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Abstract

The arti�cial neural network (ANN) test of Lee, White and Granger (LWG, 1993)
uses the ability of the ANN activation functions in the hidden layer to detect neglected
functional misspeci�cation. As the estimation of the ANN model is often quite di¢ cult,
LWG suggested activate the ANN hidden units based on randomly drawn activation
parameters. To be robust to the random activations, a large number of activations is
desirable. This leads to a situation for which regularization of the dimensionality is
needed by techniques such as principal component analysis (PCA), Lasso, Pretest, par-
tial least squares (PLS), among others. However, some regularization methods can lead
to selection bias in testing if the dimensionality reduction is conducted by supervising
the relationship between the ANN hidden layer activations of inputs and the output
variable. This paper demonstrates that while these supervised regularization methods
such as Lasso, Pretest, PLS, may be useful for forecasting, they may not be used for
testing because the supervised regularization would create the post-sample inference
or post-selection inference (PoSI) problem. Our Monte Carlo simulation shows that
the PoSI problem is especially severe with PLS and Pretest while it seems relatively
mild or even negligible with Lasso. This paper also demonstrates that the use of un-
supervised regularization does not lead to the PoSI problem. LWG (1993) suggested a
regularization by principal components, which is a unsupervised regularization. While
the supervised regularizations may be useful in forecasting, regularization should not
be supervised in inference.
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1 Introduction

In this paper we explore the issues in testing for functional forms, especially for neglected

nonlinearity in parametric linear models. Many papers have appeared in the recent literature

which deal with the issues of how to carry out various speci�cation tests in parametric re-

gression models. To construct the tests, various methods are used to estimate the alternative

models. For example, Fan and Li (1996), Li and Wang (1998), Zheng (1996), and Bradley

and McClelland (1996) use local constant kernel regression; Hjellvik, Yao and Tjøstheim

(1998) and Tjøstheim (1999) use local polynomial kernel regression; Cai, Fan and Yao (2000)

and Matsuda (1999) use nonparametric functional coe¢ cient models; Poggi and Portier

(1997) use a functional autoregressive model; White (1989), Lee, White and Granger (1993),

Teräsvirta, Lin and Granger (1993), Granger and Teräsvirta (1993), Teräsvirta (1996), and

Corradi and Swanson (2002) use neural network models; Eubank and Spiegelman (1990) use

spline regression; Hong and White (1995) use series regression; Stengos and Sun (1998) use

wavelet methods; and Hamilton (2001) uses a parametric �exible regression model.

There are also many papers which compare di¤erent approaches in testing for linearity.

For example, Lee, White, and Granger (1993), Teräsvirta, Lin and Granger (1993), Teräsvirta

(1996), and Lee (2001) examine the neural network test and many other tests. Dahl (2002)

and Dahl and González-Rivera (2000) study Hamilton�s (2000) test and compare it with

various tests including the neural network test. Blake and Kapetanios (1999, 2000) extend

the neural network test using a radial basis function for the neural network activation function

instead of using the typical logistic function used in Lee, White and Granger (1993).1 Lee

and Ullah (2001, 2003) examine the tests of Li and Wang (1998), Zheng (1996), Ullah (1985),

Cai, Fan and Yao (2000), Härdle and Mammen (1993), and Aït-Sahalia, Bickel, and Stoker

(2001). Fan and Li (2000) compare the tests of Li and Wang (1998), Zheng (1996), and

1For radial basis functions, see (e.g.) Campbell, Lo, and MacKinlay (1997, p. 517).
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Bierens (1990). Whang (2000) generalizes the Kolmogorov-Smirnov and Cramer-von Mises

tests to the regression framework and compare them with the tests of Härdle and Mammen

(1993) and Bierens and Ploberger (1997). Hjellvik and Tjøstheim (1995, 1996) propose tests

based on nonparametric estimates of conditional mean and variances and compare them with

a number of tests such as the bispectrum test and the BDS test.

This paper further investigates the arti�cial neural network (ANN) test. The ANN test is

a conditional moment test whose null hypothesis consists of conditional moment conditions

that hold if the linear model is correctly speci�ed for the conditional mean. The ANN test

di¤ers from other tests by the choice of the �test function�that is chosen to be the ANN�s

hidden layer activations. It can be checked for their correlation with the residuals from the

linear regression model. The advantage to use an ANN model to test nonlinearity is that

the ANN model inherits the �exibility as a universal approximator of unknown functional

form. Hornick, Stinchcombe and White (1989) show that neural network is a nonlinear

�exible functional form being capable of approximating any Borel measurable function to

any desired level of accuracy provided su¢ ciently many hidden units are available.

We consider an augmented single hidden layer feedforward neural network model in which

network output yt is determined given input xt as

yt = x
0
t�+

qX
j=1

�j	(x
0
t
j) + ut; (1)

where t = 1; : : : ; T , xt = (x1;t; : : : xN;t)
0, � =

�
�0; �0; 
01; : : : ; 


0
q

�0
; � = (�1; : : : ; �N)

0, � =

(�1; : : : ; �q)
0; and 
j = (
j;1; : : : ; 
j;N)

0 for j = 1; : : : ; q; and 	(�) is an activation function.

An example of the activation function is the logistic function 	(z) = (1 + exp(z))�1. � is a

conformable column vector of connection strength from the input layer to the output layer;


j is a conformable column vector of connection strength from the input layer to the hidden

units, j = 1; : : : ; q; �j is a (scalar) connection strength from the hidden unit j to the output

unit, j = 1; : : : ; q; and 	 is a squashing function (e.g., the logistic squasher) or a radial
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basis function. Input units x send signals to intermediate hidden units, then each of hidden

unit produces an activation 	 that then sends signals toward the output unit. The integer

q denotes the number of hidden units added to the a¢ ne (linear) network. When q = 0, we

have a two layer a¢ ne network yt = x0t�+ ut:

It is well known that the ANN models are generally hard to estimate and su¤er from

possibly large estimation errors which can adversely a¤ect their ability as a universal ap-

proximator. To alleviate the estimation errors of an ANN model, it is useful to note that,

for given values of 
j�s, the ANN is linear in x and the activation function 	 and therefore

(�0; �0) can be estimated from linear regression once
�

01; : : : ; 


0
q

�
are estimated or given. As

suggested in Lee, White and Granger (LWG 1993), a set of 
�s can be randomly generated.

In this paper, we will generate a large set of 
�s such that
Pq

j=1 �j	(x
0
t
j) can capture the

maximal nonlinear structure. The LWG statistic is designed to detect neglected nonlinearity

in the linear model by checking for correlation between the residual from a linear model

and the additional hidden activation functions with randomly generated 
�s. The additional

hidden activation functions are hidden (or phantom) because they do not exist under the

null hypothesis. The 
�s are randomly generated in testing because they are not identi�ed

under the null hypothesis. The set of randomly selected 
�s should be large enough so that

it can be dense and make the ANN a universal approximator.

While the architecture of the ANN model makes a universal approximator, it involves

a very large number of parameters. Kock and Teräsvirta (2011) consider regularizing the

complexity of an ANN model and demonstrate that the regularization of the large dimension

is crucial in using ANN models for out-of-sample forecasting. This motivates us to consider

regularizing the ANN for testing for neglected nonlinearity. In fact, LWG (1993) uses a

(unsupervised) regularization method, namely the principal component analysis, for the

randomly activated test functions. Kock and Teräsvirta (2011) consider two (supervised)
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regularization approaches. They insightfully notice that the supervised regularizations will

result in the size distortion in inference, and they use these approaches only for forecasting.

One supervised regularization approach considered by Kock and Teräsvirta (2011) to

select a small q� from a large q number of 
�s is the simple-to-general algorithm, e.g., the

QuickNet algorithm of White (2006), that adds one 
 and one activation function at a

time to the ANN. The QuickNet expands starting from 0 activation to q� activations until

the additional hidden unit activation is not found to improve the network capability. The

second supervised regularization approach considered by Kock and Teräsvirta (2011) is the

general-to-simple approach. This approach, from a variable-selection perspective, reduces the

number of activations from an initial large number q (say, 1000) to a smaller number q� by

penalizing the complexity of the ANN model. The penalized regression methods include the

smoothly clipped absolute deviation penalty (SCAD) (Fan and Li 2001), adaptive Lasso (Zou

2006), adaptive elastic net (Zou and Zhang 2009), the bridge estimator (Huang, Horowitz

and Ma 2008), among others. In the case where q is larger than the degrees of freedom,

the marginal bridge estimator (Huang, Horowitz and Ma 2008) or the sure independence

screening (SIS) (Fan and Lv 2008) may be used to reduce q below the degrees of freedom

and then apply these estimation methods.

The third approach is to follow LWG (1993) to compute the q� principal components of

the q additional hidden activation functions. Since the activation functions using randomly

generated 
�s may be collinear with each other and with xt, LWG used principal components

of the q additional hidden activation functions. Unlike the above two supervised approaches,

the principal components are not supervised for the output y.

The purpose of this paper is to examine the e¤ect of various regularization on the ANN

test for neglected nonlinearity when the ANN is activated based on a large number of ran-

dom activation parameters. We learn two points. First, when we consider the Lasso, the

4



partial least square (PLS) method, the Pretest method, and a method combining Lasso with

principle components, these supervised regularization methods bring size-distortion and the

ANN test su¤ers from the post-sample inference or post-selection inference (PoSI) problem.2

Secondly, when we use the principle component analysis (PCA) as used in LWG (1993), this

unsupervised regularization of the dimension reduction does not bring the PoSI problem,

works really well for a large q, and the asymptotic �2(q�) distribution does well in approxi-

mating the �nite sample distribution of the ANN test statistic. To sum, while the supervised

regularizations are useful in forecasting as studied by Bai and Ng (2008), Bair, Hastie, Paul

and Tibshirani (2006), Inoue and Kilian (2008), Huang and Lee (2010), Hillebrand, Huang,

Lee and Li (2011), Kock and Teräsvirta (2011), and Kock (2011), this paper shows that reg-

ularization should not be supervised in inference. Our Monte Carlo simulation shows that

the PoSI problem is especially severe with PLS and Pretest while it seems relatively mild

or even negligible with Lasso. This paper also demonstrates that the use of unsupervised

regularization by principal components does not lead to the PoSI problem.

The plan of the paper is as follows. In Section 2 we review the ANN test. Section

3 introduces various regularizations in two types, unsupervised and supervised. Section 4

presents the simulation results which demonstrate the PoSI problem of supervised methods.

Section 5 concludes.

2 Testing for Neglected Nonlinearity Using ANN

Consider Zt = (yt x0t)
0; where yt is a scalar and xt may contain a constant and lagged values

of yt. Consider the regression model

yt = m(xt) + "t; (2)

2See Pötscher and Leeb (2009) and Berk, Brown, Buja, Zhang and Zhao (2011).
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where m(xt) � E (ytjxt) is the true but unknown regression function and "t is the error term

such that E("tjxt) = 0 by construction. To test for a parametric model g(xt; �) we consider

H0 : m(xt) = g(xt; �
�) almost everywhere (a.e.) for some ��, (3)

H1 : m(xt) 6= g(xt; �) on a set with positive measure for all �. (4)

In particular, if we are to test for neglected nonlinearity in the regression models, set

g(xt; �) = x0t�; � � �: Then under H0; the process fytg is linear in mean conditional on

xt; i.e.,

H0 : m(xt) = x
0
t�
� a.e. for some ��: (5)

The alternative of interest is the negation of the null hypothesis, that is,

H1 : m(xt) 6= x0t� on a set with positive measure for all �: (6)

When the alternative is true, a linear model is said to su¤er from �neglected nonlinearity�

(Lee, White, and Granger 1993).

If a linear model is capable of an exact representation of the unknown function m(xt),

then there exists a vector �� such that (5) holds, which implies

E ("�t jxt) = 0 a.e.; (7)

where "�t = yt � x0t��: By the law of iterated expectations "�t is uncorrelated with any

measurable functions of xt, say h(xt). That is,

E [h(xt)"
�
t ] = 0: (8)

Depending on how we choose the �test function� h(�); various speci�cation tests may be

obtained. The speci�cation tests based on these moment conditions, so called the conditional

moment tests, have been studied by Newey (1985), Tauchen (1985), White (1987, 1994),

Bierens (1982, 1990), LWG (1993), Bierens and Ploberger (1997) and Stinchcombe and

6



White (1998), among others. The ANN test exploits (8) with the test function h(�) being

chosen as the neural network hidden unit activation functions.

LWG (1993) considered the test of �linearity in conditional mean�using the ANN model.

To test whether the process yt is linear in mean conditional on xt, they used the following

null and alternative hypothesis:

H0 : Pr [E(ytjxt) = x0t��] = 1 for some ��

H1 : Pr [E(ytjxt) = x0t�] < 1 for all �

The procedure to construct the LWG test statistic is as follows. Under the null hypothesis

that yt is linear in conditional mean, we �rst estimate a linear model of yt on xt, then if any

nonlinearity is neglected in the OLS regression, it will be captured by the residual term ût.

Since the ANN model inherits the �exibility as a universal approximator of unknown func-

tional form, we can apply an ANN function to approximate any possible types of nonlinearity

in the residual term ût.

The neural network test is based on a test function h(xt) chosen as the activations of

�phantom�hidden units  (x0t
j) ; j = 1; : : : ; q; where 
j are randomly generated column

vectors independent of xt. 
j�s are not identi�ed under the null hypothesis of linearity, cf.

Davies (1977, 1987), Andrews and Ploberger (1994), and Hansen (1996). That is,

E [ (x0t
j) "
�
t ] = 0 j = 1; : : : ; q; (9)

under H0, so that

E (	t"
�
t ) = 0; (10)

where

	t = ( (x
0
t
1) ; : : : ;  (x

0
t
q))

0 (11)

is a phantom hidden unit activation vector. Evidence of correlation of "�t with 	t is evidence

against the null hypothesis that yt is linear in mean. If correlation exists, augmenting the
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linear network by including an additional hidden unit with activations  (x0t
j) would permit

an improvement in network performance. Thus the tests are based on sample correlation of

a¢ ne network errors with phantom hidden unit activations,

n�1
nX
t=1

	t"̂t = n�1
nX
t=1

	t (yt � x0t�̂) ; (12)

where "̂t = yt � x0t�̂ are estimated by OLS. Under suitable regularity conditions it follows

from the central limit theorem that n�1=2
Pn

t=1	t"̂t
d! N (0; W �) as n ! 1, and if one

has a consistent estimator for its asymptotic covariance matrix, say Ŵn, then an asymptotic

chi-square statistic can be formed as 
n�1=2

nX
t=1

	t"̂t

!0
Ŵ�1
n

 
n�1=2

nX
t=1

	t"̂t

!
d! �2(q): (13)

Construct the following auxiliary regression:

ût = x
0
t�+

qX
j=1

�j (x
0
t
j) + vt;

where t = 1; : : : ; T , xt = (x1;t; : : : xN;t)
0, � =

�
�0; �0; 
01; : : : ; 


0
q

�0
; � = (�1; : : : ; �N)

0, � =

(�1; : : : ; �q)
0; and 
j = (
j;1; : : : ; 
j;N)

0 for j = 1; : : : ; q; and  (�) is an activation function.

LWG chose the logistic function  (z) = (1+ exp(z))�1 as the activation function. If there is

nonlinearity remained in the residual, we expect the goodness of �t for the auxiliary regression

is high. However, one problem to estimate the auxiliary regression is that, when q is large,

there may exist multicollinearity between  (x0t
j) and xt and among  (x
0
t
j) themselves.

LWG suggested to choose q� principle components of q activation functions  (x0t
j), with

q� < q; and then use these q� principle components to run the auxiliary regression. Under

the null hypothesis that the sequence yt is linear conditional on xt, the goodness of �t in the

auxiliary regression will be low. LWG (1993) constructed an LM-type test statistic which

has an asymptotic �2(q�) distribution under the null hypothesis. In their simulations, LWG

chose q equal to 10 or 20 and q� equal to 2 or 3 in di¤erent data generating processes (DGP),
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and the sample size 50, 100, or 200. Moreover, they dropped the �rst principle component

of 	t to avoid the multicollinearity problem. In this paper, we have tried the ANN test both

with and without dropping the �rst principle component, the results do not change much.

Thus we keep the original LWG method with dropping the �rst principal component for the

ANN test in this paper.

In practice, we need to generate 
�s carefully so that  (x0t
j) is within a suitable range.

If 
�s are chosen to be too small then activation functions  (x0t
j) are approximately linear

in x: We want to avoid this situation since they can not capture much nonlinearity. If 
�s

are too large the activation functions  (x0t
j) take values close to �1 (their maximum or

minimum values), and we want to avoid this situation as well. In our study, for di¤erent

x�s we generate 
�s from uniform distributions with di¤erent supports so that the activation

functions are neither too small or too large.

3 Regularizing the ANN Test

As discussed above, LWG (1993) regularized the large number of the network activation

functions using principle components in order to avoid possible collinearity problem. The

q� < q principle components are used out of q activations. We note that the principle

components make its variance largest, yet may not necessarily be the ones that best explain

the residuals from the OLS regression, ût. In other words, these principle components are

not �supervised� for yt and thus for ût. The regularization may be supervised so that

the activations that are uncorrelated with ût can be dropped and the activations that are

correlated with ût can be selected to increase the power of the test. Such regularization

methods include the Lasso method, the PLS method, the Pretest method, the PCA-�rst-

and-then-Lasso method, and etc. We �rst review the PCA method in the next subsection,

and then other regularization methods in the following subsections.
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3.1 Unsupervised Regularization of the ANN Test Using PCA

LWG (1993) found that the elements of 	t in (11) tend to be collinear with xt and with

themselves and computation of Ŵn can be tedious. Thus they conducted a test on q� < q

principal components of 	t not collinear with xt; denoted 	�t ; and employ the equivalent

test statistic (under conditional homoskedasticity) that avoids explicit computation of Ŵn;

denoted TPCAn

TPCAn � nR2
d! �2(q�); (14)

where R2 is uncentered squared multiple correlation from a standard linear regression of "̂t

on 	�t and xt: This test is to determine whether or not there exists some advantage to be

gained by adding hidden units to the a¢ ne network.

It should be noted that the asymptotic equivalence of (13) and (14) holds under the condi-

tional homoskedasticity, E("�t jxt) = �2: Under the presence of conditional heteroskedasticity

such as ARCH, TPCAn will not be �2(q�) distributed. To resolve the problem in that case,

we can either use (13) with Ŵn being estimated robust to the conditional heteroskedasticity

(White 1980, Andrews 1991), or use (13) with the empirical null distribution of the statistic

computed by a bootstrap procedure that is robust to the conditional heteroskedasticity (Wu

1986, Liu 1988).

3.2 Supervised Regularization of the ANN Test Using Lasso

The Lasso method is a shrinkage method which can be used as a selector of the activation

functions for the ANN test. We use a penalized regression for the auxiliary model where

the coe¢ cients of 	(x0t
j) are shrunken to zero if it is smaller than a particular value. The

Lasso problem can be written as

�̂Lasso = argmin
�

8<:
TX
t=1

 
ût � x0t��

qX
j=1

�j	(x
0
t
j)

!2
+ �

qX
j=1

j�jj

9=;
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The Lasso method uses the L1-penalty term j�jj, and it has the sparsity property such that

some of the �j�s that are small will be shrunken to zero, yet it does not have oracle property

according to Fan and Li (2007) in the sense that it will give biased estimates of �j even when

sample size is large. The Lasso method is easier to implement than some other methods

that has the oracle property. Since the activation functions are selected according to its

explanation power to ût, the Lasso is a supervised regularization. The tuning parameter �

determines the number of activation functions selected. To get the test statistic using the

Lasso method, we will do the auxiliary regression of ût on the q� selected activation functions

	� (denoting q�-vector of Lasso-selected activations), and get T Lasson = nR2Lasso. We choose �

such that q� = 3. In Section 4, we will examine if it has the asymptotic �2(q�) distribution

or if it is subjected to the PoSI problem due to the supervision in regularizing the dimension

from q to q�.

3.3 Supervised Regularization of the ANN Test Using PLS

Like PCA, the PLS method constructs variables using linear combinations of activation

functions. Yet like Lasso, it is supervised using information about ût. The algorithm of the

PLS method used in this test is described as follows:

1. Standardize each 	(x0t
j) to zero mean and unit variance. Set ~u
(0)
t = �̂ut�, 	(x0t
j)

(0) =

	(x0t
j), for j = 1; :::; q, where � = (1; ::; ; 1)
0.

2. For m = 1; :::; q,

(a) Construct the linear combination, zm =
Pq

j=1 !m	(x
0
t
j)

(m�1), where the weight

is equal to the covariance between	(x0t
j)
(m�1) and ût: !m = cov

�
	(x0t
j)

(m�1) ; ût

�
.

(b) Regress ût on zm, and get the coe¢ cient: �̂m = cov(zm; ût)=var(zm).

(c) Update ~u(m)t by ~u(m)t = ~u
(m�1)
t + �̂mzm.
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(d) Update 	(x0t
j)
(m) by orthogonalizing each 	(x0t
j)

(m�1) with respect to zm:

	(x0t
j)
(m) = 	(x0t
j)

(m�1) �
h
cov(	 (x0t
j)

(m�1) ; zm)=var(zm)
i
zm, j = 1; :::; q.

3. The �tted value of residual terms by PLS is given by ~u(m)t and the selected linear

combinations of activation functions are given by zm.

In this test, we select the �rst q� largest zm, and then do auxiliary regression of ût

on zm to get the test statistic TPLSn = nR2PLS. In Section 4, we will examine if it has the

asymptotic �2(q�) distribution or if it is subjected to the PoSI problem due to the supervision

in regularizing the dimension from q to q�.

3.4 Supervised Regularization of the ANN test Using Pretests

The PCA shrinkage includes all the information of the activation vector 	t , including those

that are irrelevant to explain the residuals from the linear regression. We may consider

to make further shrinkage from the principle components. In this section, we consider the

Pretest method on the principle components, as implemented by Inoue and Kilian (2008).

We �rst get k = 20 principle components from the q activation vector	t, and then regress the

residual from the OLS regression on these k principle components. Then we choose q� = 3

principle components corresponding to the coe¢ cients with the highest absolute t-values.

Then the test statistic for this Pretest method is equal to TPretestn = nR2Pretest. Similarly,

we will examine if it has the asymptotic �2(q�) distribution or if it is subjected to the PoSI

problem due to the supervision in regularizing the dimension from q to q�, in Section 4.

The Pretest method described here is essentially the �PCA-�rst-and-then-Pretest�. In

the next subsection, we will consider the �PCA-�rst-and-then-Lasso�.
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3.5 Supervised Regularization of the ANN test Using PCA-�rst-
and-then-Lasso

Instead of using Pretest to supervise the original ANN test, we also use the Lasso method

to supervise the principle components. In this subsection, we combine the PCA and the

Lasso method. We �rst get a relatively larger number of k (e.g. 100, 50, 10 or 5) principle

components from the q-vector 	t of activation functions, and then use the Lasso method to

shrink them except for the q� = 3 principle components. In this way, we can select the prin-

ciple components that best �ts the residuals from the OLS regression and increase the power

of the test. We then do the auxiliary regression using the selected q� principle components

and get the test statistic TPCA-lasson = nR2PCA-lasso. In Section 4, we will examine if the ANN

test using this method of �PCA-�rst-and-then-Lasso�can still follow the asymptotic �2(q�)

distribution or if it is subjected to the PoSI problem due to the supervision in regularizing

the dimension from q to q�.

3.6 The PoSI Problem

Regularized methods of estimation have been developed intensively in the past 20 years.

Examples includes the Bridge estimator of Frank and Friedman (1993), the least absolute

selection and shrinkage (Lasso) estimator of Tibshirani (1996), the least angle regression

(LARS) of Efron, Hastie, Johnston, Tibshirani (2004), the smoothly clipped absolute devia-

tion (SCAD) estimator of Fan and Li (2001), and the traditional hard-thresholding Pretest

methods. It is tempting to use these supervised regularization in reducing the large num-

ber of randomized ANN activations. However, as noted in Leeb and Pötscher (2003, 2005,

2006, 2008), Pötscher and Leeb (2009), Berk et al (2011), and others, subset-searches like

the Lasso shrinkage method su¤er from the Post Sample Inference (PoSI) problem. See also

Hoover (2012) on a related issue of size distortion resulted from model-search. In Section 4,
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we show that PLS, Pretest, PCA-�rst-and-then-Lasso will cause the PoSI problem that the

distribution under the null hypothesis is di¤erent from the �2(q�) distribution. cf. Leeb and

Pötscher (2008).

To illustrate the PoSI problem, we take the Lasso supervision as an example. When

using the Lasso method to select the activation functions, we are actually making selection

between the following two models:

M0 : Y = X0
0�0 + �1

versus

M1 : Y = X0
0�0 +X

0
1�1 + �2;

where Y is the residual term ût, �0 and �1 are vectors of parameters,X0 andX1 are partitions

of the activation function 	t and �1, �2 are the error terms. If the Lasso method shrinks

�1 to 0, then we use model M0 to test the null hypothesis H0 : �0 = 0, and we denote

the corresponding LM test statistic by Tn;M0; if the Lasso method does not shrink �1 to 0,

we pick up model M1 and obtain the test statistic Tn;M1. Let M be the model selected,

therefore the test statistic accounting for model selection is:

T = Tn;M0 � 1(M=M0) + Tn;M1 � 1(M=M1);

where 1(�) is the indicator function.

If M0 is the true model, we know Tn;M0 follows a �
2(q0) distribution with q0 equal to

dim �0; on the other hand, if M1 is the true model, Tn;M1 has a �
2(q1) distribution with

q1 equal to dim �0 + dim �1. In both cases, we know the exact distribution and can �nd

the critical value. However, since we randomly draw 
j�s and randomly activate  (x0t
j),

j = 1; :::; q; many elements in the activation vector 	t can be highly collinear and as a result

the Lasso method may not distinguish the two models. Hence, even ifM0 is the true model

the Lasso supervision may include some incorrect activation functions, and the distribution
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of the test statistic can be a mixture of two �2 distributions with di¤erent degrees of freedom.

To make things worse, as every time we randomly generate di¤erent sets of 	t, we can not

compute the probability of choosing M0 or M1 as the true model. This means that we

can not obtain the exact distribution of the test statistic and the usual �2q� critical value is

invalid. This will be shown via simulation in the next section. As will be shown, the PoSI

problem is especially severe with PLS and Pretest while it seems relatively mild or even

negligible with Lasso.

4 Monte Carlo

4.1 DGPs and Simulation Design

To generate data we use the following DGPs, all of which have been used in the related

literature. There are two blocks. All the error terms "t below are i.i.d. N(0; 22). Two blocks

of DGP are considered. The �rst block has DGP�s using the univariate series of yt; and the

second block introduces two external variables x1t and x2t which follow a bivariate normal

distribution. All DGPs below ful�l the conditions for the investigated testing procedures.

For those regularity conditions and moment conditions, see White (1994, Chapter 9) for the

ANN tests.

Block 1 (Time-series data generating processes)

1. Autoregressive (AR)

yt = 0:6yt�1 + "t

2. Threshold autoregressive (TAR)

yt =

(
0:9yt�1 + "t if jyt�1j � 1
�0:3yt�1 + "t otherwise
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3. Sign autoregressive (SGN)

yt = sgn(yt�1) + "t

where

sgn(yt�1) =

8><>:
1 if yt�1 > 0

0 if yt�1 = 0

�1 otherwise

4. Nonlinear autoregressive (NAR)

yt =
0:7jyt�1j
jyt�1j+ 2

+ "t

5. Markov regime-switching (MRS)

yt =

(
0:6yt�1 + "t if St = 0

�0:5yt�1 + "t if St = 1

where St follows a two-state Markov chain with transition probabilities Pr(St = 1jSt�1 =

0) = Pr(St = 0jSt�1 = 1) = 0:3.

Block 2 (Cross-sectional data generating processes):

This block includes DGPs similar to those in Zheng (1996). Assume x1t, x2t follow a

bivariate normal distribution of N(0; 0; 1; 1; �) where the correlation � = 0 or 0:7. We have

the following three cases:

1. Linear

yt = 1 + x1t + x2t + "t

2. Cross-Product

yt = 1 + x1t + x2t + 0:2x1tx2t + "t

3. Squared

yt = 1 + x1t + x2t + 0:2x
2
2t + "t
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For the simulations, the information set are xt = yt�1 for Block 1 and xt = (xt1 xt2)
0

for Block 2. The logistic squasher  = [1 + exp (�x0
)]�1 is used with 
 being generated

randomly from a uniform distribution on an interval depending on the data range. The

number of additional hidden units to the a¢ ne network q = 200 is used. We set q� = 3 for

all regularization methods for simplicity.

4.2 Results

Tables 1 and 2 report the size and power for ANN test with q = 200 using various regulariza-

tion methods (PCA, Lasso, PLS, Pretest, �PCA-�rst-and-then-Lasso�). The numbers in the

tables are the rejection frequencies of the null hypothesis at 5% and 10% levels. The sample

size n is equal to 200. We use 1000 Monte Carlo replications. As demonstrated in LWG

(1993) and Lee, Xi and Zhang (2012), the ANN test with PCA, that is an unsupervised

regularization, exhibits good size under null hypothesis from observing the rows for AR,

Linear (� = 0) ; Linear (� = 0:7) : It also exhibits good power against a variety of nonlinear

structures. In Figure 1 we plot the histograms of the test statistic under the null hypothesis.

The solid line is the probability density function of �23 distribution. In all three cases of AR

and Linear, the �nite sample distribution (histogram) of the test statistic is very close to its

asymptotic �23 distribution, which means the unsupervised ANN test with PCA has good

size not only in 5% and 10% levels but also across the entire distribution. This demonstrates

that use of unsupervised regularization for the ANN test does not lead to the PoSI problem.

To contrast, it seems that the use of supervised regularization for the ANN test do lead

to the PoSI problem to some di¤erent extent depending on di¤erent method. Looking at

the size in Table 1, we may see only slight over-rejections at 10% level for Linear (� = 0:7).3

3At 5% level, since the p-value is Bernoulli distributed with success probability of 0.05, the standard
error of the p-value from the 1000 Monte Carlo replication is

p
(0:05� 0:95) =1000 � 0:0069. The 95%

con�dence interval is 0:05� 1:96� 0:0069 = (0:0365; 0:0635). At 10% level, the standard error of the p-value
is
p
(0:1� 0:9) =1000 = 0:0095, and the 95% con�dence interval is 0:10� 1:96� 0:0095 = (0:0814; 0:1186).
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While the power of the supervised ANN test using Lasso are quite similar to those of the

unsupervised ANN test with PCA in Block 1, it is higher in Block 2. Because Table 1 presents

only the 5% and 10% quantiles in the right tail (i.e., 95% and 90% quantiles) of the null

distribution of the statistic, the results of the tables do not show the di¤erence between PCA

and Lasso. However, comparing Figure 1 and Figure 2 for the entire distribution can tell

some apparent di¤erence especially in the left tail and to some lesser degree in the middle of

the null distribution (but not in the right tail as shown in the tables). From Figure 2, we can

see that the Lasso method su¤ers from the PoSI problem in the sense that the distributions

of the test statistic diverge from the theoretical asymptotic �23 distribution. This can be

more clearly seen in the AR case in Block 1. But for the cross sectional cases in Block 2,

the histograms of the test statistics are still close to the �23 distribution, although they are

not as good as the ones in Figure 1. Hence, it seems that the PoSI problem is relative mild

or even negligible with Lasso.

For the size of the supervised ANN test using PLS, we observe from Table 1 typical

over-rejections at 5% and 10% levels in all three linear cases. This clearly shows that the

PoSI problem is severe for the PLS supervision, which leads to power much higher than

those of the unsupervised ANN test with PCA. In Figure 3, we can see the histograms of

test statistics shift out of the �23 distribution, which again implies the PoSI problem.

For the PCA-�rst-and-then-Pretest method (in short, the Pretest method), the PoSI

problem is most obvious. Table 1 shows the test results for k = 20, we can see that even

the size under 5% and 10% is close to 1. We also tried di¤erent values of k, and the results

are similar, so we do not report them in the table. Figure 4 shows the distribution of test

statistic for Pretest method with k = 20, which diverge heavily from the �23 distribution.

Finally, to show how di¤erent degrees of supervised regularization lead to di¤erent degrees

of PoSI problem, we experiment the supervised ANN test using the PCA-�rst-and-then-Lasso
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with di¤erent values of k; the number of the principal components selected by PCA in the

�rst step of the method. The PCA-�rst-and-then-Lasso method has two steps. The �rst

step is to compute principal components of the q = 200 randomly activated neural network

hidden units. Among them we select the �rst k principal components. Then in the second

step we select q� = 3 of the k principal components. We consider k = 3; 5; 10; 20; 50; 100; 200:

When k = q = 200; this method is the same as Lasso (as presented in Figure 2), for which

there is no role of the �rst-step in the PCA-�rst-and-then-Lasso as no principal components

are used. When k = q� = 3; this method is the same as PCA (as presented in Figure 1), for

which there is no role of the second-step in the PCA-�rst-and-then-Lasso as no Lasso is used.

If k is very small, for example k = 5 (as presented in Figure 5a,b), this method is similar to

the unsupervised ANN test with PCA. In the other extreme, if k is very large, say k = 100

(as presented in Figure 5e,f), then the LASSO will play a very important role but PCA will

have little e¤ect on the test. Table 2 shows the size and power of this method using di¤erent

values of k = 5; 10; 20; 100. Let us �rst look at the size. The test behaves reasonably good

when k is equal to 5 because when k is small, this test is close to the unsupervised ANN

test with PCA and therefore su¤ers little from the PoSI problem. But when k increases to

50 and 100, we can see the over-rejection from the PoSI problem becomes more severe. The

PoSI problem can be found in Figure 5, where we draw the histograms of test statistics for

di¤erent k. For k = 5, the histograms are very close to the �23 distribution. But as k increases

to 50 and 100, the histograms gradually shift to the right which indicates over-rejection.

When it comes to the power, the supervised ANN test using the PCA-�rst-and-then-

Lasso method does very badly especially when k is large. Table 2 shows that the power for

k = 50 and k = 100 are substantially lower than the power for k = 5 in all cases except for

MRS. When comparing with the unsupervised ANN test with PCA, this test shows inferior

power in most cases. The reason for this lowered power is ascribe to how the Lasso works.
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In the LWG test, we choose the second to the fourth principle components which account for

a large fraction of the variance of 	t, so that they contain a lot of information and therefore

can help detect the nonlinearity. But the Lasso will keep principle components with larger

coe¢ cients in the regression. Hence those principle components with large coe¢ cients but

maybe with less information can be kept; those ones with small coe¢ cients but maybe with

more information are dropped. That may be why the PCA-�rst-and-then-Lasso method

performs poorly in power. When we increase k, it is more likely that the Lasso may pick

up unimportant principle components and will reduce the power even more. On the other

hand, if we set k = q� the Lasso to PCA test is essentially the LWG�s original ANN test,

and this explains the increasing power when k is very small.

5 Conclusions

In this paper, we applied the ANN model to test neglected nonlinearity in conditional mean.

The ANN test uses the residuals from a linear model and check for their correlation with the

ANN�s hidden unit activation functions. We generated a large number of activation functions

based on the randomly drawn activation parameters. The large number of the activation

functions is necessary to get good approximation of an unknown nonlinear functional form.

Then in order to avoid the collinearity problem, we apply di¤erent regularization methods to

select a moderate number of activation functions. One regularization method suggested by

LWG (1993) is the principle component analysis (PCA), which is unsupervised. In this paper,

we consider four supervised regularization methods to select a subset of many activation

functions. We show that the use of supervised regularization such as Lasso, PLS, Pretest

would lead to the post-selection inference (PoSI) problem, while the PCA does not lead to

such problem.

A way of avoiding the PoSI problem is to conduct the simultaneous inference for all pos-
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sible submodels under consideration which will make the resulting post-selection inference

valid but conservative, by using a Bonferroni-type bound as used by LWG (1993) for PCA.

As Leeb and Pötscher (2008) noted, �nding the distribution of post-selection estimates is

hard and perhaps impossible. Pötscher and Leeb (2009) show that the distribution of reg-

ularized estimators by Lasso, SCAD, and Pretest are highly non-normal (non chi-squared

in our testing set-up of this paper). Nevertheless, a valid post-selection inference is possi-

ble via simultaneous inference as studied by Berk, Brown, Buja, Zhang and Zhao (2011).

Whether/how the simultaneous inference may be applied for Lasso, Pretest, PLS requires

further research.

We note that the PoSI �problem�(for inference) is not necessarily a problem (for fore-

casting). Knowing the PoSI problem could provide valuable information. The question is

what for. The answer is that the PoSI problem can be a measure of the possible gain by

supervision, and therefore it will be useful information for forecasting. The over-rejection in

inference due to the PoSI problem of the various supervised regularization methods shows

that the null distribution of the test statistic based on the regularized (selected) randomized

ANN activations can be shifted towards the right tail, especially when the Pretest method

is in use. While it is a serious problem in inference, it may be a valuable information for

forecasting. The degree of the PoSI problem can be translated into a measure of supervision

in the regularization, i.e., a measure of the information contents for the forecast target from

the variables (predictors) selected through the supervision. However, the results from Table

2 for the PCA-�rst-and-then-Lasso method indicates that this may not be a straigtforward

matter because it is shown that more supervision does not necessarily increase the power

of the ANN test. It remains to be studied that it might be possible that the more super-

vised regularization can lead to poor forecasting performance of the ANN model. Hence, it

will be interesting to examine whether the di¤erent degrees of the PoSI problem among the
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di¤erent regularization methods may be carried over to di¤erent degrees of improvement in

forecasting ability of the ANN model. We leave this in our research agenda.
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Table 1. Size and Power of LWG, Lasso, PLS, and Pretest (with q = 200)

PCA Lasso PLS Pretest
5% 10% 5% 10% 5% 10% 5% 10%

AR 0.047 0.102 0.054 0.098 0.064 0.127 0.733 0.869
TAR 0.243 0.373 0.248 0.354 0.375 0.510 0.930 0.976
SGN 0.841 0.914 0.735 0.829 0.849 0.917 0.991 0.998
NAR 0.104 0.183 0.086 0.238 0.135 0.243 0.764 0.892
MRS 0.167 0.259 0.164 0.344 0.181 0.283 0.926 0.974

Linear (� = 0) 0.043 0.088 0.052 0.112 0.192 0.341 0.726 0.880
Linear (� = 0:7) 0.043 0.091 0.057 0.129 0.113 0.190 0.728 0.878
Cross Product (� = 0) 0.075 0.126 0.216 0.364 0.370 0.517 0.806 0.919
Cross Product (� = 0:7) 0.240 0.362 0.320 0.456 0.288 0.434 0.839 0.936
Squared (� = 0) 0.178 0.277 0.219 0.303 0.503 0.675 0.856 0.937
Squared (� = 0:7) 0.220 0.341 0.267 0.384 0.344 0.496 0.854 0.938

Notes: Sample Size n = 200: q = 200. �Pretest�denotes �PCA-�rst-and-then-Pretest�.
k = 20 is used for the Pretest method.

28



Table 2. Size and Power of PCA-�rst-and-then-Lasso with k = 100; 50; 10; 5

k = 100 k = 50 k = 10 k = 5
5% 10% 5% 10% 5% 10% 5% 10%

AR 0.085 0.158 0.078 0.142 0.048 0.087 0.041 0.080
TAR 0.126 0.204 0.125 0.206 0.146 0.222 0.135 0.212
SGN 0.204 0.262 0.226 0.287 0.352 0.401 0.628 0.700
NAR 0.089 0.161 0.096 0.165 0.064 0.110 0.124 0.226
MRS 0.190 0.267 0.186 0.280 0.136 0.215 0.135 0.203

Linear (� = 0) 0.096 0.183 0.067 0.121 0.052 0.086 0.047 0.108
Linear (� = 0:7) 0.097 0.178 0.065 0.117 0.045 0.080 0.046 0.094
Cross Product (� = 0) 0.109 0.183 0.096 0.154 0.089 0.160 0.163 0.251
Cross Product (� = 0:7) 0.114 0.199 0.100 0.172 0.092 0.161 0.216 0.328
Squared (� = 0) 0.108 0.187 0.078 0.168 0.148 0.227 0.203 0.309
Squared (� = 0:7) 0.110 0.196 0.082 0.139 0.134 0.204 0.227 0.352

Notes: Sample Size is n = 200: q = 200:
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Figure 1. Distribution of TPCAn under H0

(a) DGP: AR compared to �23
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(b) DGP: Linear(� = 0) compared to �23
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(c) DGP: Linear(� = 0:7) compared to �23
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Figure 2. Distribution of T Lasson under H0

(a) DGP: AR compared to �23
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(b) DGP: Linear (� = 0) compared to �23
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(c) DGP: Linear(� = 0:7) compared to �23
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Figure 3. Distribution of TPLSn under H0

(a) DGP: AR compared to �23

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

(b) DGP: Linear(� = 0) compared to �23
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(c) DGP: Linear(� = 0:7) compared to �23
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Figure 4. Distribution of TPretestn (PCA-�rst-and-then-Pretest) under H0

(a) DGP: AR compared to �23
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(b) DGP: Linear(� = 0) compared to �23
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(c) DGP: Linear(� = 0:7) compared to �23
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Figure 5. Distribution of TPCA-Lasson (PCA-�rst-and-then-Lasso) under H0

(a) DGP: AR compared to �23 (k = 5)
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(b) DGP: Linear(� = 0:7) compared to �23 (k = 5)
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(c) DGP: AR compared to �23 (k = 50)
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(d) DGP: Linear(� = 0:7) compared to �23 (k = 50)
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(e) DGP: AR compared to �23 (k = 100)
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(f) DGP: Linear(� = 0:7) compared to �23 (k = 100)
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