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Abstract

When the observed price process is the true underlying price process plus microstructure
noise, it is known that realized volatility (RV) estimates will be overwhelmed by the noise
when the sampling frequency approaches in�nity. Therefore, it may be optimal to sample less
frequently, and averaging the less frequently sampled subsamples can improve estimation for
quadratic variation. In this paper, we extend this idea to forecasting daily realized volatility.
While the subsample-averaging has been proposed and used in estimating RV, this paper is the
�rst that uses the subsample-averaging for forecasting RV. The subsample averaging method
we examine incorporates the high frequency data in di¤erent levels of systematic sampling.
It �rst pools the high frequency data into several subsamples, that generates forecasts from
each subsample, and then combine these forecasts. We �nd that, in daily S&P 500 return RV
forecasts, subsample-averaging generates better forecasts than those using only one subsample
without averaging over all subsamples.
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1 Introduction

The rich dynamics in ultra-high-frequency �nancial data may be captured to improve estimation

of quadratic variation (integrated variance) or forecasting volatility. There is considerable amount

of literature addressing the estimation issue, whereas little work has been done on forecasting.

This paper contributes to the forecasting issue in the high-frequency data literature by examining

whether it pays to incorporate the intraday data, and more importantly, how to incorporate the

high-frequency information to achieve better performance for forecasting daily return volatility.

Further, we seek to link the estimation and forecasting aspects by adopting and tailoring methods

proposed for estimation of quadratic variation to forecasting.

Andersen, Bollerslev, Diebold, and Labys (ABDL 2001) and Barndor¤-Nielsen and Shephard

(2002) establish that realized volatility (RV), de�ned as the sum of squared intraday returns of

small intervals, is an asymptotically unbiased estimator of the unobserved quadratic variation as the

interval length approaches zero. However, in the presence of market microstructure noise, such nice

property of RV is contaminated. Recent works investigating this issue include Aït-Sahalia, Mykland

and Zhang (AMZ 2005), Bandi and Russell (2008), Hansen and Lunde (2006a), Zhang, Mykland

and Aït-Sahalia (ZMA 2005), and Barndor¤-Nielsen, Hansen, Lunde and Shephard (BNHLS 2008,

2011). When the observed price process is the true underlying price process plus microstructure

noise, it is shown that RV will be overwhelmed by the noise and explodes when the sampling

frequency approaches in�nity. Therefore, it may be optimal to sample less frequently than the

case in the absence of noise. ZMA (2005) and BNHLS (2011) establish through a subsampling

scheme improved estimators for quadratic variation. The original subsampling idea can be traced

back to Zhou (1996), where an unbiased data-driven estimator of volatility and a subsample-

averaging volatility estimator are proposed. The bias-adjusted estimator of ZMA (2005) based

on the subsample-averaging method is able to eventually push the estimation bias to zero. BNHLS

(2011) show that subsampling is highly advantageous for RV estimators based on discontinuous

kernels.

When it comes to forecasting RV, if the highest frequency returns are not necessarily the optimal

frequency, the subsampling of the available highest frequency data will leads to several systemat-

ically sampled subsamples. In this paper we address the following questions. Can we use these
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subsamples to improve forecasting RV? How do we incorporate these subsamples? We �nd that

as long as the available highest frequency data is not at the optimal frequency, we can improve

prediction of RV out-of-sample, through simple averaging of forecasts produced from sub-samples.

The paper is organized as follows. Section 2 describes the data and subsampling. Section 3

discusses two models for forecasting daily realized volatility by subsample-averaging. Section 4

presents their out-of-sample relative performances. Section 5 concludes.

2 Subsampling

The data we use consists of S&P 500 index values at 5-minute intervals recorded in between 9:30

a.m. and 4:00 p.m. (total 390 minutes a day) from June 9, 1997 to May 30, 2003, a total of 1,501

days and 117,078 observations.1 In cleaning the data, those periods of market closings are treated

as no variation in index values, thus there exists 78 ticks each trading day. We can construct

data-driven volatility, for instance, realized volatility from this 5-minute high-frequency data.

Let � be the interval in minutes over which the returns are computed. The �-minute return is

the log-di¤erence of two consecutive index values over �-minutes, multiplied by 100

rt�1+i�;t�1+(i�1)� � pt�1+i� � pt�1+(i�1)�; (1)

where pt denotes the logarithm of the S&P 500 index value. Even if the interval� can be as small as

5 minutes given the data available to us, we choose larger intervals such as � = 15; 30; 60 (minutes),

in order to construct subsamples. When � = 15 we can construct three sets (subsamples) of �-

minute return series. When � = 30 we can construct six sets (subsamples) of �-minute returns

series. When � = 60 we can construct 12 sets (subsamples) of 60-minute returns series by sampling

every 12th observations of 5-minute returns.

The RV is calculated by the sum of squared �-minute returns within a day. De�ne realized

volatility of day t as

RV
(�)
t =

mX
i=1

r2t�1+i�;t�1+(i�1)�; (2)

where

m = 390=� (3)

1We are grateful to George Jiang who generously shared this high-frequency intraday data with us. The data are
extracted from the contemporaneous index levels recorded with the quotes of SPX options from the CBOE.

2



is the number of �-minute returns per day.

To construct a subsample, we consider an interval � > 5: The subsampled return data has the

longer time interval � than 5 minutes, within which

K = �=5 (4)

number of subsamples of the �-minute returns are observed. We consider � = 15; 30; 60; each

producing a di¤erent number K = 3; 6; 12 of subsamples.

For example, the intraday returns for � = 15 produce daily realized volatility RV (15)t ; computed

from (2) usingm (= 26) 15-minute returns. As there are three 5-minute intervals within 15 minutes,

we have K = 15=5 = 3 subsamples, producing three subsample RV forecasts for a day.

3 Volatility Forecast Models

Based on the subsample-averaging methodology in Zhou (1996) and ZMA (2005), we demonstrate

the bene�t of subsample-averaging in out-of-sample forecasting of daily volatility. We aim to check

if the predictive ability of an RV forecasting model can be improved by averaging forecasts generated

using the same model but from di¤erent subsamples.

In comparing the predictive ability of the subsample averages with the benchmark forecast

without subsample-averaging, the key issues are: (i) the volatility proxy to compare forecasts with,

(ii) the loss function for forecast evaluation, and (iii) the forecasting model. For the daily volatility

proxy we use the daily RV computed from 5-minute returns. About the loss function for forecast

evaluation we use the mean squared forecast errors (MSFE). Regarding the forecasting model, we

consider two models, ARFI model of ABDL (2003) and HAR model of Corsi (2009).

3.1 ARFI Model

To generate a forecast for tomorrow�s (one day ahead) conditional realized volatility, we estimate

the fractionally integrated autoregressive model, ARFI(p; d) for

Xt � ln
�
RV

(�)
t

�
(5)

for each of � = 15; 30; 60: Speci�cally, the model can be written as follows:

�p(L)(1� L)d (Xt � �) = �t (6)
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where �p(L) is the pth order AR lag polynomial. We �x p = 1 and �p(L) = 1��L: For each �; we

estimate �; �; and d; the long-memory parameter by using the method of Geweke and Porter-Hudak

(GPH 1984) as in ABDL (2003).

The presence of microstructure noise prevents us from sampling too frequently (with � too

small) when calculating RV. See AMZ (2005). If RV (k)(�)t (with � > 5) series are less noisy

and more accurately estimated than RV (5)t ; where k = 1; : : : ;K are indices of subsamples, then

using these likely leads to a better forecast dRV (k)(�)T+1 than dRV (5)T+1. However, abandoning the

�ner information seems not very sensible. Thus, a possible way to balance this is the subsample-

averaging approach, which uses all K subsamples therefore no intra-day information is tossed out,

and then taking the average over k = 1; : : : ;K to produce a �nal forecast. At the same time, the

contaminating e¤ect of microstructure noise in the stage of computing RV is moderated through

this subsampling procedure (using � > 5 instead of � = 5), and hence it is possible to achieve

better performance in forecasting RV.

The subsample-averaging method is as follows. First, for a given �; we estimate the ARFI(p; d)

model for each of K subsamples generated by systematically sampling the original 5-minute index

data every K steps:

�(k)p (L)(1� L)d(k)(X
(k)
t � �(k)) = �(k)t ; k = 1; : : : ;K (7)

whereX(k)
t denotes kth daily logarithm of RV in day t computed using the kth subsample. Following

ABDL (2003) we use ARFI(p; d) model on the natural logarithm transformation of RV, X(k)
t �

ln
�
RV

(k)(�)
t

�
; and then exponentiated back to RV, RV (k)(�)t = exp

�
X
(k)
t

�
. Running the model

on each subsample we obtain K number of RV forecastsdRV (k)(�)T+1 , k = 1; : : : ;K: Next, we compute

their simple average

RV
(�)
T+1 =

1

K

KX
k=1

dRV (k)(�)T+1 (8)

to obtain the combined forecast. We compare Subsample-Averaging forecast RV
(�)
T+1 with the

benchmark forecast, which is computed using only one subsample dRV (k)(�)T+1 with k = K the last

subsample and abandoning the other K � 1 subsample information.
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3.2 HAR Model

The heterogeneous autoregressive (HAR) model of the realized volatility in Corsi (2009) is inspired

by the heterogeneous market hypothesis and is able to reproduce memory persistence (although

not formally a long memory model) as well as many other major features of �nancial data. The

square-root of daily RV

Yt �
q
RV

(�)
t ; (9)

is assumed to have an AR-type process on past RV�s over di¤erent intervals of aggregation (daily,

weekly, and monthly):

Yt+1 = c+ �
DYt + �

WY Wt + �MYMt + et+1; (10)

where

Y Wt =
1

5
(Yt�1 + Yt�2 + : : :+ Yt�5) (11)

is the weekly aggregated RV, and

YMt =
1

20
(Yt�1 + Yt�2 + : : :+ Yt�20) (12)

is the monthly aggregation.

Same as in Section 3.1 illustrated above, we consider � = 15; 30; 60: The subsample-averaging

method for the HAR model goes in exactly the same way as for the ARFI model. First, we

estimate the HAR model for each of K subsamples generated by systematically sampling the

original 5-minute index data every K steps. We take K subsamples of the �-minute returns data

when computing Y (k)t+1 (k = 1; : : : ;K) ; apply the HAR model to each subsample to generate the

subsample forecast Y (k)T+1 at day T for the next day T + 1, and then use the simple average to

obtain the subsample-averaging forecasts. The only di¤erence here as compared to the ARFI case

is the model used to produce forecasts. Note that here we use the square-root of RV, as in Corsi

(2009), thus MSFE values of Y will appear in di¤erent scale than that of ARFI(p; d), when we

show out-of-sample results in the next section.

4 Results

Evaluating volatility forecast involves the selection of volatility proxy given that the true underlying

volatility is latent and subject to a researcher�s own de�nition. Recent papers addressing this
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include Patton (2011) and Hansen and Lunde (2006b). Generally, the suggested volatility proxy is

the realized volatility in some particular form, coupled with a MSFE evaluation criterion.

Our empirical work involves the comparison of forecasting performances of Subsample-averaging

of the forecasts using all K �-minute return subsamples with the benchmark model using only one

�-minute return subsample. We consider three cases (A, B and C) of subsampling for� = 15; 30; 60

in Tables 1 and 2. The out-of-sample size is P = 500 days, and the in-sample size is R = 1000 days.

We report the out-of-sample MSFE with three di¤erent subsampling cases. �-minute returns have

m observations per day. Subsample-Averaging is taken over the K subsample forecasts. Benchmark

uses only the last subsample forecast.

In Table 1 where the ARFI(p; d) model is used to forecast RV, we �nd that Subsample-averaging

improves upon the benchmark in all three cases for Subsample-Averaging, quite substantially for

Case A. In Table 2 where the HAR model is used, Subsample-Averaging is substantially better

than the benchmark for all three cases.

5 Conclusions

We propose a forecasting methodology that uses subsample-averaging to forecast daily realized

volatility. While the subsample-averaging has been proposed and used in estimating RV, this

paper is the �rst that uses the subsample-averaging for forecasting RV. In this paper, we show

that the subsample-averaging, which was originally suggested to overcome the bias in estimating

quadratic variation under the presence of market microstructure noise, can also help forecast RV

out-of-sample. In an application of S&P 500 index daily volatility forecasting, using two classical

forecasting models for RV, we �nd that the subsample-averaging forecast substantially improves

upon forecasts from using only one subsample without averaging over all subsamples. We expect

that subsample-averaging method can enhance even more the forecast ability of RV when much

higher frequency data (15-seconds, for instance) are available.
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Table 1. Using ARFI model for RV

Case � m K Benchmark Subsample-Averaging
A 15 26 3 1.3119 1.0581
B 30 13 6 1.1854 1.1610
C 60 6.5 12 1.2828 1.2392

Notes: This table compares the performance of the ARFI model for daily realized volatility (RV)
forecast without and with subsampling average. We use ARFI(p; d) model proposed by ABDL
(2003) where p = 1 and d is estimated by the GPH method dynamically for each case.

Table 2. Using HAR model for Sqrt(RV)

Case � m K Benchmark Subsample-Averaging
A 15 26 3 0.1512 0.1043
B 30 13 6 0.1370 0.0752
C 60 6.5 12 0.1151 0.0670

Notes: This table compares the performance of the HAR model for the square root of daily realized
volatility (RV) forecast without and with subsampling average. We use HAR model proposed by
Corsi (2009), which is applied to the square root of RV and estimated dynamically for each case.
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