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ABSTRACT

We propose a new semiparametric autoregressive duration (SACD) model, which incor-
porates the parametric and nonparametric estimators of the conditional duration in a mul-
tiplicative way. Asymptotic properties for this combined estimator are presented. Empirical
applications to the transaction duration of the U.S. 2-Year Treasury note show the outperfor-
mance of our SACD models over parametric ACD models.

Key Words: Duration, Nonparametric Estimator, Semiparametric Model.

JEL Classi�cation: C3, C5, G0.

�We sincerely thank Badi H. Baltagi and the referee for their many insightful comments and suggestions
that lead to a substantial improvement of the presentation. Mardi Dungey acknowledges funding from ARC
DP0984994. Yun Wang acknowledges "the Fundamental Research Funds for the Central Universities" in UIBE
(13QNJJX03) and "Program for Innovative Research Team" in UIBE (Grant CXTD4-01).

yTasmanian School of Business and Economics, University of Tasmania, Australia; Centre for Financial
Analysis and Policy, University of Cambridge, UK; Centre for Applied Macroeconomic Analysis, Australian
National University, Australia; Email: mardi.dungey@utas.edu.au.

zBank Of Communications Schroder Fund Management Co. Ltd; Email: xiang-
dong.long2008@googlemail.com.

xDepartment of Economics, University of California, Riverside, CA, 92521, USA; Email:
aman.ullah@ucr.edu.

{Corresponding author: School of International Trade and Economics, University of International Business
and Economics, Beijing, China, 100029; Email: wyuncolor@gmail.com.



1 Introduction

The increased availability of high frequency data has motivated a surge of research interest

in theoretical and empirical �nancial market microstructure. Information on the waiting time

between consecutive transactions, quote updates, price changes and order arrival across a

variety of asset types is an important element in developing an understanding of the spread

of public and private information ( Goodhart and O�Hara, 1997; Madhavan, 2000).

Financial data reveal strong evidence for clustering in time of both trades and quote

changes, in a similar way to the clustering of volatility. This observation led Engle and

Russell (1998) to combine transition analysis and ARCH models to develop the autoregressive

conditional duration (ACD) model. The ACD model treats transaction arrival time as a

random variable of a dependent point process, whose conditional intensity depends on past

durations. This model has been generalized in a number of ways, including the log-ACD model

of Bauwens and Giot (2000), the Threshold ACDmodel of Zhang et al. (2001), and the mixture

ACD model by Hujer and Vuletic (2007). Alternative distribution processes considered for the

transactions arrivals include the generalized gamma and the Burr distribution used in Lunde

(2000), and Weibull and exponential distributions nested in Grammig and Maurer (2000). In

parallel with the ACD model, there are a closely related but econometrically distinct class of

stochastic duration models. Bauwens and Hautsch (2006) review the literature on dynamic

duration and intensity process, also see an extensive survey on ACDmodels by Pacurar (2008).

The common shortcomings of parametric ACD models are potential misspeci�cations of

the functional form and distribution function. It is well known that in these situations the

parametric estimators of ACD models will become inconsistent and/or ine¢ cient. There-

fore, in this paper we propose a new semiparametric ACD (SACD) model inspired by the

univariate and multivariate volatility works of Mishra et al. (2010) and Long et al. (2011), re-

spectively. The SACD is consistent, and it combines parametric and nonparametric estimators

of conditional duration in a multiplicative way: �rst modelling ACD parametrically, and then

modelling the conditional mean of the standardized parametric residuals nonparametrically.

The estimate of the latter serves as a nonparametric correction factor for the parametric ACD

estimator. To our knowledge, this is the �rst combined estimator of conditional duration.

To illustrate the consequences of using the SACD we apply parametric and the SACD

duration estimators to the transaction data in the 2 year U.S. Treasury note market. Model

evaluation is carried out in terms of Ljung-Box Q-statistic and the mean squared error. The

results show the clear advantages of the SACD approach.

The paper is organized as follows. Section 2 discusses a number of parametric duration

models. In section 3 we propose the semiparametric conditional duration model. Section 4
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provides the empirical application to the U.S. Treasury data. Finally, section 5 concludes.

2 Parametric ACD Models

Denote ti as the transaction time for ith transaction so that, yi = ti � ti�1 is the duration,

or waiting time, between ith and (i� 1)th transactions. Engle and Russell (1998) propose
the ACD model for the diurnally adjusted yi, which has a similar structure to the familiar

GARCH(p; q) model,

yi =  �;i"i, (2.1)

 �;i = ! +

pX
j=1

�jyi�j +

qX
j=1

�j �;i�j (2.2)

where "i represents the i:i:d: arrival process, which is assumed to have a constant expectation,

E ("i) = 1;with probability distribution P ("i � ") = F (") ; and � = (�; �). The conditional

duration for a transaction, given available information, is given by the parameter of interest,

 �;i, that is E (yijFi�1) =  �;i, Fi�1 represents all the information up to period i� 1. Hence,
the expected value of the duration is given as

E (yi) = E
�
 �;i

�
E ("i) =

!

1�
Pp

j=1 �j �
Pq

j=1 �j
: (2.3)

The positiveness of the conditional duration is assured by imposing restrictions on the para-

meters !; �j and �j:

Rather than modeling the intensity function, the ACD model considers the dynamics of

 �;i. An ACD(p; q) model can be equivalently expressed as an ARMA(max (p; q) ; q) model,

yi = ! +

max(p;q)X
j=1

�
�j + �j

�
yi�j �

qX
j=1

�j�i�j + �i (2.4)

where �i = yi �  �;i.

The parametric ACD model has been extended in two directions; by changing the dynamic

functional forms for  �;i or by assuming more �exible distributions for "i, or a combination

of both. Bauwens and Giot (2000) propose the Logarithmic ACD (Log-ACD) model, which

modi�es equations (2.1) and (2.2) to be

yi = e�i"i, where P ("i � ") = F (") and E ("i) = 1 (2.5)

 �;i = lnE (yijFi�1) (2.6)

 �;i = ! +

pX
j=1

�j ln yi�j +

qX
j=1

�j �;i�j (2.7)
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with no sign constraints on the parameters !, �j and �j, while j
Pp

j=1 �j +
Pq

j=1 �jj < 1

guarantees the covariance stationarity of lnyi. The advantage of this formulation is in retaining

a positive  �;i in the presence of covariates. Neither exponential GARCH models nor the Log-

ACD model have an explicit form for unconditional moments.

3 A Semiparametric ACD Model

Mishra et al. (2010) construct a two-step semiparametric estimator for conditional variance

by multiplicatively combining a parametric estimator for conditional variance and nonpara-

metric conditional variance estimator of standardized residuals. This is extended in Long

et al. (2011) to a conditional covariance matrix modelling framework. Motivated by their

work, we propose a two-stage SACD model  i =  �;i np;i, which has both parametric  �;i
and nonparametric  np;i parts for conditional duration, where  �;i 2 Fi�1 is speci�ed by a
parametric conditional duration model and  np;i � E

��
yi= �;i

�
jFi�1

�
leads to the identity

E (yijFi�1) =  �;iE
��
yi= �;i

�
jFi�1

�
analogous to Glad (1998), see also Martins-Filho et al.

(2008). The misspeci�cations in the parametric model may be corrected by the nonparametric

model where the correction factor  np;i degenerates to a constant if the parametric model is

correctly speci�ed. The conditional variable for the �rst stage parametric estimator b � is a
d1�1 vector X1;i � X1;i

�
�0
�
, and the d2�1 vector, X2;i � X2;i

�
�0
�
is the state variable in the

second stage of the nonparametric estimation. The true value of the �nite dimensional para-

meter �0 is unknown, and replaced in estimation with its estimator b�, where the corresponding
state variable is bXj;i � Xj;i

�b�� for j = 1; 2. Mishra et al. (2010) discuss the properties of the
d � 1 disjoint union vector of X1;i and X2;i, given by Xi �

�
XT
1;i

�
�0
�
; XT

2;i

�
�0
�	T

belonging

to Fi�1, emphasizing the minimal reducible dimension.
Let ri � yi �0 (x1) = �0 (X1;i) and x =

�
xT1 ; x

T
2

	T
, by the law of iterative expectation

E (rijXi = x) =  �0 (x1)E

�
E

�
yi

 �0 (X1;i)
jFi�1

�
jX2;i = x2

�
=

 �0 (x1)

 �0 (X1;i)
 �0 (X1;i) np (x2) =  i (x) :

The nonparametric regression of ri onX2;i could estimate  (x) by the Nadaraya-Watson (NW)

method, the local linear method, or the local exponential method. The local exponential

method solves both the boundary bias problem of the NW method and the nonnegativity

ensuring challenge of the local linear method.

To summarize, in the �rst stage we estimate b� for �0 in the parametric model, obtain
the standardized residual bzi � yi=b b� � bX1;i

�
; and then minimize the following loss function to
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obtain b� in the second stage:
b� � argmin

�
n�1

nX
i=1

nbri �	��0 +Xd2

j=1
�j

� bX2;ij � x2;j

��o2
Kh

� bX2;i � x2

�
; (3.1)

where � �
�
�0; �1; : : : ; �d2

�T 2 Rd2+1, bri �  b� (x1) bzi = yi b� (x1) =b �0 (X1;i), 	 is a monotone

function with at least two continuous derivatives on its support, h � (h0; h1; : : : ; hd2)
T is a

(d2 + 1) vector of bandwidth, Kh (u) �
Qd2
j=1 h

�1
j k (uj=hj), and k (:) is a symmetric density

with compact support onR. Our semiparametric estimator for conditional duration is b (x) =
	
�b�0�.
We make the following remarks.

(1) It is not necessary that the parametric speci�cation of  �;i is correct. The consistency

of b� with an pn convergence rate for some pseudo-true parameters �0 does not assure the
consistency of the estimated b �;i.
(2) Dropping the �rst stage of the parametric estimator, and applying our nonparametric

technique directly to fxigni=1, will lead to the nonparametric estimator of conditional duration.
However, a nonparametric estimation where xi vector contains unobserved variables, as in the

case of GARCH-type speci�cations, is not implemented. In this sense, the SACD estimator is

more useful, where these unobserved variables are already estimated.

(3) There is an analogous relationship between ARCH models and ACD models. The

theorems of QMLE properties of GARCH(1,1), such as Theorems 2 and 3 of Lumsdaine (1996)

or Theorems 1 and 3 in Lee and Hansen (1994), carry over to the asymptotic properties of

the EACD(1,1) model of Engle and Russell (1998). Similarly, the asymptotic properties of the

semiparametric estimator of conditional variance in Mishra et al. (2010) apply to our SACD

models.

To present the asymptotic properties of our model we follow Mishra et al. (2010) with ap-

propriate changes in notation. First, let L (X2;i � x2; �) � 	
�
�0 +

Xd2

j=1
�j

� bX2;ij � x2;j

��
and

�
L (x2; �) and

��
L (x2; �) represent the �rst and second derivatives of L with respect to x2

and de�ne �ij �
Z
uik (u)j du, for i; j = 0; 1; 2. We adopt assumptions A1 to A6 of Mishra et

al. (2010) with the exception of three modi�cations. Assumption A1(i) is unnecessary to our

application. We replace their assumption A2.(iii) and A3.(ii) as follows.

A2.(iii) The process f"i � 1g is a stationary m.d.s such thatE ("i � 1jFi�1) = 0, E (j"ij2v) <
1 and E (jjXijj2v) <1 for some v > 1.

A3.(ii) We replace �2p (�) by  � (�).
Consequently we can show convergence in probability of b� to �0 and the asymptotic nor-

mality of our estimator.
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Theorem 3.1 Within the model structure and Assumptions A1 to A6, we have

b� p! �0;

where �0 is uniquely de�ned by  (x) = L
�
0; �0

�
and  � (x1)

:

 np (x2) =
:

L
�
0; �0

�
.

Theorem 3.2 Within the model structure and Assumptions A1 to A6, we haver
n
�Yd2

i=1
hi

�nb (x)�  (x)� �21
2
tr
n
Dh

h
 � (x1)

::

 np (x2)�
::

L
�
0; �0

�ioo
d! N

�
0; �d202

�
E
�
"2i jX2;i = x2

�
� 1
�
f�1 (x2) 

2 (x)
�
;

where Dh � diag
�
h21; : : : ; h

2
d2

�
; and f (x2) is the marginal density of X2;i:

The proofs of the convergence in probability of b� to �0and the asymptotic normality of
our estimator can be derived in a manner precisely analogous to the proofs in Mishra et al

(2010), Theorem 2.1 and Theorem 2.2. These are available from the authors on request.

4 Empirical Examples

Here we apply the parametric models outlined in section 2 and the SACD speci�cations pre-

sented in Section 3 to transaction data on the 2 year constant maturity Treasury note and com-

pare the outcomes. The parametric duration models include the Exponential ACD (EACD),

Weibull ACD (WACD), Generalized Gamma ACD (GACD), and Weibull Log_ACD (Log-

WACD); and the corresponding semiparametric estimators denoted as the SEACD, SWACD,

SGACD, SLogWACD.

Throughout the applications, we adopt least squares cross validation method based on a

grid search approach for obtaining optimal bandwidth, i.e. set h = cb�n�1=(4+d2) as in Silverman
(1986), where b� is the sample standard deviation of X2, and c increments in intervals of 0.1

between 0.1 and 2.

Trading frequency data often displays diurnality. In equity markets this is well-known to

have an inverted U-shape, representing high trading frequency at the beginning and end of

the trading hours. Diurnality in bond markets is less well explored. Engle and Russell (1998)

account for diurnality by decomposing expected duration into deterministic and stochastic

components. Currently there is no dominant method to adjust for diurnality. To eliminate

the calendar time e¤ect, we adopt the cubic spline method of Engle and Russell (1998).

Data for the US Treasury markets is drawn from the Cantor-Fitzgerald eSpeed database

which captures approximately half the secondary trade in US bonds for these maturities; see

Dungey et al (2013). The 2 year US Treasury market is sampled for all trading days in the
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month of May 2006 and diurnally adjusted using a cubic spline with hourly nodes. The bulk

of the trade in this market occurs between 7:30EST and 16:00EST, but we discard the �rst

half hour of morning trade. From this diurnalised data we consider the subsample of the �nal

�ve trading days in the month (May 24, 25, 26, 30 and 31) comprising 3042 observations. The

diurnalised data have a sample Ljung-Box Q(25) statistic of 180.95, compared with a critical

value of 37.65 (the raw data have a Q(25) of 293.22). The state variable used in semiparametric

estimation is the lagged value of the ratio of the diurnally adjusted durations to the parametric

estimator for conditional duration. The (p; q) order of the models indicated via the AIC and

SBC criteria are the EACD(1; 3), WACD(1; 3), GACD(1; 3) and LogWACD(1; 1) :

The sheer number of transactions make the results di¢ cult to present. Instead we present

a one example day of the diurnalised and �tted durations, given in Figure 1. Figure 1(a) shows

the diurnalised Treasury note data for May 24, 2006. Panels (b) to (e) of Figure 1 present

the parametric and semiparametric �tted conditional durations for that day using each of the

alternative distributional forms. Again it is clear from the example that the semiparametric

estimates are able to provide a greater degree of volatility than the parametric approaches.

This is also represented in the results for the MSE results presented in Table 1. The Ljung-

Box tests suggest that all but the LogWACD models pass the model speci�cation test at the

5 percent level. The semiparametric estimates provide an improvement of between 6.62%

(WACD) and 9.02% (GACD) in the MSE for the corresponding models.

5 Conclusions

The developments in the literature on modelling price volatility have parallels in the literature

on duration modelling. Building on this insight this paper has developed a semiparametric

form of a number of parametric conditional duration models, developed from recent work by

Mishra et al. (2010). The paper developed the asymptotic theory for the case of semiparamet-

ric estimation of durations in high frequency �nancial data. The application to a new sample

of US Treasury market transactions, support the ability of the semiparametric speci�cations

to obtain better coverage of the original durations than the parametric models. This contri-

bution to the literature goes someway to the need to obtain models which are more able to

capture the abrupt changes in duration observed in the data. We conjecture that the proposal

of Bauwens et al. (2004) to improve duration modelling by focusing probability distributions

with more mass on small, but not too small, durations, can be alternatively addressed in our

framework by local bandwidth choice.
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Figure 1: Duration data for 2 year US Treasury notes and �tted
parametric (solid line) and semiparametric (dashed line) models

One day sample: May 24, 2006
(a) Diurnalised data (b) EACD models
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Table 1: Mean Squared Error results for di¤erent model speci�cations
MSE Q(25)

Parametric speci�cations
EACD 12190 16.84
WACD 12089 14.96
GACD 12047 15.63
LogWACD 12074 88.94

Semiparametric speci�cations
EACD 11165 21.47
WACD 11289 18.66
GACD 10960 18.74
LogWACD 11116 80.83
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