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Abstract

The theoretical literature on (non-random) choice largely follows the route of Richter

(1966) by working in abstract environments and by stipulating that we see all choices of

an agent from a given feasible set. On the other hand, empirical work on consumption

choice using revealed preference analysis follows the approach of Afriat (1967), which

assumes that we observe only one (and not necessarily all) of the potential choices of an

agent. These two approaches are structurally di¤erent and are treated in the literature in

isolation from each other. This paper introduces a framework in which both approaches

can be formulated in tandem. We prove a rationalizability theorem in this framework that

simultaneously generalizes the results of Afriat and Richter. This approach also gives a

new, �tight�version of Afriat�s Theorem and a continuous version of Richter�s Theorem,

and leads to a number of novel observations for the theory of consumer demand.
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1 INTRODUCTION

As pioneered by Hendrik Houthakker and Paul Samuelson, the classical theory of re-

vealed preference was conducted for consumption choice problems within the class of all

budget sets in a given consumption space. In time, this work has been extended, and

re�ned, in mainly two ways. The seminal contributions of Arrow (1959) and Richter

(1966, 1971) have shifted the focus of decision theorists to studying the consequences

of rational decision-making in richer, and more abstract, settings. The vast majority of

modern choice theory, be it modeling rational or boundedly rational decision making, is

now couched within this framework. On the other hand, another seminal approach was

pursued by Afriat (1967) in the context of standard consumption problems, but under

the unexceptionably reasonable premise that a researcher may record one�s choice be-

havior only for �nitely many budget sets in a given consumption space. This approach

has proved useful for econometric tests of rationality, and for the construction of utility

and demand functions from consumption choice data.1

1.1 Richter and Afriat�s Theorems compared. It is striking that even though

virtually the entire literature on (non-random) choice can be viewed either as following

the abstract route of Richter (1966) or the empirically-oriented route of Afriat (1967),

there is little contact between them. This is mainly because these two approaches are

structurally di¤erent. To be precise about this, let us have a look at the fundamental

rationalizability theorems of these papers:

Richter�s Theorem. Let X be a nonempty set and A a nonempty collection of

nonempty subsets of X: A map (choice correspondence) c from A into 2Xnf;g with
c(A) � A for each A 2 A satis�es the congruence axiom if, and only if, there is a

complete preference relation (preorder) % on X such that c(A) = fx 2 A : x % y for

each y 2 Ag:2

Afriat�s Theorem. Let k and n be positive integers, and take any (p1;x1); :::; (pk;xk)

in Rn++ � Rn+: Then there is a continuous and strictly increasing (utility) function u :
Rn+ ! R such that u(xi) � u(x) for each x 2 Rn+ and i = 1; :::; k with pix � pixi if,

and only if, (p1;x1); :::; (pk;xk) obeys cyclical consistency, which means that, for any

1See Vermeulen (2012) for a nice survey on the theory of revealed preference.
2 Here we wish to examine only the �structure�of this theorem, so for the present discussion, it is

not important what the congruence axiom is. This axiom is de�ned formally in Section 4.1.
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ft1; t2; :::; tlg � f1; 2; :::; kg,

pt2xt1 � pt2xt2 ; :::;ptlxtl�1 � ptlxtl and pt1xtl � pt1xt1

imply

pt2xt1 = pt2xt2 ; :::;ptlxtl�1 = ptlxtl and pt1xtl = pt1xt1 :

Even a casual look at these results witnesses a number of important di¤erences.

Richter�s Theorem is very abstract. It has the advantage of allowing for any kind of

choice domain. It presumes that all choices of the agent are observed in the case of any

choice problem �that is, the entirety of the set c(A) is known for any A in A �and on

the basis of a single axiom on c; delivers a complete preference relation the maximization

of which yields all choices of the agent in every choice problem. By contrast, Afriat�s

Theorem is fairly concrete. It works only with k many budget problems for consumption

of bundles of n goods. It presumes that only one choice of the agent is observed in the

case of any budget set,3 �we see the bundle xi being chosen in the budget set with

prices pi and income pixi �and on the basis of a single axiom on the choices of the

agent; delivers a utility function with respect to which the (observed) choices are best

within their respective budget sets. Furthermore, this utility function is continuous and

strictly increasing, concepts which are not even meaningful in the general alternative

space considered in Richter�s Theorem. Comparing the central assumptions, we see that

the special structure of Rn is used in an essential manner in the de�nition of cyclical
consistency and it is not possible to state a generalization of this property in an envi-

ronment where the alternative space lacks an inherent order and/or algebraic structure.

By contrast, Richter�s Theorem does not need a special mathematical structure on the

alternative space X and the congruence axiom is a purely set-theoretic property.

All in all, the theorems above appear to have fairly di¤erent characters, even though,

conceptually, they are after the same thing, namely, identifying conditions on one�s

choice behavior that would allow us to view this individual �as if�she is maximizing a

preference relation (or a utility function).4 It thus seems desirable to develop a framework

3 This is not entirely correct. While this is how the theorem is utilized in practice, Afriat�s Theorem
allows for pixi = pjxj for distinct i and j; so the data may in principle yield two (or more) choices
from a given budget set. It is, however, in the very nature of this theorem that only some choices of
the agent is observed in the case of any budget set.

4 While we single out Richter�s and Afriat�s Theorems in this discussion, we note that these theorems
serve as prototypes here. In particular, everything we said so far about the distinction between these
theorems remain valid in the case of any of the extensions of Afriat�s Theorem provided in the literature.
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in which the approaches of Afriat and Richter toward revealed preference theory can

be formulated simultaneously. On the one hand, such a framework would allow for a

uni�ed approach to (non-random) revealed preference theory that admits the previous

approaches as special cases. On the other hand, it would provide an avenue for bringing

together the most desirable parts of these approaches together, thereby paving the way

toward more powerful revealed preference theories. In particular, such a framework

would let us work with choice environments in which one recognizes the fact that often

we observe only one (or a few) choice(s) of an agent in a given choice situation (a major

advantage of Afriat�s theory) without limiting attention only to consumption choice

problems (a major advantage of Richter�s theory). The primary objective of the present

paper is to provide such a framework.

1.2 The framework. We depart from the previous literature on abstract revealed

preference theory in two ways. First, we model the choice behavior of an agent by a set

of choice correspondences, instead of a single one. The idea is quite intuitive. Suppose

we observe the choice behavior of an agent across a collection, say, A; of feasible sets.
For simplicity, suppose we see exactly one choice of the agent, say xA; from each feasible

set A in A: Our model identi�es this behavior with the set of all choice correspondences
(on A) that declares xA as a potential choice from A; that is, it says that the agent�s

�true�choice correspondence c is one with xA 2 c(A) for each A in A: Notice that this
is precisely Afriat�s approach generalized to an arbitrary choice domain. By contrast,

Richter�s approach presumes that we are privy to �all�choices of the agent in the case

of any feasible set. For instance, it may be the case that we are somehow certain that xA
is the only choice of the agent from A for each A in A: In that case, the set of all choice
correspondences that is consistent with the data becomes a singleton that contains the

�true�choice correspondence c of the agent, where fxAg = c(A) for each A in A: As this
example easily generalizes to the case where the agent may have been observed to make

multiple choices from a given feasible set, we thus see that modeling an agent as a set of

choice correspondences captures both approaches as special cases. In Richter�s case this

set is necessarily a singleton, and in Afriat�s case it is not (except in trivial instances).5

This framework is, however, not yet enough to formulate Afriat�s Theorem within,

because that theorem relies crucially on an exogenously given order structure. Indeed,

5 While this is a side point for the current paper, it is worth noting that this framework allows for
modeling certain types of interesting choice situations that cannot be captured by either the Afriat or
the Richter approaches. An example to this e¤ect is provided in Section 3.4 (see Example 4).
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without some monotonicity requirement on u, the notion of consistency in Afriat�s The-

orem will impose no restrictions on observations since we can allow the agent to be

indi¤erent across all alternatives. This leads to the second novel aspect of the frame-

work we propose here: We assume that the alternative space is a partially ordered set,

as opposed to an arbitrary set. This way we keep the standard environment of Richter

as a special case (where the partial order is the equality ordering) and include domains,

such as Rn, which have intrinsic order structures.
After going through a few mathematical preliminaries in Section 2, we introduce

our framework formally in Section 3. In that section we also show by examples how

this abstract framework admits numerous choice environments that are studied in the

previous literature, ranging from Richter-type choice frameworks to Nash bargaining

problems and Afriat-type environments, as well as new ones. It is important to note

that our framework is an abstract setup that is primed to capture any sort of choice data

that one can encounter in both theory and practice. As such, it is not geared necessarily

toward rational choice theory and it can be used to study any type of boundedly rational

choice theory as well. In this paper, however, we focus on rational choice theory in the

context of this framework with the aim of demonstrating that the approaches of Richter

and Afriat are in fact branches of the same tree.

1.3 Summary of the main results. We show that there is a natural way of extend-

ing Richter�s congruence axiom to our framework such that the axiom recognizes the

inherent order on the alternative space. We call this extension the monotone congru-

ence axiom (Section 4.3). Similarly, the cyclical consistency condition is extended to

our setting in a natural manner; we refer to this extension as the generalized cyclical

consistency (Section 4.4). Our main theorem shows that these (extended) properties

have a close formal connection. Furthermore, the monotone congruence axiom yields a

representation very much in the spirit of Richter (but now with monotone preference

relations) while generalized cyclical consistency yields precisely an Afriat-type represen-

tation (but now over an arbitrary choice domain). Therefore, our main theorem (in

Section 4.5) generalizes Richter�s Theorem and the choice-theoretic content of Afriat�s

Theorem simultaneously (see Sections 4.6 and 4.8). However, the structure of rational-

ization we obtain in the latter case is di¤erent than that of Afriat (1967) in an important

way. Unlike Afriat�s construction, our rationalizing preference is typically not convex;

instead the preference realtion we derive provides a tight rationalization in the sense

that, at any observed budget set, it identi�es as optimal only those bundles that have
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been revealed as optimal by the data (see Section 4.7).

Another di¤erence with Afriat�s Theorem is that our main result is of �rationalization

by a preference relation�form, and not of �rationalization by a utility function�form.

The latter form obtains in Afriat�s Theorem due to the special structure of the alternative

space Rn and the assumption that the collection of feasible sets under consideration is
�nite. In Section 5, we show that if we make this �niteness assumption in our framework

and posit that the alternative space satis�es fairly general (topological) conditions, then

our main theorem can be stated in terms of a continuous and monotonic utility function.6

Not only this result admits Afriat�s Theorem (as stated above) as a special case (Section

6.1), but it also yields a new version of Richter�s Theorem which is of �rationalization

by a continuous utility function�form (Section 5.3).

Closely related to the rationalizability of choice data is the issue of extrapolation in-

troduced by Varian (1982). Loosely speaking, this issue is about predicting the agent�s

choice behavior in the context of choice situations that are not part of the actual data.

Despite its obvious importance, extrapolation has so far been investigated only for con-

sumption choice problems. In Section 5.4, however, we use the new (continuous) version

of Richter�s Theorem to characterize exactly what can be said about this matter within

general choice theory.

Finally, in Section 6, we turn to the classical theory of consumer demand, and provide

two applications of our general results in this context. First, we look into the issue of

recoverability (Varian (1982)), that is, the extent to which an observer is able to recover

information about the agent�s preferences from her observed choices, without subscribing

to a particular utility function that happens to rationalize the choice data at hand. In

Section 6.2, we show that, insofar as we impose only the properties of continuity and

monotonicity of the rationalizing utility functions, what we can recover of the agent�s

preferences is exactly her (indirect) revealed preference relation. Second, we provide an

extension of Afriat�s Theorem to the case where the data set consists of a �nite set of

Engel curves (Section 6.3). As even a single Engel curve corresponds to an in�nite set of

choice observations, this sort of a rationalizability result escapes the coverage of Afriat�s

Theorem, but falls comfortably within our general rationalizability theorems.

The numerous corollaries we deduce from our main results throughout this paper

attest to the unifying structure of the revealed preference framework proposed here. We

hope that this framework will also facilitate the development of the recent literature

6 The crucial technical tool in this result is Levin�s (1983) Theorem, which is a continuous version
of Szpilrajn�s Theorem.
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on boundedly rational choice theory, especially in extensions that explicitly account for

issues of data availability.

2 PRELIMINARIES

The primary tool of analysis in this paper is order theory. The present section catalogues

the de�nitions of all the order-theoretic notions that we utilize throughout the present

work. As these notions are largely standard, this section is mainly for the reader who

may need a clari�cation about them in the main body of the paper.

2.1 Order-Theoretic Nomenclature. Let X be a nonempty set, and denote the

diagonal of X �X by 4X ; that is, 4X := f(x; x) : x 2 Xg: By a binary relation on
X, we mean any nonempty subset of X �X: For any binary relation R on X; we adopt
the usual convention of writing x R y instead of (x; y) 2 R. (Thus, x 4X y i¤ x = y for

any x; y 2 X:) Similarly, for any x 2 X and subset A of X; by x R A we mean x R y for

every y 2 A; and interpret the expression A R x analogously. Moreover, for any binary
relations R and S on X, we simply write x R y S z to mean x R y and y S z; and so

on. For any subset A of X; the decreasing closure of A with respect to R is de�ned

as

A#;R := fx 2 X : y R x for some y 2 Ag;

but when R is apparent from the context, we may denote this set simply as A#: The

increasing closure of A is de�ned dually. By convention, x# := fxg# and x" := fxg"

for any x in X:

The inverse of a binary relation R on X is itself a binary relation, de�ned as R�1 :=

f(y; x) : x R yg: The composition of two binary relations R and R0 on X is de�ned as

R � R0 := f(x; y) 2 X �X : x R z R0 y for some z 2 Xg: In turn, we let R1 := R and
Rn := R �Rn�1 for any integer n > 1; here Rn is said to be the nth iterate of R:
The asymmetric part of a binary relation R on X is de�ned as PR := RnR�1 and

the symmetric part of R is IR := R \ R�1: We say that a binary relation R on X

extends another such binary relation S if S � R and PS � PR. For any nonempty

subsetA ofX; the set of all maximal elements with respect toR is denoted asMAX(A;R);

that is, MAX(A;R) := fx 2 A : y PR x for no y 2 Ag: Similarly, the set of all maximum
elements with respect to R is denoted as max(A;R); that is, max(A;R) := fx 2 A :

x R y for all y 2 Ag: We also de�ne MIN(A;R) := MAX(A;R�1) and min(A;R) :=

max(A;R�1):
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A binary relation R on X is said to be re�exive if 4X � R; antisymmetric if

R \ R�1 � 4X ; transitive if R � R � R; and complete if R [ R�1 = X � X: The
transitive closure of R, denoted by tran(R); is the smallest transitive relation on X

that contains R; and is given by tran(R) := R[R2[ � � �. In other words, x tran(R) y i¤
we can �nd a positive integer k and x0; :::; xk 2 X such that x = x0 R x1 R � � �R xk = y:
If R is re�exive and transitive, we refer to it as a preorder on X: (In particular,

tran(R) is a preorder on X for any re�exive binary relation R on X:) If R is an an-

tisymmetric preorder, we call it a partial order on X. The ordered pair (X;R) is a

preordered set if R is a preorder on X, and a poset if R is a partial order on X:

(Throughout the paper, a generic preorder is denoted as %; with � acting as the asym-
metric part of %.) Finally, we say that R is acyclic if 4X \ P nR = ; for every positive
integer n: It is readily veri�ed that transitivity of a binary relation implies its acyclicity,

but not conversely.

For any preorder % on X; a complete preorder on X that extends % is said to be

a completion of %. It is a set-theoretical fact that every preorder on a nonempty set
admits a completion. This result, which is based on the Axiom of Choice, is known as

Szpilrajn�s Theorem.7

Given any preordered set (X;%); a function f : X ! R is said to be increasing
with respect to %, or simply %-increasing, if f(x) � f(y) holds for every x; y 2 X
with x % y: If, in addition, f(x) > f(y) holds for every x; y 2 X with x � y; we say that
f is strictly increasing with respect to %, or that it is strictly %-increasing:
Finally, given a poset (X;<) and a subset A of X; we denote by

W
A the unique

element of min(fx 2 X : x < Ag;<); provided that this set is nonempty (and hence
a singleton). Analogously,

V
A is the unique element of max(fx 2 X : A < xg;<);

provided that this set is nonempty. If
W
A exists for every nonempty �nite A � X; then

(X;<) is said to be a _-semilattice, and if
W
A exists for every A � X; then (X;<)

is said to be a complete _-semilattice. If (X;<�1) is a _-semilattice, we say that
(X;<) is a ^-semilattice.

2.2 Topological Nomenclature. Let (X;%) be a preordered set such that X is a

topological space. We say that % is a continuous preorder on X if it is a closed subset

of X � X (relative to the product topology).8 We note that the closure of a preorder

on X (in X �X) need not be transitive, nor is the transitive closure of a closed binary
7 Szpilrajn (1938) has proved this result for partial orders, but the result easily generalizes to the

case of preorders; see Corollary 1 in Chapter 1 of Ok (2007).
8 While there are other notions of continuity for a preorder (for instance, openness of its strict part

8



relation on X in general continuous. One needs additional conditions to ensure such

inheritance properties to hold (Ok and Riella (2014)).

Given a continuous preorder % on X; the topological conditions that would ensure

the existence of a continuous real map on X that is strictly increasing with respect to %
are well-studied in the mathematical literature. It is known that such a function exists

if X is a locally compact and separable metric space. This is Levin�s Theorem.9

Notational Convention. Throughout this paper, we write [k] to denote the set f1; :::; kg
for any positive integer k:

3 CHOICE ENVIRONMENTS AND CHOICE DATA

3.1 Choice Environments. By a choice environment, we mean an ordered pair

((X;�);A), where (X;�) is a poset and A is a nonempty collection of nonempty sub-

sets of X: Here we interpret X as the consumption space, that is, the grand set of all

mutually exclusive choice alternatives, that is, the consumption set. We think of � as an
exogeneously given domination relation on X, and view the statement x � y as saying
that x is an unambiguously better alternative than y for any individual. (If the envi-

ronment one wishes to study lacks such a dominance relation, we may set � as 4X so

that x � y holds i¤ x = y.10) Finally, A is interpreted as the set of all feasible sets from
which a decision maker is observed to make a choice. For instance, if the data at hand

is so limited that we have recorded the choice(s) of an agent in the context of a single

feasible set A � X; we would set A = fAg: At the other extreme, if we have somehow
managed to keep track of the choices of the agent from every possible feasible set A � X
(as sometimes is possible in the controlled environments of laboratory experiments), we

would set A = 2Xnf;g:

3.2 Choice Correspondences and Choice Data. Given a nonempty set X and a

nonempty subset A of 2Xnf;g; by a choice correspondence on A, we mean a map

on X), this terminology is adopted quite widely in the literature. See, for instance, Evren and Ok
(2011) and references cited therein.

9 See Levin (1983), where this result is proved in the more general case where X is a locally compact,
�-compact and second countable Hausdor¤ space.
10 Every result we report in this paper remains valid, if � is an arbitrary preorder (with no substantial

change in the proofs). We take (X;�) as a poset, instead of a preordered set, only to simplify the
exposition, and because the natural dominance relations that arise in the applications we consider here
are all partial orders.
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c : A ! 2X such that c(A) is a nonempty subset of A for each A 2 A: We denote the
family of all choice correspondences on A by C(X;A):
There is a natural way of ordering the choice correspondences on A. Consider the

binary relation w on C(X;A) de�ned as

c w d i¤ c(A) � d(A) for every A 2 A:

Clearly, (C(X;A);w) is a poset. It is also plain that this poset is a complete _-semilattice,
but it is not an ^-semilattice unless all members of A are singleton subsets of X:
In the present paper, by a choice correspondence on a choice environment ((X;�

);A); we simply mean an element of C(X;A): (Notice that this notion does not depend on
the preorder�.) In turn, we refer to any nonempty collectionC of choice correspondences
on ((X;�);A) as a choice data on ((X;�);A): As we have discussed in Section 1.2, we
may think of C as a means of summarizing the choices of a given decision maker across
all feasible sets in A in the sense that C is precisely the set of all choice correspondences
on ((X;�);A) that are compatible with the (observed) choices of that agent.

3.3 Revealed Preference Frameworks. By a revealed preference (RP) frame-

work, we mean an ordered triplet

((X;�);A;C);

where ((X;�);A) is a choice environment and C is a choice data on ((X;�);A): We
note that this model is quite general, and it departs from how revealed preference theory

is usually formulated in the literature mainly in two ways. First, it features the notion

of an unambiguous ordering of the alternatives (in terms of some form of a domination

relation). Second, and more important, this model takes as a primitive not one choice

correspondence, but potentially a multiplicity of them. The following subsection aims

to demonstrate the advantages of this modeling strategy by means of several examples.

3.4 Examples. In many studies of revealed preference, one takes as primitives a �nite

alternative set X and a choice correspondence c on 2Xnf;g: (This is, for instance, pre-
cisely the model studied by Arrow (1959), and is one of the most commonly adopted

choice frameworks in the recent literature on boundedly rational choice.) Especially

when X is not �nite, however, it is commonplace to posit that we can observe one�s

choice behavior only in the context of certain types of feasible sets.

Example 1. (Richter-Type RP Frameworks) Let X be any nonempty set, A any

nonempty collection of nonempty subsets of X; and c a choice correspondence on A:
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Then, ((X;4X);A; fcg) is an RP framework that corresponds to the choice model of
Richter (1966). The interpretation of the model is that one is able to observe all elements

that are deemed choosable by the decision maker from any given element of A: No
exogeneous order (or otherwise) structure on the consumption set X is postulated. Most

of the revealed preference analyses conducted in the literature on choice theory work with

instances of this model.

Example 2. (Ordered Richter-Type RP Frameworks) A slight modi�cation of the

previous model obtains if we endow X with a nontrivial partial order �, leading us to
the RP framework ((X;�);A; fcg). Many classical choice models are obtained as special
cases of this framework. We give two illustrations:

a. (Classical Consumption Choice Problems) Let n be a positive integer. Take X as

Rn+, � as the standard (coordinatewise) ordering of n-vectors, and suppose that A is a

nonempty subset of fB(p; I) : (p; I) 2 Rn++ � R++g; where B(p; I) is the budget set at
prices p and income I; that is,

B(p; I) := fx 2 Rn+ : px � Ig

for every positive (n+ 1)-vector (p; I). The RP framework ((X;�);A; fcg) then corre-
sponds to a classical consumption choice model.

b. (Nash Bargaining Problems) Where n is a positive integer, take X as Rn+, � as

the standard (coordinatewise) ordering of n-vectors, and put A as the set of all compact
and convex subsets of X that contain the origin 0 in their interior. The RP frame-

work ((X;�);A; fcg) then corresponds to the classical n-person cooperative bargaining
model. (In this model, elements ofX are interpreted as the utility pro�les of the involved

individuals, while 0 is the (normalized) utility pro�le that corresponds to the disagree-

ment outcome.) When c is single-valued, for instance, this model reduces to the one

considered by Nash (1950) and a large fraction of the literature on axiomatic bargain-

ing theory. If we relax the convexity requirement, we obtain the model of non-convex

collective choice problems (cf. Ok and Zhou (1999)).

The choice models considered in the previous two examples presume that we can

observe all choices of an individual in the case of every one of the feasible sets. (Put

di¤erently, these models posit that they are given the �true�choice correspondence of

the decision-maker in its entirety.) This comprehensiveness assumption is, however,

often not met in empirical revealed preference studies in which the researcher has one
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data point (per individual) for each feasible set. This has led many authors to consider

models in which one is privy to only one choice of an individual in a given feasible set.

Example 3. (Afriat-Type RP Frameworks) Consider a choice environment of the

form ((X;�);A); where A is a nonempty �nite subset of 2Xnf;g; and c is a choice
correspondence on A such that c(A) is �nite for all A 2 A.11 A particularly interesting
RP framework is then obtained as ((X;�);A;C); where

C := fC 2 C(X;A) : C w cg;

that is, C equals c"; the increasing closure of fcg with respect to w. The interpretation
is that (i) we observe the choice behavior of the agent for only �nitely many choice

problems; and (ii) we see only some of the choices of the agent in each problem that

she faces. Part (i) is captured by the model through the �niteness of A: In turn, part
(ii) is captured by setting c to correspond to the observed choices of the agent (that is,

c(A) is what we see the decision maker choose from A for each A 2 A): In particular,
due to the limited nature of our observations, we do not know if the agent was perhaps

indi¤erent, or indecisive, between her choice from A and some other alternatives in

A 2 A. Consequently, the framework uses the choice dataC to model the choice behavior
of the agent in a coarser way. It presumes that the �true�choice correspondence of the

agent may be any one choice correspondence C on A which is consistent with c in the

sense that the elements of c(A) are contained in C(A) for each A 2 A: Again, many
classical choice models are obtained as special cases of this framework.

a. (Afriat�s Model of Consumption Choice Problems) Let n be a positive integer.

In the classical framework of Afriat (1967), the consumption set is modeled as Rn+ and
viewed as partially ordered by the coordinatewise ordering �. The primitive of the
model is a �nite collection of price vectors and the choice(s) of the agent at those prices.

Formally, we are given a nonempty �nite subset P of Rn++; and a map d that assigns to
every p 2 P a nonempty �nite subset d(p) of Rn+ such that py = pz for every y and z
in d(p): We interpret P as a set of price pro�les, and for each p in P; think of d as the

(observed) demand correspondence on P , that is, d(p) is interpreted as the set of

the bundles that the individual was observed to choose from the budget set B(p;pd(p)).

(Here, by a slight abuse of notation, by pd(p) we mean py for any y 2 d(p).12) This
model is captured by the RP framework above by setting (X;�) as Rn+ (with the usual
11 Afriat�s Theorem requires c to be �nite-valued, but our analysis remain intact if this assumption

is dropped. Indeed, each of our characterization theorems allows for this.
12 The restriction that bundles in d(p) incur the same expenditure is without loss of generality.
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ordering), A as fB(p;pd(p)) : p 2 Pg; and c as mapping each B(p;pd(p)) to d(p).
The choice data of the model is thus

C := fC 2 C(X;A) : d(p) � C(B(p;px(p))) for each p 2 Pg;

that is, the collection of all choice correspondences on A which is consistent with the

(observed) demand correspondence being a part of the choice correspondence of the

individual.

b. (The Forges-Minelli Model of Consumption Choice Problems) The applicability of

the Afriat model is strained by the fact that it is concerned only with linear budget sets.

To deal with nonlinearities that may arise from price �oors/ceilings, price di¤erentiation

that may depend on quantity thresholds, and other considerations, many authors have

considered Afriat type models with nonlinear budget sets (cf. Matzkin (1991) and Chavas

and Cox (1993)). Such cases too are readily modeled by means of the revealed preference

framework of the present example. For instance, given any two positive integers n and

k; Forges and Minelli (2009) take as a primitive a �nite collection of ordered pairs, say,

(g1;x1); :::; (gk;xk); where gi is a strictly increasing and continuous real map on Rn+
with gi(xi) = 0 for each i 2 [k]: They interpret this data as the situation in which we
observe a given decision maker choosing the bundle xi from the generalized budget set

Bi(gi) := fx 2 Rn+ : gi(x) � 0g for each i 2 [k]: This setup is then captured by the RP
framework ((Rn+;�);A;C) where A := fBi(gi) : i 2 [k]g and C is the set of all choice
correspondences C on A such that xi 2 C(B(gi)) for each i 2 [k]:13

The examples above accord with viewing the choice data of an agent as the collection

of all choice correspondences that are compatible with her observed choices. There are,

however, instances where we may get partial information about the potential choices

of an agent even though we do not observe them exactly. This situation too can be

modeled by using our RP framework technology. We illustrate this in our next example,

even though such models will not be investigated in this paper.

Example 4. Consider a choice environment of the form ((X;�);A); and let us suppose
that the agent is supposed to �nalize her choice in a second period, but today she is able

Indeed, by modifying the domain P if necessary, we can assume that pd(p) = 1 for all p 2 P . This is
because B(p;py) = B(�p; �py) for any � > 0 and y 2 Rn+, so requiring income to equal 1 imposes no
restrictions on a budget set provided the price can be scaled up or down.
13 There are Afriat-type models where the grand set of alternatives X is a discrete subset of Rn+,

endowed with the coordinatewise ordering (cf. Polisson and Quah (2013) and Cosaert and Demuynck
(2014)). Such models too can be formulated as revealed preference frameworks wherein our results are
applicable.
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to commit to choosing something (tomorrow) from a subset of a given feasible set. To

formalize this scenario, let us �x a correspondence t : A ! 2Xnf;g such that t(A) � A
for each A 2 A: For each A; the interpretation of t(A) is that the agent commits,
today, to not choosing anything (tomorrow) from Ant(A): Given that we observe the
commitment decisions of the agent, that is, t; it is natural to model the �nal choices of

the agent (which we do not observe) by means of the choice data

C := fC 2 C(X;A) : t w Cg:

(Notice that, mathematically, this choice data is the dual opposite of the one we have

considered in Example 3; it is the decreasing closure of ftg with respect to w.) For, in
the present scenario, all we know about the choice of the agent from a feasible set A is

that this choice is contained within t(A):

4 RATIONALIZABILITY OF CHOICE DATA (with arbitrary data sets)

4.1 Rationalizability of Choice Correspondences. Let X be a nonempty set

and A a nonempty subset of 2Xnf;g: A choice correspondence c on A is said to be

rationalizable if there is a complete preorder % on X such that

c(A) = max(A;%) for every A 2 A: (1)

In his seminal paper, Richter (1966) has provided a characterization of such choice

correspondences by means of what he dubbed the �congruence axiom.�To state this

property, let us de�ne the binary relation R(c) on X by

x R(c) y if and only if (x; y) 2 c(A)� A for some A 2 A:

This relation, introduced �rst by Samuelson (1938) in the special case of consumption

problems, is often called the direct revealed preference relation induced by c in the

literature, while the transitive closure of R(c) is referred to as the revealed preference

relation induced by c: Then, given X and A; a choice correspondence c on A is said to
satisfy the congruence axiom if

x tran(R(c)) y and y 2 c(A) imply x 2 c(A)

for every A 2 A that contains x: As we have noted in Section 1.1, Richter�s Theorem

says that a choice correspondence c on A is rationalizable i¤ it satis�es the congruence

axiom.
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4.2 Monotonic Rationalizability of Choice Data. The notion of rationalizability

readily extends to the more general context of RP frameworks. Where ((X;�);A;C)
is an RP framework, we say that the choice data C is rationalizable if at least one

c in C is a rationalizable choice correspondence on A: However, this concept does not
at all depend on the partial order �. Given the interpretation of � as a dominance

relation, it is natural to require the �rationalizability�take place by means of preference

relations that are consistent with �. (For instance, in the context of consumption choice
problems where (X;�) is Rn+, it is natural to require preferences derived from choice

data be consistent with the usual ordering � of Rn+, thereby re�ecting the sentiment
that �more is better.�) This leads us to the notion of monotonic rationalizability: The

choice data C is said to be monotonically rationalizable if there is a c 2 C and a
complete preorder % on X such that (1) holds and % extends �.14 Obviously, in the
context of any Richter-type RP framework (Example 1), the notions of rationalizability

and monotonic rationalizability coincide.

4.3 The Monotone Congruence Axiom. Richter�s congruence axiom is readily

translated into the context of RP frameworks, but this axiom needs to be strengthened

to deliver a characterization of monotonic rationalizability. Where ((X;�);A;C) is an
RP framework, we say that the choice data C satis�es the monotone congruence

axiom if there is a c 2 C such that

x tran(R(c) [ �) y and y 2 c(A) imply x 2 c(A) (2)

for every A 2 A that contains x; and

x tran(R(c) [ �) y implies not y > x: (3)

Clearly, in the context of any Richter-type RP framework, this axiom reduces to the

congruence axiom. Furthermore, given Richter�s theorem, a natural conjecture is that a

choice data C on A is monotonically rationalizable i¤ it satis�es the monotone congru-

ence axiom. That this conjecture is true will be proved in Section 4.6 as an immediate

consequence of the main theorem of this paper.

4.4 Generalized Cyclical Consistency. Consider the RP framework we have for-

malized in Example 3.a, where we are given a nonempty �nite subset P of Rn++; and
14Reminder. % extends � i¤> � �; where > and � are asymmetric parts of � and %, respectively.
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a demand correspondence d on P such that d(p) is �nite for each p 2 P: In this con-
text, Afriat (1967) characterizes rational decision making by means of his famous cycli-

cal consistency axiom, which may be stated as follows: For every positive integer k,

p1; :::;pk 2 P and x1 2 d(p1); :::;xk 2 d(pk),

p2x1 � p2x2; :::;pkxk�1 � pkxk and p1xk � p1x1

imply

p2x1 = p2x2; :::;pkxk�1 = pkxk and p1xk = p1x1.

This axiom is also commonly known in its equivalent formulation, due to Varian (1982),

as the generalized axiom of revealed preference (GARP).

Let ((X;�);A) be a choice environment. We can easily extend the cyclical consis-
tency axiom to the context of a choice correspondence c on ((X;�);A). We say that c
satis�es generalized cyclical consistency if c(A) � MAX(A;�) for each A 2 A; and
for every k 2 N; A1; :::; Ak 2 A, and x1 2 c(A1); :::; xk 2 c(Ak);

x1 2 A#2; :::; xk�1 2 A
#
k and xk 2 A

#
1

imply

x1 2 MAX(A#2;�); :::; xk�1 2 MAX(A#k;�) and xk 2 MAX(A#1;�):15

The �rst requirement of this property, that is, c(A) � MAX(A;�) for each A 2 A, is
implicit in Afriat�s modeling where every choice problem is of the form B(p; I) where

p is a price vector and I = py with y being the consumption bundle that corresponds

to the choice of the agent at prices p. On the other hand, the second requirement is a

straightforward re�ection of Afriat�s cyclical consistency axiom.

Recall that Afriat�s analysis makes substantial use of the linear structure of Rn; and
this makes it inapplicable in our general context. Consequently, it is not obvious if the

generalized cyclical consistency property can yield a general rationalizability theorem

along the lines of Afriat�s Theorem. It is also not clear how, if at all, this property

relates to the monotone congruence axiom. These issues will be clari�ed next.

4.5 Characterizations of Rationalizability. The structures of the general cyclical

consistency property and the monotone congruence axiom are di¤erent at a basic level.

15 All decreasing closures are taken here with respect to the partial order �. That is, A#i := fx 2 X :

y � x for some y 2 Aig for each i 2 [k]:
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In particular, the �rst one applies to a single choice correspondence on A; while the
second to a collection C of choice correspondences on A. (The properties do not be-
come identical when the latter collection is singleton.) However, there is in fact a close

connection between these properties: In any RP framework, a choice correspondence

satis�es the general cyclical consistency i¤ the increasing closure of c with respect to w,
that is, c"; satis�es the monotone congruence axiom. As the former property yields a

rational representation in the sense of Afriat and the latter in the sense of Richter, this

fact yields, in turn, a connection that ties these two notions of rationalizability together.

The following is, then, the main theorem of this paper. (The proof is in the Appendix.)

The Rationalizability Theorem I. Let ((X;�);A) be a choice environment and c a
choice correspondence on A: Then, the following are equivalent:
a. c" satis�es the monotone congruence axiom;

b. c" is monotonically rationalizable;

c. c satis�es generalized cyclical consistency;

d. There is a complete preorder % on X that extends both tran(R (c)[ �) and �;
and that satis�es

c(A) � max(A;%) for every A 2 A; (4)

e. There is a complete preorder % on X that extends � and that satis�es (4).

As we will make it precise in the following two sections, this theorem generalizes

the Richter- and Afriat-type approaches to revealed preference theory simultaneously.

As such, it uni�es these two approaches, and demonstrates that, unlike their initial

appearance, and how they are treated in the literature, each of these approaches are in

fact special cases of a more general viewpoint.

4.6 The Monotone Version of Richter�s Theorem. As a corollary of the Rational-

izability Theorem I, we obtain a fairly substantial generalization of Richter�s Theorem.

Proposition 1. Let ((X;�);A;C) be an RP framework. Then, C is monotonically

rationalizable if, and only if, it satis�es the monotone congruence axiom.

Proof. We omit the straightforward proof of the �only if� part of this assertion.

To prove its �if� part, take any element c of C that satis�es (2) and (3). Then, c"

satis�es the monotone congruence axiom, so, by the Rationalizability Theorem I, there

is a complete preorder % on X that extends both %0 := tran(R (c)[ �) and �; and
that satis�es (4). Fix an arbitrary A 2 A; and take any y in max(A;%): Then, for an
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arbitrarily picked x 2 c(A); we have x %0 y: As y % x and % extends %0; however, we
cannot have x �0 y: It follows that we also have y %0 x; and using (2) yields y 2 c(A):
Conclusion: c(A) = max(A;%):

In the context of the ordered Richter-type RP framework ((X;�);A; fcg) that we
introduced in Example 2, Proposition 1 says that fcg obeys the monotone congruence
axiom i¤ it is monotonically rationalizable. In particular, we recover Richter�s Theorem

as a special case by setting � = 4X . Note also that if fcg satis�es the monotone
congruence axiom then c must obey generalized cyclical consistency (but the converse is

not true in general). Indeed, if fcg satis�es the monotone congruence axiom, then it is
monotonically rationalizable. This, in turn, implies that (4) holds, and Rationalizability

Theorem I guarantees that c obeys generalized cyclical consistency.

Example 2.a. [Continued] Consider the RP-framework ((X;�);A; fcg) we intro-
duced in Example 2.a, which corresponds to the classical consumption choice model. In

this framework, c is said to satisfy the budget identity if x 2 c(B(p; I)) implies px = I
for every B(p; I) 2 A. Now, note that x R(c)y means here that there is a budget set
B(p; I) in A such that x 2 c(B(p; I)) and py � I. Consequently, if x 2 c(B(p; I)) for
some B(p; I) 2 A, then xR(c)y for all y 2 Rn+ such that x � y. Given this observation,
it is easy to check that a choice correspondence c obeys the monotone congruence axiom

i¤ it obeys the congruence axiom and the budget identity. In view of Proposition 1,

therefore, we reach the following conclusion in the context of Example 2.a: A demand

correspondence c on A is monotonically rationalizable i¤ it satis�es the congruence ax-

iom and the budget identity. By contrast, Richter�s Theorem says that c is rationalizable

i¤ it satis�es the congruence axiom.

4.7 On the Structure of Rationalizability. With the exception of some trivial situ-

ations, there are a multitude of complete preference relations that (weakly) rationalize a

given choice correspondence as in (4). Part (d) of the Rationalizability Theorem I points

to a particular type of rationalization which, as we shall now demonstrate, is linked to

the revealed preference relation induced by the choice correspondence in the tightest

possible way.

Let ((X;�);A) be a choice environment and c a choice correspondence on A: We
say that a complete preorder % on X is �-monotonic if x � y implies x % y for

every x; y 2 X: (Notice that this property is weaker than % being an extension of

�.) In turn, we say that % is a rationalization for c if it is �-monotonic and (4)
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holds. Clearly, a rationalization for c may be too coarse to be useful. For instance, if

% declares every alternative in X as indi¤erent (that is, % equals X � X), then it is,
trivially, a rationalization for c: Indeed, Afriat type theorems look for particular types

of rationalizations. In particular, we wish to choose a rationalization for c in a way that

is tightly linked to the dominance relation of the environment, as well as the observed

choices of the agent. Then, it seems desirable that when x > y; or when x is revealed

to be strictly preferred to y by c; the rationalization for c should declare x strictly

better than y: Part (d) of the Rationalizability Theorem I says that this can be done,

provided that c satis�es generalized cyclical consistency. Our next result, whose proof

is relegated to the Appendix, demonstrates the precise way in which one can view the

preference relation found in that part of the theorem as �minimal�among all possible

rationalizations for c:

Proposition 2. Let ((X;�);A) be a choice environment and c a choice correspon-
dence on A: Let % be a complete preorder satisfying the properties in part (d) of the

Rationalizability Theorem I. Then,

max(A;%) = A \ c(A)";tran(R(c)[�) � max(A;D) (5)

for every A 2 A and every rationalization D for c:

Given any feasible set A in the choice environment, the second part of (5) says that

any element in c(A), or any element in A that is revealed preferred to at least one chosen

alternative in A, has to be declared optimal with respect to every rationalization of c:

Furthermore, the �rst part of (5) says that it is precisely the set of all such elements

that the rationalization identi�ed in part (d) of the Rationalizability Theorem I declares

optimal. (In particular, an optimal point with respect to this rationalization must be

optimal for any rationalization of c.) It is in this sense that the rationalization is �tight�

among all possible rationalizations for c. The elements that are declared optimal by this

preference are the only ones that an observer can robustly conclude to be optimal by the

�true�preference relation of the decision maker (which can, in general, only be partially

identi�ed). We show in the next section that the classical construction of the preference

relations in Afriat�s Theorem are not tight in this sense.

4.8 A Non-Finite Version of Afriat�s Theorem. Let ((X;�);A) be a choice
environment, and c a choice correspondence on A: Let us consider the RP framework
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((X;�);A;C); where
C := fC 2 C(X;A) : C w cg: (6)

This framework generalizes the Afriat-type RP frameworks as we have introduced them

in Example 3 by allowing A to be in�nite and also by allowing c(A) to be an in�nite set
for any A 2 A. The equivalence of the statements (c) and (e) of the Rationalizability
Theorem I says that c satis�es generalized cyclical consistency i¤ there is a complete

preorder % on X that extends � and that satis�es

c(A) � max(A;%) for every A 2 A:

To demonstrate the power of this observation, let us specialize it to the context

of Afriat (1967), but note that precisely the same argument can be made in, say, the

context of Forges and Minelli (2009).

Example 3.a. [Continued] Consider the RP-framework ((X;�);A;C) we intro-
duced in Example 3.a, with P and d de�ned as in that example, but allowing now

both P and any d(p) to be in�nite sets. In this case, A = fB(p;pd(p)) : p 2 Pg,
c(B(p;pd(p))) = d(p), and C is given by (6). It is straightforward to check that

the demand correspondence d satis�es cyclical consistency (in Afriat�s sense, as de-

�ned in Section 4.4) i¤ c obeys generalized cyclical consistency. In turn, by the Ra-

tionalizability Theorem I, c has this property i¤ there is a strictly monotonic prefer-

ence relation % on Rn+; that is, a complete preorder on Rn+ that extends �, such that
d(p) � max(B(p;pd(p));%) for each p 2 P: This is very much the choice-theoretic gist
of Afriat�s Theorem.

It is important to note, however, that the nature of rationalization obtained here is

markedly di¤erent from that obtained in Afriat�s analysis and from the recent extension

of that analysis to the case of in�nite choice data provided by Rany (2014). Indeed, those

procedures guarantee rationalization by a quasi-concave utility function (and hence a

convex preference) in Rn+, so the set of optimal bundles in a given budget set can be
strictly larger than that according to the rationalization found in the Rationalization

Theorem I. (Recall (5).) To wit, suppose we have choice data about an individual at the

same prices p at two di¤erent times, say, x1 and x2, with px1 = px2: Suppose also that

x1 6= x2, so, what we observe is precisely two distinct elements in d(p). Rationalization
by a convex preference would then entail that every bundle on the line segment between

x1 and x2 is also optimal for the individual at prices p; even though there is no choice
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data to support this. Such a rationalization may seem unduly coarse, especially in

situations where there is no strong reason to suppose that convexity holds. By contrast,

the rationalization found in the Rationalization Theorem I would declare only x1 and

x2 as optimal at prices p:

5 RATIONALIZABILITY OF CHOICE DATA (with continuous utility)

The classical statement of Afriat�s Theorem seems to deliver more information about

the structure of rationalization. Indeed, in that theorem, one not only �nds a monotonic

preference relation that rationalizes the choice data, but also the fact that this relation

can be chosen to have a continuous utility representation. This fact owes, obviously, to

the particular choice domain that is adopted by Afriat which possesses a well-behaved

topological structure. However, even if we impose such a structure onX in the context of

Richter�s Theorem, we would not be able to guarantee the continuity of the rationalizing

preference relation. The di¢ culty, however, disappears if, as in Afriat�s Theorem, we

restrict our attention to choice environment with only �nitely many choice problems.

This is actually quite pleasant because the ��niteness� hypothesis is unexceptionable

from an empirical point of view. The objective of this section is to prove that, given this

hypothesis, the additional structure that Afriat�s Theorem delivers would also obtain

in the context of any well-behaved RP framework. It turns out that the very special

structure of Afriat�s Theorem is not at all needed for this fact.

5.1 Rationalizability by a (Continuous) Utility Function. Where ((X;�);A;C)
is an RP framework, we say that the choice data C is rationalizable by a utility

function if there is at least one c in C and a (utility) function u : X ! R such that

c(A) = argmax
x2A

u(x) for each A 2 A:

It is natural to ask for u to be strictly increasing with respect to � and, when X is a

topological space, we would also like u to be continuous.

5.2 Characterizations of Continuous Rationalizability. We now show that, in

�nite environments, that is, when the set A of all choice problems to be observed is

�nite, rather basic assumptions allows restating the Rationalizability Theorem I in terms

of continuous utility functions.

The Rationalizability Theorem II. Let ((X;�);A) be a choice environment such
that X is a locally compact and separable metric space, � a continuous partial order on
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X, and A a �nite collection of nonempty compact subsets of X: Let c be a closed-valued
choice correspondence on A: Then, the following are equivalent:
a. c" satis�es the monotone congruence axiom;

b. c" is rationalizable by a continuous and strictly �-increasing function u : X ! R;
c. c is satis�es generalized cyclical consistency;

d. There is a continuous function u : X ! R which is strictly increasing with respect
to both tran(R (c)[ �) and �, and which satis�es

c(A) � argmax
x2A

u(x) for each A 2 A; (7)

e. There is a continuous and strictly �-increasing function u : X ! R that satis�es
(7).

An examination of the proof of Rationalizability Theorem II in the Appendix shows

that it consists of two parts. The �rst part shows that, under the assumptions of the

theorem and, in particular, the �niteness of A, the relation tran(R (c)[ �) is a closed
preorder on X. The second part shows that the closedness of tran(R (c)[ �) is su¢ cient
to guarantee the equivalence of the statements (a) to (e). This is worth bearing in

mind because there are interesting cases where tran(R (c)[ �) is closed, and thus the
conclusion of this theorem holds, even when A in not �nite. Section 5.7 focuses on one

such case.

5.3 A Continuous Version of Richter�s Theorem. It is not a priori obvious how

one may obtain a utility representation in the context of Richter�s theorem, for the arbi-

trariness of A makes it di¢ cult to ensure the continuity of the rationalizing preference

relations. However, at least when A is �nite, this sort of a di¢ culty does not arise. Just
as Proposition 1 follows from Rationalizability Theorem I, so by an analogous argument

we know that the following characterization follows from Rationalizability Theorem II:

Let ((X;�);A) be a choice environment obeying the conditions in Rationalizability The-
orem II and suppose that C is a collection of closed-valued choice correspondences on
A. Then C is monotonically rationalizable by a continuous and strictly �-increasing
utility function i¤ it satis�es the monotone congruence axiom. When C consists of just
a single correspondence, we obtain the following result, which provides a continuous,

and continuous and monotonic, version of Richter�s Theorem.

Proposition 3. Let ((X;�);A; fcg) be an RP framework such that X is a locally

compact and separable metric space, � a continuous partial order on X, A a nonempty

22



�nite collection of nonempty compact subsets of X, and c a closed-valued choice cor-

respondence. Then, c satis�es the (monotone) congruence axiom if, and only if, it is

rationalizable by a continuous (and strictly �-increasing) utility function on X.

5.4 Extrapolation to choice behavior outside A. The key feature of Rational-
izability Theorem II is that it delivers a continuous utility function. This property is

important when we are interested in understanding the agent�s behavior, not in A as

such, but in a larger (and possibly in�nite) collection B of nonempty compact subsets of
X. In that case, A should be interpreted as a random sample of constraints sets drawn

from B and the observer is interested in testing the hypothesis that the agent chooses
by maximizing a utility function for every set in B. The existence of a continuous utility
function that rationalizes the choice data in A then furnishes us with a utility func-

tion that could potentially be the one used by the agent when making her choices more

generally.16

In fact, by applying our continuous and monotone version of Richter�s Theorem, we

could characterize an agent�s choice behavior in out-of-sample constraint sets. To see

this, let c be a choice correspondence on A, and C a choice correspondence on B. We
say that C is a rational prediction on B induced by c if there is a continuous and
strictly �-increasing utility function u : X ! R such that

c(A) � argmax
x2A

u(x) for each A 2 A

and

C(B) = argmax
x2B

u(x) for each B 2 B.

The �rst question concerns the existence of rational predictions.

Proposition 4. (Existence of Rational Predictions) Let ((X;�);A; fcg) be an RP
framework as in Proposition 3, but assume that A is �nite. Let B be any collection of
nonempty compact subsets of X with A � B. Then, there exists a rational prediction
on B induced by c if, and only if, c satis�es generalized cyclical consistency.

Proof. The �only if�part of this assertion is straightforward. On the other hand, its

16 If a rationalizing utility function is not continuous, it would be di¢ cult to view that function as
one�s �true�utility function, as there is then no guarantee that an optimum exists for every compact
subset of X. As a matter of fact, if the agent has a utility function but it is not continuous, then it
is not even clear why, in the �rst place, we should hypothesize that the constraint sets in the random
sample A should each contain an optimal choice.

23



�if�part is an immediate consequence of the Rationalizability Theorem II and the fact

that a continuous real map on X attains its maximum on every element of B.

As another application, we show how one may identify whether or not a choice

correspondence on B is a rational prediction induced by a given choice correspondence
on A.

Proposition 5. (Characterization of Rational Predictions) Let ((X;�);A; fcg) be an
RP framework as in Proposition 3. Let B be a �nite collection of nonempty compact
subsets of X with A � B. Then, a choice correspondence C on B is a rational prediction
on B induced by c if, and only if, c v CjA and C satis�es the monotone congruence

axiom.

Proof. The �only if� part of the assertion is again straightforward. On the other

hand, its �if�part follows by applying Proposition 3 to C:

6 APPLICATIONS TO THE THEORY OF CONSUMER DEMAND

The remainder of this paper focuses on the theory of consumer demand. Our objective is

to show how our general rationalizability theorems can be used in this classical framework

to obtain novel results.

6.1 Rationalizability. Let us return to the context described in Example 3.a, where

an analyst observes the demand correspondence d : P � Rn+ of a consumer, with P
being a nonempty �nite set of prices in Rn++. We assume here that d takes compact
(but not necessarily �nite) values. (Recall also that we have pz = py for every z and

y in d(p) and p 2 P:) Formally, the choice environment at hand is ((Rn+;�);A), where
A = fB(p;px(p)) : p 2 Pg, and the (observed) choice correspondence c on A is given

by c(B(p;px(p))) = d(p). As we have already noted in Section 4.8, c obeys generalized

cyclical consistency i¤ d satis�es cyclical consistency. It is also straightforward to check

that c satis�es the congruence axiom i¤ d has the following property: For every positive

integer k, p1; :::;pk 2 P and x1 2 d(p1); :::;xk 2 d(pk),

p2x1 � p2x2; :::;pkxk�1 � pkxk and p1xk � p1x1 (8)

imply

x1 2 d(p2); :::;xk�1 2 d(pk) and xk 2 d(p1):
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With a minor abuse of terminology, let us agree to say that x satis�es the congruence

axiom if it has this property. It is plain that if d satis�es the congruence axiom, it must

satisfy cyclical consistency.

Proposition 6. Suppose that P and d are as in Example 3.a, but allow now that d be

compact-valued. Then,

(i) d obeys the congruence axiom if, and only if, there is a continuous and strictly

increasing utility function u : Rn+ ! R such that

d(p) = argmax
x2B(p;pd(p))

u(x) for every p 2 P ; (9)

(ii) d obeys cyclical consistency if, and only if, there is a continuous and strictly

increasing utility function u : Rn+ ! R such that

d(p) � argmax
x2B(p;pd(p))

u(x) for every p 2 P: (10)

Proof. We have seen in Section 4.6 that c satis�es the monotone congruence axiom

i¤ it obeys the budget identity and the congruence axiom. Here c satis�es the budget

identity by construction, while it obeys the congruence axiom i¤ d obeys the congruence

axiom. Consequently, part (i) of Proposition 6 follows readily from Proposition 3. Its

part (ii), on the other hand, follows from the equivalence of the statements (c) and

(d) in the Rationalizability Theorem II and the fact that c satis�es generalized cyclical

consistency i¤ d satis�es cyclical consistency.

We emphasize that part (ii) of Proposition 6 is none other than a version of Afriat�s

Theorem, but it is stronger than the standard version of that result since d need not be

�nite-valued here. Moreover, for the reasons outlined in Section 4.8, the utility function

we identify here is not the same as the concave utility function constructed from the

classical Afriat inequalities.

Part (i) of this Proposition 6 is simply the continuous and monotone version of

Richter�s Theorem specialized to the context of consumer demand. The literature on

the rationalizability of consumer demand is quite large but, to the best of our knowledge,

there is no result characterizing rationalization (of the form (9)) with a continuous utility

function.17 This lacuna may be due to the reliance on convex analysis techniques, which

17 Chiappori and Rochet (1987) characterize �nite data sets that are rationalizable (as in (9)) by a
strictly quasi-concave, strictly increasing, and smooth utility function. The choice data in their case
excludes distinct bundles chosen at the same budget and the same bundle chosen at distinct budgets.
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typically lead to concave utility functions, whereas a rationalization of the form (9)

will, for some data sets, require rationalization with a non-concave (but still continuous)

utility function.

It is worth noting that the gap between the two conditions on the demand corre-

spondence d in (i) and (ii) is negligible from a practical point of view. While empirical

work on revealed preference analysis has invariably focused on testing cyclical consis-

tency, data sets that obey cyclical consistency will almost always do so because there

are simply no observations obeying (8). In these cases, both cyclical consistency and the

congruence axiom are satis�ed, and therefore, one can invoke part (ii) of Proposition 6

to obtain a utility function obeying (9) rather than just (10).

6.2 Recoverability. Suppose that the demand correspondence d obeys cyclical con-

sistency. Let U(d) stand for the collection of all continuous and strictly increasing
u : Rn+ ! R such that (10) holds. By part (ii) of Proposition 6, U(d) 6= ;: However,
di¤erent members of U(d) would entail di¤erent preference rankings (which are required
to be in agreement only in the case of the observed choices of the agent). A natural

question is to what extent we may identify the actual preference relation of the agent

without subscribing to any one utility function that rationalizes d as in (10). Formally,

we would like to characterize the subsets S(d) and S 0(d) of Rn+ � Rn+ such that

(x;y) 2 S(d) i¤ u(x) � u(y) for each u 2 U(d)

and

(x;y) 2 S 0(d) i¤ u(x) > u(y) for each u 2 U(d):

This formulation of the problem is the same as what Varian (1982) calls the Recov-

erability Problem, except that Varian considers the case where U(d) consists of strictly
increasing, continuous, and concave utility functions with (10). Given the weaker as-

sumptions on the utility functions we impose here, the relations S(d) and S 0(d) are

bound to be smaller than those studied by Varian (1982). Moreover, in certain con-

texts, it is certainly sensible not to impose the concavity, or even the quasiconcavity,

requirement on the utility functions (even when it is possible to rationalize d by such

a utility function). To wit, consider the case where the consumer chooses a contingent

consumption subject to a linear budget set, where a bundle x 2 Rn+ speci�es the levels
of the representative good in di¤erent states of the world (of which there are n), and
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p 2 Rn++ are the state prices.18 In such a context, we may well wish to draw inferences
of the agent�s preferences (based on her observed choices) without assuming that she

has a quasiconcave utility function, since that assumption would exclude risk-seeking

and/or elation-seeking preferences. (Halevy et al. (2014) make a similar point.)19

For bundles x and y inRn+, we say that x is revealed preferred to y if x tran(R(c)[
�)y, where, as usual, c(B(p;pd(p))) = d(p) for each p 2 P: This is equivalent to saying
that there are �nitely many p1; :::;pk 2 P and x1 2 d(p1); :::;xk 2 d(pk) such that

x � x1; p1x1 � p1x2; :::;pk�1xk�1 � pk�1xk and pkxk � pky: (11)

We say x is revealed strictly preferred to y if any of the inequalities in (11) is strict.

It is clear that x is revealed preferred (revealed strictly preferred) to y then (x;y) is

in S(d) (respectively S 0(d)). The next result characterizes S(d) and S 0(d) by showing

that the converse is also true. When P is �nite and d is �nite-valued, it is clear that

working out the pairs of bundles that are related by revealed preference (or revealed

strict preference) is computationally straightforward. It is then also straightforward to

compute S(d) and S 0(d).

Proposition 7. Suppose that P and d are as in Example 3.a, but allow now that d be

compact-valued. In addition, suppose that d obeys cyclical consistency. Then, for any

x and y in Rn+,
(i) (x;y) 2 S(d) if, and only if, x is revealed preferred to y; and
(ii) (x;y) 2 S 0(d) if, and only if, x is revealed strictly preferred to y.

Proof. (i) Suppose x is not revealed preferred to y. In that case, putA� := A[fx;yg,
where A = fB(p;pd(p)) : p 2 Pg, and de�ne the correspondence c� : A� � Rn+ by
c�(B(p;pd(p))) := d(p) for each p 2 P , and c�(fx;yg) := y. Since x is not revealed

preferred to y, that is, (x;y) is not in tran(R(c) [ �), and c obeys generalized cyclical
consistency, c� also obeys generalized cyclical consistency. By construction, (y;x) 2
R(c�) but (x;y) does not belong to tran(R(c�) [ �), and thus, by the equivalence of (c)
18Data from laboratory experiments of this type have been collected and tested for cyclical consistency,

for instance, by Choi et al. (2007), among others.
19 For example, suppose that n = 2 and the consumer�s true utility function is u(x1; x2) = �1v(x1)+

�2v(x2), where �i > 0 for i = 1, 2, and v is strictly increasing but not concave (so the agent is not
everywhere risk averse). Then u will not be quasiconcave and predicting the consumer�s preference
from d while assuming quasiconcavity can lead to false conclusions. On the other hand, the predictions
captured by S(d) and S0(d) will be correct (even though they will be coarser than what would have
been if the observer assumed, correctly in this case, that u is additive across states).
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and (d) in Rationalizability Theorem II, there exists u� with (7), and hence u� 2 U(d)
such that u�(y) > u�(x). Thus, (x;y) does not belong to S(d):

(ii) We de�ne A� and c� as in the proof of (i). If x is not revealed preferred to y,
then we know from the proof of (i) that (x;y) is not in S(d) and hence not in S 0(d).

Now suppose x is revealed preferred to y, but not strictly so. In that case, one could

check that c� still satis�es cyclical consistency and hence Rationalizability Theorem II

tells us that there is a strictly increasing and continuous function u�� with (7). Since x

tran(R(c�) [ �)y and, by construction, yR(c�)x, we obtain u��(x) = u��(y). Finally,
note that u�� 2 U(d); and thus (x;y) does not belong to S 0(d):

6.3 Rationalizability of Engel curves. We pointed out in Section 5.2 that continuous

rationalizability relies on the closedness of tran(R(c) [ �) rather than the �niteness of
the set of observations. This can be an important distinction, as we shall illustrate with

the following application.

Consider a situation in which we happen to know the entirety of �nitely many Engle

curves of an individual. When is it the case that these curves correspond to those of a

continuous and strictly increasing utility maximizing individual? This rationalizability

problem cannot be attacked by Afriat�s approach, for even a single Engel curve presumes

uncountably many choice situations.20 We can, however, provide an answer fairly easily

by using the (proof of) Rationalizability Theorem II.

Put precisely, the choice environment we consider is ((Rn+;�);A), where

A := fB(p; I) : p 2 P and I > 0g;

with P being a nonempty �nite set of prices. In this context, by a demand correspon-

dence on A we mean a correspondence d : P � R++ � Rn+ such that ; 6= d(p; I) �
B(p; I) for any p 2 P and I > 0: (Therefore, the map I 7! d(B(p; I)) is the Engel

curve of the agent in consideration.) Abusing the terminology again, we say that d

satis�es monotone congruence (generalized cyclical consistency) if the choice correspon-

dence c : B(p; I) 7! d(p; I) on A satis�es monotone congruence (generalized cyclical

consistency).

This setup has proved useful in empirical demand analysis that use the revealed

preference approach (cf. Blundell et al. (2003)). However, to the best of our knowledge,

20While the rationalizability theorem of Reny (2014) applies here, it does not deliver a strictly in-

creasing utility function.
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rationalizability of d has not been characterized along the lines of either Afriat�s or

Richter�s theorem. The �nal result of this paper provides two such characterizations.

Proposition 8. Let ((Rn+;�);A) be the choice environment de�ned above and d an
upper hemicontinuous demand correspondence on A: Then,
(i) d obeys the monotone congruence axiom if, and only if, there is a continuous and

strictly increasing utility function u : Rn+ ! R such that

d(p; I) = argmax
y2B(p;I)

u(y) for every p 2 P and I > 0;

(ii) d obeys the generalized cyclical consistency if, and only if, there is a continuous

and strictly increasing utility function u : Rn+ ! R such that

d(p; I) � argmax
y2B(p;I)

u(y) for every p 2 P and I > 0:

6 CONCLUSION

We have introduced in this paper a framework for revealed preference theory in which

the grand alternative space is modeled as a partially ordered set and the traditional role

of a �choice correspondence�is replaced with what we call �choice data�which is sim-

ply a set of choice correspondences. This framework allows us to formulate generalized

versions of the fundamental rationality postulates of Richter (1966) and Afriat (1967).

While this is not immediately transparent from the original formulations of these axioms,

it is shown here that they are in fact closely connected, thereby pointing to a way of

seeing the main rationalizability results of these two seminal papers, as well as numerous

other �rationalizability by a preference relation�type theorems obtained in the earlier

literature, as special cases of a single rationalizability result. Furthermore, introducing

some basic topological structure and presuming that we can observe an agent making

choice decisions only �nitely many times allow us to formulate this result in the �ra-

tionalizability by a continuous utility function�form. This extends the work of Richter

(1966) to rationalizations with continuous utility functions and that of Afriat (1967) to

arbitrary choice domains.

The rationalizability results we have reported in this paper demonstrate the unifying

nature of the choice framework we have introduced. This framework also has the im-

portant advantage of allowing us to model choice data availability constraints explicitly,
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regardless of the nature of choice problems. We hope that this framework will prove

useful for modeling any type of choice situation, be it rational or boundedly rational.21

APPENDIX

Proof of the Rationalizability Theorem I.(a))(b) Assume that (a) is valid. Then, there is a choice
correspondence d on A such that (i) d w c and (ii) d satis�es the two requirements of the monotone

congruence axiom. Put B := A [ ffx; yg 2 2X : x � yg; and de�ne e : B ! 2X as:

e(B) :=

(
d(B); if B 2 A;
max(B;�); if B 2 BnA.

Obviously, e is a choice correspondence on B: Moreover, e satis�es the congruence axiom. (To see this,
take any x; y 2 X such that x tran(R(e)) y and y 2 e(B) for some B 2 B with x 2 B: But it is

readily checked that R(e) = R(d) [ �. Consequently, if B 2 A; the monotone congruence axiom yields

x 2 d(B) = e(B); and if B 2 BnA; then B = fx; yg and y � x (by de�nition of e), so again by the

monotone congruence axiom, we �nd x = y 2 e(B):)
We now use Szpilrajn�s Theorem to �nd a complete preorder % on X that extends tran(R(e)):

Given an arbitrarily �xed B in A, notice that if x 2 e(B) and y 2 B; then x R(e) y; and hence x % y,
which shows that e(B) � max(B;%). Conversely, suppose there is an x in max(B;%)ne(B): Then, pick
any y 2 e(B) so that y R(e) x; and hence, y tran(R(e)) x: The reverse of this relation cannot hold,
because, otherwise, we would get x 2 e(B) by the congruence axiom (on e). Thus, y tran(R(e)) x holds

strictly, that is, y Ptran(R(e)) x: As % extends tran(R(e)); therefore, we �nd y � x; contradicting x being
a %-maximum in B: Conclusion:

e(B) = max(B;%) for every B 2 B:

Obviously, this implies that d(A) = max(A;%) for each A 2 A: It remains to show that % extends

�. To this end, take any x; y 2 X with x > y: If fx; yg 2 A; then y 2 dfx; yg cannot hold due
to the monotone congruence axiom, and hence fxg = dfx; yg; while if fx; yg =2 A, we trivially have
fxg = dfx; yg: Consequently, fxg = max(fx; yg;%); that is, x � y; as we sought.

(b))(c) Assume that (b) is valid. Then, there is a complete preorder % on X and a d in c" such

that % extends � and d(A) = max(A;%) for each A 2 A: It follows that

c(A) � max(A;%) � MAX(A;�) for every A 2 A: (12)

Now take any k 2 N; A1; :::; Ak 2 A, and (x1; :::; xk) 2 c(A1)�����c(Ak) such that x1 2 A#2; :::; xk�1 2 A
#
k

and xk 2 A#1: Then, there exists a (y1; :::; yk) 2 A1��� ��Ak such that x2 % y2 � x1; :::; xk % yk � xk�1
and x1 % y1 � xk: As % extends �; therefore, x1 % x2 % � � � % x1; so, by transitivity of %, we �nd
xi�1 2 max(Ai;%) for each i 2 [k] and xk 2 max(A0;%): In view of (12), then, xi�1 2 MAX(A#i ;�) for
each i 2 [k] and xk 2 MAX(A#1;�); as sought.

21 For boundedly rational choice theories, however, there is the added di¢ culty of checking whether
or not one can extend a representation on a given (observable) collection of feasible sets to a larger
(potentially unobservable) collection of feasible sets. This important point, which is readily formalized
in terms of RP frameworks, has recently been made forcefully by de Clippel and Rozen (2013).

30



(c))(d) Assume that (c) is valid. De�ne

%0:= tran (R (c)[ �) ;

where R is the direct revealed preference relation induced by c (Section 4.1). Clearly, %0 is a preorder
on X: We use Szpilrajn�s Theorem to �nd a complete preorder % on X that extends %0. As R (c) �
%; we have x % y if there is an A 2 A with (x; y) 2 c(A) � A: It follows that c(A) � max(A;%) for
every A 2 A: It remains to show that % extends �; and for this, it is enough to show that > � �0. To
this end, take any two elements x and y of X such that x > y: By de�nition of %0, we have x %0 y: To
derive a contradiction, suppose y %0 x holds as well. Then there are x0, x1; :::; xk in X such that

y = x0 (R(c) [ �) � � � (R(c) [ �) xk = x: (13)

Put I := fi 2 [k] : xi�1 R(c) xig: If I = ;; then transitivity of � and (13) yield y � x, a contradiction.
If I is a singleton, say, I = fig, then again by transitivity of �, we get xi � x > y � xi�1; while xi�1
R(c) xi: But then there is an A 2 A such that xi�1 2 c(A) and xi 2 A; while xA =2 MAX(A;�); and
this contradicts (c). Finally, suppose l := jIj � 2; and enumerate I as fi1; :::; ilg; where il > � � � > i1:
By de�nition of I; for each j 2 [l] there is an Aj 2 A such that xij�1 2 c(Aj) and xij 2 Aj : On the
other hand, again by de�nition of I; we have xij�1 � xij for each j = 2; :::; l; while

xil � xk = x > y � xi1 : (14)

Consequently, xi2 2 A
#
1; ..., xil 2 A

#
l�1 and xi1 2 A

#
l : It then follows from (c) that xi1 2 MAX(A

#
l ;�),

but as xil 2 Al; this contradicts (14).
(d))(e) This is obvious.
(e))(a) Assume that (e) is valid. Where % is as given in the statement of (e), de�ne d : A ! 2X

as d(A) := max(A;%): As max(A;%) contains c(A); it is nonempty for any A in A; so d is a choice
correspondence on A such that c w d, that is, d 2 c": Take any x and y in X with x tran(R(d) [ �)
y: Then, there is a positive integer k; elements A0; :::; Ak of A; and (x0; :::; xk) 2 A0 � � � � � Ak such
that x = x0; (xi�1; xi) 2 d(Ai)�Ai for each i 2 [k]; and y = xk: It follows from the de�nition of d that

x = x0 % � � � % xk = y; so, by transitivity of %; we �nd x % y: As % extends �; therefore, we cannot
have y > x: Furthermore, if y 2 d(A) for some A 2 A with x 2 A; then x % y % z for all z 2 A; and
hence, x 2 d(A): Thus: C satis�es the monotone congruence axiom.

Proof of Proposition 2. Fix an arbitrary rationalization D for c and put R := R(c) [ �. Let us �rst
prove that

tran(R) �D (15)

(but note that D need not be an extension of tran(R)). To this end, take any distinct x; y 2 X with

x tran(R) y: Then, there is a positive integer k and x0; :::; xk 2 X such that x = x0 R x1 R � � � R
xk = y: If xi�1 R(c) xi for any i 2 [k]; then (xi�1; xi) 2 c(A)�A for some A 2 A; and hence xi�1 D xi
because c(A) � max(A;D): If, on the other hand, xi�1 � xi for any i 2 [k]; then xi�1 D xi because D
is �-monotonic. Therefore, x = x0 D x1 D � � � D xk = y; so, by transitivity of D, we �nd x D y; as we
sought.
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We now move to prove (5). Fix an arbitrary A in A, and take any x 2 A with x tran(R) y for

some y 2 c(A): Then, by (15), x D y while y 2 max(A;D) because c(A) � max(A;D): It follows that
x 2 max(A;D); establishing the second part of (5). Next, notice that % is obviously a rationalization

for c; so the second part of (5) entails the � part of the asserted equality in (5). To complete our proof,
then, take any x in max(A;%). Now pick any y in c(A) and notice that, by (4), we must have x � y: On
the other hand, as (y; x) 2 c(A)�A; we have y R(c) x; and hence, y tran(R) x: As % extends tran(R)
by hypothesis, and x � y; therefore, y tran(R) x cannot hold strictly, that is, we have x tran(R) y;

which means x 2 c(A)";tran(R); as we sought.

Proof of the Rationalizability Theorem II. It is plain that (b) and (e) are equivalent, and (d)

implies (e). From Rationalizability Theorem I we know that (a) implies (c) and that (e) implies (a).

We will complete the proof of the theorem by showing that (c) implies (d). Let us denote the direct

revealed preference induced by c as R; that is, we put R := R(c): We �rst show that %0:= tran(R [ �)
is a closed preorder on X: We couch the argument in a few easy steps.

[Step 1] If S and T are two compact binary relations on X; then S � T is compact as well. As X is

a metric space, we may work with sequential compactness instead of compactness. Let (xm) and (ym)

be two sequences in X with xm S � T ym for each m: Then, there is a sequence (zm) in X such that

xm S zm T ym for each m: As S is compact, there is a strictly increasing sequence (mk) of positive

integers such that (xmk
; zmk

)! (x; z) for some (x; z) 2 S: As zmk
T ymk

for each k; and T is compact,

there is a subsequence (mkl) of (mk) such that (zmkl
; ymkl

)! (z0; y) for some (z0; y) 2 T: As (zmkl
) is

a subsequence of (zmk
), we must have z0 = z; and it follows that x S z T y; that is, x S � T y:

[Step 2] Rk is a compact subset of X �X for each k = 1; 2; ::: To prove this, observe �rst that

R =
[
fc(A)�A : A 2 Ag:

As X is compact and c is closed-valued, c(A) is a compact subset of X for any A 2 A: Therefore, R is
the union of �nitely many compact sets in X �X (relative to the product topology), so it is compact.

Applying what we have found in Step 1 inductively, therefore, yields our claim.

[Step 3] tran(R) is a compact subset of X �X: The key observation here is:

tran(R) = R1 [ � � � [RjAj+1: (16)

To see this, take any integer k > jAj+1; and any x; y 2 X with x Rk y: Then, there exist x0; :::; xk+1 2 X
such that x = x0 R x1 R � � � R xk R xk+1 = y: This means that there exist A0; :::; Ak 2 A such that

(xi�1; xi) 2 c(Ai�1)�Ai�1 for each i 2 [k]: As k > jAj+1; there must be an i 2 [k] such that Ai = Aj
for some j 2 fi+1; :::; kg here. Let i be the smallest such index. Then, x = x0 R x1 R � � � R xi R xj+1
R � �� R xk+1 = y; that is, x Rk�(j�i) y: This proves that Rk � R1 [ � � � [RjAj+1 for every k > jAj+ 1;
and hence follows (16). But then, in view of what we have found in Step 2, we see that tran(R) is the

union of �nitely many compact subsets of X �X; and hence, it is itself compact in X �X:

Now, for any x and y in X; we have x tran(tran(R) [ �) y i¤ there exist x0; :::; xk 2 X such that

x = x0 tran(R) [ � � � � tran(R) [ � xk = y:
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As both tran(R) and � are transitive, it is without loss of generality to take k = 2l+1 for some positive
integer l here to write

x = x0 � x1 tran(R) x2 � � � � tran(R) x2k � x2k+1 = y: (17)

For any positive integer l; we next de�ne the binary relation Sl on X by x Sl y i¤ (17) holds. Conse-

quently:

tran(tran(R) [ �) = S1 [ S2 [ � � �: (18)

[Step 4] tran(R) [ � = S1 [ � � � [ SjAj+1. Indeed, we can show that Sl � Sl [ � � � [ SjAj+1 for
every l > jAj + 1; exactly as we have done this for R in Step 3. In view of (18), therefore, we have

tran(tran(R) [ �) = S1[���[SjAj+1. Our claim thus follows from the obvious observation that tran(R)
[ � = tran(tran(R) [ �):

[Step 5] Sl is a closed subset of X � X for each l = 1; 2; ::: Take any two sequences (xm) and

(ym) in X such that xm ! x and ym ! y for some (x; y) 2 X � X: Then, for each m; there exist
zm0 ; :::; z

m
2l+1 2 X such that

xm = zm0 � zm1 tran(R) zm2 � � � � tran(R) zm2l � zm2l+1 = y: (19)

As zmi tran(R) zmi+1 for each odd i 2 [2l + 1]; and tran(R) is compact in X �X (Step 3), there exists

a strictly increasing sequence (mk) of positive integers such that (z
mk
i ) and (zmk

i+1) converge for each

i 2 [2l+1]: Since both tran(R) and � are closed in X�X; taking the subsequential limits in (19) yields

x � lim zmk
1 tran(R) lim zmk

2 � � � � tran(R) lim zmk

2l � lim zmk

2l+1 = y:

Thus x Sl y; as we sought.

We are now ready to complete the proof that (c) implies (d). Combining what is established in

Steps 4 and 5, we see that %0:= tran(R [ �) is a continuous preorder on X:We may thus apply Levin�s
Theorem to �nd a continuous real map u on X such that u is strictly increasing with respect to %0.
From the proof of Rationalizability Theorem I, we know that %0 is an extension of �. Therefore, u is
also strictly increasing with respect to �. Lastly, since R � %0, for any A 2 A with x 2 c(A) we have
x %0 y; and hence, u(x) � u(y); for all y 2 A. Our proof is complete.

Proof of Proposition 8. We only need to show that tran(R(c)[�) is closed for the choice correspon-
dence c : B(p; I) 7! d(p; I). Note that, by generalized cyclical consistency, x 2 d(p; I) implies px = I
for any p 2 P and I > 0. Also, note that if y tran(R(c)[�) z, then there are (p1; I1); : : : ; (pk; Ik) 2 P�I
and x1 2 d(p1; I1); : : : ;xk 2 d(pk; Ik) such that

y � x1;p1x1 � p1x2; :::;pk�1xk�1 � pk�1xk and pkxk � pkz: (20)

Crucially, we may choose p1; : : : ;pk to be distinct. Indeed, generalized cyclical consistency requires that

if pr = ps for some r < s, then Ir � Is; thus B(ps; Is) � B(pr; Ir) and it follows that prxr � prxs+1,
i.e., we may �snip o¤�the part of the sequence in (20) between r + 1 and s.

Suppose there are sequences ym ! �y and zm ! �z such that ym tran(R(c) [�) zm for each m. We

claim that �y tran(R(c)[�) �z. Indeed, each pair of ym and zm is linked by a sequence of inequalities like

33



(20), where the price vectors in that sequence are distinct. This property, together with the �niteness

of P , guarantees that we can �nd subsequences ymt and zmt and distinct vectors p
1; : : : ;pk in P such

that

ymt
� x1mt

;p1x1mt
� p1x2mt

; :::;pk�1xk�1mt
� pk�1xkmt

and pkxkmt
� pkzmt

:

By the upper hemicontinuity of d, and after taking further subsequences if necessary, we obtain I lmt
!

�I l > 0 and xlmt
! �xl 2 d(pl; �I l). Thus,

�y � �x1;p1�x1 � p1�x2; :::;pk�1�xk�1 � pk�1�xk and pk�xk � pk�z;

which means that �y tran(R(c)[ �)�z, as we sought.
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