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Abstract

In recent years, the suggestion of combining models as an alternative to selecting a single

model from a frequentist prospective has been advanced in a number of studies. In this paper, we

propose a new semi-parametric estimator of regression coe¢ cients, which is in the form of a feasible

generalized ridge estimator by Hoerl and Kennard (1970b) but with di¤erent biasing factors.

We prove that the generalized ridge estimator is algebraically identical to the model average

estimator. Further, the biasing factors that determine the properties of both the generalized ridge

and semi-parametric estimators are directly linked to the weights used in model averaging. These

are interesting results for the interpretations and applications of both semi-parametric and ridge

estimators. Furthermore, we demonstrate that these estimators based on model averaging weights

can have properties superior to the well-known feasible generalized ridge estimator in a large region

of the parameter space. Two empirical examples are presented.

1 Introduction

Ordinary least squares (OLS) is a widely used estimator for the coe¢ cients of a linear regression

model in econometrics and statistics (Schmidt (1976); Greene (2011)). It is shown here that the OLS

estimator can also be obtained by estimating population moments (variances and covariances) of the

economic variables involved in the regression by using empirical densities of their data sets. Further,
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we propose a new estimator of the regression coe¢ cients by estimating population moments based on

smooth kernel nonparametric density estimation. This proposed estimator, in contrast to the OLS

estimator, is robust to multicollinearity, and we refer to this as the semi-parametric (SP) estimator of

the regression coe¢ cients. Although there are di¤erences, this SP estimator turns out to be in the form

of a generalized ridge regression (GRR) estimator developed by Hoerl and Kennard (1970b). Ridge

regression (RR) (Hoerl and Kennard (1970a, b)) is a common shrinkage technique in linear regression

when the covariates are highly collinear, and among the various ridge techniques, the GRR estimator is

arguably the one that has attracted the most attention. The GRR estimator allows the biasing factor,

which controls the amount of ridging, to be di¤erent for each coe¢ cient; when the biasing factors are

the same for all coe¢ cients, the GRR estimator reduces to the ordinary RR estimator. However, since

the biasing factors are unknown, the GRR estimator is not feasible. This is not the case for the SP

estimator which is based on the information contained in the kernel density estimation of regressors,

and hence the biasing factors are calculated using the data-based window-widths of regressors. Thus,

the SP estimator, in contrast to the GRR estimator, is a feasible estimator. This SP estimator is

compared with Hoerl and Kennard�s (1970b) feasible GRR (FGRR) estimator based on the �rst step

of a data-based iterative procedure for estimating the biasing factors. We note from Hemmerle and

Carey (1983) that the FGRR estimator is more e¢ cient than the estimator based on the closed form

solution of Hoerl and Kennard�s iterative method. For more details of GRR estimators, see Vinod and

Ullah (1981) and Vinod, Ullah and Kadiyala (1981).

Yet another independently developed technique closely related to shrinkage estimation is model

averaging, which is an alternative to model selection. While the process of model selection is an

attempt to �nd a single best model for a given purpose, model averaging compromises across the

competing models, and by so doing includes the uncertainty associated with the individual models

in the estimation of parameter precision. Bayesian model averaging (BMA) has long been a popular

statistical technique. In recent years, frequentist model averaging (FMA) has also been garnering

interest. A major part of this literature is concerned with ways of weighting models. For BMA,

models are usually weighted by their posterior model probabilities, whereas FMA weights can be

based on scores of information criteria (e.g. Buckland, Burnham and Augustin (1997); Claeskens,

Croux and van Kerckhoven (2006); Zhang and Liang (2011); Zhang, Wan and Zhou (2012)). Other

FMA strategies that have been developed include adaptive regression by mixing by Yang (2001),

Mallows model averaging (MMA) by Hansen (2007, 2008) (see also Wan, Zhang and Zou (2010)),

optimal mean square error averaging by Liang, Zou, Wan and Zhang (2011), and Jackknife model

averaging (JMA) by Hansen and Racine (2012) (see also Zhang, Wan and Zou (2013)). As well,

Hjort and Claeskens (2003) introduced a local misspeci�cation framework for studying the asymptotic

properties of FMA estimators.
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Given these two independent, but parallel, developments of research in ridge type shrinkage es-

timators and FMA estimators, the objective of this paper is to explore a link between them. An

initial attempt in establishing this connection was made by Leamer and Chamberlain (1976), where

a relationship between the ridge estimator and a model average estimator (which they called "search

estimator") was noted. However, we emphasize that the ridge and model averaging estimators of

Leamer and Chamberlain (1976) are respectively di¤erent from the ridge and model averaging estima-

tors in our paper. More importantly, our results permit an exact connection between model averaging

weights and ridge biasing factors, whereas their results do not. In addition, we propose a new SP ridge

estimator and investigate its properties. The biasing factors of the SP estimator are also linked to the

FMA weights. On the basis of these relationships, the selection of biasing factors in the GRR and SP

estimators may be converted to the selection of weights in the FMA estimator. Our �nding also implies

that if the goal is to optimally mix the competing models based on a chosen criterion, e.g., Hansen�s

(2007) Mallows criterion, then there is always a GRR estimator that matches the performance of the

resultant FMA estimator. We demonstrate via a Monte Carlo study that the GRR estimators with

biasing factors derived from the weights used for Hansen�s (2007) MMA and Hansen and Racine�s

(2012) JMA estimators perform well, in terms of risk, in a large region of parameter space.

This paper is organized as follows. In Section 2, we present the SP and GRR estimators of the

regression coe¢ cients. In Section 3, we derive the exact algebraic relationship between the biasing

factors of the SP and GRR estimators and the weights in the FMA estimator. Section 4 presents

asymptotically optimal procedures for choosing window-widths. Section 5 reports the results of a

Monte Carlo study comparing the risks of the SP and FGRR estimators with biasing factors based

on weights of the MMA and JMA estimators. Section 6 provides two empirical applications of the SP

and GRR estimators using the equity premium data in Campbell and Thompson (2008) and the wage

data from Wooldridge (2003). Section 7 o¤ers some concluding remarks.

2 Semiparametric Estimator of Regression Coe¢ cients

Let us consider a population multiple regression model

y = x1�1 + � � �+ xq�q + u (1)

= x0� + u;

where y is a scalar dependent variable, x = (x1; :::; xq)
0 is a vector of q regressors, � is an unknown

vector of regression coe¢ cients, and u is a disturbance with Eu = 0 and V (u) = �2:

If we minimize Eu2 = E(y � x0�)2 with respect to �, we obtain

� = [Exx0]�1Exy; (2)
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where Exx0 is a q � q moment matrix of q variables with the j-th diagonal element and (j; j0)-th o¤

diagonal elements given by

Ex2j =

Z
xj

x2jf(xj)dxj ; j = 1; :::; q; (3)

and Exjxj0 =

Z
xj

Z
xj0

xjxj0 f(xj ; xj0)dxjdxj0 ; j 6= j0 = 1; :::; q;

respectively.

Suppose we have the sample observations fyi; xi1; :::; xiqg; i = 1; :::; n: Then the population averages

in (3) can be estimated by their sample averages

Êx2j =
1

n

nX
i=1

x2ij ; and Êxjxj0 =
1

n

nX
i=1

xijxij0 : (4)

It is straightforward to note that

Êx2j =

Z
xj

x2j f̂(xj)dxj =

Z
xj

x2jdF̂ (xj) (5)

=
1

n

nX
i=1

x2ij

by using the empirical distribution of F̂ (�). The results for Êxjxj0 in (4) and Êxjy =
Pn

i=1 xijyi=n

follow similarly.

Using (4) and (5) in (2), we obtain, for all j and j0,

�̂ = (Êxx0)�1Êxy (6)

= (X 0X)�1X 0Y;

where X is an n� q matrix of observations on q variables, Y is an n� 1 vector of n observations and

�̂ is the well-known ordinary least squares (OLS) estimator.

Now we consider the estimation of Ex2j and Exjxj0 by a smooth nonparametric kernel density

instead of the empirical distribution function. This results in

~Ex2j =

Z
xj

x2j
~f(xj)dxj (7)

=
1

nhj

nX
i=1

Z
xj

x2jk(
xij � xj
hj

)dxj

=
1

n

nX
i=1

Z
	ij

(xij � hj	ij)2k(	ij)d	ij

=
1

n

nX
i=1

Z
	ij

(x2ij + h
2
j	

2
ij � 2xijhj	ij)k(	ij)d	ij

=
1

n

nX
i=1

x2ij + h
2
j�2;
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where ~f(xj) = 1
nhj

Pn
i=1 k(

xij�xj
hj

) is a kernel density estimator, 	ij =
xij�xj
hj

is a transformed variable,

�2 =
R
v2k(v)dv > 0 is the second moment of kernel function, k(	ij) is a symmetric second order

kernel, and hj is window-width. For implementation, hj can be selected by biased cross-validation

based on the Normal or Epanechnikov kernel as in Scott and Terrell (1987). For more details, see

Pagan and Ullah (1999).

Similarly, it can be shown easily that

~E(xjxj0) =

Z
xj

Z
xj0

xjxj0 ~f(xj ; xj0)dxjdxj0 (8)

=
1

nhjhj0

nX
i=1

Z
xj

Z
xj0

xjxj0k(
xij � xj
hj

;
xij0 � xj0
hj0

)dxjdxj0

=
1

nhjhj0

nX
i=1

Z
xj

Z
xj0

xjxj0k(
xij � xj
hj

)k(
xij0 � xj0
hj0

)dxjdxj0

=
1

n

nX
i=1

Z
	ij

Z
	ij0

(xij � hj	ij)(xij0 � hj0	ij0)k(	ij)k(	ij0)d	ijd	ij0

=
1

n

nX
i=1

xijxij0

and

~E(xjy) =
1

n

nX
i=1

xijyi; (9)

where the product kernels have been used without loss of generality and 	ij0 =
xij0�xj0
hj0

: Also, ~E(xj) =
1
n

Pn
i=1 xij =

�
xj :

Thus, by using (7) to (9) in (2), we obtain the following new estimator of �:

~� = ( ~Exx0)�1 ~Exy (10)

= (X 0X +D)�1X 0Y;

where D = diag(d1; :::; dq) is a diagonal matrix with dj = nh2j�2 as its j-th element (j = 1; :::; q). We

refer to ~� as the SP estimator:

The estimators in (7) and (8) are based on kernel density estimation assuming that the continuous

regressors have support in the entire Euclidean space. In this paper, we assume that all regressors

satisfy this property. However, when the regressors have a bounded support, it is well-known that the

kernel density estimator is asymptotically biased and one should use bias adjusted kernels instead; see

Li and Racine (2007) and Darolles, Fan, Florens and Renault (2011). When the variables are discrete,

the estimator in (8) remains the same, but the estimator of Ex2j can be written as
X
i

x2i p(xi) =X
i

X
j

x2i I(xj = xi)=n =
X
i

x2i =n, where I(xj = xi) = 1 if xj = xi and 0 otherwise. In this case, the

estimator in (10) reduces to the OLS estimator. On the other hand, when the regressor matrix contains
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a mixture of discrete and continuous regressors, the estimator again has the form of (10), except that

the matrix D is re-de�ned with its diagonal elements corresponding to the discrete variables set to

zero. This can be explained by noting, for example, when x1 is continuous and x2 is discrete, that the

estimator of

E(x1x2) = Ex2 [x2E(x1jx2)]

=
X
i

Z
x1

K((xi1 � x1)=h1)dx1E[(x2I(xi2 = x2)=p(x2)]=nh1

=
X
i

X
j

xi1xj2I(xi2 = xj2)=n

=
X
i

xi1xi2=n:

Note that both the OLS and SP estimators are based on the population regression (1), where

the regression coe¢ cient vector depends on the population moments of the vector x and the scalar

variable y. These moments are then estimated using sample data by two di¤erent methods. This leads

to estimators of the regression coe¢ cients in the sample linear regression model

Y = X� + U; (11)

where the sample is drawn from the population linear regression model (1), and U is an n�1 vector of

random errors with EU = 0 and EUU 0 = �2In: By standard eigenvalue decomposition, we can write

X 0X = G�G0; where G is an orthogonal matrix and � = diag(�1; �2; :::; �q):

From Hoerl and Kennard (1970a, b), the GRR estimator of � is

�̂(K) = (X 0X +GKG0)�1X 0Y; (12)

where K = diag(k1; k2; :::; kq) is a diagonal matrix with kj � 0; j = 1; :::; q: The k0js are the biasing

factors controlling the amount of ridging in �̂(K): When k1 = k2 = � � � = kq = k; �̂(K) is commonly

called the ordinary ridge regression estimator. We note that the SP estimator in (10) is in the form of

the GRR estimator but these two estimators are not exactly the same . However, one may de�ne an

alternative SP-type estimator by equating the diagonal matrix D to the diagonal of the matrix GKG0.

Thus, the elements of D can be determined from the biasing factors of the GRR estimator. Of course,

if K = kI; then D = K and the SP estimator is identical to the GRR estimator.

De�ne Z = XG and � = G0�: Then Z 0Z = � and model (11) may be reparameterized as

Y = Z�+ U: (13)

Correspondingly, the GRR estimator of � is

�̂(K) = (Z 0Z +K)�1Z 0Y = (� +K)�1Z 0Y = BZ 0Y; (14)
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where B = (� +K)�1 is a diagonal matrix. It is straightforward to show that

�̂(K) = G0�̂(K): (15)

Hence

E(�̂(K)� �)0(�̂(K)� �) = E(�̂(K)� �)0(�̂(K)� �): (16)

That is, the trace of the MSE matrix (or equivalently, the risk under squared error loss) of the

GRR estimator of � is the same as that of �, and the matrix K that minimizes the risk of �̂(K) also

minimizes that of �̂(K): It is well-known that the GRR estimator in (12) can be derived by minimizing

u0u with respect to � subject to the restriction that �0GKG0� is bounded. Similarly, the SP estimator

in (10), derived from using smooth kernel density estimators of moments, also results from minimizing

u0u with respect to � subject to a bounded restriction of �0D�. Note that both the GRR and SP

estimators are robust to multicollinearity, a property not shared by the OLS estimator derived using

empirical density estimation of moments. In Sections 4 and 5 we will show that the proposed SP

and GRR estimators have superior performance to the OLS estimator in risk under squared error loss

sense.

3 Connection between SP and Ridge Estimators and Model

Averaging

To examine the connection between the SP and GRR estimators and model averaging, let us consider

an averaging scheme across the sub-models

Y = Zs�s + U; s = 1; 2; :::; S; (17)

where Zs is a sub-matrix containing qs � q columns of Z; and �s is the corresponding coe¢ cient

vector.

Least squares estimation of the models in (17) yields the OLS estimators

�̂s = (Z
0
sZs)

�1Z 0sY: (18)

Let us write �s = As�, where As = (Iqs : 0qs�(q�qs)) (or its column permutation) is a qs � q

selection matrix: Conformably, we write Zs = ZA0s:

The model averaging (MA) estimator of �,

�̂(w) =
SX
s=1

wsA
0
s�̂s; (19)
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where w = (w1; w2; :::; wS)0 is the weight vector with ws � 0 and
PS

s=1 ws = 1, is formed by a weighted

combination of coe¢ cient estimators across the S sub-models.

We can equivalently write �̂(w) in (19) as

�̂(w) =
SX
s=1

wsA
0
s(AsZ

0ZA0s)
�1AsZ

0Y (20)

= CZ 0Y;

where

C =
SX
s=1

[wsA
0
s(AsZ

0ZA0s)
�1As] (21)

=

0BBB@
w�1�

�1
1 � � � 0
...

. . .
...

0 � � � w�q�
�1
q

1CCCA
and

w�j =
SX
s=1

wsI(j 2 	s); (22)

with I(�) being an indicator function that takes on 1 if j 2 	s and 0 otherwise, and 	s being a set

comprising the column indices of Z included in the s-th sub-model. For example, if the regressor

matrix of the s-th sub-model comprises the �rst, second and fourth columns of Z, then 	s = f1; 2; 4g:

In view of the relationship between w�j and ws, we can write (20) as

�̂(w�) = CZ 0Y = �̂(w) (23)

where w� = (w�1 ; :::; w
�
q )
0:

Comparing equations (14) and (20), we notice an algebraic similarity between the GRR estimator

�̂(K) = BZ 0Y and the MA estimator �̂(w�) = CZ 0Y: Clearly, �̂(K) = �̂(w�) if B = C; or more

explicitly,

w�1�
�1
1 = (�1 + k1)

�1 (24)
...
...

w�q�
�1
q = (�q + kq)

�1:

This is the essence of the algebraic equivalence between the GRR and MA estimators. Note that

�0s depend on the data, and w�0s can be determined by the MA weights w0s derived under a given

criterion. Subsequently, the biasing factors k0s of the GRR estimator in (12) can be obtained from

(24).
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As a simple illustration, suppose that q = 2 in model (11) and the data observations are such that

�1 = 1 and �2 = 1:5: In this case, the model average is a combination of S = 3 candidate models

including the full model. The two sub-models contain the �rst and second regressors respectively, while

the full model contains both regressors. Now, suppose that the weights assigned to the three models

are ŵ1 = 0:5; ŵ2 = 0:2 and ŵ3 = 0:3 respectively. By (22), we have

ŵ�1 =
3X
s=1

ŵsI(1 2 	s) = ŵ1 + ŵ3 = 0:8 and

ŵ�2 =
3X
s=1

ŵsI(2 2 	s) = ŵ2 + ŵ3 = 0:5:

Then

k̂1 = ŵ��11 �1 � �1 = 0:25 and

k̂2 = ŵ��12 �2 � �2 = 1:5:

Equation (24) also shows that when k1 = k2 = � � � = kq = 0 such that the GRR estimator reduces

to the OLS estimator, the MA estimator reduces to the OLS estimator in the full model. It should

be mentioned that although (22) allows unique w�j to be determined from the given values of w0js, the

converse need not to be true. Thus, while one can obtain unique GRR biasing parameters from the

MA weights using (24), the reverse derivation of unique MA weights from the GRR biasing parameters

is not always feasible.

Note that the connection between model averaging and ridge estimators has been established on

the basis of the orthogonal model. If we apply model averaging to the original regressors X directly, we

cannot write the resulting model averaging estimator as a GRR estimator (see (12)), especially since

X 0X +GKG0 is not a diagonal matrix. It is only through orthogonalization that the GRR estimator

(14) and model averaging estimator (20) have a common structure, i.e., a diagonal matrix multiplied

by Z 0Y . Due to the convenience it o¤ers, orthogonalization is commonly used in the ridge literature

(see Vinod and Ullah (1981)). It has also been used in recent model averaging studies (e.g., Magnus,

Powell and Prufer (2010) and Magnus, Wan and Zhang (2011)).

It is also instructive to note that if model averaging is applied to the original regressors, no direct

connection can be established for the SP estimator in (12) and the model averaging estimator since

X 0X + D is not a diagonal matrix. Additionally, the estimator for the orthogonal model is ~� =

(�+GDG0)�1Z 0y; for which no algebraic relationship with the model averaging estimator is apparent.

However, if we write model (1) as y = x0GG0� + U = z0� + U , with z0 = x0G and � = G0�, then by

using the technique of moments based on kernel density estimation with respect to (7) and (8), we can

obtain �̂ = (Z 0Z +Dz)�1Z 0Y = (� +Dz)
�1Z 0Y , where Dz is identical to D in (10) except that hj ,

the window-width for the j-th variable xj , is replaced by the window-width hjz used for the density
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estimation of the j-th variable zj : Thus, there is a direct linkage between the SP estimator applied to

the transformed population model and the model averaging estimator. However, ~�(Dz) = G0
�1
�̂ =

(X 0X +GDzG
0)�1X 0Y , which is identical to the GRR estimator except for the replacement of Dz by

K, but it is not the same as the SP estimator (X 0X +D)�1X 0Y unless X 0X +D = X 0X + GDzG
0,

i.e., they are identical only when D = GDzG
0. Although not reported here, our simulation results

show that these two di¤erent looking SP estimators yield similar risk performance. Furthermore, as

D and K are diagonal matrices, the optimal choice of K will uniquely determine the optimal choice

of Dz; in other words, kj uniquely determines hj :

4 Asymptotically Optimal Selection of Window-Width in ~�

4.1 Unbiased Estimator of Exact Risk of SP Estimator and Prediction

From (10) and (11),

~� � � = (X 0X +D)�1(X 0U �D�); (25)

which yields

(~� � �)0(~� � �) = �0D(X 0X +D)�2D� + U 0X(X 0X +D)�2X 0U � 2�0D(X 0X +D)�2X 0U: (26)

Therefore, by taking expectations on both sides of (26), we can write

R(h) = R(~�) = �0A1� + �
2trA2; (27)

where A1 = D(X 0X +D)�2D, A2 = (X 0X +D)�2X 0X and h = (h21; :::; h
2
q)
0:

Now, note that an unbiased estimator of �0A1� is

�̂
0
A1�̂ � �̂2tr(A1(X 0X)�1); (28)

where �̂2 = (Y �X�̂)0(Y �X�̂)=(n� q) is an unbiased estimator of �2. Thus, an unbiased estimator

of R(h) is

R̂�(h) = �̂
0
A1�̂ + �̂

2tr(A2 �A1(X 0X)�1): (29)

This expression can be used to �nd an optimal h. However we note that

tr(A2 �A1(X 0X)�1) = 2tr((X 0X +D)�1)� tr((X 0X)�1): (30)

Therefore, it can be veri�ed that,

R̂(h) = �̂
0
A1�̂ + 2�̂

2tr((X 0X +D)�1) (31)

= (~� � �̂)0(~� � �̂) + 2�̂2tr((X 0X +D)�1)

10



is an unbiased estimator of R(h) up to a term tr((X 0X)�1) which does not depend on h: Thus the

optimization of h based on (31) is the same as that obtained from (29).

Similarly it can be shown that an unbiased estimator of the predictive risk of ~� = X~�; E((~� �

�)0(~�� �)) = �0A3� + �2tr(A4) = R1(h); is

~R�1(h) = �̂
0
A3�̂ + �̂

2tr(A4 �A3(X 0X)�1) (32)

where � = X�; A3 = X 0(X(X 0X + D)�1X 0 � I)2X and A4 = ((X 0X + D)�1X 0X)2: Further, the

minimization of ~R�1(h) with respect to h is the same as the minimization of Mallows criterion

~R1(h) = (~�� Y )0(~�� Y ) + 2�̂2tr((X 0X +D)�1X 0X);

which is an unbiased estimator of R1(h) up to a term unrelated to h.

In the following subsections we show that h obtained by minimizing R̂(h) or ~R1(h) is asymptotically

optimal. Further, we refer ~�(h) based on R̂(h) as AOSP, and based on ~R1(h) as AOSP1:

4.1.1 Asymptotically Optimal h Using ~R1(h) (Mallows Criterion)

Let P (h) = X(X 0X +D)�1X 0: Then from 4.1:

~�(h) = X~� = P (h)Y: (33)

The squared error loss function is L(h) = (~�(h)� �)0(~�(h)��) and the corresponding risk is R1(h) =

E(L(h)): We consider the choice of h by a minimization of the following Mallows criterion from above

as:

~R1(h) = (~�(h)� Y )0(~�(h)� Y ) + 2�̂2tr(P (h)): (34)

When minimizing ~R1(h); we restrict h to the set H � Rq: Thus, the selected h is

ĥ = argminh2H ~R1(h): (35)

Let � = infh2H R1(h): We assume that

�0� = O(n); X 0U = Op(n
1=2) and n�1X 0X ! �; (36)

where � is a positive de�nite matrix, and

� !1, ��2�0� = o(1): (37)

By using conditions (36)-(37), and the proof steps of Theorem 2.2 of Zhang, Wan and Zou (2013),

we obtain the following asymptotic optimality property:

L(ĥ)

infh2H L(h)
!p 1: (38)

11



Proof of (38). Observe that

~R1(h) = (~�(h)� Y )0(~�(h)� Y ) + 2�̂2tr(P (h)) (39)

= L(h) + U 0U � 2U 0P (h)U � 2�0P (h)U + 2�0U + 2�̂2tr(P (h))

and

R1(h) = (P (h)�� �)0(P (h)�� �) + �2tr(P 2(h))

= L(h)� U 0P 2(h)U � 2(P (h)�� �)0P (h)U + �2tr(P 2(h)):

Hence to prove (38), it su¢ ces to show that

sup
h2H

j�0P (h)U j
R1(h)

= op(1); (40)

sup
h2H

jU 0P (h)U j
R1(h)

= op(1); (41)

sup
h2H

���̂2tr(P (h))��
R1(h)

= op(1); (42)

sup
h2H

��U 0P 2(h)U ��
R1(h)

= op(1); (43)

sup
h2H

j(P (h)�� �)0P (h)U j
R1(h)

= op(1) (44)

and

sup
h2H

��tr(P 2(h))��
R1(h)

= op(1): (45)

Let �(A) be the largest eigenvalue of the matrix A: From condition (37) and the following formulae:

sup
h2H

�(P (h)) � �(X(X 0X)�1X 0) = 1;

sup
h2H

tr(P (h)) � tr(X(X 0X)�1X 0) = q;

sup
h2H

U 0P (h)U � U 0X(X 0X)�1X 0U;

(�0P (h)U)2 � �0�U 0P 2(h)U � �0��(P (h))U 0P (h)U

and

((P (h)�� �)0P (h)U)2 � (P (h)�� �)0(P (h)�� �)U 0P 2(h)U � R1(h)U 0P (h)U;

we need only to show that

U 0X(X 0X)�1X 0U = Op(1); (46)

and
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�̂2 = Op(1): (47)

Equations (46) and (47) are implied by condition (36). The proof of (38) thus follows. If in addition

fL(ĥ)� �g��1 is uniformly integrable, then

R1(ĥ)

infh2H R1(h)
!p 1

4.1.2 Asymptotic Optimal h Using R̂(h)

We restrict h in a set H � Rq: So the selected h is

~h = arg min
h2H

R̂(h):

Let ~L(h) = (~�(h) � �)0(~�(h) � �) be the squared loss function and ~� = infh2H R(h); and �h =

max(h21; :::; h
2
q): We assume the following conditions

�h! 0; X 0U = Op(n
1=2); and n�1X 0X ! � where � is a positive de�nite matrix, (48)

n1=2~� !1: (49)

By using the conditions (48)-(49), we can obtain the following asymptotic optimality

~L(~h)

infh2H ~L(h)
!p 1: (50)

Proof of (50). Observe that, with ~�(h) = B(h)�̂ and B(h) = (X 0X +D)�1X 0X; from (31)

R̂(h) = (B(h)�̂ � �̂)0(B(h)�̂ � �̂) + 2�̂2tr(B(h)(X 0X)�1)

= ~L(h) + (�̂ � �)0(�̂ � �)� 2�̂
0
B0(h)(�̂ � �) + 2�0(�̂ � �) + 2�̂2tr(B(h)(X 0X)�1)

� ~L(h) + �1(h); (51)

and

R(h) = (B(h)� � �)0(B(h)� � �) + �2tr(B0(h)B(h)(X 0X)�1)

= ~L(h) + (�̂ � �)0B0(h)B(h)(�̂ � �)

�2�̂
0
B0(h)B(h)(�̂ � �) + 2�0B(h)(�̂ � �) + �2tr(B0(h)B(h)(X 0X)�1)

� ~L(h) + �2(h): (52)

From the condition (48), we have �̂�� = Op(n�1=2); which, together with the conditions (48)-(49)

leads to

sup
h2H

j�1(h)j
R(h)

= op(1) (53)

13



and

sup
h2H

j�2(h)j
R(h)

= op(1): (54)

Hence, we can obtain (50).From (50), and an additional condition that (~L(~h)� �n)��1n is uniformly

integrable, we further have

R(~h)

infh2H R(h)
!p 1: (55)

5 A Monte Carlo Study

The purpose of this section is to demonstrate via a Monte Carlo study the �nite sample properties

of GRR estimators with biasing factors obtained based on model weights of the Mallows MA (MMA)

and Jackknife MA (JMA) estimators. As mentioned previously, these MA estimators were proposed

by Hansen (2007) and Hansen and Racine (2012). We denote the corresponding GRR estimators as

GRRM and GRRJ estimators respectively.

The weights of the MMA estimator are obtained by minimizing the quadratic form (Y�Z�̂(w))0(Y�

Z�̂(w)) + 2�̂2tr(ZCZ 0), where �̂2 = (Y � Z�̂f )0(Y � Z�̂f )=(n� q) and �̂f is the OLS estimator of �

in the full model. On the other hand, the weights of the JMA estimator are determined by minimizing

the leave-one-out least squares cross-validation function CVn(w) = (Y � ĝ(w))0(Y � ĝ(w))=n, where

ĝ(w) =
PS

s=1 wsĝs, with ĝs = (ĝ1s; :::; ĝns)
0, ĝis = xs0i (X

s0

�iX
s
�i)

�1Xs0
�iY�i, and X

s
�i and Y�i being

respectively the matrices Xs (the regressor matrix of the s-th submodel) and Y with the i-th element

deleted. Following Hansen (2007), we assume that the candidate models in the model average are

nested.

Our interest is focused on the risk performance under squared error loss of estimators in terms

of the � space in the original model. For purposes of comparisons, we also evaluate the risks of the

OLS estimator, the FGRR estimator �̂j , where �̂j = �̂
2=�̂2j;f with �̂j;f being the j-th element of �̂f ,

the asymptotically optimal GRR (AOGRR) estimator, with k0js obtained by directly minimizing the

Mallows criterion (Y �Z�̂(K))0(Y �Z�̂(K))+2�̂2tr(ZBZ 0) as a function of K, and the asymptotically

optimal SP (AOSP1) estimator, with window-widths obtained by minimizing the Mallows criterion

(Section 4.1.1) (Y � Z�̂(D))0(Y � Z�̂(D)) + 2�̂2tr(ZB1Z 0) as a function of D, where �̂(D) = (� +

G0DG)�1Z 0Y = B1Z
0Y is the SP estimator and B1 = (�+G0DG)�1. When implementing the GRRM,

AOGRR, AOSP and AOSP1 estimators, we made use of a constrained optimization routine available in

R.version. 2.13.1. We used k0s from the FGRR method as the initial values for computing the AOGRR

estimator. In Section 4.1 we have shown that the optimization under the Mallows criterion is equivalent

to the optimization with respect to unbiased estimator of the predictive risk of ~�(h): Therefore, in our
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simulation, we also consider the AOSP estimator in Section 4.1.2 based on the optimization of risk of

~�(h):

Our Monte Carlo experiments are based on following data generating processes (DGP�s):

DGP1: yi =
Pq

j=1 �jxij + ei; i = 1; � � �n, with xij being iid N(0; 1); ei being iid N(0; 1) and

N(0; 25) and are uncorrelated with x0s. The same DGP was considered by Hansen (2007) in his

Monte Carlo study. We let �j = 0:7071j�3=2, and consider the following pairs of (n; q) = (50; 11) and

(150; 16). To facilitate interpretation of the SP estimates, without loss of generality, we assume the

DGP contains no intercept.

DGP2: The set-up is the same as DGP1, except xi2 is taken to be the sum of xi3; � � � ; xi50 plus

an N(0; 1) distributed error term. The regressors are thus nearly perfectly correlated.

Our analysis is based on 100 replications. We adopt the Gaussian kernel withK(�) = (2�)�1=2 exp[� 1
2�

2];

resulting in �2 = 1: Following Scott and Terrell (1987), we compute the window-widths of the SP es-

timator using biased cross-validation procedure which is based on a lightly biased estimate of mean

integrated squared error of the density estimator. They show large gains in asymptotic e¢ ciency, espe-

cially when the density is su¢ ciently smooth, compared to the least squares cross-validation procedure

based on an unbiased estimator of the mean integrated squared errors. Although we do not report

here, in our simulations too we have found that the biased cross-validation procedure performing, in

risks sense, better than the naive and AIC cross-validation window-widths. However, the optimal

window-width for density estimation may not be the same or optimal for the SP estimator of regres-

sion coe¢ cients. With this in view we have also provided AOSP1 and AOSP estimators based on the

window-widths using Mallows criterion( ~R1(h)) and R̂(h) respectively, see Section 4.
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Table 1: Risk for Each Estimator

DGP Estimators � = 1 � = 5

n = 50 n = 150 n = 50 n = 150

1 OLS 0.0251 0.0076 0.6775 0.1802

FGRR 0.0201 0.0071 0.3374 0.0974

GRRM 0.0377 0.0236 0.1065 0.0435

GRRJ 0.0373 0.0236 0.0980 0.0432

AOGRR 0.0217 0.0079 0.2591 0.0764

SP 0.0167 0.0064 0.3514 0.1248

AOSP1 0.0135 0.0046 0.2220 0.0713

AOSP 0.0126 0.0045 0.2170 0.0706

2 OLS 0.0253 0.0076 0.6846 0.1807

FGRR 0.0198 0.0072 0.3388 0.0997

GRRM 0.0341 0.0228 0.1066 0.0426

GRRJ 0.0335 0.0228 0.0979 0.0424

AOGRR 0.0212 0.0080 0.2592 0.0797

SP 0.0166 0.0064 0.3488 0.1247

AOSP1 0.0140 0.0046 0.2251 0.0704

AOSP 0.0136 0.0045 0.2157 0.0701

The simulation results reported in Table 1 show that although the SP, AOSP1 and AOSP estimators

behave well when the error variance is small, the GRRM and GRRJ are clearly the preferred estimators

when the error variance is large, and often by a large margin. This �nding is consistent with our

intuition that the large variance associated with the true model makes it di¢ cult to identify the best

model, thus making model averaging, which shields against choosing a bad model, a more viable

strategy. It is also apparent from Table 1 that FGRR and AOGRR estimators yield similar risk

performance. This is perhaps attributable to the fact that the biasing factors chosen for the FGRR

estimator are optimal in risk sense. See Vinod , Ullah, and Kadiyala (1981, p.363) and Hoerl and

Kennard (1970b, p.63). Further, we observe that values of AOSP are smaller compared to AOSP1.

This may be due to h used in the AOSP1 estimator is based on minimizing predictive risk ( ~R1(h))

instead of estimator�s risk ( ~R(h)). By comparing DGP 1 and DGP 2, we notice that when the error

variance is large, all estimators in DGP 2 deliver larger risk deductions compared to DGP 1.
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6 Empirical Applications

This section considers two empirical applications of the proposed methods. The �rst application uses

the methods as forecasting devices for excess stock returns while the second considers wage forecasts.

6.1 Forecasting Excess Stock Returns

The data for this example are taken from Campbell and Thompson (2008). The same data set was

also used by Jin, Su and Ullah (2012) and Lu and Su (2012) in their studies. This dataset con-

tains n = 672 monthly observations between January 1950 and December 2005 of Y , the monthly

excess stock returns of S&P 500 Index, de�ned as the di¤erence between the monthly stock returns

and the risk-free rate. In addition, data observations over the same period are also provided for

the following twelve regressors variables, ordered by the magnitude of their correlations with Y; as:

default yield spread, treasury bill rate, new equity expansion, term spread, dividend price ratio, earn-

ings price ratio, long term yield, book-to-market ratio, in�ation, return on equity, the one-period lag

of excess returns and smoothed earnings price ratio. We order these 12 regressors by the magni-

tude of their correlations with Y . Our model average thus contains the following 13 nested models:

f1g; f1; x1g; f1; x1; x2g:::; f1; x1; x2; :::; x12g.

Our estimation is based on n1 = 144; 180; 216, 336 and 456 observations and we use the remaining

n2 = n�n1 observations for out-of-sample forecast evaluation purpose. We measure forecast accuracy

based on the out-of-sample R2 de�ned as follows:

R2 = 1�
Pn�1

t=n1
(Yt+1 � Ŷt+1)2Pn�1

t=n1
(Yt+1 � �Yt+1)2

;

where Ŷp is the prediction of Yp based on a given forecast method and �Y is the average of Y across the

sample of the n1 observations used for estimating the model. The out-of-sample R2 is thus negative

(positive) when the forecast method yields a larger (smaller) sum of squared forecast errors than does

�Y . Table 2 reports the out-of-sample R2 based on the six estimators considered in Section 5 and the

selected n1 values. The results show that except when n1 = 180, the OLS forecasts are inferior to

forecasts based on the historical average. This is consistent with the �ndings of Welch and Goyal (2008)

for this data set, that the historical mean gives better forecasts when no restrictions are imposed In all

but one case, the FGRR, AOGRR and AOSP1 estimators are also inferior to the historical average in

terms of prediction accuracy. On the other hand, the GRRJ and GRRM model averaging estimators

result in positive out-of-sample R2 in the large majority of cases, with GRRJ being the slightly better

estimator of the two. The result based on AOSP estimator is not presented here because it does not

perform as well as AOSP1. This may be because our evaluation here is based on predictive risk instead

of risk of ~�(h):
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Table 2: Out-of-Sample R2

Estimator n1 = 144 n1 = 180 n1 = 216 n1 = 336 n1 = 456

OLS -0.0390 0.0062 -0.0434 -0.0425 -0.0208

FGRR -0.0375 -0.0369 -0.0398 -0.0610 -0.0621

GRRM 0.0408 0.0895 0.0564 0.0103 -0.0003

GRRJ 0.0692 0.1079 0.0701 0.0180 0.0020

AOGRR -0.0375 -0.0369 -0.0398 -0.0610 -0.0621

AOSP1 -0.0302 0.0195 -0.0271 -0.0170 -0.0148

6.2 Forecasting Wages

We use the data given in Wooldridge (2003) containing a cross sectional sample of 526 observations

from the U.S. Current Population Survey from year 1976. The dependent variable of interest is the

logarithm of average hourly earnings. We consider the following ten regressors, ordered according

to their correlation with the dependent variable: professional occupation, education, tenure, female,

service occupation, married, trade, SMSA, services, and clerk occupation based on their correlations

with the dependent variable. We consider model averages based on 11 nested models in the same

manner described in the last example, and n1 = 100; 200; 300; 400:.

Table 3 reports the out-of-sample R2 for the six methods.

Table 3: Out-of-Sample R2

Estimator n1 = 100 n1 = 200 n1 = 300 n1 = 400

OLS 0.4516 0.4465 0.4656 0.4450

FGRR 0.4514 0.4440 0.4658 0.4410

AOGRR 0.4509 0.4418 0.4642 0.4390

GRRM 0.3964 0.3366 0.3390 0.3644

GRRJ 0.3877 0.3357 0.3375 0.3627

AOSP1 0.4550 0.4477 0.4664 0.4470

Table 3 reports the out-of-sample R2 for the six methods. It is apparent from the results that all

six estimators yield more accurate forecasts than the historical average. However, the advantage of the

GRRJ and GRRM estimators observed in the last example does not extend to the present case, where

it is found that the FGRR, AOGRR and AOSP1 estimators all result in more accurate forecasts than

the two model averaging estimators. This can be explained by noting that R2 = :509 for the wage data

is much higher than that for the equity premium data, which is :097. Thus the standard deviation of
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errors in the wage data is much smaller compared to the standard deviation of error for the equity

premium data, and our simulations suggest that for the small standard deviation case the GRRM and

GRRJ estimators are outperformed by other estimators considered. This is also the reason why in

the equity premium data, the GRRM and GRRJ estimators prevail since the standard deviation for

this data set is much higher. Of the two model averaging estimators, the GRRM estimator is slightly

preferred to the GRRJ estimator.

7 Conclusions

We have proposed a new SP estimator of regression coe¢ cients which is in the form of the GRR

estimator of Hoerl and Kennard (1970b). However, in contrast to the GRR, the biasing factors in

our SP estimator are easily implemented by the window-width and the second moment of the kernel

function used in the kernel density estimation. The selection of window-width that minimizes Mallows

criterion(predictive risk) as well as estimator�s risk are also proposed. We also show that the GRR

estimator is in fact a model average estimator, and there is an algebraic relationship between the

biasing factors of GRR and SP estimators and the model average weights. Naturally, the SP and GRR

estimators that select the biasing factors based on this relationship have the same properties as the

corresponding model average estimator. This is an interesting �nding for the future application and

interpretations of the SP and GRR estimators. Our Monte Carlo results demonstrate that some of the

recently introduced weight choice strategies for model averaging can result in more accurate estimators

than the well-known FGRR and OLS estimators over a wide range of parameter space.
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