
Testing for Neglected Nonlinearity Using Artificial Neural Networks

with Many Randomized Hidden Unit Activations∗

Tae-Hwy Lee†, Zhou Xi‡, and Ru Zhang§

Department of Economics
University of California, Riverside

August 2012

Abstract

This paper makes a simple but previously neglected point with regard to an empirical application
of the test of White (1989) and Lee, White and Granger (LWG, 1993), for neglected nonlinearity in
conditional mean, using the feedforward single layer artificial neural network (ANN). Because the ac-
tivation parameters in the hidden layer are not identified under the null hypothesis of linearity, LWG
suggested to activate the ANN hidden units based on the randomly generated activation parameters.
Their Monte Carlo experiments demonstrated the excellence performance (good size and power), even if
LWG considered a fairly small number (10 or 20) of random hidden unit activations. However, in this
paper we note that the good size and power of Monte Carlo experiments are the average frequencies
of rejecting the null hypothsis over multiple replications of the data generating process. The average
over many simulations in Monte Carlo smooths out the randomness of the activations. In an empirical
study, unlike in a Monte Carlo study, multiple realizations of the data are not possible or available. In
this case, the ANN test is sensitive to the randomly generated activation parameters. One solution is
the use of Bonferroni bounds as suggested in LWG (1993), which however still exhibit some excessive
dependence on the random activations (as shown in this paper). Another solution can be to integrate
the test statistic over the nuisance parameter space, for which however, bootstrap or simulation should
be used to obtain the null distribution of the integrated statistic. In this paper, we consider a much
simpler solution that is shown to work very well. That is, we simply increase the number of randomized
hidden unit activations to a (very) large number (e.g., 1000). We show that using many randomly gen-
erated activation parameters can robustify the performance of the ANN test when it is applied to a real
empirical data. This robustification is reliable and useful in practice, and can be achieved at no cost as
increasing the number of random activations is almost costless given today’s computer technology.
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1 Introduction

This paper revisits the test of White (1989) and Lee, White and Granger
(LWG, 1993), for neglected nonlinearity in conditional mean using the feed-
forward single layer arti�cial neural network (ANN). The advantage to use
ANN model to test nonlinearity is that the ANN model inherits the �exibil-
ity as a universal approximator of unknown functional form. The ANN test
is designed to use the predictive ability of the ANN hidden layer activations,
which may be neglected in linear models. Because the estimation of the ANN
model is often di¢ cult and the activation parameters in the hidden layer are
not identi�ed under the null hypothesis of linearity, LWG suggested to acti-
vate the ANN hidden units based on the randomly generated neural network
activation parameters. LWG considered only a small set of random activation
parameters (limited by the computing power two decades ago). Nevertheless,
their Monte Carlo experiment demonstrated the excellent performance of the
ANN test in size and power. The ANN test has been cited in numerous papers
as a benchmark method in the literature on testing neglected nonlinearity.
However, in this paper, we note that the size and power of any Monte

Carlo experiments are the empirical average frequencies of rejecting the null
hypothesis, when the null hypothesis is true (size) or when the null is not true
(power), over many Monte Carlo replications of the data generating process
(DGP). Unlike in a Monte Carlo study where the data are replicated multiple
times, an empirical study has only one realized sample. When the ANN test is
applied to one realized sample, its performance is largely a¤ected by the ran-
domly generated activation parameters. Applying the test to a particular real
data amounts to one single Monte Carlo replication. In this paper we show that
a small set of random activation parameters will make the performance of the
ANN test quite random. This was not noticed in LWG (1993) and any other
papers that have studied the ANN test, perhaps because most of these studies
compare the performance in Monte Carlo where the performance is measured
in average rejection over many replications. We will show that, when a real
data is tested by the ANN test, a small number of random activations makes
the ANN test quite unstable and sensitive to the random activations. Interest-
ingly, however, we will also show that increasing the number of the randomly
generated activation parameters can robustify the performance of the ANN
test when it is applied to a single real data set. This robusti�cation is impor-
tant and useful in practice, which can be achieved at no cost as increasing the
number of random activations is almost costless given the computer technology
available today.
The rest of the paper is organized as follows. Section 2 reviews the ANN



test with randomized hidden unit activations. In Section 3, we examine the
ANN test with Monte Carlo to con�rm the LWG�s results on the excellent
size and power of the randomly activated ANN test. In Section 4, for each
simulated series, we point out a problem of the randomized ANN test when the
number of randomized activations is small and then show that this problem can
be easily resolved by simply increasing it to a very large number of randomized
activations. In Section 5 we repeat what we have done in Section 4 using actual
economic data. Section 6 concludes.

2 The ANN Test

The linear-augmented single hidden-layer feedforward ANN model has the fol-
lowing architecture:

yt = f(xt; �) + "t := x
0
t�+

qX
j=1

�j (x
0
t
j) + "t; (1)

where t = 1; : : : ; n; xt = (x1t; : : : xk;t)
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j1; : : : ; 
j;k)
0 for j = 1; : : : ; q; and  (�) is an acti-

vation function.1 An example of the activation function is the logistic function
 (z) = (1 + exp(z))�1. � is a column vector of connection strength from the
input layer to the output layer; 
j is a conformable column vector of connection
strength from the input layer to the hidden units, j = 1; : : : ; q; �j is a (scalar)
connection strength from the hidden unit j to the output unit, j = 1; : : : ; q;
and  is a squashing function (e.g., the logistic squasher) or a radial basis
function. Input units x send signals to intermediate hidden units, then each
of hidden unit produces an activation  that then sends signals toward the
output unit. The integer q denotes the number of hidden units added to the
a¢ ne (linear) network.
Hornik, Stinchcombe and White (1989, 1990) show that neural network

model in (1) is a nonlinear �exible functional form being capable of representing
arbitrarily accurate approximations to any mappings. White (1990) andWhite
and Wooldridge (1991) show that these approximations are learnable (i.e.,
consistently estimable) by proper control of the growth of network complexity
q as network experience accumulates (i.e., the sample size n grows). While they
give theoretical results for controlling the growth rate of q as a function of n; the
proper rate depends critically on the dependence properties of (yt x0t)

0 which
makes a choice of the growth rate for network complexity not immediately

1�a := b�means that a is de�ned by b; while �a =: b�means that b is de�ned by a.



obvious. As a referee pointed out it would be desirable if we could give some
guidance on the adaptive choice of q: Unfortunately, to date there is no uni�ed
theory on this rate. See Chen (2007, p. 5575) for more discussion. While
White (1990, p. 538) gave some guidelines on the choice of q for di¤erent n
and di¤erent dependence properties, he recommended to use cross-validation
to choose q in estimating ANN models in practice. This paper, however, deals
with testing for neglected nonlinearity in a linear model without having to
estimate the nonlinear ANN model. The main purpose of this paper is about
the choice of q in using the ANN model for testing whether �j�s are all zero.
As we do this with the randomization of 
j�s and then we take a small number
of their principal components, a very large q; even larger than n; may be used
and may be more desirable as examined in Sections 4 and 5.
To test whether the process yt is linear in mean conditional on xt, we

consider the following null and alternative hypotheses

H0 : Pr[E(ytjxt) = x0t��] = 1 for some �� 2 Rk

H1 : Pr[E(ytjxt) = x0t�] < 1 for all � 2 Rk

When the null hypothesis is rejected, a linear model is said to su¤er from
neglected nonlinearity. White (1989) and LWG (1993) developed a test for
neglected nonlinearity likely to have power against a range of alternatives
based on ANN models. See also Teräsvirta et al (1993) and Teräsvirta (1996)
on the neural network test and its comparison with other speci�cation tests.
The neural network test is based on the activations of �phantom�hidden units
 (x0t
j) ; j = 1; : : : ; q. That is,

H0 : E[ (x
0
t
j) "t] = 0; j = 1; : : : ; q; (2)

or
E (	t"t) = 0; (3)

where 	t := ( (x0t
1) ; : : : ;  (x
0
t
q))

0 is a phantom hidden unit activation
vector and "t is the error term from the two layer a¢ ne network yt = x0t�+ "t
(with q = 0). Evidence of correlation of "t with 	t is evidence against the
null hypothesis that yt is linear in conditional mean. If correlation exists,
augmenting the linear network by including an additional hidden unit with
activations 	t would permit an improvement in network performance. Thus
the tests are based on the sample correlation of a¢ ne network errors with
phantom hidden unit activations,

n�1
nX
t=1

	t"̂t = n�1
nX
t=1

	t(yt � x0t�̂); (4)



where �̂ is least squares estimator of �: Under suitable regularity conditions
it follows from a central limit theorem that n�1=2

Pn
t=1	t"̂t

d! N(0;W ) as
n ! 1, and if one has a consistent estimator for its asymptotic covariance
matrix, say Ŵn, then an asymptotic chi-squared statistic can be formed as 

n�1=2
nX
t=1

	t"̂t

!0
Ŵ�1
n

 
n�1=2

nX
t=1

	t"̂t

!
d! �2q: (5)

It is well known that the ANN models are generally hard to estimate and
su¤er from possibly large estimation errors which can adversely a¤ect their
ability as a general approximator. To alleviate the estimation errors of the
ANN, it is useful to note that, for given values of 
j�s, the ANN is linear in
x and the activation functions 	 and therefore (�0; �0) can be estimated from
the linear regression once (
1; : : : ; 
q) have been given. The LWG�s (1993) ap-
proach is to use a set of randomly generated (
1; : : : ; 
q). The additional hidden
unit activation functions 	t (
1; : : : ; 
q) are hidden (or phantom) because they
do not exist under the null hypothesis. The (
1; : : : ; 
q) are randomly gener-
ated in testing because they are nuisance parameters not identi�ed under the
null hypothesis.
This approach is shown to have excellent size and power properties from

Monte Carlo simulation and has been used in many subsequent nonlinear test-
ing papers as a benchmark method in comparison. However, it is not noted in
the literature that the LWG�s excellent performance even with a small number
(q = 10; 20) of the randomized phantom activations is in terms of the Monte
Carlo size and power. The good size and power in Monte Carlo experiments
are the average frequencies of rejecting the null hypothesis over multiple repli-
cations of the data generating process (DGP). The averaging in Monte Carlo
smooths out the randomness of the test result in each replication. However, in
an empirical application, unlike in a Monte Carlo study, multiple realizations
of the data are not possible or available. In this case, the ANN test is sensitive
to the randomly generated activation parameters and its performance is gener-
ally unstable. When applying to real data, this randomness problem resulted
from using di¤erent sets of randomized activation parameters (
1; : : : ; 
q) may
lead to inconsistent conclusions.
One solution is the use of Bonferroni bounds of the p-values of the test

statistics that are computed from m randomizations of the activation parame-

ters
�


(i)
1 ; : : : ; 


(i)
q

�m
i=1

; as suggested in LWG (1993). However, the Bonferroni

bounds still exhibit dependence on the randomized activations when q is small
(as shown later in Table 3 of Section 5).



Another solution is to integrate the test statistic over the nuisance pa-
rameter space of (
1; : : : ; 
q) : However, this approach requires bootstrap or
simulation to obtain the null distribution of the integrated statistic (more on
this in Section 4).
In this paper, we show a much simpler solution. That is to increase the

number of randomized hidden unit activations to a (very) large number (e.g.,
1000). We show that �many�randomly generated activation parameters can
robustify the performance of the ANN test when it is applied to a real empirical
data. It also makes the Bonferroni bounds tighter (as shown in Section 5). We
will demonstrate this in the remaining sections of the paper in Monte Carlo and
in empirical applications. While this proposal may sound trivial, no previous
papers have noted this problem. It is partly because all studies were able to
show the excellent performance via Monte Carlo simulations with a small q
and also because it was di¢ cult to compute the singular value decomposition
of a q � q matrix for a large q (to compute the principal components). It was
1989 when LWG (1993) conducted their Monte Carlo on an IBM 286 PC. The
set of randomly selected parameters (
1; : : : ; 
q) should be large enough so that
it can be dense and make the ANN an universal approximator. A large set
of 
�s (i.e., large q) enables

Pq
j=1 �j (x

0
t
j) to capture the maximal nonlinear

structure. We will show that the proposal of increasing q in fact provides a
practically useful, powerful, and cheap solution to the randomness of random
activations. The robusti�cation is stable and reliable, and thus enables the
ANN test to be employed in autopilot in its applications.
A large number q of random activation parameters (
1; : : : ; 
q) will make

the activation functions  (x0t
j) collinear with each other over j = 1; : : : ; q and
with xt. Thus LWG (1993) conducted a test on q� < q principal components
of 	t not collinear with xt; denoted 	�t : The key to the success with the large
number of randomized network activations is the regularization of the network
performance by principal components for dimensionality reduction. The ANN
test takes two steps, randomization and regularization.
Then LWG employed the asymptotically equivalent test statistic (under

conditional homoskedasticity) which avoids explicit computation of Ŵn

Tn (q; q
� j 
1; : : : ; 
q) := nR2

d! �2q� ; (6)

where R2 is uncentered squared multiple correlation from a standard linear
regression of "̂t on 	�t and xt: This test is to determine whether or not there
exists some advantage to be gained by adding hidden units to the a¢ ne net-
work. In this paper, while we consider two values of q (small and very large),
we �x q� = 3 to simplify our presentation. Di¤erent values of q� do not a¤ect



the conclusions of this paper. Therefore the test statistic will be henceforth
denoted as Tn (q; 3 j 
1; : : : ; 
q) =: Tn (q j 
1; : : : ; 
q) or simply Tn(q).
In Section 3, we conduct a Monte Carlo to show the ANN test has good size

and power even with a small q = 20. The size and power from Monte Carlo
do not tell the problem discussed above from using a small q: To see the prob-
lem, we conduct a di¤erent Monte Carlo, in Section 4. Only one realization (to
mimic an empirical study) of fytgn=200t=1 which is linear in mean is generated, for

which the ANN statistic Tn
�
q j 
(i)1 ; : : : ; 


(i)
q

�
and its p-value Pi are computed

fromm di¤erent randomly generated activation parameters
�


(i)
1 ; : : : ; 


(i)
q

�m
i=1

:

We show that the ANN statistic with a small number (q = 20) of randomized
phantom activations exhibits large variation over i = 1; : : : ;m, while it be-
comes stable with a very large number (q = 1000) of randomized phantom
activations. Hence, we can improve and robustify the ANN test by simply in-
creasing q (say, from 20 to 1000). Section 5 demonstrates this with the �ve US
monthly economics time series. In practice, we suggest to choose q as large as
possible provided the computational ability permits. This is because a larger
q will stabilize the p-values. Since we take the principle components of the
activation functions, we can allow q to be even larger than the number of ob-
servations n. In our simulations and empirical experiments, for a moderately
large data (with n around 200), choosing q to be 1000 leads to good results.

3 Small q vs. Large q in Monte Carlo Size and
Power

The purpose of this section is to con�rm the result of LWG (1993) that Monte
Carlo studies will show excellent performance of the ANN test in terms of
size and power, computed from 1000 Monte Carlo replications. To generate
data we use the following DGPs, all of which have been used in the related
literature. Two blocks of DGP are considered in this section: the �rst block
has DGPs using the univariate autoregressive time series of yt with one lagged
endogenous input yt�1; the second block includes cross-sectional networks with
two exogenous inputs x1t and x2t which follow a bivariate normal distribution.
To see the sensitivity of the test statistic under conditional heteroskedasticity,
we also consider ARCH(1) and GARCH(1,1) processes for AR in Block 1. All
DGPs below ful�l the conditions for the investigated testing procedures. For
those regularity conditions and moment conditions, see White (1994, Chapter
9) for the ANN tests. All the error terms "t below are i.i.d. N(0; 4). 1(�) is an



indicator function which takes one if its argument is true and zero otherwise.
The index t = 1; : : : ; n with n = 200 being the sample size.

Block 1 (Time-series data generating processes)

1. Autoregressive (AR)
yt = 0:6yt�1 + "t

2. Threshold autoregressive (TAR)

yt =

(
0:9yt�1 + "t if jyt�1j � 1
�0:3yt�1 + "t otherwise

3. Sign autoregressive (SGN)

yt = sgn(yt�1) + "t

where sgn(yt�1) = 1 (yt�1 > 0)� 1 (yt�1 < 0) :

4. Nonlinear autoregressive (NAR)

yt =
0:7jyt�1j
jyt�1j+ 2

+ "t

5. Markov regime-switching (MRS)

yt =

(
0:6yt�1 + "t if St = 0

�0:5yt�1 + "t if St = 1

where St follows a two-state Markov chain with transition probabilities
Pr(St = 1jSt�1 = 0) = Pr(St = 0jSt�1 = 1) = 0:3.

Block 2 (Cross-sectional data generating processes):
Assume x1t, x2t follow a bivariate normal distribution ofN (�1; �2; �21; �

2
2; �)

with �1 = �2 = 0; �1 = �2 = 1; and � = 0 or 0:7. We have the following three
cases:

1. Linear
yt = 1 + x1t + x2t + "t



2. Interaction
yt = 1 + x1t + x2t + 0:2x1tx2t + "t

3. Squared
yt = 1 + x1t + x2t + 0:2x

2
2t + "t

In the simulations of the ANN test, LWG chose q equal to 10 or 20 and
q� equal to 2 or 3 in di¤erent DGPs, and the sample size of 50, 100, and 200.
Moreover, they dropped the �rst largest principle component of  (x0t
j) to
avoid the multicollinearity problem. In our paper, for the simulation results,
we tried both the case with dropping the �rst principle component and without
dropping the �rst principle component, the results were similar. So we keep
the original LWG method to drop the �rst principal component for the LWG
test in this paper. The information set is xt = yt�1 for Block 1 and xt = (xt1
xt2)

0 for Block 2.
In practice, we need to generate 
�s carefully so that x0t
j is within a

suitable range. If 
�s are chosen to be too small then activation functions
 �s are approximately linear in x, and we want to avoid this situation since
they can not capture much nonlinearity; if 
�s are too large the activation
functions  �s will take values close to 0 or 1 (their minimum or maximum
values), and we want to avoid this situation as well. The logistic squasher
 (x0
j) = [1 + exp (�x0
j)]�1 is used with 
j being generated from the uni-
form distribution on [�2; 2] and yt; xt being rescaled onto [0; 1].
Bierens (1990) suggested an alternative randomization method for obtain-

ing a �2 limiting distribution. Following theorem 4 in Bierens (1990) and
applying to our context, suppose 
0 is a point in the q-dimension � space.
Let 
̂ = argmax
2� T̂ (
), where T̂ (
) is a consistent estimator of the statistic
in equation (5). For some real numbers � > 0 and � 2 (0; 1), let ~
 = 
0 if
T̂ (
̂)� T̂ (
0) � �n�, otherwise ~
 = 
̂. Then under H0, T̂ (~
) has a �2 distrib-
ution. However, this result has some drawbacks. Firstly, the choice of ~
 may
be sensitive to the real numbers � and �. Secondly and more importantly, the
choice of ~
 depends on a q-dimensional maximization problem. If we choose
q to be too small, say 3, then the activation functions may not perform well
as a universal approximator. If we choose q to be moderately large like 10,
then it will be very di¢ cult to �nd the global maximum. Although theorem 5
in Bierens (1990) is more practical, it still requires the chosen sequence to be
dense in the � space and the required number of 
�s in the chosen sequence will
explode exponentially as q increases. This motivates us to use the principle
components of the activation functions rather than the activation functions



themselves in our statistics, and just simply generating a large number of 
�s
randomly from uniform distribution.
In generating 
j randomly from the uniform distribution on [�2; 2]; we

did it in two di¤erent ways in our Monte Carlo experiment, namely by newly
generating them for each replication or by �xing one same set of randomly
generated 
j for all replications. To compare the test results using randomized
and �xed hidden units across replications, we report the Monte Carlo results
using two methods to generate the 
�s in Panels A and B of Table 1.
Table 1A reports the size and power for the ANN test with q = 20 and

q = 1000 using uniformly randomized generated hidden units across replica-
tions. The numbers in the tables are the rejection frequencies under the null
hypothesis at 5% and 10% levels. It is seen that both Tn(20) and Tn(1000)
have good size. The power for both are similar. Hence, Tn(q) with small q and
large q behaves equally well in size and power.
Figure 1 shows the Monte Carlo distribution of the test statistic Tn(q)

from the 1000 Monte Carlo replications with the sample size n = 200. The
three �gures in the left panel are for Tn(20), and the three �gures in the right
panel are for Tn(1000): The solid line shows the asymptotic distribution, �23.
All three DGPs in Figure 1 are linear in mean. Figure 1 con�rms the size
result of Table 1, showing that both Tn(20) and Tn(1000); despite the very
di¤erent numbers of phantom activations, have the �nite sample distributions
very close to the asymptotic �23 distribution. These �ndings hold for all three
DGPs under the null �AR, Linear(� = 0); and Linear(� = 0:7); that are linear
in mean.
Table 1B repeats Table 1A using �xed hidden unit activations. In Table

1B, we generate 
j from U [�2; 2] and �x it across all 1000 replications. The
results are similar to those in Table 1A �the size and power of Tn(20) and
Tn(1000) are equally good. From Tables 1A, 1B we see that both randomly
generated and �xed 
�s provide good size. For power, when 
�s are �xed, we
see increasing power as we increase q from 20 to 1000 for Block 1. But for
Block 2, the performance is similar. In general, �xed 
�s can not beat randomly
generated 
�s in terms of power.
We also examine the possible e¤ect of the conditional heteroskedasticity on

the test. The AR in Block 1 is modi�ed to have conditionally heteroskedastic
errors as follows:

AR-ARCH : yt = 0:6yt�1 + "t; h2t = E("2t jyt�1) = 0:9 + 0:1"2t�1 (7)

AR-GARCH : yt = 0:6yt�1 + "t; h2t = E("2t jyt�1) = 0:1 + 0:1"2t�1 + 0:8h2t�1
(8)

In the cases when the errors are conditionally heteroskedastic, the test statistic



in (6) is not valid. We use the test statistic in equation (5) with 	t replaced by
	�t and a corresponding consistent covariance matrix used. The test statistic
has a valid asymptotic distribution of �2q�. Table 1C reports the size of the test
statistic, which is very close to the nominal size. The good size and good power
of the randomized ANN tests under conditional homoskedasticity presented in
Table 1A and Table 1B are not a¤ected under conditional heteroskedasticity
when the heteroskedasticity-robust statistics are employed as shown in Table
1C.
Table 1 and Figure 1 are in line with the known results in the literature

showing outstanding properties of the ANN test even using a very small num-
ber of randomized hidden activations. These results do not show any di¤erence
in Tn(20) and Tn(1000); and thus they do not reveal some hidden problem of
using a small number of randomized hidden activations.
In the next two sections, we show apparent di¤erence in Tn(20) and Tn(1000).

The main �nding is that the ANN test with a small q; say Tn(20); is not reliable
to use in practice as it exhibits substantial variation to the random activations,
while the ANN test with a large q; say Tn(1000); is quite robust to the ran-
domized activations as the large number of random activation is more dense
in the nonlinear function space and thus reduces the variation of the statistic
substantially.
To demonstrate the advantage of increasing q; we �rst conduct a Monte

Carlo experiment again, in Section 4, but with only 5 replications for each
DGP (rather than taking average over 1000 replications). We next apply
Tn(20) and Tn(1000) to �ve monthly economic time series in Section 5 to show
the advantage of Tn(1000) over Tn(20).

4 Small q vs. Large q in Sensitivity to Ran-
domized Hidden Unit Activations

The simulation results reported in LWG (1993) and also in the previous section,
show that the LWG has proper size and good power. However there is a hidden
problem of the ANN test with small q. That is when q is small, the statistic
and the corresponding p-value are sensitive to the randomized hidden unit
activations.
Consider a sample fytgn=200t=1 for which the ANN statistic Tn

�
q j 
(i)1 ; : : : ; 


(i)
q

�
and its p-value Pi are computed from m di¤erent randomly generated activa-

tion parameters
�


(i)
1 ; : : : ; 


(i)
q

�m
i=1

: Even if we use one same sample, it is pos-

sible that we sometimes get a small statistic and fail to reject the null for some



i, while other times we get a statistic large enough to reject the null for other
i. Thus we may draw contradictory conclusions because of this sensitivity. As
a result, the ANN test with small q can not be applied to empirical data and
we need a solution to this problem.
We can deal with this problem in the following three ways. One approach

is Teräsvirta, Lin and Granger (1993), who use a Taylor series expansion of
the ANN function f(xt; �) in (1) to write it into a parametric nonlinear ap-
proximation, and compare the estimated model with a linear model by the
Wald test or LR test. The second approach is to generate (
1; : : : ; 
q) ran-
domly from their parameter space � and integrate the statistic over � with
a certain weight function � (
1; : : : ; 
q). This is to take a weighted average
ANN statistic over the nuisance parameter space. The asymptotic theory has
been established. But implementing this will require either the tabulation
of the asymptotic distribution via simulation as it involves the integration of
the Gaussian process or the use of bootstrap. Bierens (1982), Bierens (1990),
Bierens and Ploberger (1997), and Härdle and Mammen (1993) take the sta-
tistics integrated over the nuisance parameter space. Corradi and Swanson
(2002) use this method to test for nonlinear Granger-causality in out of sam-
ple. Alternative to taking the average of the statistic over nuisance parameter
space �, Rossi and Inoue (2012) take the maximum of the statistic over � and
Hansen and Timmermann (2011) take the minimum p-value over �. Their
methods are in essence the same because of the one-to-one mapping between
the statistic and the p-value. The asymptotic distributions of these statistics
are integrals of Brownian motion. To obtain the correct critical value we need
to either use bootstrap or follow the conditional p-value approach of Hansen
(1996). Both methods are not easy to use so we turn to seek a simple and
practical solution to the nuisance parameter problem.
This paper considers an obvious approach, the third approach, which is

to increase q to a very large number. To compare how the ANN test works
for small q and large q, we simulate a sample fytgn=200t=1 using DGP �Linear�
in Block 2 with x1 and x2 following a bivariate normal distribution with cor-
relation � = 0:7. Then we generate m = 100 di¤erent randomly generated

activation parameters
�


(i)
1 ; : : : ; 


(i)
q

�m=100
i=1

; with which the ANN test statistic

Tn

�
q j 
(i)1 ; : : : ; 


(i)
q

�
and its p-value Pi are computed. We plot the histogram

of the p-values and statistics with q = 20 or 1000 in Figure 3.
When q = 20, the p-values range from 0:0806 to 0:6719 for i = 1; : : : ;m =

100 (Figure 2a). We observe three of the 100 p-values are less than 0:10,
which means in these three cases we incorrectly reject the null hypothesis



at 10% level. When we increase q to 1000 the p-values range from 0:2784
to 0:4567, all above the 10% level (Figure 2b). From these experiments we
conjecture that if q is large enough, the p-value will be concentrated to a small
area or even converge to a point. The sample variances of the p-values are
0:0255 and 0:0013 for q = 20; 1000 respectively. We also plot histograms of

the m test statistics
n
Tn

�
q j 
(i)1 ; : : : ; 


(i)
q

�om=100
i=1

with q = 20 (Figure 2c) and

q = 1000 (Figure 2d). Since there is one-to-one mapping between the test
statistic and the p-value, we shall see the similar pattern in the test statistic
when q increases.
Table 2 reports the range and standard deviation (SD) of the p-values of

Tn(q) for m = 100 randomized hidden unit activations. For each DGP, we
report the results for 5 replications. For each replication, we conduct testing
with m randomized hidden unit activations. Comparing the range and SD
of the p-values for q = 20 and q = 1000, we �nd that when q increases
the range of p-value gets tighter and SD gets smaller, which makes the test
outcome more stable over the m randomizations of 
j�s. When the DGP
has an ARCH error tighter range and smaller SD are also found across all 5
replications as q increases from 20 to 1000. The results for AR-GARCH is not
reported here since it is similar to the AR-ARCH case. Hence, increasing q
makes the randomized ANN test more stable as well even under conditional
heteroskedasticity.
Both Figure 2 and Table 2 show that increasing q is a good solution to the

problem caused by randomizing the activation parameters. While the ANN
statistic with a small number (q = 20) of randomized phantom activations
exhibits large variation over i = 1; : : : ;m, it becomes stable with q = 1000:We
can robustify the ANN test and reduce its sensitivity to the randomization of

�s by simply increasing q.

5 Small q vs. Large q in Applications

In this section, we compare Tn(20) and Tn(1000) for the same �ve monthly
US economic time series used in LWG (1993) with updated time period from
1990:1 to 2011:12 with n = 264. The �ve series are US/Japan exchange rate
(EX); US three-month T-bill interest rate (INT); US M2 money stock (M2);
US personal income (PI), and US unemployment rate (UNE). We have made
the same transformation as in LWG (p. 287), by taking logarithms and/or the
�rst di¤erencing, to ensure stationarity.
For each fytgn=264t=1 of these �ve series, we �t a linear AR(1) model un-



der H0; so that the ANN has one input xt = yt�1. The ANN statistic

Tn

�
q j 
(i)1 ; : : : ; 


(i)
q

�
and its p-value Pi are computed from m randomly gen-

erated activation parameters
�


(i)
1 ; : : : ; 


(i)
q

�m
i=1

: Table 3 reports the p-values

fPig with i = 1; : : : ;m = 20. Table 3 also reports the Hochberg�s (1988) Bon-
ferroni bound HB(m) and the Simple Bonferroni bound SB(m); both to be
de�ned below, computed using the �rst m p-values (with m = 5; 20). Figure
3 presents the histograms of the p-values fPigm=100i=1 :
For exchange rate and unemployment rate data, both the Tn(20) and

Tn(1000) give consistent results among 20 times of tests. So with both q =
20; 1000, the null hypothesis of linearity is not rejected for exchange rate in all
20 p-values, but it is clearly rejected for unemployment rate by the ANN test
using all m = 20 randomized hidden unit activations. However, for personal
income PI, using Tn(20) will give 2 times of failure of rejection in 20 randomized
neural network activations, while using Tn (1000) test, we reject the linearity
using all 20 randomizations. For the M2 series, using Tn(20) and Tn(1000) will
give us contradicting conclusions, as Tn(20) rejects the null hypothesis 8 times
out of 20 and Tn(1000) rejects linearity in all 20 statistics. In this case, using
Tn(1000) yields more reliable result. For the interest rate INT, both Tn(20)
and Tn(1000) give some uncertainty in the results in the sense that there are
3 or 4 times of failure of rejection out of the total 20 randomized activations.
To examine this case further, we further increase q. The results (not shown in
the table) show that when q increased to 2000, we can get 19 times of rejection
out of 20. For INT, if q = 1000, some p-values are greater than 10% and some
are even greater than 20%. But if q = 2000, all p-values are below 10% except
one that is only slightly above it.
Table 3 reports the p-values for Tn(20) and Tn(1000) with m = 20 di¤erent

randomly generated hidden unit activation parameters
�


(i)
1 ; : : : ; 


(i)
q

�m
i=1
. A

low p-value suggests a rejection of the null hypothesis of linearity in conditional
mean. Since the tests may not give consistent results over the di¤erent random-
ized activations, we use Bonferroni bounds on the p-value as a reference value.
Let fP1; :::; Pmg be the p-values of m di¤erent randomized activations, and let�
P(1); :::; P(m)

	
denote the ordered p-values from the smallest to the largest.

Then the Bonferroni inequality leads to rejection of the null hypothesis at level
� if P(1) � �=m, so we call SB(m) := mP(1) the Simple Bonferroni bound.
One disadvantage of the Simple Bonferroni bound is that it is too conservative
when m is large. Hochberg (1988) modi�ed the rejection rule to reject the null
hypothesis if there exists an i such that P(i) � �=(m� i+ 1); i = 1; :::;m. We
call HB(m) := mini=1;:::;m(m� i + 1)P(i) the Hochberg Bonferroni bound. In



Table 3, reported are SB(m) and HB(m) with m = 5; 20.
A disadvantage of the Simple Bonferroni bound is that it could be larger

than 1, especially when m is large. The Simple Bonferroni bound is more
sensitive to q than the Hochberg Bonferroni bound. Comparing Bonferroni
bounds over q = 20; 1000; the Hochberg Bonferroni bounds form = 5 andm =
20 are close for Tn(1000), but the di¤erence between the two boundsHB(5) and
HB(20) is larger for Tn(20). Hence, increasing the number of the randomized
hidden activations not only makes the ANN test more robust but also the
Bonferroni bounds tighter. From the formula HB(m) := mini=1;:::;m(m � i +
1)P(i), it is easy to see that, when q is large, the Hochberg Bonferroni bound
tend to be the maximum p-value HB(m) � P(m) since the p-values tend to be
concentrated to a small region as discussed in the previous section (Table 2
and Figure 2). However, when q is small, the Hochberg Bonferroni bound may
give inconsistent conclusion according to di¤erent values of m. For instance,
for the money stock M2 series, for Tn(20), we do not reject linearity when
m = 5 at 10% level, yet we reject linearity when m = 20 at 10% level. And in
this case, we can reject linearity using Tn(1000) with both m = 5 and m = 20.
Thus the Hochberg Bonferroni bound is preferred to the Simple Bonferroni
bound. Moreover, if we use Tn(1000) instead Tn(20), we can take a smaller
value of m and get reliable conclusion.
The reported numbers in the last part of Table 3 are the rejection fre-

quency in these m = 20 p-values that are less than 0.10 (at 10% level),
REJ = 1

m

Pm=20
i=1 1(Pi � 0:10). To compare the rejection frequency using

di¤erent approaches, we compare the rejection frequency using the Bonferroni
approach to the False Discovery Rate (FDR) of Storey (2003) and Benjamini
and Hochberg (1995). The results are reported in the last two rows of Table
3. REJ-B is the rejection frequency using the Bonferroni approach, where
REJ-B =

Pm=20
i=1 1(Pi � 0:10

20
). REJ-FDR is the rejection frequency using

FDR, where REJ-FDR =
Pm=20

i=1 1(P(i) � 0:10i
20
). Note that, using the Bonfer-

roni approach we get fewer times of rejection for interest rate for both q = 20
and q = 1000, while for individual test, we can reject most of the time. This
problem can be solved if we use FDR. The results show that FDR can improve
the power of the test for all the series. Storey (2003) pointed out that the
positive False Discovery Rate (pFDR) could improve the power of FDR when
the number of tests is large. In our study we �nd the rejection frequency of
pFDR depends heavily on the choice of tuning parameter. As we get good
power for our data with FDR, we do not report the results with pFDR here.
In addition to Table 3 for which 20 p-values (withm = 20) are used, we also

experiment this with m = 100 random draws of the hidden unit activations



and 100 p-values are presented in Figure 3. For all �ve economic time series,
the p-values tend to get concentrated at a narrow region or even converge to a
single value when q = 1000 compared with q = 20. For M2 data, the p-values
of Tn (20) range widely from 0 to 1 and close to 1 for around 40 times among
the 100 p-values, while all the 100 p-values of Tn (1000) are near zero. For
personal income, when q = 1000, we can get rejection among all 100 times of
tests while when q = 20, we cannot reject for around 10 times of tests. For
interest rate INT as REJ becomes 19

20
when we experiment it with q = 2000

(not shown). These results clearly indicate that choosing a large q = 1000 can
give more stable conclusion compared with choosing a small q = 20:

6 Conclusions

In this paper, we revisit the ANN-based test statistics for neglected nonlin-
earity in conditional mean. The ANN test has a set of nuisance parameters
that are not identi�ed under the null hypothesis. As the nuisance parameters
are identi�ed only under the alternative, the alternative ANN model can be
estimated to form a Wald-type test statistic. However, the estimation of the
ANN models are known to be di¢ cult and the estimated models are often
contaminated by large estimation errors. To avoid the estimation of the ANN
models, LWG (1993) suggested a noble test in a Lagrange multiplier (LM)
test framework for which the ANN model under the alternative hypothesis
needs not be estimated. As suggested in LWG (1993), in constructing an LM
test, the unidenti�ed nuisance parameters under the null hypothesis can be
randomly generated from their parameter space. LWG show excellent perfor-
mance of the ANN test when a small number of hidden activations is based
on the randomly generated nuisance parameters.
It has not been noted in the literature that the ANN test is sensitive to

the number of the randomized activations. We demonstrate this sensitivity
problem and propose a simple solution. We examine how the performance of
the ANN test can be improved by simply increasing the number of random-
ized hidden unit activations. This paper shows that the bene�t of increasing
it is substantial. This robusti�cation is reliable and does not require either
the use of Bonferroni bounds or the integration of the test statistic over the
nuisance parameter. We provide a practically useful insight to make the ANN
test reliably applicable in applied work. As increasing the number of random
activations is almost costless, the ANN test based on �many�randomized hid-
den unit neural network activations can be easily included in a diagnostics
toolbox for applied research.
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Table 1. Monte Carlo: Size and Power of the ANN Test

Panel A. Using Randomized Hidden Unit Activations

q = 20 q = 1000
5% 10% 5% 10%

AR 0.037 0.085 0.041 0.089
TAR 0.263 0.391 0.268 0.374
SGN 0.812 0.901 0.835 0.910
NAR 0.079 0.162 0.099 0.178
MRS 0.179 0.273 0.197 0.284
Linear(� = 0) 0.047 0.105 0.049 0.097
Linear(� = 0:7) 0.045 0.097 0.058 0.106
Interaction(� = 0) 0.112 0.183 0.082 0.141
Interaction(� = 0:7) 0.244 0.252 0.261 0.369
Squared(� = 0) 0.191 0.297 0.186 0.272
Squared(� = 0:7) 0.346 0.375 0.238 0.352

Panel B. Using Fixed Hidden Unit Activations

q = 20 q = 1000
5% 10% 5% 10%

AR 0.055 0.095 0.047 0.103
TAR 0.197 0.285 0.318 0.402
SGN 0.838 0.846 0.908 0.915
NAR 0.081 0.115 0.151 0.184
MRS 0.134 0.166 0.201 0.254
Linear(� = 0) 0.055 0.115 0.043 0.100
Linear(� = 0:7) 0.040 0.101 0.035 0.093
Interaction(� = 0) 0.131 0.215 0.068 0.132
Interaction(� = 0:7) 0.190 0.280 0.213 0.334
Squared(� = 0) 0.130 0.230 0.160 0.265
Squared(� = 0:7) 0.193 0.284 0.245 0.367

Panel C. Size with Conditional Heteroskedasticity

q = 20 q = 1000
5% 10% 5% 10%

AR-ARCH 0.048 0.112 0.058 0.107
AR-GARCH 0.058 0.122 0.055 0.113
AR 0.051 0.100 0.049 0.116



Notes: Sample size is n = 200. Reported values are the rejection frequencies of the Tn(q)
tests out of the total 1000 Monte Carlo replications, at 5% and 10% levels. In Panel A and
Panel C, the hidden unit activations 
�s are randomly generated for each replication. In
Panel B, the hidden unit activations are �xed to be one random draw from U [�2; 2] for
all replications. The ANN test statistic in (6) is used in Panel A and Panel B, while the
heteroskedasticity robust statistic of the form in (5) with the principal components is used
in Panel C.



Table 2. P-values of Tn (q) with m = 100 Randomizations of q Hidden Unit
Activations

Panel A. Block 1

Range SD
q=20 q=1000 q=20 q=1000

AR 0.5540 0.0391 0.1315 0.0063
0.4582 0.0814 0.1030 0.0139
0.2468 0.0382 0.0686 0.0081
0.6711 0.0898 0.1435 0.0182
0.4973 0.1188 0.1353 0.0262

TAR 0.7319 0.0448 0.1691 0.0076
0.8275 0.2084 0.2567 0.0469
0.4369 0.0291 0.0943 0.0061
0.5807 0.1165 0.1389 0.0237
0.0485 0.0006 0.0092 0.0001

SGN 0.0010 0.0002 0.0002 0.0000
0.1525 0.0186 0.0262 0.0043
0.0280 0.0017 0.0062 0.0003
0.0004 0.0000 0.0000 0.0000
0.1791 0.0199 0.0361 0.0037

NAR 0.8330 0.2214 0.2415 0.0424
0.4501 0.0294 0.0812 0.0058
0.8446 0.0595 0.1806 0.0121
0.5092 0.1478 0.1435 0.0270
0.0869 0.0218 0.0198 0.0049

MRS 0.8610 0.2738 0.2090 0.0557
0.9992 0.1667 0.3300 0.0298
0.2210 0.0337 0.0529 0.0072
0.3194 0.0247 0.0557 0.0049
0.7001 0.2378 0.2062 0.0447

AR-ARCH 0.2754 0.1164 0.0784 0.0219
0.5257 0.0696 0.1998 0.0155
0.6207 0.0188 0.1695 0.0034
0.3866 0.0560 0.1281 0.0121
0.1530 0.0046 0.0424 0.0000



Table 2. (Continued).

Panel B. Block 2

Range SD
q=20 q=1000 q=20 q=1000

Linear 0.3846 0.0855 0.0781 0.0149
(� = 0) 0.9793 0.5644 0.2943 0.1345

0.9389 0.1879 0.2807 0.0332
0.7879 0.1093 0.2289 0.0212
0.6020 0.0755 0.1425 0.0179

Linear 0.2470 0.0373 0.0490 0.0065
(� = 0:7) 0.4526 0.0120 0.0616 0.0027

0.9684 0.3642 0.3033 0.0819
0.3680 0.0322 0.0500 0.0067
0.5981 0.1580 0.1640 0.0361

Intersection 0.5982 0.1626 0.1646 0.0361
(� = 0) 0.8872 0.2460 0.2114 0.0510

0.9198 0.1641 0.2285 0.0284
0.4399 0.0914 0.0995 0.0215
0.8509 0.1895 0.2234 0.0332

Intersection 0.5417 0.0558 0.0819 0.0101
(� = 0:7) 0.4461 0.0606 0.0943 0.0116

0.9064 0.4364 0.2627 0.0889
0.4144 0.1015 0.0911 0.0213
0.1813 0.0205 0.0308 0.0042

Squared 0.5354 0.0481 0.1253 0.0095
(� = 0) 0.9339 0.4809 0.2538 0.1140

0.8627 0.4690 0.2661 0.1000
0.7223 0.1195 0.1503 0.0259
0.8681 0.0881 0.2040 0.0196

Squared 0.3645 0.0391 0.0632 0.0094
(� = 0:7) 0.6779 0.1191 0.1435 0.0249

0.9652 0.3963 0.2997 0.0933
0.3984 0.0475 0.0592 0.0088
0.3805 0.0556 0.0663 0.0110

Note: Sample size n = 200. The p-values of Tn(q) are computed for simulated data of each
DGP from �ve replications. The statistic Tn(q) is computed with m = 100 random draws

of
n


(i)
j

o
i=1;:::;m

from U [�2; 2]. The table reports the range and standard deviation (SD)
of the m p-values in each of 5 replications with q = 20; 1000:



Table 3. Empirical Analysis: P-values, Bonferroni Bounds, and Rejection
Frequencies

EX INT M2
q = 20 1000 20 1000 20 1000

i = 1 0.1192 0.7126 0.0023 0.0156 0.3034 0.0034
i = 2 0.1752 0.7164 0.8501 0.0096 0.0576 0.0029
i = 3 0.4740 0.7926 0.0665 0.0032 0.0229 0.0033
i = 4 0.8045 0.7726 0.1198 0.0752 1.0000 0.0108
i = 5 0.1565 0.7589 0.0064 0.0024 1.0000 0.0041
i = 6 0.4497 0.8244 0.0034 0.2006 1.0000 0.0023
i = 7 0.5505 0.7688 0.0125 0.0595 0.2030 0.0030
i = 8 0.5022 0.7575 0.0608 0.0535 0.0049 0.0036
i = 9 0.4750 0.7676 0.0258 0.1487 0.0049 0.0101
i = 10 0.4628 0.7587 0.0407 0.0115 1.0000 0.0019
i = 11 0.4800 0.7097 0.0121 0.0013 1.0000 0.0023
i = 12 0.2813 0.8057 0.1246 0.0146 0.3971 0.0115
i = 13 0.4717 0.6834 0.0003 0.1007 1.0000 0.0028
i = 14 0.4730 0.6988 0.0217 0.0537 0.0495 0.0025
i = 15 0.5196 0.7630 0.0090 0.0015 0.8678 0.0029
i = 16 0.1573 0.7742 0.4018 0.0332 0.0033 0.0181
i = 17 0.5109 0.8010 0.0044 0.0191 0.0351 0.0067
i = 18 0.5241 0.7831 0.0102 0.0955 0.9987 0.0037
i = 19 0.4386 0.7584 0.0017 0.0333 0.0378 0.0051
i = 20 0.4380 0.7807 0.0247 0.0354 0.1197 0.0042
HB(5) 0.5256 0.7926 0.0115 0.0120 0.1145 0.0082
HB(20) 0.8045 0.8244 0.0060 0.0260 0.0660 0.0181
SB(5) 0.5960 3.5630 0.0115 0.0120 0.1145 0.0145
SB(20) 2.3840 13.6680 0.0060 0.0260 0.0660 0.0380
REJ 0

20
0
20

16
20

17
20

8
20

20
20

REJ-B 0
20

0
20

5
20

4
20

3
20

14
20

REJ-FDR 0
20

0
20

16
20

16
20

3
20

20
20



Table 3. (Continued).

PI UNE
q = 20 1000 20 1000

i = 1 0.0000 0.0000 0.0011 0.0006
i = 2 0.0000 0.0000 0.0003 0.0006
i = 3 0.0000 0.0000 0.0024 0.0005
i = 4 0.0361 0.0000 0.0005 0.0008
i = 5 0.0000 0.0000 0.0003 0.0008
i = 6 0.0000 0.0000 0.0005 0.0006
i = 7 0.0000 0.0000 0.0004 0.0004
i = 8 0.0017 0.0000 0.0004 0.0008
i = 9 0.0000 0.0000 0.0006 0.0008
i = 10 0.0000 0.0000 0.0059 0.0007
i = 11 0.0000 0.0000 0.0002 0.0005
i = 12 0.0000 0.0000 0.0003 0.0007
i = 13 0.0000 0.0000 0.0013 0.0006
i = 14 0.0000 0.0000 0.0003 0.0006
i = 15 0.0000 0.0000 0.0003 0.0007
i = 16 0.0000 0.0000 0.0003 0.0006
i = 17 0.0000 0.0000 0.0003 0.0006
i = 18 0.3395 0.0000 0.0005 0.0007
i = 19 0.2982 0.0000 0.0004 0.0006
i = 20 0.0000 0.0000 0.0002 0.0007
HB(5) 0.0000 0.0000 0.0012 0.0008
HB(20) 0.0000 0.0000 0.0030 0.0008
SB(5) 0.0000 0.0000 0.0015 0.0023
SB(20) 0.0000 0.0000 0.0040 0.0089
REJ 18

20
20
20

20
20

20
20

REJ-B 17
20

20
20

19
20

20
20

REJ-FDR 18
20

20
20

20
20

20
20

Notes: Data range from 1990:1-2011:12, monthly. EX: US/Japan exchange rate. INT: US

three-month T-bill interest rate. M2: US M2 money stock. PI: US personal income. UNE:

US unemployment rate. We use AR(1) as a model under the null hypothesis in each case.

The 20 rows (i = 1; : : : ; 20) show the 20 sets of p-values fPigmi=1 of the ANN(q) test statistics
with q = 20 or 1000: HB(m) = mini=1;:::;m(m � i+ 1) � P(i) is the Hochberg�s Bonferroni
bound computed the �rst m p-values fPigmi=1 with m = 5 or 20. HB(5) in the Hochberg

Bonferroni bound computed using the �rst 5 p-values fPigm=5i=1 . SB(m) = mP(1) is the

Simple Bonferoni bound computed the �rst m p-values. P(i) is the ith smallest (ordered



from the smallest to the largest) p-value among the m p-values. The reported numbers in

the last three rows are the rejection frequency in these m = 20 p-values that are less than

0.10 (at 10% level), REJ = 1
m

Pm=20
i=1 1(Pi � 0:10), REJ-B =

Pm=20
i=1 1(Pi � 0:10

20 ), and

REJ-FDR =
Pm=20

i=1 1(P(i) � 0:10i
20 ).



Figure 1. Monte Carlo Distribution of Tn(q) under H0

(a) q = 20: DGP: AR
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(b) q = 1000: DGP: AR
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(c) q = 20: DGP: Linear(� = 0)
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(d) q = 1000: DGP: Linear(� = 0)
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(e) q = 20: DGP: Linear(� = 0:7)
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(f) q = 1000: DGP: Linear(� = 0:7)
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Note: The histograms are the Monte Carlo distribution of the test statistic Tn(q) from the

1000 Monte Carlo replications with the sample size n = 200. The three �gures in the left

panel are for Tn (20), and the three �gures in the right panel are for Tn (1000) : The solid

line is the �23 density. All DGPs here are linear in mean.



Figure 2. P-values of Tn (q) under H0 with m = 100 Randomizations of q
Hidden Units

(a) q = 20: P-values
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(b) q = 1000: P-values
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(c) q = 20: Test Statistics
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(d) q = 1000: Test Statistics
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Note: Sample size n = 200. The p-values and the test statistics Tn(q) are computed for a

simulated data from one replication of DGP, �Linear�with � = 0:7: For the same data, the

statistic Tn(q) is computed with m = 100 random draws of
n


(i)
j

o
i=1;:::;m

from U [�2; 2].
The �gures are frequency histograms of the m p-values and the m statistics. The top panels

report the p-values and the bottom panels report the statistics. The left panels are for

q = 20 and the right panels are for q = 1000:



Figure 3. Empirical Applications with m = 100 Randomized Hidden Unit
Activations

(a) P-values of EX with q = 20
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(b) P-values of EX with q = 1000
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(c) P-values of INT with q = 20
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(d) P-values of INT with q = 1000
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(e) P-values of M2 with q = 20
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(f) P-values of M2 with q = 1000
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Figure 3 (Continued).

(g) P-values of PI with q = 20
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(h) P-values of PI with q = 1000
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Panle B

(i) P-values of UNE with q = 20
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(j) P-values of UNE with q = 1000
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