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Abstract

The causal relationship between money and income (output) has been an important topic and
has been extensively studied. However, those empirical studies are almost entirely on Granger-
causality in the conditional mean. Compared to conditional mean, conditional quantiles give a
broader picture of an economy in various scenarios. In this paper, we explore whether forecasting
conditional quantiles of output growth can be improved using money growth information. We
compare the check loss values of quantile forecasts of output growth with and without using
past information on money growth, and assess the statistical signi�cance of the loss-di¤erentials.
Using U.S. monthly series of real personal income or industrial production for income and output,
and M1 or M2 for money, we �nd that out-of-sample quantile forecasting for output growth is
signi�cantly improved by accounting for past money growth information, particularly in tails
of the output growth conditional distribution. On the other hand, money-income Granger-
causality in the conditional mean is quite weak and unstable. These empirical �ndings in this
paper have not been observed in the money-income literature. The new results of this paper
have an important implication on monetary policy, because they imply that the e¤ectiveness of
monetary policy has been under-estimated by merely testing Granger-causality in conditional
mean. Money does Granger-cause income more strongly than it has been known and therefore
information on money growth can (and should) be more utilized in implementing monetary
policy.
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1 Introduction

Granger-causality (GC), introduced by Granger (1969, 1980, 1988), is one of the important issues

that have been much studied in empirical macroeconomics and empirical �nance. Particularly

the causal relationship between money and income is one of the most widely studied subject in

economics. In this paper, we extend the literature in two ways. The literature on money-income

causality is studied for the conditional mean and most papers have used the in-sample signi�cance

of money variables in the output growth equation. (In this paper, the terms, income and output, will

be used interchangeably.) First, we go beyond the conditional mean, and examine the conditional

distribution and conditional quantiles. Second, we examine the out-of-sample predictive contents

of money variables in forecasting output growth.

While GC is naturally de�ned in terms of conditional distribution (see Granger and Newbold

1986), almost all the papers in this literature have focused on GC-in-mean (GCM). The GC-in-

distribution (GCD) has been less studied empirically perhaps because it is in fact about indepen-

dence and so it may be too broad to be directly linked to a policy implication. More useful may be

the particular quantiles of the conditional distribution because by inverting the conditional distrib-

ution we obtain the conditional quantiles. Hence, we may examine directly the GC in distribution,

or indirectly via GC in conditional quantiles (GCQ). Granger (2003) notes that the study of the

time series of quantiles is relevant as the predictive distribution can be expressed in terms of the

CDF, the density, the characteristic function, or quantiles.

Vast empirical literature on the money-income causality has very mixed results on GCM �

usually unstable and sensitive to the choice of sample periods, data sets and variables (e.g., M1

or M2 for money, personal income (PI) or industrial production (IP) for income, with or without

including some other variables such as interest rates and business cycle indicators in the regression,

etc.). Di¤erent countries, sample periods and variables are studied in those empirical research, but

no consensus has been reached. The results in this paper for GCD and GCQ are much more stable

and stronger.

The aim of this paper is to study the GC beyond the conditional mean between money and

income, which is in line with the suggested directions of Granger (2003, 2005, 2006).1 Forecasting

conditional quantiles is important in economic policy when a particular scenario of the economy is

1Granger (2006) remarks, in the 20th anniversary issue of the Advances in Econometrics, �For most of its history
time series theory considered conditional means, but later conditional variances. The next natural development
would be conditional quantiles, but this area is receiving less attention than I expected. The last stages are initially
conditional marginal distributions, and �nally conditional multivariate distributions. Some interesting theory is
starting in these areas but there is enormous amount to be done.�
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concerned. For instance, in asset valuation, di¤erent scenarios of output growth are extremely useful

in sensitivity analysis, scenario analysis, and risk management. For industries greatly in�uenced

by overall macroeconomic conditions, forecasting output growth helps to evaluate the industry

exposure in di¤erent scenarios. The fan chart of Bank of England for di¤erent quantile forecasts of

in�ation rate is another example.

Although it is not stable in the U.S. data on whether money growth helps to improve forecasting

of the conditional mean of output growth, we �nd that there is much stronger evidence that it helps

to improve forecasting of its conditional quantiles. Forecasting the conditional quantiles of output

growth depends on its conditional distribution, and so we may also test for GCD. GCD implies

GCQ in some quantiles, although GCD does not necessarily imply GCQ in each quantile. GCD is

a necessary but not su¢ cient condition for GCQ in speci�c quantile. GCQ in a speci�c quantile

exists if the lagged money variables help to improve forecasting the output growth at that quantile.

Two quantile regression models for output growth with and without money growth information are

estimated and the out-of-sample average of the �check�loss values of the two quantile models are

compared. Because these two quantile forecasting models are nested, the unconditional predictive

ability test proposed by Diebold and Mariano (1995) and West (1996) fails in that its asymptotic

distribution degenerates. We therefore utilize the conditional predictive ability test proposed by

Giacomini and White (GW henceforth, 2006).

Our empirical study uses several di¤erent data sets over various sample periods. We �nd the

following results. First, for the causality in the conditional mean, di¤erently from Chao, Corradi

and Swanson (2001) who test out-of-sample Granger-causality in mean using moment conditions,

we compare the squared forecast error loss values of two conditional mean forecasts of output

growth with and without money. The result is very weak for the GCM (as expected from the

existing literature). We �nd that the predictive ability of a model with including money as a

predictor for the conditional mean of output growth could be even worse than a model without

money (due to parameter estimation error), and the result varies sensitively over time as pointed

out by Eichenbaum and Singleton (1986), Stock and Watson (1996), Swanson (1998) and Thoma

(1994). Second, for the money-income GC in the conditional distribution, we use a nonparametric

copula function, and �nd a more stable and signi�cant result for GCD in many subsamples even

when there exists no signi�cant GCM. Third, for the GCQ, two conditional quantile regression

models with and without money are estimated and their quantile forecasts are compared for their

out-of-sample check loss values. We �nd that GCQ is signi�cant in tail quantiles in most subsamples
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and most data sets, while it is not signi�cant in the center of the distribution. Forth, comparing

results across di¤erent data sets (which consist of di¤erent variables for money and income), it

seems that GCQ between money and industrial production (IP) is more signi�cant that between

money and real personal income (PI).

The structure of this paper is as follows. In Section 2, we discuss GC in mean, GC in distribution,

and GC in quantiles. Section 3 reports the empirical �ndings. Section 4 concludes.

2 Granger-causality

We use the following notation. Let R denote the sample size for estimation (for which we use a

rolling scheme), P denote the size of the out-of-sample period for forecast evaluation, and T = R+P .

Let x be money growth and y the output growth. Consider the distribution functions conditional

on the information set Ft as Ft+1(xjFt) = Pr(xt+1 < xjFt); Gt+1(yjFt) = Pr(yt+1 < yjFt); and

Ht+1(x; yjFt) = Pr(xt+1 < x and yt+1 < yjFt): Let ft+1(xjFt); gt+1(yjFt); and ht+1(x; yjFt) be the

corresponding densities. Let u = Ft+1(xjFt) and v = Gt+1(yjFt): Let Ct+1(u; vjFt) and ct+1(u; vjFt)

be the conditional copula function and the conditional copula density function respectively. See

Appendix A for a brief introduction on the copula theory. Let E(yt+1jFt) be the conditional mean

of yt+1. Let Xt = (xt; : : : ; xt+1�q)0 and Gt be the information set excluding Xt; i.e., Gt = Ft=fXtg.

2.1 Money-Income Granger-causality in Mean

Starting with Friedman (1956) the debate about role of money on income attracts attention of

a lot of economists. Numerous studies have been devoted to the interaction between money and

income. Theoretical models are constructed to explore the roles of aggregate demand �uctuation

and money demand �uctuation, such as in Kaldor (1970), Modigliani (1977), Meltzer (1963), among

others. Along with the theoretical development, many empirical studies have been made following

the seminal research of Sims (1972, 1980). Sims (1972) shows money Granger-causes income, but

his results were criticized due to the bias caused by hidden factors. Sims (1980) applies a vector

autoregressive (VAR) model to handle a vector of variables and reports that money does not Granger

cause income after the World War II. After Sims, Granger-causality and VAR models have become

generally accepted instruments for studying the money and income relationship. Stock and Watson

(1989) contend that the deterministic trend plays important roles and use detrended money in the

analysis. They �nd more signi�cant money-income causality using the detrended money growth

rate. Friedman and Kuttner (1992, 1993) and Thoma (1994) also report limited evidence for the

3



money-income causality. However, they �nd money-income causality is time-varying with regard to

di¤erent sample periods or with regard to di¤erent variables.2 Swanson (1998) tests money-income

Granger-causality in an error-correction model. Dufour and Renault (1998) and Dufour, Pelletier

and Renault (2006) test the long horizon causality.

De�nition 1. (Non Granger-causality in mean, NGCM): Xt does not Granger-cause yt+1

in mean if and only if E(yt+1jXt;Gt) = E(yt+1jGt) almost surely ( a:s:).

To test for Granger-causality in mean (GCM), we can utilize either an in-sample test or an

out-of-sample test. In the literature, most tests of money-income causality focus on in-sample con-

ditional mean in a VAR model. The in-sample Granger-causality test is to test the null hypothesis

that coe¢ cients of money are all insigni�cant in the output equation. A Wald-type test is often

used in an in-sample test of GCM. Following Ashley, Granger, and Schmalensee (1980) who argue

Granger-causality makes more sense in a predictive setting, we conduct an out-of-sample test for

GCM based on two nested models. The �rst model does not account for money-income GCM

(referred as Model 1 or �NGCM�) and the second does (referred as Model 2 or �GCM�):

Model 1 (NGCM) : yt+1 = E(yt+1jGt) + "1;t+1 = V 0t �1 + "1;t+1; (1)

Model 2 (GCM) : yt+1 = E(yt+1jXt;Gt) + "2;t+1 =W 0
t�2 + "2;t+1; (2)

where Vt 2 Gt and Wt = (X 0
t V

0
t ) are vectors of regressors. Vt includes a constant term. The

parameters {�i} are estimated by minimizing the squared error loss using the rolling sample of the

most recent R observations at time t (t = R; : : : ; T � 1) :

�̂1;t = argmin
�1

tX
s=t�R+1

(ys � V 0s�1�1)2; (3)

�̂2;t = argmin
�2

tX
s=t�R+1

(ys �W 0
s�1�2)

2: (4)

Denote ŷ1;t+1(�̂1;t) = V 0t �̂1;t and ŷ2;t+1(�̂2;t) = W 0
t �̂2;t; the forecasts of yt+1 from Model 1 and

Model 2, respectively, and let "̂i;t+1(�̂i;t) = yt+1 � ŷi;t+1(�̂i;t) be the forecast error of Model i. In

the empirical analysis of Section 3, we choose Xt = (xt; : : : ; xt+1�q)0 and Vt = (Y 0t ; It; Bt)
0 where

Yt = (yt; : : : ; yt+1�q)0, q = 12; It is the 3 month T-bill interest rate, and Bt is the business cycle

coincident index. See Table 1A for details.
2For instance, by replacing the three month T-bill rate by commercial paper rate, the money-income causality

become less signi�cant. In general, these empirical studies give us relatively controversial results on the money-income
causality.
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As the models are nested, we can not use the tests of Diebold and Mariano (1995) and West

(1996). A test for Granger-causality is to compare the loss functions of forecasts conditional on two

information sets, Gt and Ft. As we are interested in comparing the loss of forecasting output growth

yt+1 without and with using the information on past money growth Xt; we use the conditional

predictive ability test of GW (2006). Let Lt+1(�) be a loss function. The null hypothesis of NGCM

is therefore

H0 : E[Lt+1(yt+1; ŷ1;t+1)� Lt+1(yt+1; ŷ2;t+1)jFt] = 0; t = R; : : : ; T � 1: (5)

Under the H0 the loss di¤erential �Lt+1 � Lt+1(yt+1; ŷ1;t+1)�Lt+1(yt+1; ŷ2;t+1) is a martingale dif-

ference sequence (MDS), which implies E(ht�Lt+1) = 0 for any ht that is Ft-measurable. Denoting

Zt+1 = ht�Lt+1, the GW (2006) statistic is

GWR;P = P �Z
0
R;P 
̂

�1
P
�ZR;P ; (6)

where �Z 0R;P =
1
P

PT�1
t=R ht�Lt+1 and 
̂P =

1
P

PT�1
t=R Zt+1Z

0
t+1. Under some regularity conditions,

GWR;P !d �2q as P ! 1 under H0.3 We choose the �test� function, ht; such that it is Ft-

measurable but not Gt-measurable. For simplicity, we choose ht = Xt = (xt; : : : ; xt+1�q)0:4

To test money-income Granger-causality in mean, we choose the squared error loss Lt+1(yt+1; ŷi;t+1) =

"̂2i;t+1 (i = 1; 2) for the out-of-sample forecast evaluation because the conditional mean is the opti-

mal forecast under the squared error loss. We also minimize the same loss for in-sample parameter

estimation as shown in (3) and (4). Therefore, Zt+1 = ht�Lt+1 = ht("̂21;t+1 � "̂22;t+1). To be con-

sistent with the literature using monthly series, we choose ht using 12 lags of money growth rate,

i.e., ht = Xt = (xt : : : xt�11)0 with q = 12.

Because the GW statistic is for equal conditional predictive ability test, the rejection of the

null hypothesis only implies that the two models are not equal in conditional predictive ability. To

choose one model over the other, we follow the decision rule suggested by GW (2006) to construct

3Chao, Corradi and Swanson (2001) propose an out-of-sample test using following test statistic

CCSR;P =
1

P

T�1X
t=R

"̂1;t+1h(Xt);

which follows zero-mean normal distribution asymptotically with its asymptotic variance incoorporating estimation
error.

4Two possible ways to improve the power of the test are (i) to choose q in a way to maximize the test power
and (ii) to choose ht from transforms of Xt as suggested in Bierens (1990), Stinchcombe and White (1998), or Hong
(1999). We do not consider these extensions in this paper for simplicity and also to match the choice of ht with the
vast literature on GCM. Following Lee, White and Granger (1993) and Stinchcombe and White (1998), ht will be
called a test function.
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a statistic as

IP =
1

P

T�1X
t=R

1(�̂0Pht < 0); (7)

where 1(�) is the indicator function and �̂P is the coe¢ cient of ht by regressing �Lt+1 on ht

(t = R; : : : ; T � 1). As the rejection of H0 occurs when the test function ht can predict the loss

di¤erence �Lt+1 in out-of-sample, �̂0Pht t E(�Lt+1jFt) will be the out-of-sample predicted loss

di¤erences. If IP is greater than 0.5, Model 1 (NGCM) will be selected; otherwise Model 2 (GCM)

will be selected.

2.2 Asymmetric GCM versus GCQ

Hayo (1999) nicely summarizes �ve stylized facts found in the empirical literature on the existence

and strength of GCM between money and output using U.S. data: (a) In a model with only two

variables, money Granger-causes output (Sims 1972). (b) The statistical signi�cance of the e¤ect

of money on output will be lower when including other variables in a multivariate test such as

prices and interest rates (Sims 1980). (c) The use of narrow money is less likely to support GC

from money to output than broad money (King and Plosser 1984). (d) Assuming that variables

are trend stationary and modelling them in (log-) levels with a deterministic trend is more likely

to lead to signi�cant test results than assuming di¤erence stationary and employing growth rates

(Christiano and Ljungquist 1988, Stock and Watson 1989, Hafer and Kutan 1997). (e) Allowing

asymmetric e¤ects of money on output growth and including the business cycle greatly in�uences

results and strengthens the causal e¤ect of money (Cover 1992, Thoma 1994, Weise 1999, Lo and

Piger 2005, Ravn and Sola 2004, Psaradakis, Ravn, and Sola 2005).

Hayo (1999) revisited the above U.S. stylized facts using a broad data base of 14 EU countries

plus Canada and Japan. It is found that very few of the above, particularly (b) and (d), can be

sustained. Also found in the literature is that GCM is unstable, changing with sample periods,

data to use (variables and frequency), and countries. Psaradakis, Ravn, and Sola (2004) provide

some summary on this instability evidence from the literature. Davis and Tanner (1997) also �nd

the instability of the GCM across countries.

What appears to be robust is (e). Thoma (1994) shows for monthly data with M1 that the state

of business cycle has considerable in�uence on the results and strengthens of the GCM of money.

When real activity declines the e¤ect of money on output becomes stronger, while the opposite

takes place during a recovery. Numerous papers in the literature have found that the evidence for

the GCM becomes more evident when some asymmetry has been introduced. Weise (1999) and
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Lo and Piger (2005) classify the three forms of asymmetry studies in a large body of empirical

literature on money-income causality.

A1 (sign asymmetry): asymmetry related to the direction of the monetary policy action (Cover

1992, Dolado, Pedrero and Ruge-Murcia 2004)

A2 (size asymmetry): asymmetry related to the size of the policy action. (Ravn and Sola 2004,

Dolado, Pedrero and Ruge-Murcia 2004)

A3 (business cycle asymmetry): asymmetry related to the existing business cycle business cycle

phase (Thoma 1994, Weise 1999, Lo and Piger 2005, Garcia and Schaller 2002)

Weise (1999) �nds no evidence for A1, some evidence for A2, and strong evidence for A3.

Bernanke and Gertler (1995) and Galbraith (1996) explain A3 via credit rationing and its threshold

e¤ects on the relationship between money and output. Lo and Piger (2005) examine A3 using a

regime-switching model in the response of U.S. output to monetary policy and �nd that policy

actions during recessions have larger output e¤ects than those taken during expansions. To deal

with the instability and the asymmetry in GCM between money and income, many researchers

have used split subsamples or rolling samples, or nonlinear models such as regime-switching models

and threshold models.

The objective of this paper is to study GCQ, which is useful for scenario analysis in implementing

monetary policy. Our empirical results (in Section 3) for GCQ are �symmetric�, in that GCQ is

insigni�cant in or near the center of the predicted distribution of the output growth while it is

strongly signi�cant in both tails. (The results of Section 3 show that GCQ is signi�cant in both

tails.) The di¤erence between the asymmetric GCM and GCQ is that the former refers to the

empirical fact that the predictive power of past money growth to predict the mean of output

growth is stronger when the past output growth is negative (in recession), while the (symmetric)

GCQ refers to the fact the predictive power of past money growth to predict the quantiles of

output growth is stronger when the scenario of our interest is the future output growth in tails of

its predicted distribution. Hence, the asymmetric GCM prescribes a monetary policy based on the

past information, while the GCQ enables a monetary policy to be based on the forward looking

scenarios of output growth. The GCQ can indicate how/whether the past and current money

growth a¤ects the various future states (i.e., quantiles) of the output growth.

The GCQ is also di¤erent from the Granger-causality in Risk (GCR) proposed by Hong, Liu,

and Wang (2009). They extend the causality in variance in the literature (volatility spillover) to

causality in extreme distribution de�ned on the platform of Value-at-Risk. However, the focus of
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GCR is the risk spillover, i.e., the causality from occurrence of one extreme event to the occurrence

of another extreme event, while that for GCQ is the forecasting of quantiles based on all available

information of the causal variable, not merely the tail distribution of the causal variable.

2.3 Money-Income Granger-causality in Quantiles

Most empirical studies on money-income causality focus on Granger-causality in mean. As dis-

cussed above, in many cases, one may care about conditional distribution of output growth. Even

without signi�cant Granger-causality in mean, Granger-causality in distribution (GCD) may still

be signi�cant.

De�nition 2. (Non Granger-causality in distribution, NGCD): Xt does not Granger-cause

yt+1 in distribution if and only if Pr(yt+1 < yjXt;Gt) = Pr(yt+1 < yjGt) a:s: for all y.

Remark: Note that we can write for y 2 R;

Gt+1(yjFt) = Pr(yt+1 < yjFt) = E[1(yt+1 < yjFt)] = E(zt+1jFt); (8)

Gt+1(yjGt) = Pr(yt+1 < yjGt) = E[1(yt+1 < yjGt)] = E(zt+1jGt); (9)

where zt+1 = 1(yt+1 < y): Therefore, De�nition 2 is equivalent to

E(zt+1jFt) = E(zt+1jGt) a:s: for all y: (10)

Hong, Liu, and Wang (2009) use this to test for Granger-causality in risk for a �xed value of y

between two �nancial markets (Xt and yt+1): The GCD between Xt and yt+1 can be viewed as

GCM between Xt and zt+1 for all y. �
There is GCD if Pr(yt+1 < yjXt;Gt) 6= Pr(yt+1 < yjGt) for some y: Xt does not Granger-cause

yt+1 in distribution if Gt+1(yjXt;Gt) = Gt+1(yjGt) a:s: or gt+1(yjXt;Gt) = gt+1(yjGt) a:s:

As the conditional distribution can be inverted to conditional quantiles, we test for Granger-

causality in conditional distribution via testing for Granger-causality in conditional quantiles.

Let the conditional quantile of yt+1 be denoted q�(yt+1jFt) such that Gt+1(q�(yt+1jFt)jFt) = �.

The conditional quantile q�(yt+1jXt;Gt) can be obtained by inverting the conditional distribution

Gt+1(yjFt) = �. Recall that Gt is the information set excluding Xt; i.e., Gt = Ft=fXtg. We now

de�ne GC in conditional quantile (GCQ).
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De�nition 3. (Non Granger-causality in quantile): Xt does not Granger-cause yt+1 in

�-quantile if and only if q�(yt+1jXt;Gt) = q�(yt+1jGt) a:s:

GC in conditional quantile refers to the case that q�(yt+1jXt;Gt) 6= q�(yt+1jGt). If Xt does not

Granger-cause yt+1 in distribution, q�(yt+1jXt;Gt) = q�(yt+1jGt) since gt+1(yjXt;Gt) = gt+1(yjGt).

Therefore, non-Granger-causality in distribution implies non-Granger-causality in conditional quan-

tiles. On the contrary, GC in distribution does not necessarily imply GC in each quantile, while

signi�cant GC in any conditional quantile implies signi�cant GC in distribution. For some quan-

tiles, Xt may Granger-cause yt+1; while for other quantiles it may not. Granger (2003, p. 700)

notes that some quantiles may di¤er from other quantiles in time series behavior (such as long

memory and stationarity). For example, di¤erent parts of the distribution can have di¤erent time

series properties; one tail could be stationary and the other tail may have a unit root.

While the quantile forecast q�(yt+1jXt;Gt) can be derived from inverting the density forecast, in

this paper we use linear quantile regression. An out-of-sample test for GCQ is based on two nested

linear models. The �rst model does not account for money-income GC in �-quantile (referred as

Model 1 or �NGCQ�) and the second does (referred as Model 2 or �GCQ�):

Model 1 : yt+1 = q�(yt+1jGt) + e1;t+1 = V 0t �1(�) + e1;t+1; (11)

Model 2 : yt+1 = q�(yt+1jXt;Gt) + e2;t+1 =W 0
t�2(�) + e2;t+1; (12)

where Vt 2 Gt and Wt = (X 0
t V

0
t ) are vectors of regressors and Vt includes a constant term.

The parameters �i(�) are estimated by minimizing the �check� function discussed in Koenker

and Bassett (1978) using the rolling sample of the most recent R observations at time t (t =

R; : : : ; T � 1) :

�̂1;t(�) = arg min
�1(�)

tX
s=t�R+1

��(ys � V 0s�1�1(�)); (13)

�̂2;t(�) = arg min
�2(�)

tX
s=t�R+1

��(ys �W 0
s�1�2(�)); (14)

where ��(e) � [� � 1(e < 0)]e. Denote q̂1�;t+1(�̂1;t(�)); q̂2�;t+1(�̂2;t(�)) for the �-quantile forecasts

of yt+1 from Model 1 and Model 2 respectively, and let êi;t+1(�̂i;t(�)) = yt+1 � q̂i�;t+1(�̂i;t(�)).

Denote �̂2X;t(�) as parameters in the GCQ quantile regression model for X 0
t and �̂2V;t(�) as

parameters in that model for V 0t . Thus �̂2;t(�) = (�̂
0
2X;t(�); �̂

0
2V;t(�)):A convenient test for NGCQ

is therefore to test H0 : �̂2X;t(�) = 0: Koenker and Basset (1982) show that under some regularity
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conditions, the parameter estimates has asymptotic normal distribution, i.e.,

n1=2
�
�̂2;t(�)� �2;t(�)

�
d! N(0; !2(�;G)
�1); (15)

where 
 = limR!1R
�1Pwtw

0
t, !

2(�;G) = �(1 � �)=g2(G�1(�)) and G(�) and g(�) are the

distribution function and density function of y respectively. The covariance matrix 
 can be

estimated by its sample estimate 
̂: g(G�1(�))�1 is the reciprocal of the density function and

is called the sparsity function. It can be estimated by the di¤erence quotient of the empirical

quantile function with a chosen bandwidth (such as the Bo�nger bandwidth or the Hall-Sheather

bandwidth).

Koenker and Machado (1999) propose two tests for H0 : �̂2X;t(�) = 0, a Wald-type test or a

likelihood ratio test. Let the covariance matrix be partitioned accordingly in the GCQ model with


XX and 
V V as the two diagonal terms and 
XV and 
V X as the two o¤-diagonal terms. The

Wald-type test statistic is computed by

Waldt(�) = �̂
0
2X;t(�)�̂(�)

�1�̂2X;t(�); (16)

where

�̂(�) = R�1!̂2(�;G)(
XX � 
XV 
�1V V 
V X)
�1;

and !̂(�;G) is computed using the estimated sparsity function. The likelihood ratio test is based

on the di¤erence between the in-sample check loss. Denote L1(�) =
Pt
s=t�R+1 ��(ys � V 0s�1�1(�))

and L2(�) =
Pt
s=t�R+1 ��(ys �W 0

s�1�2(�)). The LR test statistic is calculated by

LRt(�) = 2[�(1� �)ĝ(Ĝ�1(�))�1]�1(L1(�)� L2(�)); (17)

where ĝ(Ĝ�1(�)))�1 is the estimated sparsity function. Koenker and Machado (1999) show that

under some regularity conditions, Waldt(�) and LRt(�) are equivalent and follow a �2k distribution

asymptotically where k is the dimension of X.

The above-mentioned two test statistics are relatively easy to compute and have good asymptotic

property, but they have some de�ciencies. For instance, the estimation of the sparsity function

requires the Gaussian distribution and the nice asymptotic property of those test statistics is not

robust with non i.i.d. cases. Some alternative methods have been put forward to deal with such

de�ciencies, for instance, the bootstrap resampling proposed by Parzen, Wei and Ying (1994), or

the Markov chain marginal bootstrap by He and Hu (2002), or the Huber sandwich local estimate

of the sparsity function proposed by Koenker and d�Orey (1993). But no consensus has been

10



reached on those issues. Moreover, it is merely an in-sample test and can not be used to compare

the predictive power of di¤erent models, which, unfortunately, is exactly the essence of Granger-

causality. Therefore, we propose to testing GCQ using a predictive ability test.

A test for Granger-causality is to compare the check-loss functions of forecasts conditional on

two information sets, Gt and Ft. We again use the conditional predictive ability test of GW (2006)

using the check-loss function, i.e., Lt+1(yt+1; ŷi;t+1) = ��(êi;t+1(�̂i;t(�))). The null hypothesis of

NGCQ is therefore

H0 : E[��(ê1;t+1(�̂1;t(�)))� ��(ê2;t+1(�̂2;t(�)))jFt] = 0; t = R; : : : ; T � 1: (18)

Under the H0 the loss di¤erential �Lt+1 � ��(ê1;t+1(�̂1;t(�))) � ��(ê2;t+1(�̂2;t(�))) is an MDS,

which implies E(ht�Lt+1) = 0 for any ht that is Ft-measurable. Denoting Zt+1 = ht�Lt+1,

the GW (2006) statistic is of the same form as in (6) with �Z 0R;P =
1
P

PT�1
t=R ht�Lt+1 and 
̂P =

1
P

PT�1
t=R Zt+1Z

0
t+1. Under some regularity conditions, GWR;P !d �2q as P ! 1 under H0. We

choose the same test function ht = Xt = (xt; : : : ; xt+1�q)0 as before with q = 12. When the null

hypothesis of the equal conditional predictive ability is rejected, the forecast model selection rule

is the same as in (7) in Section 2.1.

In Section 3 for the empirical analysis, we chooseXt = (xt; : : : ; xt+1�q)0 and Yt = (yt; : : : ; yt+1�q)0

with q = 12, and let Gt = �(Vt) be the �-�eld generated by Vt = (Y 0t ; It; Bt)0 where It denotes the

3 month T-bill interest rate and Bt denotes the business cycle coincident index. See Table 1A.

3 Empirical Analysis

In the literature, empirical studies of Granger-causality in mean commonly apply VAR models with

exogenous variables. Di¤erent exogenous variables, such as treasury bill rates, federal funds rates,

commercial paper rates and business cycle indicators are used. Real Personal Income or Industry

Production is used as the proxy for income, and M2 is used as the proxy for money stock. We

report the results only with M2 for space as the results with M1 are similar. We use monthly data

of real personal income, industrial production index, M2 money stock, 3-month T-bill rate and

the Stock and Watson experimental coincident index in the empirical study. The sample period

is from 1959:04 to 2001:12 (513 observations). The source of the Stock and Watson experimental

coincident index is the website of James Stock, while source for all other data is the Federal Reserve

Economic Database (FRED) of Federal Reserve Bank of St. Luis.

We construct two data sets with two di¤erent income variables. Data Set 1 uses Real Personal

Income for income and M2 for money. Data Set 2 uses Industrial Production for income and also

11



uses M2 for money. The description of those data sets is listed in Table 1A. Noting that output,

money and interest rate series are all non-stationary processes, we take the log-di¤erence of output

and money series and the �rst di¤erence of interest rate series. Business cycle index (the Stock

and Watson experimental coincident index) is a stationary process itself. Denote yt as the output

growth rate at time t; mt as the money growth rate at time t, It as change of interest rate at time

t and Bt as the business cycle indicator at time t.

As discussed earlier in Section 1, it is well documented in the literature that the results for

GCM are generally weak and sensitive over di¤erent sample periods. While we �nd that the results

for GCQ in tails are much stronger, we also �nd that the GCQ results are robust over di¤erent

sample periods. For the robustness check, we consider 10 di¤erent subsample periods constructed

as follows. In each of Subsample 1 to 6, we set T = 360 (30 years), with R = 240 (20 years) and

P = 120 (10 years). Forecasting horizon is 1, and a recursive method is used in each subsample. We

shift the subsample period by two years to get another subsample. We also construct Subsample

7 to 10 with whole sample (T = 500), but with di¤erent combinations of R and P . A description

of those subsamples is listed in Table 1B. As a referee pointed out, we can consider recent work by

Rossi and Inoue (2011) and Hansen and Timmermann (2012) for testing predictive ability over a

collection of sample splits. We leave this for other paper as the GCQ results presented in Table 4

are very strong and stable over all of the 10 subsamples, indicating the results are not due to data

snooping over di¤erent sample splits.

3.1 Money-Income Granger-causality in Mean

For the forecasting setting, as discussed in Section 2, an out-of-sample Granger-causality test is

more appropriate. We estimate two nested models, one model without money-income Granger-

causality in mean (Model 1), and the other with money-income Granger-causality in mean (Model

2):

Model 1 : yt = �0 +

12X
l=1

�y;lyt�l + �IIt�1 + �BBt�1 + "1;t; (19)

Model 2 : yt = �0 +

12X
l=1

�y;lyt�l +
12X
l=1

�m;lmt�l + �IIt�1 + �BBt�1 + "2;t: (20)

The unconditional out-of-sample mean quadratic losses of these two models are reported in

Table 2A. In Data Set 1, the unconditional mean squared forecast error (MSFE) of Model 2 is less

than that of Model 1, while in Data Set 2 the MSFE of Model 1 are generally smaller.
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The p-values of GWR;P and IP statistics are listed in Table 2B. The p-values of GWR;P indicate

that the null hypothesis of the equal conditional predictive ability can not be rejected for all

subsamples and for both data sets at a reasonable signi�cance level.

Comparing Data Set 1 to Data Set 2, GCM remains insigni�cant whether Real Personal Income

or Industrial Production is used. (Similarly GCM is not signi�cant with M1 or M2 although the

results with M1 are not shown to save space.) The results of the di¤erent sample periods (Subsample

1 to 6) are very robust, showing that with the shift of the sample window, money-income causality

in mean remains insigni�cant across all the data sets. With the increase of ratio of P=R from

Subsamples 7 to 10, GCM still remains insigni�cant.

In a forecasting model, using so many lagged money variables in Model 2 may cause the �over-�t�

of the model and damage the forecasting performance. Therefore, in order to reduce the number of

parameters in the large model, we also check the robustness of our GCM results by using a weighed

moving average of (xt; : : : ; xt+1�q) for estimation and forecasting, e.g.,
Pq
l=1wlxt+1�l with weights

wl such that
Pq
l=1wl = 1. We use three such di¤erent weight functions, namely a linear declining

weight, a equal weight (wl = q�1); and a beta polynomial function which creates �exible nonlinear

declining weights as introduced in Ghysels, Sinko and Valkanov (2006). We use these weighted

moving average (a scalar) in place of the q-vector Xt in estimation, forecasting, and testing. It is

found that Model 2 (GCM) is still no better than Model 1 (NGCM) in terms of predictive ability.

Hence, we �nd that out-of-sample GCM is not signi�cant. Adding the information on lagged money

growth rate is not very useful to improve the conditional mean forecasting of U.S. output growth

over the various sample periods and di¤erent choices of the variables.

3.2 Money-Income Granger-Causality in Quantile

As discussed in Section 2, signi�cant GCD does not imply GCQ in each conditional quantile.

Therefore, in our empirical study, we choose 11 quantiles (� = 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,

0.8, 0.9, 0.95). We check the GCQ in these di¤erent quantiles of the conditional distribution of

output growth.

First, we use the check loss function to compare the unconditional predictive ability of the

GCQ and the NGCQ models.5 The unconditional check loss values of GCQ and NGCQ models

are reported in Table 3. The ratios of the unconditional check loss values of GCQ to NGCQ can

be easily obtained from Table 3 for each �: (The ratios are not presented for space.) The ratio less

5Besides the standard check loss, as a robust check, we also use the loss functions of the tick-exponential family
introduced in Komunjer (2005). The results using these generalized check functions were essentially the same as those
reported here with the standard check loss function and therefore not reported for space.
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than 1 indicates the money-income Granger-causality in quantile. In terms of check losses and loss

ratios, the GCQ model performs better than the NGCQ model in almost all subsamples of both

data sets in the tails. In the central region, however, the GCQ model has lower check losses than

the NGCQ model only in a few subsamples. The same pattern is observed in the rolling subsamples

(Subsample 1 to 6). This implies that GCQ is stable across the sample period and data sets. In

the whole data subsamples (Subsample 7 to 10), we �nd more signi�cant GCQ with the increase

of P . The loss ratios are much smaller than 1 in the tails than in the central regions.

Next, to compare the conditional check loss values, the p-values of GWR;P and IP statistics are

reported in Table 4. According to the p-values ofGWR;P and IP for the conditional predictive ability

test, the GCQ model is signi�cantly better to the NGCQ model in the tails. After accounting for

money-income Granger-causality, quantile forecasting of output is improved at tails. The Granger-

causality in quantile seems to be more signi�cant between money and Industrial Production than

that between money and Personal Income. Money does signi�cantly improve the forecasting of

output/income tail quantiles. However, money does not improve forecasting of the output growth

in conditional mean and the conditional quantiles close to median.

4 Conclusions

The relationship between money and income is a much-studied but controversial topic in the liter-

ature. This paper follows a VAR framework and applies an out-of-sample test for money-income

Granger-causality. We �nd that money-income Granger-causality in mean is not signi�cant for all

data sets and all subsample periods that we considered.

We de�ne Granger-causality in quantile and compare two quantile forecasts with or without

money-income Granger-causality in quantile. Empirical results show the potential of improving

quantile forecasting of output growth rate by incorporating information on money-income causality

in quantile, especially in the tails. Causality between money and Industrial Production seems to be

more signi�cant than that between money and Personal Income (while M2 has stronger causality

in quantiles to Personal Income than M1 does). However, money is not very useful for forecasting

near the center quantiles of the conditional distribution of output growth.

The empirical �ndings of this paper on the money-income Granger-causality in quantiles is

entirely new and have never been documented in the money-income literature. The new results

on GCQ have an important implication on monetary policy, showing that the e¤ectiveness of

monetary policy has been under-estimated by merely testing Granger-causality in mean. Money
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does Granger-cause income more strongly than it has been known and therefore the information

on money growth can (and should) be more utilized in implementing monetary policy.

What does the lack of GC in mean tell us that is di¤erent from the presence of GC in the extreme

quantiles? As a referee points out, the answer may be �risk management�in the sense of Kilian and

Manganelli (2008), who derive a generalization of the Taylor rule (that links changes in the interest

rate to the balance of the risks implied by the dual objective of sustainable economic growth and

price stability) which reconciles economic models of expected utility maximization with the risk

management approach to central banking. The results of Kilian and Manganelli (2008) suggest that

Fed policy decisions under Greenspan were better described in terms of the Fed weighing upside

and downside risks to their objectives rather than simply responding to the conditional mean of

output growth (or output gap) and in�ation.
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Table 1. Description of Data Sets and Samples 
 

Panel A. Description of Data Sets 
 

 
Income  

y 
Money 

m 
Interest Rate  

I 
Business Cycle Index  

B 
Data Set 1 Real Personal Income M2 3-Month T-bill Rate Coincident Index 
Data Set 2 Industrial Production Index M2 3-Month T-bill Rate Coincident Index 

 
Notes:  
(1) To make these series stationary, we take log-difference of income and money variables, and take  

the first difference of interest rate.  
(2) The business cycle index series are taken from James Stock’s web page, 

http://www.economics.harvard.edu/faculty/stock/links.htm, while the other data are obtained from 
the Federal Reserve Economic Database (FRED) of Federal Reserve Bank of St. Luis.  

(3) All data are monthly data, with sample period of 1959:04 to 2001:12, with 513 observations.  
  

 
 

Panel B. Description of Subsamples in Out-of-sample Tests 
 

 
Starting 
Month 

Ending 
Month T R P 

Subsample 1 1960:05 1991:04 360 240 120 
Subsample 2 1962:05 1993:04 360 240 120 
Subsample 3 1964:05 1995:04 360 240 120 
Subsample 4 1966:05 1997:04 360 240 120 
Subsample 5 1968:05 1999:04 360 240 120 
Subsample 6 1970:05 2001:04 360 240 120 
Subsample 7 1960:05 2001:12 500 380 120 
Subsample 8 1960:05 2001:12 500 320 180 
Subsample 9 1960:05 2001:12 500 260 240 
Subsample 10 1960:05 2001:12 500 200 300 

 
Notes:  
(1) Subsample 1 to 6 have a fixed window of 30 years, with 20 years as in-sample period 

and 10 years as out-of-sample period. Subsamples are moving forward by two years 
each time.  

(2) Subsample 7 to 10 are the samples that contain all observations but with different 
combination of R and P. Due to the 12 lags used in the model and log-difference of 
money and income, there are 500 observations.  

http://www.economics.harvard.edu/faculty/stock/links.htm


Table 2.  Out-of-Sample Test for Granger-causality in Mean  
 

Panel A. Comparing Unconditional Predictive Ability (Squared error loss) 
 

  Data Set 1 Data Set 2 
Loss Model 1 Model 2 Model 1 Model 2 
Subsample 1 0.0778 0.0744 0.0415 0.0419 
Subsample 2 0.0927 0.0884 0.0378 0.0377 
Subsample 3 0.0823 0.0780 0.0460 0.0468 
Subsample 4 0.0820 0.0776 0.0435 0.0436 
Subsample 5 0.0818 0.0768 0.0509 0.0516 
Subsample 6 0.1124 0.1036 0.0452 0.0455 
Subsample 7 0.1252 0.1162 0.0406 0.0405 
Subsample 8 0.0926 0.0881 0.0418 0.0419 
Subsample 9 0.1014 0.0956 0.0414 0.0420 
Subsample 10 0.0993 0.0937 0.0416 0.0420 

 
Notes:  Quadratic loss values for two models are reported. “Model 1” refers to the model without Granger-
causality in mean, while “Model 2” refers to the model with Granger-causality in mean. The loss value of 
Model 2 is shaded when it is smaller than that of Model 1. 
 
 

Panel B. Test for Conditional Predictive Ability  
  Data Set 1 Data Set 2 
 PGW IGW PGW IGW 
Subsample 1 0.5427 0.5583 0.4873 0.5417 
Subsample 2 0.5396 0.5250 0.5154 0.5000 
Subsample 3 0.5588 0.4750 0.6943 0.5417 
Subsample 4 0.6817 0.4583 0.8779 0.5583 
Subsample 5 0.5015 0.4083 0.7118 0.6083 
Subsample 6 0.4113 0.3250 0.6066 0.5500 
Subsample 7 0.6436 0.4167 0.8561 0.4833 
Subsample 8 0.5155 0.4500 0.8597 0.5778 
Subsample 9 0.3409 0.4583 0.7694 0.5833 
Subsample 10 0.2876 0.4233 0.8342 0.5900 

 
Notes: PGW refers to the asymptotic p-value of the nR2 version of the Wald statistics of Giacomini and White 
(2005). We choose a linear test function which contains 12 lags of money growth rate. The asymptotic p-
values of the Giacomini and White statistics are obtained from a chi-square distribution with 12 degrees of 
freedom. IGW refers to the IP statistic in Giacomini and White (2005). See Section 2.1. At 10% level, if PGW < 
0.10 and IGW < 0.5, we may prefer Model 2 (GCM) over the Model 1 (NGCM); if PGW < 0.10 and IGW > 0.5, 
we may prefer Model 1 to Model 2. None of the cases satisfies (PGW < 0.10 and IGW < 0.5) or (PGW < 0.10 and 
IGW >0.5). In fact all p-values are very large. 



 
 

Table 3.  Out-of-Sample Test for Granger-causality in Quantiles  
Comparing Unconditional Predictive Ability (Check loss) 

 
Panel A. Data Set 1 

Sub-
sample 

α=0.05 α=0.10 α=0.20 α=0.30 α=0.40 α=0.50 α=0.60 α=0.70 α=0.80 α=0.90 α=0.95 
NGCQ GCQ NGCQ GCQ NGCQ GCQ NGCQ GCQ NGCQ GCQ NGCQ GCQ NGCQ GCQ NGCQ GCQ NGCQ GCQ NGCQ GCQ NGCQ GCQ 

1 0.0399 0.0277 0.0538 0.0535 0.0613 0.0641 0.0721 0.0715 0.0766 0.0743 0.0789 0.0745 0.0756 0.0738 0.0734 0.0733 0.0651 0.0690 0.0483 0.0491 0.0345 0.0301 
2 0.0361 0.0259 0.0586 0.0573 0.0719 0.0720 0.0828 0.0851 0.0932 0.0930 0.0952 0.0920 0.0928 0.0899 0.0868 0.0832 0.0731 0.0713 0.0498 0.0463 0.0311 0.0296 
3 0.0327 0.0300 0.0418 0.0415 0.0594 0.0566 0.0716 0.0738 0.0826 0.0793 0.0829 0.0833 0.0829 0.0782 0.0790 0.0710 0.0650 0.0615 0.0463 0.0390 0.0285 0.0223 
4 0.0305 0.0277 0.0406 0.0394 0.0580 0.0573 0.0701 0.0733 0.0782 0.0829 0.0804 0.0821 0.0790 0.0800 0.0784 0.0752 0.0665 0.0655 0.0466 0.0420 0.0277 0.0218 
5 0.0280 0.0274 0.0425 0.0379 0.0602 0.0572 0.0730 0.0764 0.0802 0.0838 0.0814 0.0846 0.0814 0.0826 0.0797 0.0792 0.0664 0.0653 0.0415 0.0392 0.0260 0.0173 
6 0.0419 0.0339 0.0602 0.0537 0.0772 0.0701 0.0868 0.0891 0.0937 0.0986 0.0988 0.1006 0.0999 0.1010 0.0936 0.0950 0.0792 0.0762 0.0521 0.0478 0.0336 0.0259 
7 0.0409 0.0346 0.0664 0.0639 0.0865 0.0869 0.0987 0.1010 0.1053 0.1093 0.1093 0.1099 0.1051 0.1077 0.1027 0.0993 0.0840 0.0838 0.0588 0.0483 0.0335 0.0256 
8 0.0346 0.0324 0.0525 0.0503 0.0692 0.0705 0.0800 0.0821 0.0858 0.0896 0.0894 0.0898 0.0860 0.0879 0.0834 0.0824 0.0699 0.0707 0.0490 0.0450 0.0306 0.0241 
9 0.0379 0.0320 0.0604 0.0593 0.0743 0.0748 0.0855 0.0865 0.0912 0.0922 0.0943 0.0922 0.0909 0.0908 0.0889 0.0859 0.0749 0.0757 0.0535 0.0503 0.0346 0.0280 
10 0.0378 0.0326 0.0589 0.0572 0.0720 0.0728 0.0829 0.0845 0.0879 0.0904 0.0906 0.0895 0.0874 0.0880 0.0856 0.0836 0.0715 0.0728 0.0513 0.0470 0.0313 0.0255 

 
Panel B. Data Set 2 

Sub-
sample 

α=0.05 α=0.10 α=0.20 α=0.30 α=0.40 α=0.50 α=0.60 α=0.70 α=0.80 α=0.90 α=0.95 
NGCQ GCQ NGCQ GCQ NGCQ GCQ NGCQ GCQ NGCQ GCQ NGCQ GCQ NGCQ GCQ NGCQ GCQ NGCQ GCQ NGCQ GCQ NGCQ GCQ 

1 0.0197 0.0155 0.0338 0.0306 0.0569 0.0550 0.0693 0.0718 0.0778 0.0779 0.0807 0.0811 0.0780 0.0764 0.0677 0.0664 0.0535 0.0543 0.0332 0.0342 0.0196 0.0174 
2 0.0181 0.0149 0.0316 0.0278 0.0515 0.0506 0.0637 0.0607 0.0751 0.0708 0.0747 0.0731 0.0726 0.0722 0.0656 0.0625 0.0505 0.0500 0.0335 0.0356 0.0212 0.0191 
3 0.0223 0.0157 0.0379 0.0313 0.0580 0.0607 0.0737 0.0744 0.0828 0.0825 0.0837 0.0859 0.0804 0.0822 0.0707 0.0713 0.0553 0.0541 0.0356 0.0346 0.0214 0.0192 
4 0.0206 0.0165 0.0398 0.0310 0.0584 0.0564 0.0734 0.0728 0.0784 0.0784 0.0785 0.0801 0.0758 0.0786 0.0695 0.0687 0.0561 0.0536 0.0344 0.0331 0.0221 0.0201 
5 0.0207 0.0168 0.0417 0.0337 0.0659 0.0619 0.0776 0.0774 0.0859 0.0841 0.0855 0.0870 0.0824 0.0833 0.0751 0.0743 0.0623 0.0601 0.0406 0.0373 0.0231 0.0231 
6 0.0195 0.0167 0.0421 0.0323 0.0618 0.0578 0.0769 0.0731 0.0821 0.0855 0.0835 0.0827 0.0799 0.0792 0.0724 0.0702 0.0578 0.0556 0.0399 0.0324 0.0197 0.0187 
7 0.0206 0.0172 0.0414 0.0331 0.0607 0.0553 0.0722 0.0708 0.0770 0.0789 0.0813 0.0792 0.0745 0.0723 0.0663 0.0645 0.0552 0.0535 0.0350 0.0297 0.0188 0.0163 
8 0.0195 0.0164 0.0382 0.0318 0.0592 0.0553 0.0719 0.0703 0.0782 0.0799 0.0815 0.0810 0.0757 0.0761 0.0671 0.0663 0.0538 0.0531 0.0339 0.0312 0.0197 0.0176 
9 0.0200 0.0162 0.0367 0.0312 0.0568 0.0543 0.0705 0.0701 0.0776 0.0796 0.0827 0.0813 0.0773 0.0758 0.0684 0.0667 0.0556 0.0560 0.0346 0.0325 0.0193 0.0175 
10 0.0195 0.0161 0.0377 0.0321 0.0582 0.0550 0.0714 0.0702 0.0774 0.0793 0.0820 0.0810 0.0771 0.0759 0.0683 0.0676 0.0557 0.0557 0.0347 0.0317 0.0192 0.0173 

 
Notes: (1)   The numbers in the first column is referring to the 10 subsamples. See Table 1, Panel B. 
            (2)  “NGCQ” refers to Model 1, the quantile forecasting model without money-income Granger-causality in quantile, i.e, not including the lagged money growth rate as 

independent variables.  
           (3)  “GCQ” refers to Model 2, the quantile forecasting model with money-income Granger-causality in quantile, i.e, including the lagged money growth rate as 

independent variables.  
            (4)   A check loss function proposed by Koenker and Bassett (1978) is used to evaluate the out-of-sample performance of the two quantile forecasting models. The out-

of-sample average of the loss values are reported in this table.  The loss value of Model 2 is shaded when it is smaller than that of Model 1. 
        



  

 
 

Table 4.  Out-of-Sample Test for Granger-causality in Quantiles 
Test for Conditional Predictive Ability 

 
Panel A. Data Set 1 

Sub-
sample 

α=0.05 α=0.10 α=0.20 α=0.30 α=0.40 α=0.50 α=0.60 α=0.70 α=0.80 α=0.90 α=0.95 
PGW IGW PGW IGW PGW IGW PGW IGW PGW IGW PGW IGW PGW IGW PGW IGW PGW IGW PGW IGW PGW IGW 

1 0.0117 0.4500 0.7422 0.4667 0.0471 0.6083 0.3107 0.5167 0.8232 0.6167 0.9025 0.4833 0.8333 0.5417 0.4207 0.6500 0.0002 0.6750 0.0085 0.6417 0.0015 0.4000 
2 0.0030 0.4667 0.9390 0.4667 0.7655 0.5583 0.7137 0.6250 0.8008 0.7417 0.5908 0.6417 0.4173 0.5000 0.2084 0.5083 0.0739 0.4667 0.0192 0.5000 0.0691 0.4583 
3 0.1779 0.3500 0.4385 0.4917 0.5595 0.4083 0.5189 0.5333 0.7671 0.5250 0.7387 0.6333 0.4010 0.4333 0.2000 0.4083 0.6170 0.3750 0.0859 0.3917 0.0496 0.4083 
4 0.0090 0.2833 0.0540 0.4583 0.4654 0.4750 0.3460 0.5917 0.3853 0.6250 0.7581 0.5750 0.6841 0.4750 0.3531 0.4500 0.6698 0.5167 0.4106 0.3750 0.3230 0.3333 
5 0.0308 0.4333 0.0463 0.1583 0.4546 0.4000 0.2683 0.5583 0.0689 0.5583 0.5733 0.6083 0.8052 0.5750 0.5605 0.4833 0.5908 0.4250 0.1066 0.3833 0.0577 0.2917 
6 0.0276 0.4167 0.1218 0.1917 0.5791 0.3000 0.2310 0.5083 0.1766 0.6667 0.5141 0.4917 0.7996 0.4917 0.4245 0.4833 0.2632 0.3000 0.0051 0.2667 0.0140 0.2417 

7 0.1685 0.4583 0.0846 0.4167 0.2196 0.3833 0.1963 0.5500 0.1008 0.6000 0.7883 0.6750 0.4584 0.6167 0.2115 0.4417 0.2124 0.4250 0.2393 0.2833 0.0408 0.2500 
8 0.1136 0.5056 0.2827 0.4056 0.3981 0.5000 0.2287 0.6111 0.1810 0.6778 0.7713 0.6944 0.5418 0.6000 0.3520 0.4944 0.2462 0.4944 0.2197 0.3889 0.0011 0.1889 

9 0.0852 0.4958 0.3348 0.4333 0.5132 0.4958 0.3477 0.5917 0.3066 0.6375 0.6190 0.6333 0.4214 0.5833 0.2017 0.4833 0.0854 0.5458 0.0676 0.3917 0.0000 0.2375 
10 0.0105 0.4567 0.0902 0.3967 0.1426 0.5100 0.1308 0.6100 0.0696 0.6600 0.3022 0.5867 0.2714 0.6133 0.1773 0.4867 0.0378 0.5267 0.0237 0.3300 0.0000 0.2433 

 
Panel B. Data Set 2 

Sub-
sample 

α=0.05 α=0.10 α=0.20 α=0.30 α=0.40 α=0.50 α=0.60 α=0.70 α=0.80 α=0.90 α=0.95 
PGW IGW PGW IGW PGW IGW PGW IGW PGW IGW PGW IGW PGW IGW PGW IGW PGW IGW PGW IGW PGW IGW 

1 0.0002 0.3417 0.1628 0.3417 0.2214 0.4833 0.5189 0.6500 0.6532 0.4917 0.5541 0.6083 0.6286 0.5250 0.7982 0.4167 0.4725 0.5333 0.0689 0.5583 0.0020 0.4333 
2 0.0335 0.4083 0.1007 0.4083 0.1330 0.4583 0.6568 0.3333 0.3921 0.3917 0.3471 0.5083 0.3360 0.5250 0.6631 0.2583 0.0740 0.3750 0.0083 0.5333 0.0360 0.4000 
3 0.1249 0.2750 0.1017 0.2417 0.7646 0.6750 0.8068 0.4750 0.5166 0.5083 0.2172 0.6000 0.0282 0.5667 0.3202 0.5000 0.0340 0.3667 0.0020 0.4250 0.0085 0.4167 
4 0.0539 0.2083 0.1045 0.1417 0.6332 0.4167 0.5413 0.4167 0.5070 0.4583 0.4126 0.6083 0.3790 0.5750 0.3531 0.4917 0.4377 0.3917 0.0129 0.4417 0.0031 0.3333 
5 0.0049 0.2333 0.0296 0.1583 0.6305 0.3417 0.7290 0.5250 0.5032 0.4333 0.4176 0.5833 0.6161 0.4833 0.6840 0.4583 0.1679 0.4083 0.0216 0.3833 0.0014 0.4500 
6 0.0019 0.3000 0.0164 0.1333 0.3927 0.3417 0.1993 0.4167 0.5847 0.6833 0.1255 0.4750 0.4161 0.4500 0.7979 0.4417 0.4001 0.3333 0.0037 0.2417 0.1045 0.3833 
7 0.0048 0.3167 0.0881 0.2167 0.1320 0.3250 0.7178 0.4833 0.2517 0.5417 0.4681 0.4500 0.2813 0.4000 0.6677 0.4333 0.1654 0.4333 0.0580 0.1833 0.0075 0.4333 
8 0.0019 0.2556 0.1205 0.2056 0.2170 0.3333 0.9851 0.4500 0.7164 0.6556 0.4882 0.5222 0.3393 0.5722 0.6736 0.4778 0.3259 0.4889 0.0875 0.2722 0.0001 0.4111 
9 0.0014 0.2042 0.1190 0.1917 0.0914 0.3917 0.8946 0.5208 0.7946 0.6583 0.3457 0.4833 0.2288 0.4833 0.8215 0.4292 0.2571 0.5125 0.0545 0.3167 0.0000 0.4375 

10 0.0002 0.2167 0.0226 0.1933 0.1229 0.3200 0.8991 0.4567 0.4114 0.6500 0.4170 0.5067 0.1150 0.5400 0.5778 0.5200 0.0722 0.4800 0.0036 0.2533 0.0000 0.4333 
 
Notes: (1)   The numbers in the first column is referring to the 16 subsamples. See Table 1, Panel B.  
  (2) PGW refers to the asymptotic p-value of the nR2 version of the Wald statistics of Giacomini and White (2005). We choose a linear test function which contains 12 lags of 

money growth rate. The asymptotic p-values of the Giacomini and White statistics are obtained from a chi-square distribution with 12 degrees of freedom. 
(3) IGW  refers to the IP statistic in Giacomini and White (2005). See Section 2.4.  
(4) At 10% level, if PGW < 0.10 and IGW < 0.5, we prefer Model 2 (GCQ) over Model 1 (NGCQ). These cases are reported in bold font. If PGW < 0.10 and IGW > 0.5, we 

prefer Model 1 to Model 2. 
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