[[Yk,Yk+1[[(τ)e−rτ

]
(2)

where Tp is the set of planned action change times and E is the expectation

operator given by the distribution of Yk+1 = Yk+Wk, which in turn depends on pk.

If we condition on Yk = t, subtract t from Yk, we denote the corresponding sum in

(2) as R(pk; (ik, ak)). This means that the total reward to starting in (i0, a0) and

using a sequence of plans, pk, k = 0, . . . is
∑

k≥0 Ee−rYkR(pk; (Ik, pk(Yk+1 − Yk)).
In principle, pk can depend on any aspect of the history up to time Yk, but we

shall see that an optimum exists among the semi-stationary policies, i.e. those

with pk depending only on the initial state-action pair at each Yk.

2.4.5. The Value Function. The value function, V ∗(i0, a0), gives the maximal

expected discounted utility to starting at Y0 = 0 in state i0 ∈ S with the present

action being a0, that is,

V ∗(i, a) = supp0,p1,... E
∑

k≥0R(pk; (Ik, pk(Yk+1 − Yk))e−rYk . (3)

From Theorem 1 (below), V ∗(·, ·) is well-defined, can be found as the fixed point to

a contraction mapping, and given the value function, the optimal semi-stationary

policy can be found by sequentially solving the within-interval optimization prob-

lems on the presumption that leaving the interval into the state-action pair

(Ik+1, ak) at time Yk+1 yields a payoff of V ∗(Ik+1, ak)e
−rYk+1 .

In this specific problem, for the matched state-action pairs (i, a) or (j, b), we

have t∗i,a = t∗j,b =∞ being optimal because any change not only loses flow payoff,

it unnecessarily incurs the change cost, C. Therefore,

V ∗(i, a) = ri + siV
∗(j, a) and V ∗(j, b) = rj + sjV

∗(i, b) (4)

where ri and rj are the expected discounted flow payoffs until the next change

state, and si and sj are the corresponding expected discount factors. For the
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mis-matched pair (i, b), the value function is

V ∗(i,b) = maxti∈[0,∞] V
∗(j, b) ·

∫ ti
0
e−rwfi,b(w; ti) dw + (5)∫∞

ti

[(∫ w
ti

1e−rx dx
)

+ V ∗(j, b)e−rw
]
fi,b(w; t1) dw − Ce−rti(1− Fi,b(t)),

with a similar expression for the value of the other mis-matched pair, V ∗(j, a).

The value functions reduce to two equations in two unknowns, rendering the

numerical analysis and comparative statics moderately direct.

2.4.6. Optimality Conditions. The FOCs and SOCs for the optimal amount of

hesitation in the mismatched state-action pairs (j, a) and (i, b) are very similar to

the search problem in §2.1 above. To most simply see what is involved, suppose

that the hazard rates depend only on the action-state pair at the beginning of

an interval. At time t in an interval that starts at (j, a), the FOCs must capture

indifference between switching and not switching between t∗1 and t∗1 + dt: the net

flow benefit from switching is [u(j, b)− u(j, a)], while it costs rC, the perpetual

annuity flow value of the cost C; h(t∗1)dt gives the probability that the state

switches from j back to i in the next instant, and if this happens, then the

decision maker has saved C plus the value difference (V ∗(i, a)−V ∗(i, b)). Setting

these equal delivers a special case of the FOCs (Euler equations) in Theorem 2

below,

[u(j, b)− u(j, a)]− rC = h(t∗1(j, a)) [C + (V ∗(i, a)− V ∗(i, b))] . (6)

Note that the benefit of delay must be larger than the benefit of a change in

action before t∗1 and smaller after. As in the search problem, this requires that

the hazard rate be decreasing at the optimum. We will return to, and extend,

this model in §4.2.

3. The Model

We begin with a brief review of incomplete waiting times, hazard rates and their

interpretations, then turn to the class of non-stationary stochastic optimization

problems under consideration. The section ends with the two main results: The-

orem 1 gives the Bellman equation, shows that the value function is the unique

fixed point of a contraction mapping, and that one can solve the infinite hori-

zon problem by solving the within-interval problems; Theorem 2 gives the Euler

equations, that is, the necessary conditions, for an optimal amount of hesitation.
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There are some delicate details in the description of the optimization problem,

but the essential idea is simple: one starts a new stochastic interval in the state

i with the inherited action, a; a strategy specifies the times within the interval

at which the action will be changed and what the new action will be; all of these

changes are carried out so long as there is no change in state; a change in state

opens a new interval, and the process begins again. Payoffs are given by the

expected value of a discounted integrated flow of utility minus the expected value

of change costs along the path. We call this a semi -Markovian structure because

the arrival rate of the transition times can be non-stationary.11

3.1. Summary. A semi-Markovian decision problem (sMdp) is specified

by: S × A, the product of a compact set of possible state and a compact set of

actions; a continuous flow utility function, u : S × A→ R; a continuous, strictly

positive cost-of-change function, c : (A × A) × S → R; the continuous feasible

plan correspondence, (i, a) 7→ P(i, a) as given in Definition 1; a continuous semi-

Markovian stochastic structure, as given in Definition 2; and the mapping from

plans to induced distributions as given in Definition 3.

3.2. Hazard Rates. A random variable, W ≥ 0, is incomplete if it has a mass

point at ∞. For a possibly incomplete W with density on [0,∞) and 0 ≤ t <

∞, we have the following relations between the density, f(t), the cumulative

distribution function (cdf), F (t), the reverse cdf, G(t), the hazard rate, h(t), the

cumulative hazard, H(t), and the mass at infinity, q:

F (t) =

∫ t

0

f(x) dx; G(t) = 1− F (t); h(t) =
f(t)

G(t)
or f(t) = h(t)G(t);

H(t) =

∫ t

0

h(x) dx; G(t) = e−H(t); EW =

∫ ∞
0

G(t) dt; and q = e−H(∞). (7)

If the incompleteness parameter, q, is strictly positive, then EW = ∞, and,

as time goes on, and one becomes surer and surer that the event will never

happen, P (W = ∞|W > t) ↑ 1 as t ↑ ∞. For complete distributions, if the

11Semi-Markovian dynamic programming often imposes the restriction that any change in action
occurs at the beginning of an interval e.g. in the textbooks Ross [1970] and Hu and Yue [2008]
separated by almost four decades in time. As has been recognized in the operations research
literature, and as the examples in §2 demonstrate, this is often sub-optimal. We will give a
more detailed comparison with the literature below.
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hazard rate is decreasing (resp. increasing), then the expected future waiting

time, E (W |W > t)− t, is increasing (resp. decreasing).

3.2.1. Examples. The following are well-studied examples.

(1) An incomplete negative exponential with parameters λ > 0 and q ≥ 0

has cdf F (t) = (1 − q)(1 − e−λt). For q > 0, the hazard rate h(t) =

λ ·
(
(1− q)e−λt

)
/
(
q + (1− q)e−λt

)
is everywhere strictly decreasing. If

q = 0, then the hazard rate is constant at λ, that is, the waiting time is

memoryless.

(2) An incomplete Weibull distribution with parameters γ, λ > 0 and q ≥ 0 is

of the form W = Xγ, where X is an incomplete negative exponential with

parameters λ, q. The cdf is F (t) = (1 − q)(1 − e−λt1/γ ), and the hazard

rate is h(t) = λ
γ
t
1−γ
γ

[
(q/(1− q))eλt1/γ + 1

]−1

.

(a) If γ > 1, the Weibull is a convex transformation of the negative ex-

ponential, h(0+) = ∞, and the hazard rate strictly decreases to 0

whether or not q > 0.

(b) If γ < 1, the Weibull is a concave transformation of the negative

exponential and h(0) = 0. If q > 0, the hazard rate is hump-shaped,

first increasing then decreasing back to 0. If q = 0, the hazard rate is

strictly increasing, and limt↑∞ h(t) =∞.

(3) In increasing order of generality, we have the following distributions of

waiting for events to happen.

(a) An Erlang(λ,M) distribution of the time one waits until M iid neg-

ative exponential events with parameter λ occur. It has cdf F (t) =

1 −
∑M−1

m=0
1
m!
e−λt(λt)m, h(0) = 0, and the hazard rate is increasing,

concave, and bounded above with limt↑∞ h(t) = λ.

(b) The hypoexponential distribution corresponds to waiting for M inde-

pendent negative exponentials with parameters λ1, . . . , λM to happen.

(c) The Coxian distribution generalizes the hypoexponential by allowing,

at random, them’th event to be the last one, wherem ≤M is possible.

(d) The phase-type distributions generalize the previous three types of

distributions. Suppose that a process begins state m ∈ {1, . . . ,M}
with probability α = (α1, . . . , αM), and transitions from the m’th

state either to an absorbing state, m = 0, or to one of the other non-

absorbing states with constant hazard rates (λm,i)i 6=m. A phase-type
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distribution is parametrized by α and the hazard rate matrix, and is

distribution of the waiting time until the transition to the absorbing

state, m = 0.

3.2.2. Dense Class Interpretations. Up to any degree of precision, arbitrary haz-

ard rate patterns can be interpreted as the result of waiting for unobserved ran-

dom sequences of events to be realized. For example, a phase-type distribution

with M = 2, α putting most of its mass on m = 2, a low transition rate, λ2,1

from 2 to 1, and a higher λ1,0 has a low initial hazard rate that increases —

initially, the unobserved state is most likely to be 2, but as time passes, the like-

lihood of being in 1, conditional on transition to m = 0 not having happened,

increases. With more elaborate state spaces and transition patterns, the hazard

rate can decline again, then increase. More generally, the set of phase-type wait-

ing distributions is L1-dense in the set of waiting time distributions — for every

(possibly incomplete) density f and ε > 0, there is a phase-type density g with

‖f − g‖1 :=
∫∞

0
|f(s)− g(s)| ds < ε.

3.2.3. Updating Interpretations. There are also a wide variety of mixture model

or updating interpretations of hazard rates.

If β is a prior distribution on the set of possible distributions of the next arrival

time in (0,∞], denoted β ∈ ∆(∆(0,∞]), then the hazard rate at t is

hβ(t) = limδ↓0

(
1
δ

∫
∆(0,∞]

p((t, t+ δ)) dβ(p)
)
/
(∫

∆(0,∞])
p((t,∞]) dβ(p)

)
. (8)

If β and β′ are two priors with hβ(·) = hβ′(·), then the optimal course of action

is the same so that hazard rate analyses can cover a very broad array of models.

Known hazard rates. With δt denoting point mass on t, if β({δt : t ∈ A}) =∫
A
f(x) dx, then hβ(t) is the hazard rate associated with the density f(·), yielding

an interpretation of a known hazard rate.

Bi-modal hazard rates. In our models of Constitutional amendments, bi-modal

hazard rates for reversals of opinions are of interest. They can be understood

as a mixture of three effects: with probability α1 > 0, the previous change was a

fad, and the density for the reversal time of fads is given by f1 with a low upper

bound to its support; with probability α2 > 0, it is a longer lasting but still tem-

porary change, and the density, f2, of such reversals puts mass on a much longer

set of times; and with probability q > 0, there is never a reversal. The hazard
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rate is initially high, tails off, increases, then decreases again as the probability

that W =∞ given W > t converges to 1 as t ↑.
Smooth mixtures. Mixtures of smooth classes of distributions are often dense. For

example, if W is an incomplete Weibull distrition with parameters λ, γ, q where

(λ, γ, q) is itself random with mixture distribution β, then the class of densities

that W may have is again L1-dense.12

3.2.4. Interpretations with Expanded State Spaces. The passage of time, changes

of the state, and changes of actions contain information about the distribution

of future developments. Adding more states allows one to expand the set of

dynamic factors that are modeled: if the state ik contains information about how

many localities and/or states have approved womens’ suffrage, then every time

this number increases, we expect that the future hazard rate path for opinion

reversal should be lower; if the state contains information about how many times

a unit has been repaired or upgraded rather than replaced, then every time this

number increases we expect the new hazard rate path for a breakdown should

be higher than the previous hazard rate path in repair/replace models; if the

state contains information about the number of unsuccessful job interviews, then

every time this number increases, we might expect the hazard rate for and the

distribution of a good job offer to decline.

3.3. Controlled Semi-Markov Processes. There is a compact state space, S,

with metric DS, generic elements denoted i, j, i0, i1, . . ., and generic random ele-

ments of S will be denoted Ik, k = 1, 2, . . .. There is also a compact action space,

A, with generic elements denoted a, b, a0, a1, . . .. As above, Yk, k = 0, 1, . . . are

the random variables giving the state-change times, and a stochastic interval

is a subset of Ω× [0,∞) of the form [[Yk, Yk+1[[ := {(ω, t) : Yk(ω) ≤ t < Yk+1(ω)}.
We first define the class of plans/policies, their associated outcomes and util-

ities, and then the stochastic structure, that is, the determinants of the joint

distributions of the Yk and the states, Ik.

3.3.1. Semi-Markovian Plans. We use functions p : [0,∞) → A, to specify the

chosen plan of action within a stochastic interval. We measure distance between

plans using the Hausdorff distance between (the closures of) their graphs in a

12Proofs of such can be given using the approximation techniques in [Hornik et al., 1994]. See
Cho and White [2010] for references to mixture models of exponentials and Weibulls in both
financial econometrics and in duration models.
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fashion less sensitive to differences in the right tails of the plans. Specifically,

we introduce a distance D(·, ·) between points (t, a) and (t′, a′) in [0,∞) × A

that takes the form13 D((t, a), (t′, a′)) = (|e−ρt − e−ρt′ |+ ‖e−ρta− e−ρt′a′‖) in the

case that A is a compact subset of R`. The distance between p ∈ P(i, a) and

p′ ∈ P(i′, a′) is defined as

dH(p, p′) = inf{ε > 0 : gr(p) ⊂ gr(p′)ε and gr(p′) ⊂ gr(p)ε} (9)

where gr(p) and gr(p′) are the graphs of the plans and gr(p)ε and gr(p′)ε are the

sets of points at D-distance less than ε from the graphs.

This metric has the property that differences in the right tails are down-

weighted. For example, if r is the diameter of A and e−ρT < ε/max(r, 1), then

two plans that disagree only on [T,∞) can be at dH-distance no more than ε from

each other. This means that, up to ε, only changes in plan before T matter. We

will see that expected payoffs are dH-continuous and that the search for optima

can be, without loss, restricted to dH-compact sets of plans.

Definition 1. A plan starting from (i0, a0) is a function p : [0,∞) → A that

satisfies p(0) = a0, is piecewise-constant, continuous from the left, and has at

most finitely many discontinuities over any finite interval. The set of feasible

plans is a non-empty set of plans denoted P(i0, a0) where the correspondence from

(i0, a0) to P(i0, a0) is assumed closed-valued and continuous. A complete semi-

stationary plan is a measurable selection from the set of feasible plans, that is, a

measurable function from state-action pairs to plans, (i0, a0) 7→ p(i0,a0) ∈ P(i0, a0).

For p ∈ P(i0, a0), Tp = {t ∈ [0,∞) : p(t) 6= p(t+)} denotes the set of action

change times (where p(t+) := limε↓0 p(t + ε)). The “continuous from the left”

aspect of plans accomodates instant reactions to changes of states — a plan that

instantly changes to an action a1 in response to a state change to (i0, a0) has

0 ∈ Tp, satisfies p(0) = a0 and p(0+) = a1. We interpret the times in Tp as

specifying the chosen action as a function of the within interval time, that is,

as a function of the time since the last state change. Formally, for Ak := {ω :

Yk(ω) < ∞}, ω ∈ Ak and t ∈ [Yk(ω), Yk+1(ω)), the within interval time s

is given by sk(ω, t) = t − Yk(ω). Using p from an interval starting in (ik, ak)

at time Yk corresponds to changing actions at the within-interval times sk with

p(sk) 6= p(sk+).

13That is, has the same uniformity as. See the online supplement for the general definition.
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The feasibility constraint is a flexible modeling tool: irreversibility of the action

change after, say, changing from (i0, a0) to a1 is modeled by P(i0, a1) containing

only the plan satisfying p(t) ≡ a1; a minimal reaction time of r times involve

p(t) = a1 for all t ∈ [0, r].

3.3.2. The Stochastic Structure. We now specify the density and the conditional

change probabilities as a function of the past history that satisfying two kinds

of continuity conditions, one to guarantee the validity of the Euler equations in

Theorem 2 and one to guarantee the existence of optima in the Bellman equation

in Theorem 1. In the following, the distance between densities, complete or not,

is the L1 distance, ‖f − g‖1 =
∫∞

0
|f(s)− g(s)| ds.

Definition 2. A semi-Markovian stochastic structure is a function (s, p, i) 7→
(f(s; p, i), µ(s; p, i)) from (0,∞)×P×S to [0,∞)×∆(S) satisfying the following

conditions:

a. progressivity, for all state-action pairs (i, a), all p, p′ ∈ P(i, a) and all in-

tervals [0, t], if p|[0,t] = p′|[0,t], then for all s ∈ [0, t], (f(s; p, i), µ(s; p, i)) =

(f(s; p′, i), µ(s; p′, i));

b. joint and L1-continuity, (s, p, i) 7→ (f(s; p, i), µ(s; p, i)) is jointly continuous,

and (p, i) 7→ f(·; p, i) is L1-continuous;

c. non-redundancy, for all s, µ(s; p, i)({i}) ≡ 0; and

d. waiting times are uniformly smooth, for every ε > 0, there exists a τ ∈ (0, 1)

such for all (i, a) ∈ S×A, all p ∈ P(i, a), and all t ≥ 0,
∫ t+τ
t

f(s; p, i) ds < ε.

Using a plan p ∈ P(ik, ak) in an interval [[Yk, Yk+1[[ that starts in (ik, ak) means

that the waiting time, Wk+1 := Yk+1 − Yk, has the possibly incomplete den-

sity f(s; p, ik) on (0,∞), and the distribution of the waiting time must be L1-

continuous in the chosen plan and starting state. Unbounded densities, such

as the Weibulls with f(0+) = h(0+) = ∞, are allowed because the continuity

is only required on (0,∞), but the uniform smoothness condition requires that

plans cannot push waiting times arbitrarily close to having mass points, e.g. at 0,

of any size. While densities are required to be continuous on the within-interval

time (0,∞) when there is no change in action, continuity in plans allows for the
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density and the change probability to be discontinuously different before and af-

ter a change in action.14 Conditional on Wk+1 = w < ∞, the distribution of

the new state is given by µ(w; p, ik), and non-redundancy requires changes in

states to actually be changes. The progressivity condition guarantees that only

past changes in actions and states can affect the current density and conditional

change probability.

The following specifies how plans interact with stochastic structures to give

rise to distributions of waiting times and state changes. Recall the convention

than min ∅ =∞.

Definition 3. Using a plan p0 ∈ P(i0, a0) starting from (i0, a0) at Y0 = 0 gives rise

to a random waiting time-state pair, (W1, I1) with the induced distribution,

possibly incomplete, defined by ν1(E × F ) =
∫
E
f(s; p0, i0) · µ(s; p0, i0)(F ) ds for

E×F ⊂ (0,∞)×S. For k ≥ 1, ifWk = wk <∞, ak = pk−1(Wk) and Ik = ik, using

a plan pk ∈ P(ik, ak) gives rise to a random waiting time-state pair, (Wk+1, Ik+1)

with the induced distribution νk+1(E × F ) =
∫
E
f(s; pk, ik) · µ(s; pk, ik)(F ) ds.

Continuining inductively, a sequence of plans p0, p1, . . . with pk ∈ P(ik, pk−1(Wk)

gives rise to a sequence of conditionally independent random waiting times-states

pairs, (Wk, Ik), k = 1, . . . , K, with K := min{k : Wk =∞}.

For any semi-stationary plan, i.e. any measurable function (i, a) 7→ p(i,a) ∈
P(i, a), the induced distribution of (Wk, Ik) depends only on the value of Ik−1 and

pk−1(Wk). Therefore, the induced distributions for a complete semi-stationary

plan give a stochastic kernel [Feller, 1971, VI.11, Definition 1] so that the process

(Wk, Ik), k = 1, . . . , K is a Markov chain with a random, possibly infinite, number

of realizations. Theorem 1 will show that semi-stationary plans are optimal.

3.3.3. Utilities. Changing action from a to b in state i has a cost, c(a, b; i). We

assume that c : (A×A)×S → R++ is continuous, has a strictly positive minimum

value, and that direct changes are always cheaper than multi-step changes of

action, c(a, a′; i)+c(a′, a′′; i) > c(a, a′′; i). Flow utilities are given by a continuous

u : S × A → R. For an interval starting in (i, a), the utility associated with a

plan p ∈ P(i, a) has two components, the expected flow utility,∫∞
0

[∫ s
0
u(i, p(t))e−rt dt

]
f(s; p, i) ds, (10)

14An example of an allowed discontinuity in the density is in eqn. (1), specifying the stochastics
for the innoculation model.
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and, with Tp denoting the action change times, the expected costs,∫∞
0

[∑
t∈Tp,t<s c(p(t), p(t+); i)e−rt

]
f(s; p, i) ds. (11)

We denote the sum of the terms in (10) and (11) by R(p; (i, a)) so that the

utility of a sequence of plans p0, p1, . . . starting in (i0, a0) at Y0 = 0 is

R(p0, (i0, a0)) + Ee−rY1R(p1, (I1, p0(Y1 − Y0))) + · · · (12)

where the expectations of the Ik and the e−rYk are taken with respect to the

distributions induced by the plans, and we assume that pk ∈ P(Ik, pk−1(Yk−Yk−1))

because this is the state-action pair in effect when the state change at Yk happens.

3.4. Existence and the Bellman Equation. The value function for an sMdp,

V ∗ : S × A→ R, is defined as

V ∗(i0, a0) = sup
p0,p1,...

R(p0; (i0, a0)) +
∑
k≥1

Ee−rYkR(pk; (Ik, pk−1(Yk − Yk−1)) (13)

where p0 ∈ P(i0, a0) and pk ∈ P(Ik, pk−1(Yk − Yk−1)) for k ≥ 1. The following

parallels the existence results for discrete time dynamic programming in Blackwell

[1965, §6].

Theorem 1. For an sMdp, the mapping T : C(S × A)→ C(S × A) defined by

T (V )(i, a) = max
p∈P(i,a)

[
R(p; (i, a)) +

∫
(0,∞)×S

V (i, p(s))e−rs dνp(s, i)

]
(14)

has contraction factor at most β := sup(i,a),p∈P(i,a)

∫∞
0
e−rsf(s; p, i) ds < 1, its

unique fixed point is the value function, V ∗, and following the complete semi-

stationary plan given by the argmax policy for (14) in every stochastic interval

delivers expected payoffs V ∗(i, a) for every (i, a) ∈ S × A.

Thus, the stochastic intervals deliver the recursive structure that allows us to

use semi-stationary plans to solve the problem in (13): if one leaves a stochastic

interval [[Yk, Yk+1[[ to the state Ik+1 while taking an action ak, one starts the new

stochastic interval in the state-action pair (Ik+1, ak); if one behaves optimally

thereafter, one receives V ∗(Ik+1, ak)e
−rYk+1 ; and this is the maximization problem

in (14). In the proof, the assumption that costs are bounded away from 0 is

used only to guarantee that only a compact set of plans need be considered.

As an immediate Corollary, if the feasible set of plans is already compact, the

assumption that costs be bounded from 0 is not needed and the same result holds.
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3.5. Euler Equations. We now turn to the FOCs and SOCs for finite but

strictly positive delay to be optimal for those intervals in which one change of

action is optimal. Here we restrict attention to models in which the optimality

conditions for a t∗1 ∈ (0,∞) involve only the value function and properties of

the stochastic structure at t∗1. For plans with only one action change at t1, we

can express the stochastic structure as a function w 7→ (f(w; t1), µ(w; t1)). Pro-

gressivity requires the existence a function w 7→ (f−(w), µ−(w)) such that for

all w < t1 < t′1, (f(w; t1), µ(w; t1)) = (f(w; t′1), µ(w; t′1)) = (f−(w), µ−(w)). For

t1 < t′1 < w we can have (f(w; t1), µ(w; t1)) 6= (f(w; t′1), µ(w; t′1)), which means

that the general FOCs for an optimal t∗1 must involve the discounted future path

of the derivative of (f(·; t∗1), µ(·; t∗1)). These are non-local aspects of the future

that are not captured by the value function. The following is a minimal assump-

tion for FOCs and SOCs to involve only the value function and properties of the

stochastic structure local to t∗1.

Definition 4. A stochastic structure is localized if for all starting points (i0, a0)

and a0 to a1 changes, there exists a function w 7→ (f+(w), µ+(w)) such that for

all 0 < t1 < t′1 < w, (f(w; t1), µ(w; t1)) = (f(w; t′1), µ(w; t′1)) = (f+(w), µ+(w)).

We use h+(w) and E+ to denote the hazard rate and and the expectation

operator for µ+(w) at times w > t1, and use h−(w) and E−(w) to denote the

corresponding quantities for w < t1.

Theorem 2. In an sMdp with a localized15stochastic structure, if p∗ solves

max
p∈P(i0,a0)

[
R(p; (i0, a0)) +

∫
(0,∞)×S

V ∗(i, p(s))e−rs dνp(s, i)

]
, (15)

and hesitates until a time t∗1 ∈ (0,∞) for its single action change to a∗1 at cost c∗,

then t∗1 must satisfy

rc∗ − [u(i0, a
∗
1)− u(i0, a0)] = (16)

h−(t∗1)

(
1

r
u(i0, a

∗
1)(1− γ(t∗1)) +

[
γ(t∗1)E+V ∗(I1, a

∗
1)− E−V ∗(I1, a0)

]
− c∗

)
where γ(t∗1) :=

h+(t∗1)

h−(t∗1)
. Further, if the term multiplying h−(t∗1) in (16) is positive

(resp. negative), then the SOCs are strictly satisfied iff the hazard rate h− is

increasing (resp. decreasing) at t∗1.
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The class of problems for which this is applicable models situations where: there

is only one realistic opportunity for a change of action; or the cost of changes is

high relative to the differences in the flow utility; or when uncertainty about the

durability of the circumstances pushing one to change actions is initially high

but then settles down for good. A broad class of institutional decision making

problems fit these descriptions. Examples below demonstrate that the one-move

necessary condition in (16) can also be useful when several moves are optimal

within an interval and when the choice of possible action is continuous rather

than discrete.

4. Applications of the Bellman and Euler Equations

The increasing and decreasing hazard rates cases in Theorem 2 have very dif-

ferent intuitions, one consonant with the searching till success seems too unlikely,

the other consonant with delaying expensive preventive measures until danger

presses. To see this in more detail, we now examine the Euler equations in various

models, starting with the simplest, and proceeding through their use in models

that include multiple action switches within a stochastic interval and continuous

choices of action. We then turn to an analysis of optima based more directly on

the Bellman equations.

4.1. Memoryless Processes. When f(·; p, i), the density part of stochastic

structure has a constant hazard rate between action changes and change prob-

ability, µ(·; p, i), is constant except, possibly, at action changes, the right-hand

side of the Euler equation, (16), is constant for any choice of a∗1. Within this class

of problems, at most one change of action is ever optimal, and there are three

possibilities for the optimal hesitation.

First, if flow benefits to the best change of action outweigh the benefits of delay,

that is if the left-hand side of (16) is larger than the right-hand side, then t∗1 = 0.

Further, because the hazard rates and transition probabilities are constant, if this

is true at any t1, then it is true for all t1.

Second, if the benefits of delay outweight the flow benefits of the best change of

action, then the optimal t∗1 =∞ because the right-hand side of (16) being larger

than the left-hand side. Again, if this is true at any t1, then it is true for all t1.

Third, if we have equality in (16), then any t∗1 ∈ [0,∞] is optimal.

15The FOCs for non-localized stochastic structures can be found in the on-line supplement.
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4.2. Two Types of Search. A standard search procedure often starts with a

quick scan which will find anything obvious, and, if this is not successful, then

moves on to a slower, more thorough search. We first review the simple search

model above then extend it to encompass the quick-scan-then-grind search model.

The model of §2.1 has two states, i0, no search results, and i1, successful search;

and two actions, s0, searching, and b, abandoning search. The set of feasible plans

is D-compact: it has P(ik, s0) being the set of all functions taking the value s

over some interval [0, t1], t1 ∈ [0,∞], and taking the value b thereafter, k = 0, 1;

and, to capture irreversibility, has P(ik, b) being the set of all functions constant

at b. The density before t1 is given by f(·), after the change to b, it is given by

f(·; t1) ≡ 0 so that the post- to pre-change hazard ratio is γ(t1) = 0. The flow

utilities are u(i0, s0) = −c, u(i0, b) = π, u(i1, s0) = π−c and u(i1, b) = π. Change

costs are set equal to 0. With these choices, the FOCs from Theorem 2 are

0− [π + c] = h−(t∗1)
(

1
r
u(i0, b)(1− 0) + [0E+V ∗(I1, b)− E−V ∗(I1, s0)]− 0

)
. (17)

Since the only possible change of state is from i0 to i1, the new state, I1 is,

with probability 1, equal to i1 so that E−V ∗(I1, s0) is equal to 1
r
π, the expected

discounted value of the flow of π. With these, the FOCs are h(t∗1) = r(c+π)/(π−
π) and the SOCs require h′(t∗1) < 0.

Suppose now that there are two search techniques: s1 with flow costs c1 and

hazard rate h1 that starts high, quickly declines to 0 and has
∫∞

0
h1(x) dx < ∞,

that is, a strictly positive incompleteness parameter; and s2 with corresponding

c2 and h2 that declines much more slowly and has
∫∞

0
h2(x) dx = ∞. Suppose

further that switching from s1 to s2 at t1,2 means that the hazard rate at t1,2 + s

is h2(s), that the value if only s2 is available is V2 >
1
r
π is the value if only s2,

and that it is optimal to use s1 first. The FOCs for t∗1,2 are h1(t∗1,2) = r(c1+rV2)
π−rV2

because rV2 is the annuitized flow value of V2. Because the SOCs are h′1(t∗1,2) < 0,

the comparative statics are straightforward: increases in r, i.e. becoming less

patient, means more time spent on scanning, that is, more time hoping for a

quick resolution; increases in c1 or V2 as well as everywhere decreases in h1 mean

less time spent scanning.

The hazard rate at t1,2 + s being h2(s) is an independence assumption that

does not make sense if the distributions are incomplete and our interpretation

of incomplete distributions for search times is that the object is not there to be
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found.16 One can capture and analyze such a situtation by using V2(qt) in the

FOCs where qt is posterior probability that the object is not findable using s2

given that using s1 until t has not found the object and V2(qt) is the value to

using s2 starting from that point.

4.3. Continuous Degrees of Innoculation. In the simple innoculation model

of §2.2 there are: two states, i0, the crisis not having arrived, and i1, the crisis

having arrived; and two actions, a0, not innoculating, and innoculating, a1. The

cost of switching from a0 to a1 is C, the pre-disaster flow utilities are u(i0, a0) =

u(i0, a1) = u, while the post-disaster flows depend on whether or not one was

innoculated, u(i1, a0) = 0 and u(i1, a1) = u, u > u > 0. To capture innoculation

being useless after the disaster has arrived, it is simplest to specify that P(i1, a0)

contains only the time path constant at a0. The arrival density at times w prior

to innoculation at t1 is f(w), at w ≥ t1, it is (1 − θ)f(w) so that the post- to

pre-hazard rate ratio is γ(t1) = (1 − θ). With these, the FOCs from Theorem 2

are

rC − [u− u] = h−(t∗1)
(

1
r
uθ + [(1− θ)E+V ∗(I1, a1)− E−V ∗(I1, a0)]− C

)
. (18)

Having innoculated when the state change I1 = i1 arrives yields expected dis-

counted payoffs of E+V ∗(I1, a1) = 1
r
u, having failed to innoculate by that time

yields E−V ∗(I1, a0) = 0. Combining, the FOCs are h(t∗1) = rC/(1
r
[θu+(1−θ)u]−

C), the SOCs are h′(t∗1) > 0, and increases in either θ or u make less hesitation

optimal.

Let us now suppose that the benefits of innoculation, the efficacy, θ, and the

post-disaster utility, u, are continuously adjustable, and that their cost is C(θ, u).

In this context, optimal design of the innoculation equates expected marginal

costs and benefits. With Cudu denoting the cost of increasing u by du, the optimal

choice of u equates the marginal cost, Cu, with the expected value of the increased

flow of utility if innoculation precedes disaster, Cu = (1 − θ∗)1
r
E(e−r(W−t

∗
1)|W >

t∗1), and the optimal θ∗ equates the marginal cost of prevention to the discounted

expected value of avoiding the disaster, Cθ = (u − u∗)1
r
E(e−r(W−t

∗
1)|W > t∗1).

These FOCs yield the following conclusions: increases in one aspect of the quality

of an innoculation lower the marginal value of the other apsect; irrespective of

16Different search techniques can be blind in different ways, so “not being findable using s1”
need not have implications for the likelihood of “not being findable using s2.”
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the distribution of (W |W > t1), the (absolute value of the) slope of the iso-cost

curve at the optimum is Cθ/Cu = (1− θ∗)/(u−u∗); and the signs of comparative

statics results for θ∗ and u∗ must be equal, θ∗ and u∗ increase with more patience

(lower r), with more at stake (higher u), and with a more hazardous environment

(an everywhere increase hazard rate).

4.4. Revisiting Adaptation to Changing Circumstances. Taking voting

rights away from a newly enfranchised group that can vote against being dis-

enfranchised is difficult in a democracy.17 By contrast, restoring privileges that

have been taken away, such as the legal consumption of alcohol, seems relatively

easy. We first use the Euler equations for the model of optimal adaptation to

ever changing circumstances of §2.4 to show that higher costs of either passing or

repealing an Amendment lead to more hesitation (one can also use the Bellman

equations for this). We then show that, in many but not all cases, if passage of a

law reduces the hazard that opinion will switch against it, this decreases optimal

hesitation.

4.4.1. The Costs of Repeal. Recall that the two matched state-action pairs, (i, a)

and (j, b) give positive flow utilities, while the mis-matched pairs, (i, b) and (j, a),

give flow utilities of 0. In either matched state-action pair, there is no incentive to

incur the cost of changing action so that the Euler equations are never satisfied.

For the mis-matched pair (i, b), provided that γ(t) = 1, the Euler equation is

[rc(b, a; i)− u(i, a)] = hi(ti) (0 + [V ∗(j, a)− V ∗(j, b)]− c(b, a; i)) (19)

with a similar expression for the t∗j associated with the other mis-matched pair,

(j, a).

Since rc(b, a; i) < u(i, a) is necessary for it ever to be optimal to switch actions,

if the Euler equations are satisfied, then both sides of (19) are negative and the

SOCs require the hazard rate to be decreasing. Rewriting with the hazard as a

ratio of two positive numbers we have

hi(t
∗
i ) =

u(i, a)− rc(b, a; i)

[V ∗(j, b)− V ∗(j, a)] + c(b, a; i)
. (20)

Since the hazard rates must be decreasing, the direct effect of an increase in

c(b, a; i) is to require more delay, that is, a higher t∗i . There are also indirect

17Witness the decades of effort to disenfranchise freedmen in the southern United States after
the passage of Amendment XV granting suffrage to former (male) slaves.
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effects of increases in either c(b, a; i), the cost of passing an Amendment, or of

increases in c(a, b; j) the cost of repealing an Amendment, but these indirect

effects also push for more delay. Increases in the change costs decrease all of the

values, but, e.g. in (20), the difference, [V ∗(j, b)−V ∗(j, a)], increases as the action

change costs increase — (j, b) is a matched pair so no change will occur in the

stochastic interval beginning at (j, b) while the pair (j, a) is mis-matched. With

declining hazard rates, the larger delays correspond to waiting until one is more

sure that any future change of opinion will not happen, or is, at least, further in

the future.

4.4.2. The Power of Laws to Affect Attitudes. Several contemporary sources sug-

gest that both the opponents and proponents believed, mistakenly as it turns out,

that in the event Prohibition was adopted, the laws would be widely followed and

the social norm would also switch in the direction of temperance. In the model,

this corresponds to lowering the post-change hazard rate for a switch back to

the status quo ante. Intuitively, this pushes for less hesitation because a swifter

passage of the amendment allows one to ‘lock in’ the benefits of having the action

match the present state. In the model, this is true for a wide range of cases, but

not in complete generality.

Recall that different matched state-action pairs have different flow utilities. If

these flow utilities are approximately equal, as we think reasonable for the present

application, or if being matched in the present state is more valuable than being

matched in the other state(s), then acting so as to get the lock-in is optimal.

However, if being matched to the present state is very much less desirable than

being matched in the other state(s), locking in corresponds to choosing a long

time at a very low level of utility, and this can be sub-optimal. In terms of the

FOCs from Theorem 2, this corresponds to the negative term multiplying h−(t∗1)

being very large in absolute value, meaning that it is optimal to delay until the

hazard rate for future change is very low indeed.

5. Conclusions and Extensions

We began with the question as to what the optimal time is for changing a status

quo policy in response to a change of the environment when policy change is

costly and there is the possibility of subsequent changes in the environment. The

tradeoff is between optimizing with respect to the current state and optimizing
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with respect to the expected future state when the passage of time contains

information about how soon the next change is likely to occur and what it is

likely to entail. The Euler equations of Theorem 2 for the optimal amount of

hesitation before a change of policy contain information about the optimal time,

how that optimal time interacts with the new action, and how it interacts with

different hazard rate patterns.

5.1. Decreasing Hazard Rate Problems. Every instant of hesitation in match-

ing the current action to the current state has an opportunity cost, but with a

decreasing hazard rate, hesitation increases the likelihood that any change of ac-

tion will be enduring. When the costs of changing action, or of changing it back,

are higher, this kind of ‘informative waiting’ is more valuable, an observation

that contains some insights into the examples presented at the beginning, and

suggests other areas of applicability.

Prohibition and women’s suffrage have an intimately tied history with large

overlap in the activists promoting both Amendments [Flexner, 1996]. Our model

suggests two cost-based explanations for the passage of Amendment XVIII (Prohi-

bition) and XIX (Suffrage). Prohibition was passed three years after Amendment

XVI, which allowed the federal government to collect income taxes. By providing

an alternative to the large tax receipts from alcohol, this drastically lowered the

cost of Prohibition, lowering the ‘optimal’ delay. Perhaps contributing to this

effect was the widespread belief that, if passed, temperance would become the

new norm. Women’s suffrage was delayed long past the accumulation of a great

deal of evidence of majority approval, and part of the delay may be explained as

‘optimality’ in the face of the high costs of reversing any enfranchisement.

A fascinating institutional design question is how much delay to build in. James

Madison [Hamilton et al., 1966, Federalist #62] argued for “The necessity of a

senate” with “tenure of considerable duration” because of “the propensity of all

single and numerous assemblies to yield to the impulse of sudden and violent

passions, and to be seduced by factious leaders into intemperate and pernicious

resolutions.” From the point of view of the model here, “intemperate and perni-

cious resolutions” correspond to actions that are either very costly or very costly

to reverse, and “sudden and violent passions” correspond to changes of state that

have high hazard rates for reversal, both of which lead to larger optimal delays.
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5.2. Increasing Hazard Rate Analyses. While the previous models have a

common intuition about trading off the informative value of waiting against the

opportunity cost of immediate action, an entirely different class of intuitions is

at work when hazard rates are increasing.

The costs of innoculation against financial system crises are, politically at least,

very high. Our investigation of the optimal delay highlights the tradeoff between

interventions that lower the arrival rate of the next crisis and those that lower the

damage that it will cause: a policy change that reduces one of these makes the

other less valuable at the margin. In such cases, hesitation saves incurring the cost

of innoculation, but becomes sub-optimal as the hazard rate rises and the danger

comes closer, an issue that seems relevant to policy responses to international

conflicts and to climate change.

Issues of limitations on executive power, especially with respect to war, have

been discussed, at least since the invention of the telegraph, in terms of the need

for quick decisions. The Vietnam war, the Watergate scandal — neither led to any

particularly extensive checks on, or built-in delays to the use of, executive power

(though there is debate about the legality and effects of the War Powers Act).

From the point of view of the model here, this is optimal if delays in changing

policy in the face of increasing danger are very costly, if prompt action is a form

of innoculation against future disasters in the context of spiking hazard rates.

This seems a good description of many of the international relations problems

the executive branch is called on to solve.

5.3. Our Methodology in Perspective. Our interest throughout has been fo-

cused on the optimal timing of discrete changes of action. There is a part of the

semi-Markovian decision theory literature that studies continuously adjustable

controls: Stone [1973] gives a differential inclusion condition for the value func-

tion when actions are continuously adjustable and control both transition times

and distributions; Doshi [1979] generalized this work to models in which the states

not only follow jump processes but may also have a diffusion-like component. The

modeling tradeoffs are between discrete changes and their costs, which is our fo-

cus, versus continuous adjustability of a policy, which is theirs. This is reflected

in the solutions methodologies: FOCs and more analytic tractability in our ap-

proach; the near necessity for numerical solutions characterized by differential

inclusions in theirs.
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An interesting perspective that sheds light on the approach taken here is in

Ghosh and Saha [2012], who reduce sMdp’s with continuously adjustable con-

trols to imbedded discrete-time Markovian decision problems with compact ac-

tion spaces representing the set of measurable time paths of the control variables.

For stationary, discrete-time Markovian decision problems, in state zk in the k’th

period, the value, v(zk), is the maximum, over available actions, ak ∈ A(zk), of

the expected one period reward, r(ak, zk), plus the expected discounted (at rate

δ) value of the state in one period, δE (v(zk+1)|zk, ak). In our sMdp’s: being in

zk in the k’th period is replaced with being in the state-action pair (ik, ak) at the

beginning of the k’th stochastic interval, [[Yk, Yk+1[[; the set of actions becomes

the set of plans p ∈ P(ik, ak); r(ak, zk) becomes the expected payoffs over the

interval [[Yk, Yk+1[[; and the expected discounted value of the state in one period

becomes the expected discounted value of V ∗(Ik+1, p(Yk+1 − Yk))e−rYk+1 because

p(Yk+1 − Yk) is the action being used as Yk+1 arrives. Theorem 1 shows that one

can reduce the problem to the sequence of problems encountered at the begin-

ning of the intervals. This directly parallels Ghosh and Saha [2012, Theorem 3.1],

who take the set of actions to be the set of progressively measurable, continuous

time control paths as opposed to our P(ik, ak), a set of left-continuous piecewise

constant functions.

5.4. Extensions and Further Research. In this paper we have assumed that

the decision maker’s knowledge of the stochastic structure can be expressed in

terms of well-defined probabilities. One set of extensions that we are working

on is to incorporate ambiguity into the model and analyze the implications. In

real world problems like climate change, where lack of consensus about the exact

stochastic structure is a key issue, such an approach seems more reasonable.

Economic models of climate change have traditionally treated the process as

one of gradual change to new, stable state. Recent research in climate science has

found evidence of both very rapid changes over a short period of time (around

a decade), as well as significant fluctuations or ‘environmental flickering’ over

periods as short as a year [Hall and Behl, 2006, Stern and Treasury, 2007]. These

phases of rapid change and/or flickering seem to be triggered once a threshold

point is reached in the ecological system. Quick changes in climate are more

expensive to adapt to, and if we are in a situation where the arrival times of

subsequent changes have a range of high arrival rates, the expense is further
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increased, pushing policy recommendations in the direction of those that arise

from some forms of the precautionary principle.18 While ‘gradual change’ models

have usually prescribed ‘adaptation to climate change’ as opposed to‘intervention

to avert it’ [Nordhaus and Boyer, 2003], the decision problem takes a new shape

when we incorporate the uncertainty over the expected arrival time of a possible

catastrophic change and over the issue of whether or not we are moving towards

such a critical threshold. In this context, the cost of controlling the intensity of

the arrival rate process, and its interplay with ambiguity and ambiguity aversion

need to be factored into the any discussion of optimal policy.
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6. Appendix

The arguments here give the essential ideas but suppress many details. These

can be found in the online supplement.

Proof of Theorem 1: We show that the mapping T is well-defined, has the

given contraction factor, that its unique fixed point is the true value function,

V ∗, and that following the argmax policy in (14) delivers V ∗.

To appeal to Berge’s theorem to show that T is well-defined, we must, first,

replace the correspondence (i, a) 7→ P(i, a) with a continuous, dH-compact value

correspondence, (i, a) 7→ Kτ (i, a) ⊂ P(i, a) without changing the value function,

and second, show that the function being maximized is jointly continuous.

Because dH pays vanishingly small attention to differences on [T,∞) as T ↑ ∞,

the set of plans starting at any (i, a) with action change times at least τ > 0 apart

has at most 1 + T/τ action changes by any T , hence is dH-compact. We denote

this set of plans Kτ (i, a) and note that the correspondence is continuous. To see

that we do not change the value function by this restriction, it is sufficient to

show that there exists a sufficiently small τ ∈ (0, 1) such that it will never be

optimal to change actions at times satisfying tk < tk+1 < tk + τ . To this end,

consider two plans, equal outside of [tk, tk+1] with the following properties: p(2)

changes twice, from ak−1 to ak at tk and from ak to ak+1 at tk+1; and p(1) that

skips the intermediate change, changing only once, from ak−1 to ak+1 at some

t ∈ [tk, tk+1]. Because indirect changes of action are more costly than direct

changes, the cost savings in p(1) are bounded away from 0 uniformly. Define

u◦ = max(i,a) u(i, a)−min(j,b) u(j, b), and to avoid trivialities, assume that u◦ > 0.

The benefit difference is bounded by u◦ · (tk+1− tk) plus the expected change in V

resulting from the extra action. By uniform smoothness, both additional benefit

terms go to 0 uniformly as (tk+1 − tk) ↓ 0.

From Blackwell’s Lemma for contraction mappings (e.g. Corbae et al. [2009,

Lemma 6.2.33]), to show that T is a contraction mapping with contraction factor

β, it is sufficient to show that (a) T is monotonic, and (b) that for any constant

36



κ ≥ 0 and V ∈ C(S × A), T (V + κ) ≤ T (V ) + βκ. Monotonicity is immediate.

For (b), define Ψ(V, p) =
[
R(p; (i, a)) +

∫
(0,∞)×S V (i, p(s))e−rs dνp(s, i)

]
, let p∗

and pκ solve

max
p∈P(i,a)

Ψ(V, p) and max
p∈P(i,a)

Ψ(V + κ, p) (21)

so that Ψ(V, p∗) = T (V ) and Ψ(V + k, pκ) = T (V + κ). By the optimality of pκ,

Ψ(V + κ, p∗) ≤ Ψ(V + κ, pκ). Further,

Ψ(V + κ, p∗) = Ψ(V ) + κ ·
∫

(0,∞)×S
e−rs dνp∗(s, i) ≤ κβ (22)

where both the last inequality and β < 1 come from uniform smoothness at t = 0.

The arguments for the last two parts of the theorem parallel the standard

discrete-time dynamic programming arguments: if V† is the unique fixed point

for T , then following the argmax p∗ for the first stochastic interval and receiving

V†(I1, a) when the interval ends must have value V†. Therefore following p∗ for

the first two stochastic intervals has value V†. Since the strictly positive Wk have

expectation uniformly bounded away from 0, following p∗ in each interval yields

V†. By definition, V ∗ ≥ V†, and if V ∗(i0, a0) > V†(i0, a0) for some (i0, a0), then V†

is not the fixed point of T . �

Proof of Theorem 2. At an optimal 0 < t1 <∞, the difference between the payoff

to changing at t1 and changing at t1 + dt, dt ' 0 must be equal to 0. There are

four components to the difference: the difference in the annuitized flow cost of the

action change, −rc∗dt where c∗ denotes c(a0, a
∗
1; i0); the difference in flow utility,

[u(i0, a
∗
1)− u(i0, a0)] dt; the difference in the expected value of a state change net

of the change cost c∗,[(∫
S
V (i, a∗1)µ+(t1)(di)− c∗

)
h+(t1)−

(∫
S
V (i, a0)µ−(t1)(di)

)
h−(t1)

]
dt; (23)

and the difference in the expected utilities accrued from the change in the size in

the atom at ∞ conditional on the change not having arrived by t1,[∫ t1+dt
t1

(f−−f+)(s) ds

1−F (t1)

]
u(i0, a

∗
1)1
r

=
[
u(i0, a

∗
1)1
r

]
(h−(t1)− h+(t1))dt. (24)

Adding the terms, setting them equal to 0 and solving yields the FOCs

h−(t∗1) =
rc∗−[u(i0,a∗1)−u(i0,a0)]

1
r
u(i0,a∗1)(1−γ(t∗1))+[γ(t∗1)E+V (I1,a∗1)−E−V (I1,a0)]−c∗

(25)
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where γ(t) is defined as the ratio of post- and pre-change hazard rates, γ(t) =
h+(t)
h−(t)

, and E− and E+ are defined as expectations of the next state, I1, under the

distributions µ−(t1) and µ+(t1) respectively. The arguments for the SOCs and

the sign of the derivative of the hazard rate directly parallel the arguments given

in §2. �
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