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Abstract
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dividuals’true (long-run) preferences. Under first-best taxation, quasi-hyperbolic
discounting exerts no effect on the level of social welfare attainable. Under second-
best taxation, quasi-hyperbolic discounting increases (resp. decreases) the level of
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1 Introduction

The aim of this paper is to examine the effects of incorporating quasi-hyperbolic dis-

counting by individuals into a dynamic model of optimal nonlinear income taxation

without commitment. There is by now an extensive empirical and theoretical literature

on quasi-hyperbolic discounting, which captures a preference many individuals have for

immediate gratification.1 This leads agents to make short-run decisions that they later

regret as not being consistent with their long-run preferences. Such behavior is often

described as an individual imposing a negative “internality”on their future self, which

potentially justifies corrective (or paternalistic) policy intervention.2 There is, in effect,

preference heterogeneity between individuals and the government, as the government’s

preferences are the same as the individuals’long-run preferences, but not their short-run

counterparts. In our model economy, an individual’s need for immediate gratification

leads them to make labor, consumption and savings decisions that are not in their long-

run interest. The policy instrument available to the government to offset the effects of

quasi-hyperbolic discounting is dynamic nonlinear income taxation, applicable to both

labor and savings.

There is currently a great deal of interest in dynamic nonlinear income taxation, such

as the “new dynamic public finance”literature that extends the static Mirrlees (1971)

model of optimal nonlinear income taxation to a dynamic setting.3 The second-best

nature of the Mirrlees model stems entirely from the assumption that an individual’s skill

type is private information, which is what prevents the government from implementing

first-best taxation based on skills as the Second Welfare Theorem would recommend.

In dynamic versions of the Mirrlees model, however, taxation in earlier periods may

result in skill-type information being revealed to the government, which would then

1See, e.g., the survey article by Frederick, et al. (2002).
2For example, O’Donoghue and Rabin (2006) examine optimal “sin taxes”, i.e., taxes on consumption

goods that individuals consume too much of, relative to their long-run preferences. See also O’Donoghue
and Rabin (1999, 2003), Krusell, et al. (2002, 2010), Diamond and Koszegi (2003), and Amador, et al.
(2006).

3A survey of the new dynamic public finance literature is provided by Golosov, et al. (2006), while
Kocherlakota (2010) provides a textbook treatment. Earlier papers that extend the Mirrlees model to
dynamic settings include Roberts (1984) and Brito, et al. (1991).
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enable first-best taxation in latter periods. To avoid this possibility and some associated

complications, the new dynamic public finance literature typically assumes that the

government can commit to its future tax policy. That is, the government continues to

implement second-best (incentive-compatible) taxation even after skill-type information

has been revealed. However, the commitment assumption overlooks an important feature

of the Mirrlees approach to optimal taxation– that no ad hoc constraints be placed on

the nature of the optimal tax function, and that the tax instruments available to the

government be constrained only by the information structure. Indeed, one of the motives

behind the development of the new dynamic public finance literature is to avoid the

need for ad hoc constraints on the tax system, as are typically imposed in the classic

representative-agent Ramsey model (see Golosov, et al. (2006)). Therefore, we assume

that the government cannot commit to its future tax policy. This means that both

individuals and the government in our model cannot commit to future plans, though

both would be better-off in the long run if they were able to do so.

The main complication associated with relaxing the commitment assumption is that

it may no longer be social-welfare maximizing for the government to design a (separating)

nonlinear income tax system in which individuals are willing to reveal their skill types.

Instead, it may be optimal to pool the individuals so that skill-type information is not

revealed.4 Tominimize the problems that the possible optimality of separating or pooling

taxation present, we adopt the simple two-type (high-skill and low-skill) version of the

Mirrlees model introduced by Stiglitz (1982),5 and analyze a three-period model, which

is the shortest time horizon that can capture the effects of quasi-hyperbolic discounting.

Individuals work and save in periods 1 and 2, and live-off their second-period savings in

period 3. The government imposes nonlinear taxation on labor and savings in periods

4The reason that either separating or pooling taxation may be optimal when the government cannot
commit is explained in detail in Section 4.

5It does not seem feasible to consider more than two types of individuals, because the number of
tax regimes that must be considered increases exponentially. For example, assuming merely three types
results in five regimes: complete separation, complete pooling, and three cases of pooling two types
against the remaining type. Moreover, even in the two-type model that we study, there is a third
possibility of partial pooling in which some, but not all, of the high-skill individuals are pooled with the
low-skill individuals. However, for the sake of analytical simplicity, we restrict attention to the “pure
strategy”policies of complete separating or pooling taxation.

3



1 and 2 such that a utilitarian social welfare function based on individuals’true (long-

run) preferences is maximized. Hence, the social welfare function captures a corrective

or paternalistic motive for dynamic taxation, as well as the usual redistributive motive

embedded in utilitarianism.

Our main result is that quasi-hyperbolic discounting increases the level of social

welfare attainable when separating taxation is optimal, but decreases social welfare when

pooling is optimal. This immediately implies that, under separating taxation, at least

one type of individuals are actually better-off in the long run as a result of their short-

run impatience. Moreover, our numerical simulations reveal that, even under pooling

taxation, one type of individual is better-off in the long run. These findings stand in

stark contrast to the usual result that quasi-hyperbolic discounting makes individuals

worse-off in the long run. The intuition for our results, in a nutshell, can be summarized

as follows. Nonlinear income taxation gives the government the power to ensure that only

two allocations, one intended for low-skill individuals and the other intended for high-

skill individuals, may potentially be chosen, by making the tax burden associated with

all other allocations suffi ciently severe. This, in effect, means that the government can

override the individuals’short-run (quasi-hyperbolic) preferences. The only challenge

then that the government faces is to ensure that each type chooses the allocation intended

for them. Given the government’s redistributive objective, low-skill individuals will never

want to choose the high-skill type’s allocation, but high-skill individuals may want to

mimic low-skill individuals by choosing their allocation. The government can deter

mimicking behavior by making sure that the allocations offered satisfy the high-skill

type’s incentive-compatibility constraint. Quasi-hyperbolic discounting does, however,

affect the incentive-compatibility constraint, as high-skill individuals will compare the

high-skill and low-skill allocations using their short-run preferences. We then show

that quasi-hyperbolic discounting relaxes the high-skill type’s incentive-compatibility

constraint under separating taxation, but tightens it under pooling taxation. It also

follows from the preceding discussion that quasi-hyperbolic discounting exerts no effect

on social welfare under first-best taxation, since in this case the allocations need not be

incentive compatible.
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In terms of previous studies, Aronsson and Sjogren (2009), Bassi (2010), and Aron-

sson and Granlund (2011) are most closely related to our work, with the primary dis-

tinction being that we analytically and quantitatively demonstrate how quasi-hyperbolic

discounting can actually raise long-run utility and social welfare. In Aronsson and Sjo-

gren’s model, individuals consume an unhealthy commodity when young, which in turn

leads to adverse health outcomes when old. Since individuals are quasi-hyperbolic dis-

counters, they consume too much of the unhealthy commodity. Within this setting,

Aronsson and Sjogren analyze how to design a mixed tax system, involving nonlinear in-

come taxation and linear commodity taxation without commitment, to correct the effects

of quasi-hyperbolic discounting and redistribute from high-skill to low-skill individuals.

Bassi examines the effects of incorporating quasi-hyperbolic discounting into a dynamic

Mirrlees model, but he assumes full commitment with the focus on showing how quasi-

hyperbolic discounting makes a case for taxing savings. Aronsson and Granlund explore

optimal provision of a public good when individuals are quasi-hyperbolic discounters.

They show that quasi-hyperbolic discounting moves the second-best rule governing pro-

vision of the public good closer to the first-best Samuelson rule, through reducing the

weight placed on the incentive-compatibility constraint in the second-best rule.

Our paper also complements a recent literature that examines labor and savings/capital

taxation in dynamic Mirrlees-style models, albeit without quasi-hyperbolic discounting.

Brett and Weymark (2008) and Farhi, et al. (2012) examine the optimality of nonlinear

savings/capital taxation in dynamic Mirrlees models under no commitment.6 Brett and

Weymark examine a two-type, two-period model in which the tax instruments available

to the government are constrained only by asymmetric information regarding skills, as

in the standard Mirrlees framework. They highlight the possibilities that separating

or pooling taxation can be social-welfare maximizing, and derive the optimal marginal

tax rates applicable to savings under each regime. Farhi, et al. examine a model with

a continuum of types, and they consider both two-period and infinite-horizon settings.

6Apps and Rees (2006), Krause (2009), and Guo and Krause (2011a, 2013) also examine two-type,
two-period nonlinear income tax models without commitment, although savings do not feature in their
models.
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In their model, taxation is constrained by asymmetric information regarding skills and

by political-economy constraints, which take the form of direct or reputational costs of

implementing tax reforms. This results in a “limited commitment”setting in which full

redistribution is never implemented. Their main conclusion is that the optimal taxation

of capital is progressive.

The models examined by Golosov, et al. (2013), Tenhunen and Tuomala (2010),

and Diamond and Spinnewijn (2011) all assume full commitment, but individuals are

distinguished by both skills and their preferences for savings. As the government observes

neither skills nor preferences, it faces a two-dimensional screening problem. Golosov, et

al. avoid the complexities associated with multi-dimensional screening by assuming that

preferences for savings are a function of skills. They conclude that optimal capital-

income tax rates are low, and that the welfare gains from taxing capital are negligible.

Diamond and Spinnewijn examine a two-period model in which individuals differ by

their skills and discount factors. An individual may be high or low skill, and they may

have a high or low discount factor. Although there are only four possible types in their

model, Diamond and Spinnewijn note that the standard mechanism-design approach to

optimal nonlinear taxation would require a highly complex tax system. Accordingly, they

simplify the problem by assuming that there are only two jobs in the economy– a high-

skill job and a low-skill job– and that hours worked are fixed. In this setting, their main

result is that a case can be made for taxing savings. Tenhunen and Tuomala consider a

similar setting to Diamond and Spinnewijn, but they do not assume jobs are skill specific.

Instead, they mainly focus on numerical solutions to the multi-dimensional screening

problem. They also examine the possibility that the government’s discount factor may

differ from that of individuals, which creates a paternalistic motive for taxation. Their

analysis also provides a rationale for savings taxation.

The remainder of the paper is organized as follows. Section 2 outlines the analyti-

cal framework that we consider. Section 3 examines first-best nonlinear taxation, while

Section 4 examines second-best nonlinear taxation. Section 5 presents some numeri-

cal simulations to further highlight the effects of quasi-hyperbolic discounting. Section

6 discusses the effects of assuming that the government can commit, while Section 7
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discusses the effects of assuming that individuals are sophisticated agents. Section 8

concludes, while proofs are relegated to an appendix.

2 Analytical Framework

The economy is assumed to last for three periods.7 There is a continuum of individuals

of unit measure who live for the three periods, with a proportion φ ∈ (0, 1) being high-

skill workers and the remainder (1 − φ) being low-skill workers. The wage rates of

the high-skill and low-skill individuals are denoted by wH and wL respectively, where

wH > wL > 0. Wages are assumed to remain constant through time.

Individuals work and save in periods 1 and 2. In period 3, which can be thought of

as the retirement period, individuals do not work and must live-off their second-period

savings. Therefore, savings decisions made in period 2 completely determine the outcome

in period 3. Individual i’s true (long-run) utility function is given by:

u(c1i )− v(l1i ) + δ
[
u(c2i )− v(l2i )

]
+ δ2u(c3i ) (2.1)

where cti is individual i’s consumption in period t, l
t
i is individual i’s labor supply in

period t, and δ ∈ (0, 1) is the discount factor. The function u(·) is increasing and strictly

concave, while v(·) is increasing and strictly convex.

As individuals are quasi-hyperbolic discounters, they do not act to maximize (2.1).

Instead, following Laibson (1997), their objective function is better described by the

utility function:

u(c1i )− v(l1i ) + βδ
[
u(c2i )− v(l2i )

]
+ βδ2u(c3i ) (2.2)

where β ∈ (0, 1) captures the effects of quasi-hyperbolic discounting. When viewed from

period 1, it can be seen that an individual’s discount factor between periods 1 and 2 is

βδ, while between periods 2 and 3 it is δ. But when viewed from period 2, the discount

factor between periods 2 and 3 is βδ. Thus (2.2) captures a preference for immediate

7We consider a finite-horizon model because the no-commitment optimal tax problem faced by the
government is most easily solved by backwards induction, and as discussed earlier three periods is the
shortest time horizon that can capture the effects of quasi-hyperbolic discounting.
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gratification that leads individuals to make short-run consumption, savings, and labor

supply decisions that are not consistent with long-run utility maximization.

2.1 Individual Behavior Without Taxation

In this subsection, we describe how individuals would behave in the absence of taxation.

The literature on quasi-hyperbolic discounting has distinguished between naive agents

and sophisticated agents. Naive agents are aware of their need for immediate gratifica-

tion, but they (naively) think that in the future they will behave in a manner consistent

with their long-run preferences. This captures the idea that individuals who act to sat-

isfy their short-run impatience often excuse such behavior by promising themselves that

they will behave more rationally in the future. On the other hand, sophisticated agents

are aware of their need for immediate gratification, and they are also aware that they

will feel this need again in the future and thus take this into account in their decision

making. We assume that individuals are naive, mainly for simplicity but also because

empirical evidence suggests that individuals are not sophisticated (see, e.g., Hey and

Lotito (2009)).8 Accordingly, individual i’s behavior in period 1 can be described as

follows. Choose a lifetime consumption plan c1i , l
1
i , s

1
i , c

2
i , l

2
i , s

2
i , and c

3
i to maximize

(2.2) subject to:

c1i + s1i ≤ wil
1
i (2.3)

c2i + s2i ≤ (1 + r)s1i + wil
2
i (2.4)

c3i ≤ (1 + r)s2i (2.5)

where sti is individual i’s savings in period t, and r > 0 is the market interest rate. Equa-

tions (2.3), (2.4), and (2.5) are the individual’s first-, second-, and third-period budget

constraints, respectively. It is shown in the Appendix that the solution to program

(2.2)− (2.5) yields the marginal conditions:

v′(lti)

u′(cti)wi
= 1 (for t = 1, 2),

u′(c1i )

βδ(1 + r)u′(c2i )
= 1 and

u′(c2i )

δ(1 + r)u′(c3i )
= 1 (2.6)

8In any event, it will be seen in Section 7 that the assumptions of naive or sophisticated quasi-
hyperbolic discounting do not matter for our main results vis-a-vis social welfare. All that matters is
that individuals exhibit excessive short-run impatience.
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However, individuals cannot commit themselves to their period-2 and period-3 con-

sumption plans, so in periods 2 and 3 they will not simply implement the plans decided

upon in period 1. Instead, in period 2 they will feel the need for immediate gratification

again, and will therefore choose c2i , l
2
i , s

2
i , and c

3
i to maximize:

u(c2i )− v(l2i ) + βδu(c3i ) (2.7)

subject to their second- and third-period budget constraints, equations (2.4) and (2.5). It

is shown in the Appendix that the solution to this problem yields the marginal conditions:

v′(l2i )

u′(c2i )wi
= 1 and

u′(c2i )

βδ(1 + r)u′(c3i )
= 1 (2.8)

Comparing equations (2.6) and (2.8), it can be seen that the marginal condition between

consumption in periods 2 and 3 that will actually be implemented differs from that which

was originally planned.

2.2 Implicit Marginal Tax Rates

As we assume that the government can impose nonlinear taxes on an individual’s income

from labor and savings, it may be optimal for the government to set taxes to induce

violations of the marginal conditions shown above that individuals would implement

in the absence of taxation. Following the standard practice, one may interpret these

marginal distortions as tax wedges or implicit marginal tax rates. Thus, we define:

MTRLti := 1−
v′(lti)

u′(cti)wi
and MTRSti := 1−

u′(cti)

βδ(1 + r)u′(ct+1i )
(2.9)

where MTRLti denotes the (implicit) marginal tax rate on labor faced by individual i

in period t, and MTRSti denotes the (implicit) marginal tax rate on savings faced by

individual i in period t (where t = 1, 2).
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3 First-Best Taxation

We begin by briefly considering the hypothetical case in which the government knows

each individual’s skill type in every period. In this case, the government’s choice of an

optimal nonlinear tax system applicable to labor income and savings is equivalent to it

choosing “lifetime”allocations 〈m1
L, y

1
L, s

1
L,m

2
L, y

2
L, s

2
L〉 and 〈m1

H , y
1
H , s

1
H ,m

2
H , y

2
H , s

2
H〉 for

the low-skill and high-skill individuals, respectively, to maximize:9

(1−φ)
{
u(m1

L − s1L)− v
(
y1L
wL

)
+ δ

[
u(m2

L + (1 + r)s1L − s2L)− v
(
y2L
wL

)]
+ δ2u((1 + r)s2L)

}

+ φ

{
u(m1

H − s1H)− v
(
y1H
wH

)
+ δ

[
u(m2

H + (1 + r)s1H − s2H)− v
(
y2H
wH

)]
+ δ2u((1 + r)s2H)

}
(3.1)

subject to:

(1− φ)
[
y1L −m1

L

]
+ φ

[
y1H −m1

H

]
≥ 0 (3.2)

(1− φ)
[
y2L −m2

L

]
+ φ

[
y2H −m2

H

]
≥ 0 (3.3)

where mt
i is type i’s post-tax income in period t, y

t
i = wil

t
i is type i’s pre-tax income

in period t, and c1i = m1
i − s1i , c2i = m2

i + (1 + r)s1i − s2i , and c3i = (1 + r)s2i . Equation

(3.1) is a utilitarian social welfare function based on each type’s true (long-run) utility

function (2.1), which reflects the assumption that the government has a corrective (or

paternalistic) objective in setting taxes. Equations (3.2) and (3.3) are, respectively, the

government’s first- and second-period budget constraints. Implicit in equations (3.2)

and (3.3) is the simplifying assumption that the government cannot save or borrow, and

that its revenue requirement is zero.10 As it is currently postulated that the government

can observe each individual’s type from period 1 onwards, it does not face any incentive-

compatibility constraints. The solution to program (3.1)− (3.3) yields:

Remark Under first-best taxation, quasi-hyperbolic discounting has no effect on the level

9Recall that individuals do not work in period 3. Thus savings decisions made in period 2 completely
determine the outcome in period 3.
10We maintain these simplifying assumptions throughout the paper, since assuming otherwise would

not affect any of our main results.
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of social welfare attainable.

The result that quasi-hyperbolic discounting exerts no effect on the level of social

welfare attainable under first-best taxation follows simply from the fact that the quasi-

hyperbolic discounting parameter, β, does not appear in program (3.1)− (3.3). This is

because first-best nonlinear taxation gives the government the power to force each type

i to choose 〈m1
i , y

1
i , s

1
i ,m

2
i , y

2
i , s

2
i 〉 by making their tax burden associated with any other

allocation suffi ciently severe. Thus, the government can impose its desired allocation on

each individual, irrespective of their short-run preferences.

4 Second-Best Taxation

In this section, we examine nonlinear labor and savings taxation when the government

cannot observe each individual’s skill type. Incentive-compatibility constraints must now

be considered, and heterogeneity between individuals’short-run and long-run preferences

now plays a role. Taxation in period 1, however, may result in skill-type information

being revealed to the government, which would then enable it to implement first-best

taxation in period 2. As all individuals know that if they reveal their type in period 1

they will be subjected to first-best taxation in period 2, they may have to be compensated

in period 1 if they are to be willing to reveal their type. This compensation is potentially

very costly from the government’s perspective of maximizing social welfare. Accordingly,

rather than designing a “separating” tax system in period 1 in which individuals are

willing to reveal their types, it may be optimal for the government to use “pooling”

taxation in which type information is not revealed, even though it is then constrained to

use second-best taxation in period 2. It is theoretically possible for either the separating

or pooling tax systems to be social-welfare maximizing, depending upon the parameters

of the model.11 Therefore, we examine in turn the nature of separating and pooling

nonlinear labor and savings taxation.

4.1 Separating Taxation

11See, e.g., the papers by Roberts (1984), Berliant and Ledyard (2012), and Guo and Krause (2011b)
which examine the desirability of separating versus pooling nonlinear income taxation when the gov-
ernment cannot commit.
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If the tax system is designed to separate the high-skill individuals from the low-skill

individuals in period 1, the government has enough information to implement first-best

taxation in period 2. The government’s behavior in period 2 can then be described as

follows. Choose allocations 〈m2
L, y

2
L, s

2
L〉 and 〈m2

H , y
2
H , s

2
H〉 for the low-skill and high-skill

individuals, respectively, to maximize:

(1− φ)
{
u(m2

L + (1 + r)s1L − s2L)− v
(
y2L
wL

)
+ δu((1 + r)s2L)

}

+ φ

{
u(m2

H + (1 + r)s1H − s2H)− v
(
y2H
wH

)
+ δu((1 + r)s2H)

}
(4.1)

subject to:

(1− φ)
[
y2L −m2

L

]
+ φ

[
y2H −m2

H

]
≥ 0 (4.2)

where (4.1) is a utilitarian social welfare function which reflects each type’s true utility

over periods 2 and 3, while (4.2) is the government’s second-period budget constraint.

The solution to program (4.1) − (4.2) yields the functions m2
L(φ, r, s

1
L, wL, δ, s

1
H , wH),

y2L(·), s2L(·), m2
H(·), y2H(·), and s2H(·). Substituting these functions into (4.1) yields the

value function Z2F (·), with the subscript F indicating that the value function is associated

with a first-best taxation problem.

In period 1, the government cannot distinguish high-skill from low-skill individuals,

but it designs a separating tax system in order to obtain skill-type information. Accord-

ingly, the government chooses allocations 〈m1
L, y

1
L, s

1
L〉 and 〈m1

H , y
1
H , s

1
H〉 for the low-skill

and high-skill individuals, respectively, to maximize:

(1− φ)
{
u(m1

L − s1L)− v
(
y1L
wL

)}
+ φ

{
u(m1

H − s1H)− v
(
y1H
wH

)}
+ δZ2F (·) (4.3)

subject to:

(1− φ)
[
y1L −m1

L

]
+ φ

[
y1H −m1

H

]
≥ 0 (4.4)

u(m1
H − s1H)− v

(
y1H
wH

)
+ βδU2HF ≥ u(m1

L − s1L)− v
(
y1L
wH

)
+ βδU2MF (4.5)
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where:

U2HF := u(m2
H(·) + (1 + r)s1H − s2H(·))− v

(
y2H(·)
wH

)
+ δu((1 + r)s2H(·)) (4.6)

and:

U2MF := u(m2
L(·) + (1 + r)s1L − s2L(·))− v

(
y2L(·)
wH

)
+ δu((1 + r)s2L(·)) (4.7)

Equation (4.3) is a utilitarian social welfare function, which takes into account how

savings decisions made in period 1 affect the level of social welfare attainable over periods

2 and 3. Equation (4.3) therefore includes the value function Z2F (·). Equation (4.4)

is the government’s first-period budget constraint, while (4.5) is the high-skill type’s

incentive-compatibility constraint. In order for a high-skill individual to be willing to

reveal their type, the utility they obtain from choosing 〈m1
H , y

1
H , s

1
H〉 in period 1 and thus

revealing their type, plus the quasi-hyperbolic discounted value of the utility, U2HF , high-

skill individuals obtain over periods 2 and 3 under first-best taxation, must be greater

than or equal to the utility they could obtain by pretending to be low skill. A high-skill

individual may pretend to be low skill by choosing 〈m1
L, y

1
L, s

1
L〉 in period 1. They will

then be treated as low-skill by the government under first-best taxation in period 2,

which implies that they obtain a “mimickers” utility level, U2MF , over periods 2 and

3. Since high-skill individuals are free to choose between 〈m1
H , y

1
H , s

1
H〉 and 〈m1

L, y
1
L, s

1
L〉,

they evaluate these allocations and the respective utility streams that follow according to

their short-run (quasi-hyperbolic) preferences. As a result, the high-skill type’s incentive-

compatibility constraint must take quasi-hyperbolic discounting into account.

Notice that the low-skill type’s incentive-compatibility constraint is omitted, because

we focus on what Stiglitz (1982) calls the “normal” case and what Guesnerie (1995)

calls “redistributive equilibria”. Specifically, we make the standard assumption that the

parameters of the model are such that the government will be seeking to redistribute

from high-skill to low-skill individuals. This implies that high-skill individuals have an

incentive to mimic low-skill individuals, but not vice versa. Therefore, the high-skill

type’s incentive-compatibility constraint will bind at an optimum, whereas the low-skill

type’s incentive-compatibility constraint will be slack.
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It is shown in the Appendix that the solutions to programs (4.1)− (4.2) and (4.3)−

(4.5) together imply:

Proposition 1 Under second-best taxation with separation in the first period, quasi-

hyperbolic discounting increases the level of social welfare attainable.

Interestingly, quasi-hyperbolic discounting increases the level of social welfare attain-

able, which implies that at least one type of individual must be better-off in the long run

as a result of their short-run impatience. The intuition for this result is two-fold. First,

nonlinear taxation gives the government the power to ensure that either the 〈m1
H , y

1
H , s

1
H〉

or 〈m1
L, y

1
L, s

1
L〉 allocations will be chosen in period 1, simply by making the tax burden

associated with all other allocations suffi ciently severe. Given the government’s re-

distributive goals, low-skill individuals will always want to choose 〈m1
L, y

1
L, s

1
L〉, so all

the government has to worry about is making sure that high-skill individuals choose

〈m1
H , y

1
H , s

1
H〉. This will happen provided the high-skill type’s incentive-compatibility

constraint (4.5) is satisfied. Second, quasi-hyperbolic discounting relaxes the high-skill

type’s incentive-compatibility constraint. This follows from a well-known, though some-

what strange, feature of first-best taxation, i.e., individual utility is decreasing with

respect to the wage rate. This is because under first-best taxation, it is optimal to give

both types the same level of consumption, but high-skill individuals are required to work

longer.12 Accordingly, high-skill individuals must be offered a relatively favorable tax

treatment in period 1 if they are to reveal their type, in order to compensate them for

the very unfavorable tax treatment they will face under first-best taxation in period

2. However, quasi-hyperbolic discounting means that in period 1 high-skill individuals

care less than they should about the utility they obtain in periods 2 and 3. Therefore,

high-skill individuals require less compensation in period 1 to reveal their type, which

in turn enables the government to attain a higher level of social welfare.

4.2 Marginal Tax Rates under Separating Taxation

One can also compute the implicit marginal tax rates associated with separating taxa-

tion, although we hasten to add that these are either standard results or are straight-

12This has led some to describe first-best taxation as Marxist in nature, because it takes from each
individual according to their ability and gives to each individual according to their need.
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forward extensions of those in Brett and Weymark (2008) once the effects of quasi-

hyperbolic discounting are taken into account. This shows that quasi-hyperbolic dis-

counting has little qualitative effect on optimal marginal tax rates, although Section 5

finds that it can have a substantive quantitative impact.

It is shown in the Appendix that the optimal marginal tax rates under separating

taxation applicable to labor income are MTRL1H = MTRL2L = MTRL2H = 0 and

MTRL1L > 0, while those applicable to savings are MTRS1L < 0, MTRS1H T 0, and
MTRS2L =MTRS2H = (β − 1)/β < 0.

In period 1, high-skill individuals face a zero marginal tax rate on their labor income,

while that for low-skill individuals is positive. These are the well-known “no-distortion-

at-the-top” and “downward-distortion-at-the-bottom” results that typify second-best

nonlinear income taxation. Likewise, both types face zero marginal tax rates on labor

income in period 2 simply because first-best taxation is used in that period.

Low-skill individuals face a negative marginal tax rate on savings in period 1 for

two reasons. First, quasi-hyperbolic discounting means that they want to save less than

they should; thus the government distorts their savings upwards to correct this effect.

Second, distorting savings by low-skill individuals upwards relaxes the high-skill type’s

incentive-compatibility constraint. To see this, note that under first-best taxation in

period 2, the government will choose allocations such that u′(m2
H + (1 + r)s1H − s2H) =

u′(m2
L+(1+ r)s

1
L− s2L), taking first-period savings s1H and s1L as given.13 Now since u(·)

is strictly concave, an increase in s1L will reduce the low-skill type’s marginal utility of

consumption relative to that for the high-skill type, meaning the government can raise

social welfare by transferring income from low-skill to high-skill individuals. It follows

that an increase in s1L makes high-skill individuals better-off under first-best taxation

in period 2. This in turn makes them more willing to reveal their type in period 1, or

equivalently the incentive-compatibility constraint is relaxed.

The sign of the marginal tax rate on savings faced by high-skill individuals in period

1 is ambiguous. On the one hand, the government wants to distort their savings upwards

13That is, the government will seek to equate second-period consumption levels. This follows from
equations (A.16) and (A.19) in the Appendix.
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to correct the effects of quasi-hyperbolic discounting. But on the other hand, the gov-

ernment wants to distort their savings downwards to relax the incentive-compatibility

constraint; the intuition for this follows by mirroring the argument just made for increas-

ing the low-skill type’s savings to relax the incentive-compatibility constraint. Finally,

both types face negative marginal tax rates on their second-period savings, equal to

(β − 1)/β. This is because quasi-hyperbolic discounting implies that individuals would

choose to save less than they should according to their long-run preferences. Therefore,

optimal nonlinear taxation distorts each type’s savings upwards via negative marginal

tax rates to correct the effects of quasi-hyperbolic discounting.

4.3 Pooling Taxation

If the tax system pools the individuals in period 1, the government cannot distinguish

high-skill from low-skill individuals in period 2. Therefore, in period 2 the government

must solve a second-best (information constrained) optimal nonlinear income tax prob-

lem. As this problem is essentially a static optimal nonlinear income tax problem, sep-

arating taxation is optimal. The government therefore chooses allocations 〈m2
L, y

2
L, s

2
L〉

and 〈m2
H , y

2
H , s

2
H〉 for the low-skill and high-skill individuals, respectively, to maximize:

(1− φ)
{
u(m2

L + (1 + r)s1 − s2L)− v
(
y2L
wL

)
+ δu((1 + r)s2L)

}

+ φ

{
u(m2

H + (1 + r)s1 − s2H)− v
(
y2H
wH

)
+ δu((1 + r)s2H)

}
(4.8)

subject to:

(1− φ)
[
y2L −m2

L

]
+ φ

[
y2H −m2

H

]
≥ 0 (4.9)

u(m2
H + (1 + r)s1 − s2H)− v

(
y2H
wH

)
+ βδu((1 + r)s2H) ≥

u(m2
L + (1 + r)s1 − s2L)− v

(
y2L
wH

)
+ βδu((1 + r)s2L) (4.10)

where s1 denotes the first-period savings of both types under pooling in period 1. Equa-

tion (4.8) is a utilitarian social welfare function, (4.9) is the government’s second-period

budget constraint, and (4.10) is the high-skill type’s incentive-compatibility constraint.

In period 2 the government cannot distinguish high-skill from low-skill individuals, so the
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allocations must be incentive compatible.14 As high-skill individuals are free to choose

between 〈m2
H , y

2
H , s

2
H〉 and 〈m2

L, y
2
L, s

2
L〉, their short-run preference for immediate gratifi-

cation must be taken into account. Hence, the quasi-hyperbolic discounting parameter,

β, enters the incentive-compatibility constraint.

It should be noted that based on the individuals’second-period choices, the govern-

ment can distinguish high-skill from low-skill individuals in period 3. However, as the

second-period choices completely determine the period-3 allocations, the government

cannot take advantage of the skill-type information it acquires to improve the period-3

allocations. This is because we assume that taxation of labor income and savings occurs

in the periods when labor and savings decisions are made (periods 1 and 2), not the

retirement period (period 3).

The solution to program (4.8)− (4.10) yields the functions m2
L(φ, r, s

1, wL, δ, wH , β),

y2L(·), s2L(·), m2
H(·), y2H(·), and s2H(·). Substituting these functions into (4.8) yields the

value function Z2S(·), with the subscript S indicating that the value function is associated

with a second-best taxation problem.

In period 1 the government implements pooling taxation. Therefore, it chooses a

single allocation 〈m1, y1, s1〉 for all individuals to maximize:

(1− φ)
{
u(m1 − s1)− v

(
y1

wL

)}
+ φ

{
u(m1 − s1)− v

(
y1

wH

)}
+ δZ2S(·) (4.11)

subject to:

y1 −m1 ≥ 0 (4.12)

where (4.11) is the first-period utilitarian social welfare function, but takes into account

how the choice of first-period savings affects the level of social welfare attainable over

periods 2 and 3; thus (4.11) includes the value function Z2S(·). Equation (4.12) is the

government’s first-period budget constraint.

It is shown in the Appendix that the solutions to programs (4.8)−(4.10) and (4.11)−

(4.12) together imply:

14We again omit the low-skill type’s incentive-compatibility constraint because, given the govern-
ment’s redistributive objective, it will not be binding.
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Proposition 2 Under second-best taxation with pooling in the first period, quasi-hyperbolic

discounting decreases the level of social welfare attainable.

When pooling in period 1 is optimal, quasi-hyperbolic discounting reduces the level of

social welfare attainable. This is because, unlike in the separating case, quasi-hyperbolic

discounting under pooling tightens the high-skill type’s incentive-compatibility con-

straint. The intuition is as follows. Under first-best taxation, it is optimal to equate

c3H and c3L; but under second-best taxation it is optimal to set c
3
H > c3L as this helps

relax the high-skill type’s incentive-compatibility constraint. Now from (4.10) it can be

seen that as the extent of quasi-hyperbolic discounting rises, or equivalently as β falls,

the government must further raise c3H relative to c
3
L in order to exert the same impact,

ceteris paribus, on the incentive-compatibility constraint. Therefore, quasi-hyperbolic

discounting requires that the government move c3H and c
3
L further away from their first-

best levels, which in turn reduces social welfare.

4.4 Marginal Tax Rates under Pooling Taxation

It is shown in the Appendix that under pooling taxation the optimal marginal tax

rates applicable to labor income are MTRL1L < 0, MTRL1H > 0, MTRL2L > 0, and

MTRL2H = 0, while those applicable to savings are MTRS1L T 0, MTRS1H < 0, and

MTRS2L < MTRS2H < 0. As under separating taxation, these marginal tax rates are

either standard results or are similar to those in Brett and Weymark (2008), indicating

again that quasi-hyperbolic discounting has little qualitative effect on optimal marginal

tax rates.

In period 1, low-skill individuals face a negative marginal tax rate on their labor

income, while that for high-skill individuals is positive. To understand these results, note

that in the absence of taxation high-skill individuals would choose to earn more income

than low-skill individuals (as both types have the same preferences, but wH > wL).

When both types are subjected to the same allocation under pooling in period 1, the

government, in effect, chooses y1 based on a weighted average of wL and wH . This

results in the low-skill (resp. high-skill) type’s labor supply being distorted upwards

(resp. downwards) to earn y1. In period 2 the usual pattern of optimal marginal tax

rates on labor income applies, because in period 2 the government essentially solves a
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standard second-best optimal nonlinear income tax problem.

The sign of the marginal tax rate on savings faced by low-skill individuals in period

1 is ambiguous, while that for high-skill individuals is negative. This is because in

period 2 it is optimal to set c2H > c2L to relax the high-skill type’s incentive-compatibility

constraint, as in the standard Mirrlees model. Implicitly distorting the low-skill type’s

first-period savings downwards, and the high-skill type’s first-period savings upwards,

makes it easier to implement c2H > c2L in period 2. But concurrently, the government

wants to distort both types’first-period savings upwards to offset the effects of quasi-

hyperbolic discounting. Thus the two motives for marginal distortions work in opposite

directions for low-skill individuals, rendering their optimal marginal tax rate on first-

period savings ambiguous; whereas both motives encourage an upward distortion to

high-skill individuals’first-period savings, making a negative marginal tax rate optimal.

In period 2, both types face negative marginal tax rates on their savings, in order

to correct the effects of quasi-hyperbolic discounting. However, the subsidy for low-

skill individuals is larger, because the further upward distortion to their second-period

savings makes it easier to implement c2H > c2L, which again helps relax the high-skill

type’s incentive-compatibility constraint.

5 Numerical Simulations

In this section, we explore the effects of varying the quasi-hyperbolic discounting parame-

ter, β. Ideally, these comparative statics results could be derived analytically; however

the literature on the comparative statics of optimal nonlinear income taxes has found

that analytical results are generally obtainable only when the utility function is quasi-

linear.15 We therefore calibrate our model with empirically-plausible parameter values,

and then use numerical simulations to examine the effects of changing β. To this end,

15See, e.g., Brett and Weymark (2011) and Simula (2010). We cannot assume quasi-linearity in our
model, because the first-best optimal tax problem is then no longer uniquely determined.
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we postulate that:

u(cti) = ln(c
t
i) and v(lti) =

1

1 + γ
(lti)

1+γ (5.1)

where γ > 0. Chetty (2006) concludes that a reasonable estimate of the coeffi cient of

relative risk aversion is one (log utility); hence our assumption that utility is logarithmic

in consumption. In addition, we set γ = 2, as this implies a labor supply elasticity of

0.5 which is in line with empirical estimates (see, e.g., Chetty, et al. (2011)).16

Table 1 presents the remaining parameter values. The OECD (2010) reports that on

average across OECD countries, approximately one-quarter of all adults have attained

tertiary level education. We therefore assume that 25% of individuals are high-skill

workers, i.e., we set φ = 0.25. We assume an annual interest rate of r = 0.05, which

is consistent with common practice, and that the long-run discount factor δ is equal to

1/(1 + r). Since most individuals work for around 40 years of their lives, we take each

period to be 20 years in length. An annual discount rate of 5% then corresponds to a 20-

year discount factor of δ = 0.38. Fang (2006) and Goldin and Katz (2007) estimate that

the college wage premium is approximately 60%. We therefore normalize the low-skill

type’s wage to unity, and set the high-skill type’s wage equal to 1.6. Finally, we begin

with an arbitrary baseline value of β = 0.85, and then examine the effects of varying β

between 0.75− 0.95 on each type’s true (long-run) utility and on the optimal marginal

tax rates,17 holding all other parameters at their baseline levels. These effects are shown

in Figure 1 for separating taxation, and in Figure 2 for pooling taxation.

In Figure 1, it can be seen that social welfare under separating taxation is decreasing

in β or, equivalently, increasing in the degree of quasi-hyperbolic discounting (cf. Propo-

sition 1). High-skill individuals are better-off as β increases, while low-skill individuals

16Micro-econometric estimates of the labor supply elasticity tend to be low (around 0.1), while macro
estimates are typically much higher (close to 1). We have examined the sensitivity of our numerical
simulation results with respect to the labor supply elasticity, by conducting them using elasticities of
0.1 and 1. The effects of changes in β on social welfare, utility, and the optimal marginal tax rates turn
out to be qualitatively identical to those reported in this section when the labor supply elasticity is 0.5.
The details of these results are available upon request.
17The effects of varying β on all non-zero marginal tax rates are explored, except for those equal to

(β − 1)/β because the effect in this case is obvious.
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are worse-off. As discussed earlier, an increase in β under separating taxation tightens

the high-skill type’s incentive-compatibility constraint. Thus high-skill individuals must

be offered a more attractive tax treatment, which comes at the expense of low-skill in-

dividuals. Next, the optimal marginal tax rate applicable to the low-skill type’s labor

income in period 1 is increasing in β. As in the standard Mirrlees model, low-skill in-

dividuals face a positive marginal tax rate on their labor income to relax the high-skill

type’s incentive-compatibility constraint. Since in our model an increase in β tightens

the high-skill type’s incentive-compatibility constraint, low-skill individuals must face a

higher marginal tax rate on their labor income. Furthermore, the marginal tax rates for

both types on their first-period savings are increasing in β, simply because the need to

correct the effects of quasi-hyperbolic discounting is attenuated. While the sign of the

high-skill type’s optimal marginal tax rate on first-period savings is theoretically am-

biguous, in our numerical simulations it is positive. This indicates that the motive the

government has to distort their savings downwards to relax the incentive-compatibility

constraint outweighs the motive it has to distort their savings upwards to offset the

effects of quasi-hyperbolic discounting.

In Figure 2, which covers pooling taxation, social welfare is increasing in β (cf.

Proposition 2). Mirroring the results under separating taxation, high-skill individuals are

worse-off as β increases, while low-skill individuals are better-off, because an increase in

β under pooling taxation relaxes the high-skill type’s incentive-compatibility constraint.

Moreover, the optimal marginal tax rates on labor income in period 1 for both types

are independent of β. Since pooling takes place in period 1, there are no incentive-

compatibility constraints in the first period; hence changes in β have no effect on the

first-period marginal tax rates applicable to labor income. In period 2, the low-skill

type’s marginal tax rate on labor income is decreasing in β, because period 2 is when the

government faces the high-skill type’s incentive-compatibility constraint. As increases

in β relax the high-skill type’s incentive-compatibility constraint, the government can

reduce the marginal tax rate applicable to the low-skill type’s labor income. Finally,

the marginal tax rates on savings for both types in both periods are increasing in β,

again simply because the need to correct the effects of quasi-hyperbolic discounting is
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attenuated. Although the sign of the low-skill type’s first-period marginal tax rate on

savings is theoretically ambiguous, in our numerical simulations it is negative, indicating

that the corrective motive vis-a-vis quasi-hyperbolic discounting for marginal savings

distortions dominates the redistributive motive vis-a-vis the high-skill type’s incentive-

compatibility constraint. The marginal tax rates on savings for both types in period

2 approach zero as β rises, because there is only the corrective motive for inducing

marginal savings distortions. However, for lower values of β the savings subsidy for

low-skill individuals increases relative to that for high-skill individuals, because this

makes it easier for the government to satisfy the high-skill type’s incentive-compatibility

constraint.

6 Discussion: Commitment by the Government

We have assumed that the government cannot commit to its future tax policy, because as

discussed earlier we think that the no-commitment case is of significant interest in itself,

and is also more consistent with the spirit of the Mirrlees approach to nonlinear income

taxation. Nevertheless, since much of the dynamic nonlinear income tax literature has

assumed commitment by the government, one may wonder how our main results change

if the government can commit.

If the government can commit in our model, it will solve program (3.1) − (3.3) but

subject to the additional constraint:

u(m1
H−s1H)−v

(
y1H
wH

)
+βδ

[
u(m2

H + (1 + r)s1H − s2H)− v
(
y2H
wH

)]
+βδ2u((1+ r)s2H) ≥

u(m1
L−s1L)−v

(
y1L
wH

)
+βδ

[
u(m2

L + (1 + r)s1L − s2L)− v
(
y2L
wH

)]
+βδ2u((1+r)s2L) (6.1)

which is the high-skill type’s incentive-compatibility constraint. The effect of quasi-

hyperbolic discounting on social welfare when the government can commit can be found
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by applying the Envelope Theorem to program (3.1)− (3.3) and (6.1):

∂W

∂β
= θH

{
δ

(
u(c2H)− v

(
y2H
wH

))
+ δ2u(c3H)− δ

(
u(c2L)− v

(
y2L
wH

))
− δ2u(c3L)

}
T 0
(6.2)

where W denotes the level of social welfare attainable from program (3.1) − (3.3) and

(6.1), and θH > 0 is the Lagrange multiplier on constraint (6.1).

When the government can commit, the effect of quasi-hyperbolic discounting on so-

cial welfare is ambiguous. This is because satisfaction of the incentive-compatibility

constraint (6.1) requires only that high-skill individuals be indifferent between choosing

the lifetime tax treatments 〈m1
H , y

1
H , s

1
H ,m

2
H , y

2
H , s

2
H〉 and 〈m1

L, y
1
L, s

1
L,m

2
L, y

2
L, s

2
L〉. There

is no need for them to be indifferent between the sub-parts of these tax treatments that

relate to periods 2 and 3, i.e., the parts directly affected by quasi-hyperbolic discount-

ing. Accordingly, constraint (6.1) can potentially be satisfied with high-skill individuals

strictly preferring their own tax treatment over periods 2 and 3 to that intended for

low-skill individuals, or vice versa, depending upon the specific details regarding pref-

erences and the parameters of the model. This renders the effects of quasi-hyperbolic

discounting on social welfare theoretically ambiguous when the government can commit.

7 Discussion: Sophisticated Agents

We have assumed that individuals are naive, rather than sophisticated, quasi-hyperbolic

discounters, but this assumption has no bearing on our main results regarding social wel-

fare. Indeed, we think one of the strengths of our results are their generality, in that any

behavioral assumption in which individuals discount the near-future too much relative

to their long-run preferences would lead to the same conclusions. We examine quasi-

hyperbolic discounting simply because it is the most common behavioral assumption in

which individuals exhibit excessive short-run impatience.

Likewise, as our discussion of the effects of quasi-hyperbolic discounting on the opti-

mal marginal tax rates suggests, these tend to be straightforward extensions of existing

results on optimal savings taxation. That is, quasi-hyperbolic discounting makes a case
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for subsidizing savings, ceteris paribus, to offset its effects, and this applies regardless

of whether agents are naive or sophisticated. However, the expressions for the marginal

tax rate equations are derived from how individuals would behave in the absence of

taxation (see Section 2), and such behavior does depend upon whether individuals are

naive or sophisticated. Sophisticated agents feel the need for immediate gratification,

but they are also aware that they will feel this need again in the future. Therefore, in

the absence of taxation, their behavior can be modelled as a dynamic game played by

their “present-self”and their “future-self”. That is, in period 2 the individual chooses

c2i , l
2
i , s

2
i , and c

3
i to maximize:

u(c2i )− v(l2i ) + βδu(c3i ) (7.1)

subject to:

c2i + s2i ≤ (1 + r)s1i + wil
2
i (7.2)

c3i ≤ (1 + r)s2i (7.3)

which yields solutions for the choice variables as functions of the parameters of the

program and first-period savings, i.e., c2i (β, δ, r, s
1
i , wi), l

2
i (·), s2i (·), and c3i (·).

In period 1, the individual knows that he/she will solve program (7.1) − (7.3) in

period 2. Therefore, in period 1 the individual chooses c1i , l
1
i , and s

1
i to maximize:

u(c1i )− v(l1i ) + βδ
[
u(c2i (·))− v(l2i (·))

]
+ βδ2u(c3i (·)) (7.4)

subject to:

c1i + s1i ≤ wil
1
i (7.5)

It is shown in the Appendix that the solutions to programs (7.1)− (7.3) and (7.4)−

(7.5) yield the following marginal conditions that would hold in the absence of taxation:

v′(lti)

u′(cti)wi
= 1 (for t = 1, 2),

u′(c1i )

βδ(1 + r)u′(c2i )
> 1 and

u′(c2i )

βδ(1 + r)u′(c3i )
= 1

(7.6)
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Comparing these with those obtained when agents are naive (see equations (2.6) and

(2.8)), it can be seen that the only difference is the marginal condition relating first-

and second-period consumption. Specifically, in the absence of taxation, sophisticated

agents save more in period 1 than do naive agents. The intuition is fairly straightforward.

Naive agents feel the need for immediate gratification in period 1, and therefore save

less than they should, but they falsely believe that they will behave rationally in the

future and save optimally in period 2. On the other hand, sophisticated agents know

that they will feel the need for immediate gratification again in the future, and therefore

their first-period under-saving will not be alleviated by saving appropriately in period 2.

Accordingly, sophisticated agents save more than naive agents, and it then follows that

the government has less need to correct first-period under-saving by individuals when

they are sophisticated, so the implicit marginal subsidy will be lower.

8 Conclusion

In this paper we have examined, both theoretically and numerically, the effects of incor-

porating quasi-hyperbolic discounting by individuals into a dynamic model of optimal

nonlinear income taxation without commitment. Although quasi-hyperbolic discounting

calls for marginal tax distortions to correct its effects, social welfare is not necessarily re-

duced. In fact, when separating taxation is optimal, quasi-hyperbolic discounting raises

the level of social welfare attainable and therefore makes some individuals better-off in

the long run. Furthermore, our numerical simulations show that even under pooling

taxation some individuals are better-off in the long run as a result of quasi-hyperbolic

discounting. We view these findings as being of both theoretical interest and of demon-

strating the power of Mirrlees-style nonlinear taxation. At the very least, our main

results stand in stark contrast to the usual result that quasi-hyperbolic discounting, or

any form of excessive short-run impatience, makes individuals worse-off in the long run.

Although our model is relatively simple, the intuition driving our main results sug-

gests that they would hold-up in more complex settings. Nevertheless, two potential

extensions of our work come to mind. The first would be to extend the model to more
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than two types, but as discussed earlier this does not seem feasible as the number of

possible tax regimes increases exponentially. However, imposing additional structure on

the model to restrict the number of potentially optimal tax regimes may make it pos-

sible to examine the many-type case. The second extension would be to move beyond

three periods, and possibly to an infinite-horizon setting. One does, however, run into

the same problem as going to more than two types, in that the number of possible tax

regimes increases.18 But again, imposing additional restrictions on the model may make

analysis of the many-period or infinite-horizon settings feasible.

9 Appendix

9.1 Individual Behavior Without Taxation

The Lagrangian corresponding to program (2.2)− (2.5) is:

L1i (·) = u(c1i )− v(l1i ) + βδ
[
u(c2i )− v(l2i )

]
+ βδ2u(c3i )

+ α1
{
wil

1
i − c1i − s1i

}
+ α2

{
(1 + r)s1i + wil

2
i − c2i − s2i

}
+ α3

{
(1 + r)s2i − c3i

}
(A.1)

where α1 > 0, α2 > 0, and α3 > 0 are Lagrange multipliers. The relevant first-order

conditions can be written as:

u′(c1i )− α1 = 0 (A.2)

−v′(l1i ) + α1wi = 0 (A.3)

−α1 + α2(1 + r) = 0 (A.4)

βδu′(c2i )− α2 = 0 (A.5)

−βδv′(l2i ) + α2wi = 0 (A.6)

−α2 + α3(1 + r) = 0 (A.7)

18For example, going to a four-period model, with three periods of taxation, generates three possi-
bilities: (i) separate in period 1, and use first-best taxation in periods 2 and 3, (ii) pool in periods 1
and 2, and use second-best taxation in period 3, and (iii) pool in period 1, separate in period 2, and
use first-best taxation in period 3.
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βδ2u′(c3i )− α3 = 0 (A.8)

Simple algebraic manipulation of these first-order conditions yields equation (2.6).

The Lagrangian corresponding to the maximization of equation (2.7) subject to equa-

tions (2.4) and (2.5) is:

L2i (·) = u(c2i )− v(l2i ) + βδu(c3i ) + α2
{
(1 + r)s1i + wil

2
i − c2i − s2i

}
+ α3

{
(1 + r)s2i − c3i

}
(A.9)

where α2 > 0 and α3 > 0 are Lagrange multipliers. The relevant first-order conditions

are:

u′(c2i )− α2 = 0 (A.10)

−v′(l2i ) + α2wi = 0 (A.11)

−α2 + α3(1 + r) = 0 (A.12)

βδu′(c3i )− α3 = 0 (A.13)

Simple algebraic manipulation of these first-order conditions yields equation (2.8). �
9.2 Proof of Proposition 1

The Lagrangian associated with program (4.3)− (4.5) is:

L1(·) = (1− φ)
{
u(m1

L − s1L)− v
(
y1L
wL

)}
+ φ

{
u(m1

H − s1H)− v
(
y1H
wH

)}
+ δZ2F (·)

+ λ1
{
(1− φ)

[
y1L −m1

L

]
+ φ

[
y1H −m1

H

]}
+ θ1H

{
u(m1

H − s1H)− v
(
y1H
wH

)
+ βδU2HF − u(m1

L − s1L) + v

(
y1L
wH

)
− βδU2MF

}
(A.14)

where λ1 > 0 and θ1H > 0 are Lagrange multipliers. By the Envelope Theorem:

∂WS(·)
∂β

=
∂L1(·)
∂β

= θ1Hδ
[
U2HF − U2MF

]
(A.15)

where WS(·) denotes the level of social welfare attainable under separating taxation.

To determine the sign of the expression in (A.15), the first-order conditions corre-
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sponding to program (4.1)− (4.2) are:

u′(m2
L + (1 + r)s1L − s2L)− λ2 = 0 (A.16)

−v′
(
y2L
wL

)
1

wL
+ λ2 = 0 (A.17)

−u′(m2
L + (1 + r)s1L − s2L) + δ(1 + r)u′((1 + r)s2L) = 0 (A.18)

u′(m2
H + (1 + r)s1H − s2H)− λ2 = 0 (A.19)

−v′
(
y2H
wH

)
1

wH
+ λ2 = 0 (A.20)

−u′(m2
H + (1 + r)s1H − s2H) + δ(1 + r)u′((1 + r)s2H) = 0 (A.21)

(1− φ)
[
y2L −m2

L

]
+ φ

[
y2H −m2

H

]
= 0 (A.22)

where λ2 > 0 is the multiplier on the government’s second-period budget constraint

(4.2). Equations (A.16) and (A.19) imply that c2L = c2H , which using (A.18) and (A.21)

implies that c3L = c3H . Furthermore, equations (A.17) and (A.20) imply that y
2
H > y2L.

Therefore, from (4.6) and (4.7) we obtain U2HF < U2MF , which using (A.15) establishes

that ∂WS(·)/∂β < 0. �
9.3 Marginal Tax Rates under Separating Taxation

The results that low-skill individuals face a positive marginal tax rate on their labor

income in period 1, while high-skill individuals face a zero marginal tax rate, are standard

results so the proofs are omitted. Similarly, both types face zero marginal tax rates on

labor income in period 2 because first-best taxation is used in that period.

To prove that MTRS2L = (β − 1)/β < 0, equation (A.18) can be rewritten as:

βδ(1 + r)u′(c3L)− u′(c2L) = βδ(1 + r)u′(c3L)− δ(1 + r)u′(c3L) (A.23)

Dividing both sides of (A.23) by βδ(1 + r)u′(c3L) yields:

1− u′(c2L)

βδ(1 + r)u′(c3L)
=
β − 1
β

< 0 (A.24)
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which using equation (2.9) establishes that MTRS2L = (β − 1)/β < 0. Analogous

manipulations of (A.21) establish that MTRS2H = (β − 1)/β < 0.

To prove that MTRS1L < 0, the first-order conditions on m
1
L and s

1
L from program

(4.3)− (4.5) can be written as, respectively:

(1− φ− θ1H)u′(c1L)− λ1(1− φ) = 0 (A.25)

−(1− φ− θ1H)u′(c1L) + δ
∂Z2F (·)
∂s1L

+ θ1Hβδ

[
∂U2HF (·)
∂s1L

− ∂U2MF (·)
∂s1L

]
= 0 (A.26)

The Lagrangian for program (4.1)− (4.2) is:

L2(·) = (1− φ)
{
u(m2

L + (1 + r)s1L − s2L)− v
(
y2L
wL

)
+ δu((1 + r)s2L)

}

+ φ

{
u(m2

H + (1 + r)s1H − s2H)− v
(
y2H
wH

)
+ δu((1 + r)s2H)

}
+λ2

{
(1− φ)

[
y2L −m2

L

]
+ φ

[
y2H −m2

H

]}
(A.27)

By the Envelope Theorem:

∂Z2F (·)
∂s1L

=
∂L2(·)
∂s1L

= (1− φ)u′(c2L)(1 + r) (A.28)

Note that (A.25) implies that 1 − φ − θ1H > 0. Using (2.9), (4.6), (4.7) and (A.28),

equation (A.26) can be rewritten as:

MTRS1L := 1−
u′(c1L)

βδ(1 + r)u′(c2L)
=
(1− φ)(β − 1)
(1− φ− θ1H)β

+

θ1H
(1− φ− θ1H)(1 + r)u′(c2L)

u′(c2L)∂m2
L(·)

∂s1L
−
v′
(
y2L
wH

)
wH

∂y2L(·)
∂s1L

− u′(c2H)
∂m2

H(·)
∂s1L

+
v′
(
y2H
wH

)
wH

∂y2H(·)
∂s1L


(A.29)

where use has also been made of the facts that c2L = c2H and c
3
L = c3H . Using (A.16) and

(A.17) we obtain u′(c2L) = v′
(
y2L
wL

)
1
wL

> v′
(
y2L
wH

)
1
wH
. By applying the Implicit Function
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Theorem and Cramer’s Rule to (A.16)− (A.22) it can be shown that:

∂m2
L(·)

∂s1L
<
∂y2L(·)
∂s1L

< 0,
∂m2

H(·)
∂s1L

> 0 and
∂y2H(·)
∂s1L

< 0 (A.30)

It now follows from (A.29) that MTRS1L < 0.

Finally, the result thatMTRS1H T 0 has been established using numerical examples,
details of which are available upon request. �
9.4 Proof of Proposition 2

The Lagrangians associated with programs (4.11)− (4.12) and (4.8)− (4.10) are, respec-

tively:

L1(·) = (1−φ)
{
u(m1 − s1)− v

(
y1

wL

)}
+φ

{
u(m1 − s1)− v

(
y1

wH

)}
+δZ2S(·)+λ1

{
y1 −m1

}
(A.31)

L2(·) = (1− φ)
{
u(m2

L + (1 + r)s1 − s2L)− v
(
y2L
wL

)
+ δu((1 + r)s2L)

}

+ φ

{
u(m2

H + (1 + r)s1 − s2H)− v
(
y2H
wH

)
+ δu((1 + r)s2H)

}
+ λ2

{
(1− φ)

[
y2L −m2

L

]
+ φ

[
y2H −m2

H

]}
+ θ2H{u(m2

H + (1 + r)s1 − s2H)− v
(
y2H
wH

)
+ βδu((1 + r)s2H)

− u(m2
L + (1 + r)s1 − s2L) + v

(
y2L
wH

)
− βδu((1 + r)s2L)} (A.32)

where λ1 > 0, λ2 > 0, and θ2H > 0 are Lagrange multipliers. By repeated application of

the Envelope Theorem:

∂WP (·)
∂β

=
∂L1(·)
∂β

= δ
∂Z2S(·)
∂β

= δ
∂L2(·)
∂β

= δ2θ2H
[
u(c3H)− u(c3L)

]
(A.33)

where WP (·) denotes the level of social welfare attainable under pooling taxation.

The first-order conditions on m2
L, s

2
L, m

2
H , and s

2
H from program (4.8) − (4.10) can

be written as, respectively:

(1− φ− θ2H)u′(c2L)− λ2(1− φ) = 0 (A.34)
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−(1− φ− θ2H)u′(c2L) + (1− φ− βθ2H)δ(1 + r)u′(c3L) = 0 (A.35)

(φ+ θ2H)u
′(c2H)− λ2φ = 0 (A.36)

−(φ+ θ2H)u
′(c2H) + (φ+ βθ2H)δ(1 + r)u′(c3H) = 0 (A.37)

Adding (A.34) and (A.35), and adding (A.36) and (A.37), and then combining the results

of these additions yields:

u′(c3L)

u′(c3H)
=
(φ+ βθ2H)(1− φ)
(1− φ− βθ2H)φ

=
φ(1− φ) + βθ2H(1− φ)
φ(1− φ)− φβθ2H

> 1 (A.38)

which implies that c3H > c3L. It now follows from (A.33) that ∂WP (·)/∂β > 0. �
9.5 Marginal Tax Rates under Pooling Taxation

The first-order conditions on m1 and y1 from program (4.11)− (4.12) can be written as,

respectively:

u′(c1)− λ1 = 0 (A.39)

−(1− φ)v′
(
y1

wL

)
1

wL
− φv′

(
y1

wH

)
1

wH
+ λ1 = 0 (A.40)

Equations (A.39) and (A.40) can be manipulated to obtain:

MTRL1L := 1−
v′
(
y1

wL

)
u′(c1)wL

=
φ

u′(c1)

[
v′
(
y1

wH

)
1

wH
− v′

(
y1

wL

)
1

wL

]
< 0 (A.41)

which is negative because wH > wL and v(·) is strictly convex. Similarly, (A.39) and

(A.40) can be manipulated to obtain:

MTRL1H := 1−
v′
(
y1

wH

)
u′(c1)wH

=
(1− φ)
u′(c1)

[
v′
(
y1

wL

)
1

wL
− v′

(
y1

wH

)
1

wH

]
> 0 (A.42)

The results that MTRL2L > 0 and MTRL2H = 0 are standard results for second-best

nonlinear income taxation, so the proofs are omitted.

The first-order condition on s1 from program (4.11)− (4.12) is:

−u′(c1) + δ
∂Z2S(·)
∂s1

= 0 (A.43)
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By the Envelope Theorem:

∂Z2S(·)
∂s1

=
∂L2(·)
∂s1

= (1 + r)
[
(1− φ− θ2H)u′(c2L) + (φ+ θ2H)u

′(c2H)
]

(A.44)

Equations (A.43) and (A.44) can be manipulated to yield:

MTRS1H := 1−
u′(c1)

βδ(1 + r)u′(c2H)
=
β − φ− θ2H

β
− (1− φ− θ

2
H)u

′(c2L)

βu′(c2H)
(A.45)

Equation (A.34) implies that 1 − φ − θ2H > 0, while straightforward manipulation of

(A.34) and (A.36) establishes that u′(c2L) > u′(c2H). It now follows from (A.45) that

MTRS1H < 0. The result that MTRS1L T 0 has been established using numerical

examples, details of which are available upon request.

Equation (A.35) can be manipulated to yield:

MTRS2L := 1−
u′(c2L)

βδ(1 + r)u′(c3L)
=
(1− φ)(β − 1)
(1− φ− θ2H)β

< 0 (A.46)

and equation (A.37) can be manipulated to yield:

MTRS2H := 1−
u′(c2H)

βδ(1 + r)u′(c3H)
=

φ(β − 1)
(φ+ θ2H)β

< 0 (A.47)

which establishes that MTRS2L < MTRS2H < 0. �
9.6 Sophisticated Agents

The first-order conditions from program (7.1)− (7.3) are:

u′(c2i )− α2 = 0 (A.48)

−v′(l2i ) + α2wi = 0 (A.49)

−α2 + α3(1 + r) = 0 (A.50)

βδu′(c3i )− α3 = 0 (A.51)

(1 + r)s1i + wil
2
i − c2i − s2i = 0 (A.52)
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(1 + r)s2i − c3i = 0 (A.53)

where α2 > 0 and α3 > 0 are the Lagrange multipliers on equations (7.2) and (7.3),

respectively. Straightforward manipulation of the above equations yields the marginal

conditions:
v′(l2i )

u′(c2i )wi
= 1 and

u′(c2i )

βδ(1 + r)u′(c3i )
= 1 (A.54)

The relevant first-order conditions from program (7.4)− (7.5) are:

u′(c1i )− α1 = 0 (A.55)

−v′(l1i ) + α1wi = 0 (A.56)

βδu′(c2i )
∂c2i (·)
∂s1i

− βδv′(l2i )
∂l2i (·)
∂s1i

+ βδ2u′(c3i )
∂c3i (·)
∂s1i

− α1 = 0 (A.57)

where α1 > 0 is the Lagrange multiplier on equation (7.5). Straightforward manipulation

of (A.55) and (A.56) yields:
v′(l1i )

u′(c1i )wi
= 1 (A.58)

By applying the Implicit Function Theorem and Cramer’s Rule to (A.48) − (A.53)

it can be shown that:

∂c2i (·)
∂s1i

=
−v′′(l2i )βδ(1 + r)3u′′(c3i )

−u′′(c2i )v′′(l2i ) + βδ(1 + r)2u′′(c3i ) [u
′′(c2i )w

2
i − v′′(l2i )]

> 0 (A.59)

∂l2i (·)
∂s1i

=
−u′′(c2i )wiβδ(1 + r)3u′′(c3i )

−u′′(c2i )v′′(l2i ) + βδ(1 + r)2u′′(c3i ) [u
′′(c2i )w

2
i − v′′(l2i )]

< 0 (A.60)

∂c3i (·)
∂s1i

=
−v′′(l2i )u′′(c2i )(1 + r)2

−u′′(c2i )v′′(l2i ) + βδ(1 + r)2u′′(c3i ) [u
′′(c2i )w

2
i − v′′(l2i )]

> 0 (A.61)

Substituting (A.59), (A.60), and (A.61) into equation (A.57) and undertaking some

algebraic manipulation yields:

u′(c1i ) = βδ(1 + r)u′(c2i )

[
−u′′(c2i )v′′(l2i ) + β2δ(1 + r)2u′′(c3i ) [u

′′(c2i )w
2
i − v′′(l2i )]

−βu′′(c2i )v′′(l2i ) + β2δ(1 + r)2u′′(c3i ) [u
′′(c2i )w

2
i − v′′(l2i )]

]
(A.62)

which implies that u′(c1i ) > βδ(1 + r)u′(c2i ). �
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TABLE 1

37

Baseline Parameter Values for Numerical Simulations*

φ 0.25 δ 0.38 1.00Lw

γ 2.00 r 0.05
H 1.60w

β 0.85

Separating Pooling
Long-run utility: low-skill
Long- -skill

–0.481
–

–0.579
–run utility: high 0.182

–
0.144

–Social welfare 0.407
. 

0.470
* Each period is assumed to be 20 years in length
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Numerical Simulations: Separating Taxation



FIGURE 1 (cont.)
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Numerical Simulations: Separating Taxation
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Numerical Simulations: Pooling Taxation



FIGURE 2 (cont.)
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Numerical Simulations: Pooling Taxation
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