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Abstract

The equity premium, return on equity minus return on risk-free asset, is expected to be
positive. We consider imposing such positivity constraint in local historical average (LHA) in
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index model when multiple predictors are used. We construct the constrained LHA estimator
via an indicator function which operates as ‘model-selection’ between the unconstrained LHA
and the bound of the constraint (zero for the positivity constraint). We smooth the indica-
tor function by bagging (Breiman 1996a), which operates as ‘model-averaging’ and yields a
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combining weights are determined by the probability that the constraint is binding. Asymptotic
properties of the constrained LHA estimators without and with bagging are established, which
show how the positive constraint and bagging can help reduce the asymptotic variance and mean
squared errors. Monte Carlo simulations are conducted to show the finite sample behavior of the
asymptotic properties. In predicting U.S. equity premium, we show that substantial nonlinear-
ity can be captured by LHA and that the local positivity constraint can improve out-of-sample
prediction of the equity premium.
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1 Introduction

Goyal and Welch (GW 2008) show that the historical average (HA) forecast of the equity premium

(excess return on equity over return on risk-free asset) performs better than forecasts from the

predictive regression using covariates (predictors). GW find that numerous economic predictor

variables with in-sample significance for the excess stock returns fail to deliver out-of-sample fore-

casting gains relative to the HA. In GW the benchmark model to beat in out-of-sample forecasting

was the ‘global historical average’ (GHA), which is formed from the sample average of the historical

equity premium time series over rolling fixed windows or expanding windows.

While the literature has generally confirmed that it is very hard to beat GHA, there are a few

limited demonstrations of some success in beating this simple benchmark GHA. In particular we

note the following three approaches here. The first one is Campbell and Thompson (CT 2008),

who asked a question in their paper title, “Predicting the equity premium out of sample: Can

anything beat the historical average?”. They argued that the answer to this question can be “Yes”

if theoretically motivated constraints (e.g., monotonicity, positivity) are imposed on the predictive

regression function. CT found that the predictive regression models with some sensible constraints

can do better than GHA. The second one is Hillebrand, Lee and Medeiros (2009), who use bagging to

smooth the CT’s constraint and found that bagging can further improve CT’s constrained predictive

regression forecasts. The third one is Chen and Hong (2009), who show that the nonparametric

nonlinear forecasts are better than the parametric linear regression forecasts.

This paper extends the above literature by putting all of these three approaches together.

First, following Chen and Hong (2009), we consider nonparametric local models to explore if an

LHA model can beat the GHA model.1 The answer from our empirical analysis (Section 6) is

clearly “Yes” using the same data set used in CT (2008). We find that LHA can easily beat

GHA for many predictors (especially for the annualized equity premium in monthly frequency).2

Second, following CT (2008), we consider imposing the local positivity constraint on the LHA equity

premium forecast to explore if the constraint can improve the LHA. The answer in Section 6 is also

1Chen and Hong (2009) use the local linear model, while we use the Nadaraya-Watson local constant model.
2See Section 6 for the definition of annualized excess return in monthly frequency. Qt(k) in equation (18) with

k = 12 is the annualized excess return in month t. Qt(k) with k = 1 is the monthly excess return in month t.
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“Yes” for almost all 11 predictors for the annualized excess returns and also for the monthly excess

returns. Third, following Hillebrand, Lee and Medeiros (2009), we consider bagging to explore if

smoothing of the constraint can further help the positivity-constrained LHA. The answer given in

Section 6 to this possibility is again “Yes” for most of the 11 predictors for the annualized equity

premium and for the monthly excess returns. In summary, these three considerations give us three

models – the LHA forecast, the positivity-constrained LHA forecast (denoted as LHAp), and the

bagged positivity-constrained LHA forecast (denoted as LHApb). LHApb is the new equity premium

forecast using all three features (local, constrained, and bagged).

The rest of the paper is organized as follows. Section 2 presents four HA models – namely, GHA,

LHA, LHAp, and LHApb. In Section 3 we derive the asymptotic properties of LHAp (Theorem

1) and LHApb (Theorem 2). We also show that LHAp yields local ‘model-selection’ between LHA

model and the bound of the constraint while LHApb operates as local ‘model-averaging’ of LHA and

the bound of the constraint with the model-averaging weights determined by the probability that

the constraint binds (Theorem 3). Extension to models with multivariate predictors is considered

in Section 4. Section 5 examines the finite-sample properties of these models via Monte Carlo

simulations. Section 6 evaluates their predictions of equity premium. Section 7 concludes. The

Appendix collects all the technical proofs.

2 Historical Average Models

First, we consider the GHA model for the equity premium y as

yt+1 = α+ ut+1, (1)

where ut+1 is a disturbance term such that E (ut+1) = 0, t = 1, ..., n. The least square estimator of

the GHA α,

GHA : α̃ =
1

n

n∑
t=1

yt, (2)

is the unconstrained parametric estimator of α. Note that α̃ is a random variable which is asymp-

totically normal with mean α.
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Now we consider GHA and LHA models for the equity premium. The equity premium is the

difference between returns on risky equity and risk-free assets. As the equity premium is the risk

premium for the investment on the risky equity, it is expected to be positive, that is α > 0. CT

(2008) considered imposing such positivity constraint on the linear parametric (global) predictive

regression model where the equity premium y is predicted using a predictor x.

We consider such positivity constraint on the LHA model in nonparametric kernel regression

framework. Let y be the variable to forecast and x be a predictor. For the ease of exposition, we

first consider the LHA model where x contains one regressor. The case in which the predictor x is

multivariate is treated in Section 4. Let In = {xt−1, yt}nt=1 be an observed training sample (drawn

from a stationary process) at time t = n to train the LHA α (x), and xt is the value of x at time t.

The LHA model is

yt+1 = α (xt) + ut+1, (3)

where α (xt) = E (yt+1|xt), ut+1 is a disturbance term such that E (ut+1|xt) = 0 by construction,

t = 1, ..., n. The LHA is the local constant kernel estimator of α (x) trained using In

LHA : α̃ (x) =

∑n
t=1 kh (xt−1 − x) yt∑n
t=1 kh (xt−1 − x)

, (4)

where h is a bandwidth, kh (·) = k (·/h), and k (·) is a kernel function. α̃ (x) is shown to be

asymptotically normal, c.f. Pagan and Ullah (1999). The LHA equity premium forecast at time n

using the predictor value x = xn is α̃ (xn) .

We construct the constrained estimator via an indicator function. The indicator function selects

either the unconstrained LHA or the bound of the constraint (zero for the positivity constraint) as

a forecast of the equity premium. We consider the constraint that the LHA of y conditional on x,

α (x) = E (y|x), exceeds some known lower bound, α1 (x). That is,

α (x) > α1 (x) . (5)

This information is assumed to be known as a prior to a forecaster. Under this constraint (5), we

can easily estimate α (x) with

LHAp : ᾱ (x) = α̃ (x) 1[α̃(x)>α1(x)] + α1 (x) 1[α̃(x)≤α1(x)]. (6)
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In the empirical example of this paper, we consider the constraint with the constant bound α1(x) =

0, making ᾱ (x) the LHA with positivity constraint (denoted as LHAp). Note that LHAp operates as

local ‘model-selection’ between LHA α̃ (x) and α1(x) = 0 (the martingale difference, MD, model).

The LHAp estimator ᾱ (x) involves an indicator and is not stable in the sense of Breiman

(1996b) and Bühlmann and Yu (2002). Following Bühlmann and Yu (2002), we smooth the in-

dicator function by bagging (Breiman 1996a). To define the “bagging positivity-constrained L-

HA’ of α (x), we construct a bootstrap sample
{
x∗t−1, y

∗
t

}n
t=1

which is used to derive a bootstrap

constrained estimator via (6) using the plug-in principle. The bagging predictor is an expec-

tation of this estimator over the bootstrapped samples. To be precise, denote α̃∗(j) (x) as the

unconstrained estimator of α (x) computed from the j-th bootstrapped sample
{
x
∗(j)
t−1 , y

∗(j)
t

}n
t=1

,

j = 1, . . . , J . Then the plug-in constrained estimator in the j-th bootstrap sample ᾱ∗(j) (x) =

α̃∗(j) (x) 1[α̃∗(j)(x)>α1(x)] +α1 (x) 1[α̃∗(j)(x)≤α1(x)]. We define the bagging positivity-constrained LHA

estimator (denoted as LHApb) as

LHApb : α̂ (x) =
1

J

J∑
j=1

ᾱ∗(j) (x) := E∗ᾱ∗ (x) . (7)

in line with that of Breiman (1996a).

In the next section, we will show that

α̂ (x) ≈ w(x)α̃ (x) + (1− w(x))α1 (x) . (8)

In Theorem 3, we show that the combining weight w (x) is the limiting probability that the local

positivity-constraint is non-binding. If w(x) > 0, bagging operates as convex ‘model-averaging’

locally instead of as ‘model-selection’ and yields a combined forecast of unconstrained LHA α̃ (x)

and the bound of the constraint α1(x). The underlying reason for the benefit of imposing the

(correct) constraint is the ‘shrinkage’ principle with (1− w(x)) being the extent of the shrinkage

towards the bound. Breiman (1996a) shows that bagging estimator enjoys a smaller mean squared

error loss. Bühlmann and Yu (2002) establish the asymptotic properties of bagging estimators in

variable selection scenario and show that bagging estimator has a much smaller variance, albeit

introducing an additional bias. In the next section, we will study sampling properties of LHAp and

LHApb.
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3 Asymptotic Properties of Local Historical Average

Denote Z as a standard normal random variable with CDF Φ (·) and PDF ϕ (·). Furthermore, define

Zb(x) = Z + b(x). The following assumptions will be used to establish the asymptotic properties of

the constrained estimator and its bagging version.

Assumption A

(A.1) As n→∞, (i) γ (n, h)→∞, (ii) h→ 0, (iii) γ (n, h)h2 → 0.

(A.2) γ (n, h)σ−1
α (x) (α̃ (x)− α (x))

d→ Z, where σα (x) > 0.

(A.3) α (x) = α1 (x) + γ−1 (n, h)σα (x) b (x) for some real function b (·) .

Assumption (A.1) places conditions on the bandwidth parameter. Assumption (A.2) states

that the unconstrained estimator α̃ (x) is asymptotically normal. We note that (A.2) is a high-level

assumption whose lower-level assumptions would depend on the persistence in the predictor x: (a)

when x is strongly mean-reverting (stationary), γ (n, h) is a function of n and h, usually taking the

form of
√
nh. In this case, lower-level assumptions that leads to (A.2) can be found in Li and Racine

(2007), for example; (b) when x is highly persistent or unit root, γ (n, h) =

√∑n
t=1K

(
x−xt−1

h

)
,

with convergence in (i) and (iii) of Assumption (A.1) adjusted to convergence in probability, and

lower-level assumptions for (A.2) have been studied in Bandi (2004), Wang and Phillips (2009a,b)

among others. These lower level assumptions are not repeated here. It can be seen that σα (x)

represents the asymptotic standard deviation of α̃ (x), whose expression can be found in earlier

references. We emphasize that if γ (n, h)h2 → 0, the asymptotic bias term of α̃ (x) vanishes to

zero. Assumption (A.3) describes that the distance between α (x) and the lower bound α1 (x) is

controlled by the drift function b (·). This assumption is only relevant when local asymptotics are

considered. It will be made explicit that asymptotic distributions of constrained estimators will

depend on b (·).

We first establish the following theorem for the constrained estimator ᾱ (x).

Theorem 1. (i) Under A.1-A.2, we have,
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(a) when α (x) > α1 (x), γ (n, h)σ−1
α (x) (ᾱ (x)− α (x))

d→ Z.

(b) when α (x) = α1 (x), Pr
[
γ (n, h)σ−1

α (x) (ᾱ (x)− α (x)) < z
] d→ Φ (z) · 1{z≥0}.

(ii) If we further assume A.3, then

γ (n, h)σ−1
α (x) (ᾱ(x)− α(x))

d→ Zb(x)1[Zb(x)>0] − b(x).

Remark 1. The proofs are collected in the Appendix. Theorem 1 states the limiting distribution

of ᾱ (x). Part (i) presents the usual asymptotic distribution when the constraint is strict and when

the α (x) is on the boundary. The result confirms the intuition that, as long as the constraint is

strict, it will be met by the unconstrained estimator α̃ (x) when the sample size is large enough.

This leads to the conclusion that ᾱ (x) would be asymptotically equivalent to α̃ (x). When α (x)

is on the boundary, the limiting CDF compresses all the mass of negative values at 0. Part (ii)

establishes the local asymptotic distribution of ᾱ (x) that depends on the drift parameter b (x). It

is easy to see that, if b (x) is allowed to grow as n, Zb(x)1[Zb(x)>0] − b (x) will collapse to Z, and

result in (ii) becomes that in (i.a). Similarly, (ii) reproduces the result of (i.b) when b (x) = 0.�

The following corollary presents the asymptotic bias and variance of the constrained estimator.

Corollary 1. Under A.1-A.3, it follows that

(a) limn→∞ γ (n, h)σ−1
α (x)E [ᾱ(x)− α(x)] = ϕ (b(x)) + b(x)Φ (b(x))− b(x).

(b) limn→∞ V ar
[
γ (n, h)σ−1

α (x) ᾱ(x))
]

= Φ (b(x))+b(x)ϕ (b(x))−ϕ2 (b(x))−2b(x)ϕ (b(x)) Φ (b(x))+

b2(x)Φ (b(x)) [1− Φ (b(x))] .

Now we consider the LHApb with the constraint and bagging. To apply bagging, we need an

additional assumption:

Assumption A (continued)

(A.4) γ (n, h)σ−1
α (x) (α̃∗ (x)− α̃ (x))

d→ Z.
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Assumption (A.4) requires the bootstrap consistency for the unconstrained LHA estimator

α̃ (x). Validity for bootstrap for local nonparametric estimators can be found in Hall (1992) or

Horowitz (2001).

Theorem 2. Under A.1-A.4, we have,

γ (n, h)σα (x)−1 (α̂ (x)− α (x))
d→ Z − Zb(x)Φ

(
−Zb(x)

)
+ ϕ

(
−Zb(x)

)
.

Corollary 2. If A.1-A.4 hold, then

(a) limn→∞ γ (n, h)σ−1
α (x)E [α̂ (x)− α (x)] = 2ϕ ∗ ϕ (−b (x))− b (x) Φ ∗ ϕ (−b (x)) .

(b) limn→∞ V ar
[
γ (n, h)σ−1

α (x) α̂ (x)
]

= 1+Φ2∗ϕ′′ (−b (x))+Φ2∗ϕ (−b (x))−2bΦ2∗ϕ′ (−b (x))+

b2 (x) Φ2∗ϕ (−b (x))+ϕ2∗ϕ (−b (x))−2Φ∗ϕ′′ (−b (x))−2Φ∗ϕ (−b (x))+2b (x) Φ∗ϕ′ (−b (x))−

2ϕ∗ϕ′ (−b (x))+2 (Φ · ϕ)∗ϕ′ (−b (x))−2b (x) (Φ · ϕ)∗ϕ (−b (x))−[2ϕ ∗ ϕ (−b (x))− b (x) Φ ∗ ϕ (−b (x))]2 .

Remark 2. We adopt the notation f ∗ g to denote the convolution of two functions f and g,

defined as f ∗ g (s) =
∫
f (t)× g (s− t) dt. Theorem 2 states the limiting distribution of α̂ (x) and

Corollary 2 shows the explicit expression for its asymptotic bias and variance. The dependence of

the limiting distribution on the drift parameter b (x) is explicit through Zb(x). In order to compare

the performance of bagging constrained estimator α̂ (x) and constrained estimator ᾱ (x) without

bagging, we plot asymptotic variance, squared bias and MSE against the drift function b (·) = b in

Figure 1. Figure 1 should be understood for GHA or for LHA for a fixed value of x. We notice from

the figure that there is a trade off using bagging, which reduce asymptotic variance while incurring

some additional bias. Overall, it is clear that for a large range of values of b (·) (≥ 0.391), bagging

estimator enjoys a reduction in asymptotic MSE (AMSE).

Figure 1 About Here

Theorem 3. Under A.1-A.4, we have

α̂ (x) = α̃ (x) Φ
(
Zb(x)

)
+ α1 (x) Φ

(
−Zb(x)

)
+Op

(
1

γ(n,h)

)
.
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Remark 3. Theorem 3 establishes that the LHApb estimator α̂ (x) is a model averaging type

estimator with a weight Φ
(
Zb(x)

)
assigned to the unconstrained estimator LHA α̃ (x) and a weight

Φ
(
−Zb(x)

)
to the lower bound α1 (x), up to order Op

(
1

γ(n,h)

)
. Note that as b (x) increases to

infinity, i.e., when the constraint becomes less binding, α̃ (x) will receive probability weight that

goes to 1 (since Φ
(
Zb(x)

)
approaches 1). On the other hand, as b (x) decreases to zero, i.e., when

the constraint becomes more binding, Φ
(
Zb(x)

)
will become closer to a uniform random variable

(since Φ (Z) is uniform by probability integral transformation). Overall, the performance of the

bagging constrained estimator, compared to constrained estimator and unconstrained estimator,

can be sensitive to the distance of the lower bound to the true function value, as depicted in Figure

1.

4 Semiparametric Extensions

In this section, we extend the results developed in the previous section to models with multivariate

predictors. It has been long recognized that kernel regressions with multivariate regressors suffer

from the “curse of dimensionality”, i.e., the convergence rate of the kernel estimators will deteriorate

as the dimension of the regressors increases. To circumvent this challenge, semiparametric models

have become popular. Many recent work has focused on the single index model that enjoys easy

implementation. For more details, see Gao (2007) and references therein. This section will illustrate

the extension on single index model. We note that the results would be similarly extended to other

semiparametric models.

Consider the single index model of the form

yt+1 = α
(
X ′tβ0

)
+ ut+1. (9)

The model for i.i.d. data has been extensively studied by many authors, to cite a few, Ichimura

(1993) and Härdle, Hall and Ichimura (1993). In time series setting, (9) is a special case of the

model studied by Xia, Tong and Li (1999). The estimation procedure follows from Ichimura (1993).

Let α (z) = E (yt+1|X ′tβ = z). Denote its (leave-one-out) Nadaraya-Watson kernel estimator (with
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the s-th observation omitted) as

α̃−s (z) =

∑n
t=1,t6=s kh

(
X ′t−1β − z

)
yt∑n

t=1,t6=s kh
(
X ′t−1β − z

) , (10)

where h is a bandwidth, and kh (·) = k (·/h), k (·) is a kernel function. The estimation of β0 and

the choice of h can be performed by selecting the orientation β and h that minimize a measure of

the distance. That is, (
β̂, ĥ

)
= arg min

β,h
Sn (β, h) , (11)

where Sn (β, h) =
∑n

s=1

[
ys − α̃−s

(
X ′s−1β

)]2
. With β̂ and ĥ, the semiparametric single index local

historical average forecast at time n using z = X ′nβ̂ is obtained from

α̃
(
X ′nβ̂

)
=

∑n
t=1 kĥ

(
X ′t−1β̂ −X ′nβ̂

)
yt∑n

t=1 kĥ

(
X ′t−1β̂ −X ′nβ̂

) . (12)

Conditions for α̃
(
X ′nβ̂

)
to satisfy Assumption (A.1)-(A.2) are given in Xia, Tong and Li (1999).

Under the constraint of (5), ᾱ
(
X ′nβ̂

)
and α̂

(
X ′nβ̂

)
can be defined analogous to (6) and (7),

respectively. It follows that Theorem 1-3 also hold in the semiparametric single index model.

5 Finite Sample Properties of Local Historical Average

In this section, we study the finite sample performance of the constrained estimator LHAp ᾱ (x)

and its bagging version LHApb α̂ (x). We first consider the following data generating process (DGP)

DGP 1 : yt+1 = a (4xt − 2)3 + et+1, (13)

where

xt − µ = ρ (xt−1 − µ) + ut, (14)

with µ = 1, et and ut are i.i.d. normal r.v. with mean 0 and σe = 1 and σu = 0.5, and a

∈ {0.001, 0.004, 0.007, 0.010, 0.020} that controls the distance between α (x) and the bound α1 (x) =

0. Hence, from Assumption (A.3), note that the value of a also controls b (x) for given γ (n, h)

and σα (x) . We follow the design of Chen and Hong (2009) to allow time series dependence in the

predictor and consider different values of ρ chosen from {0, 0.1, 0.9, 1}. We evaluate the estimators of
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α (x) at x = 1 and 1.5. We compute the mean of squared errors out of 200 Monte Carlo replications.

In each replication, we experiment with sample size n = 50, 100, 200, and the bootstrap sample size

J = 100 for bagging in each replication. The relative mean squared errors are reported in Table 1.

We use cross-validation to select a bandwidth h that minimizes the integrated mean squared error

and use this same bandwidth for the J = 100 bootstrap samples generated within each replication.

The block bootstrap method is used to generate bootstrap samples. We consider the block length

to be 1, 4 and 12 but the main results do not change much. Therefore, the result for block length

equal to 4 will be reported. See Härdle, Horowitz and Kreiss (2003) and references therein for

details of block bootstrap method for time series.

Consider a forecasting model

Model : yt+1 = α (x) + ut+1. (15)

For a given evaluation predictor value x, we are interested in forming a forecast ŷn+1 = α (x|In) ,

where In = {xn0 , ..., xn, yn0 , ..., yn} is used to estimate a model. In this section for simulation

we fix both n0 = 1 and n = 50, 100, 200, and estimate various models using the R ≡ n − n0 +

1 = n observations. In each Monte Carlo replication i (i = 1, . . . , 200), 200 values of
{
m̂(i)(x)

}
are computed at various fixed x values, and also 200 values of

{
û(i)(x) ≡ α(x)− m̂(i)(x)

}200

i=1
are

computed. Here, m̂(x) = α̃ (x) , ᾱ (x) , or α̂ (x) . We compute the Monte Carlo average of the

squared û(i)(x) over i for each evaluation point x, MSE ≡ 1
200

∑200
i=1 û

(i)2(x). We compare the three

models pointwise for different values of x, the results are reported in Table 1 at x = 1 and in Table

2 at x = 1.5. We report the relative MSE of LHAp ᾱ (x) and LHApb α̂ (x) w.r.t. that of LHA α̃ (x) .

We summarize the main findings as follows. At x = 1, the constrained estimator works better

than unconstrained estimator for small values of a in all sample sizes. The gain in relative mean

squared errors
(
MSELHAp/MSELHA

)
can be as big as 50%. When a gets larger, the gain of con-

strained estimator starts to decrease, as noted by the increase of relative MSE. The constraint will

become non-binding eventually and thus constrained estimator performs the same as the uncon-

strained. Bagging does not tend to work for sample size n = 50 for small values of a considered

here. When a and n get larger (a = 0.02, n = 100, 200), bagging improves upon the constrained
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estimator for all values of ρ, with the gain in relative mean squared error
(
MSELHApb/MSELHA

)
as large as 5%. This is consistent with the theory that bagging estimator works better than the

constrained estimator when the sample size n and the level of the function determined by a are of

suitable proportion for b (x). For large values of a, the relative mean squared errors that are larger

than 1 are due to sampling errors incurred in the bootstrap procedure.

As shown from Table 2, the results become more apparent when the estimators are evaluated

at x = 1.5. Again, the role of the constraint becomes less important as a gets larger. Bagging’s role

become more salient in this case, with gain in MSE more than 10% when a = 0.007 and n = 50.

As Figure 1 shows, the AMSE of bagging estimator can be over 10% smaller than constrained

estimator. So the result we find is congruent with the asymptotic theory. Bagging achieved the

maximal amount of gain in relative MSE (16%) when a = 0.02, ρ = 1 and n = 100.

We next consider the following DGP

DGP 2 : yt+1 = a exp
(
x′tβ
)

+ et+1, (16)

where β = (1, 0.5, 0.5)′, xt = (x1,t, x2,t, x3,t)
′, xk,t, for k = 1, 2, 3, is generated independently from

an AR(1) process as in (14) with µk = 1, et and uk,t are i.i.d. normal r.v. with mean 0 and σe = 1

and σu,k = 1, a ∈ {0.001, 0.004, 0.007, 0.010, 0.020}. ρ is set to be 0 or 0.9. Other specifications on

the simulation are the same as those in DGP 1. We consider two forecasting models. One is the

multivariate local constant least square estimator or the Nadaraya-Watson (NW) estimator, and

the other is the estimator derived from the single index model (SIM). The models are compared at

evaluation point xt = (1, 1, 1)′. The relative forecasting MSEs are reported in Table 3. It can be

seen from Table 3 that the constrained estimator and the bagging constrained estimator achieve the

uniform reduction in MSE for the multivariate NW estimator and the SIM estimator. Furthermore,

as a gets larger, the bagging constrained estimator tends to outperform the constrained estimator

without bagging. The role of imposing constraint becomes less important for larger a. These

findings are very much similar to those from DGP 1.

Table 1 About Here
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Table 2 About Here

Table 3 About Here

6 Empirical Properties of Local Historical Average

To put our proposed constrained local historical average estimators LHAp and LHApb in practice,

we consider forecasting U.S. equity premium. Equity premium or excess return is defined as return

of the S&P500 Index over the risk-free short-term interest rate. Denote by Pt the S&P500 Index

at month t. The monthly simple one-month return from month t to month t + 1 is defined as

Rt(1) ≡ Pt+1/Pt − 1, and one-month excess return is Qt(1) ≡ Rt(1)− rt with rt being the risk-free

interest rate.

Following Campbell, Lo and MacKinlay (1997, p. 10), we define the k-period return from month

t to month t+ k as

Rt(k) ≡ Pt+k
Pt
− 1

=

(
Pt+k
Pt+k−1

)
× · · · ×

(
Pt+1

Pt

)
− 1

= (1 +Rt+k−1(1))× · · · × (1 +Rt(1))− 1 (17)

and following CT (2008) we define the k-period excess return as

Qt(k) ≡ (1 +Rt+k−1(1)− rt+k−1)× · · · × (1 +Rt(1)− rt)− 1

= Qt+k−1(1)× · · · ×Qt(1)− 1

=

 k∏
j=1

Qt+k−j(1)

− 1. (18)

We let yt+1 = Qt(k), and consider k = 1, 12 as reported in CT (2008). The results presented

in Table 4 are with this definition of the equity premium in (18). We have conducted the same

analysis with k = 3, 6 but their results turn out to be what may be easily expected from k = 1, 12,

and thus we do not report them for space.

We use 11 predictors including dividend price ratio (d/p), earning price ratio (e/p), smooth

earning price ratio (se/p), book to market ratio (b/m), return on equity (roe), treasure bill (t-bill),

12



long term yield (lty), term spread (ts), default spread (ds), inflation (inf ) and net equity issuance

(nei). We thank John Campbell and Sam Thompson for sharing their data used in CT (2008). It is

found that d/p, e/p, se/p, b/m, roe, t-bill, and lty are unit root processes, while the equity premium

(Qt(1), Qt(12)), ts, ds, inf and nei are not. To save space, we use the first-order difference of the

unit root variables when they are used as predictor. The results using the unit root variables (not

their differences) as predictors are quite similar and are available from the authors upon request.

We follow CT (2008) to impose a constraint that the equity premium should be positive. We

consider the annualized monthly equity premium Qt(12) and monthly equity premium Qt(1), with

forecasts starting from 1960:01 and 1980:01 and rolling till 2005:12. The in-sample size for model

estimation is kept fixed as R = 120. We report the results for mean squared forecast errors (MSFE)

relative to the global historical average (GHA) forecast in Table 4.

In Table 4A with k = 12, we are forecasting the annualized equity premium Qt(12) at month t.

We first see that nonparametric LHA forecasts α̃ (x) outperform the global historical average GHA

α̃, for the predictor d/p, e/p, ds, and nei in both forecasting periods. Second, for these predictors,

we observe that imposing the positivity constraint generally reduces the MSFE, which may be

further reduced after the bagging procedure. The largest reduction for imposing the constrain

occurs for ds when forecasts begins at 1960:01, and it achieves more than 5%. Third, bagging

works for annualized equity premium forecasts for almost all predictors in both forecasting periods,

though the improvement is often small. However, this is consistent with the theory in Section 3

as summarized in Figure 1. Compared to local GHA, the bagging constrained forecasts are better,

except for one case. The maximum gain in MSFE is over 16%, for the predictor ds, in the forecasting

sample 1960:01. Fourth, for the semiparametric single index model that uses all the 11 predictors,

the positivity constraint improves the MSFE from 1.006 to 0.998, which is further improved by

the bagging procedure that achieves a relative MSFE 0.985 when forecasts begins at 1960:01. The

similar result in improvement direction is also seen when forecasts begins at 1980:01.

In Table 4B with k = 1, we are forecasting the monthly equity premium Qt(1) at month t. We

hardly see much gain using unconstrained nonparametric methods over the GHA. The best that

nonparametric MSFE gains, with 0.7% reduction, is for the predictor e/p when forecasts start from

13



1980:01. However, imposing the positivity constraint LHAp almost always improves MSFE. We

observe that bagging works most of the time. Especially for the predictors d/p, e/p, b/m, bagging

even help the nonparametric LHApb forecast to beat the “unbeatable” global historical average

GHA in both forecast samples. This gain is as large as 1.1% for e/p when forecasts start from

1980:01, which is economically significant according to Campbell and Thompson (2008).

Table 4 About Here

7 Conclusions

In this paper, we investigate the use of nonparametric local historical average and semiparamet-

ric single index local historical average in forecasting of equity premium, compared to the global

historical average which is traditionally used. In addition, we consider imposing a local constraint

that the equity premium is expected to be positive. We define the constrained local historical

average forecast and its bagging version. Asymptotic properties of these constrained/bagged fore-

casts are established. We show that the constrained local historical average forecast operates as

model-selection between the local historical average and zero equity premium, and that the bagged

constrained local historical average forecast yields a locally shrunken combined forecast of the local

historical average forecast and the zero equity premium forecast. The local combining weights are

determined by the probability that the local constraint is binding. Significant gains in MSE can

be achieved by using a local model, a local constraint, and bagging as shown in our simulation.

In predicting U.S. equity premium, we show that substantial nonlinearity is present which can be

captured by the nonparametric local historical average and that the local positivity constraint of

the equity premium provides valuable prior information in improving its out-of-sample prediction.

The paper studies the role of constrained estimation and that of bagging under the condition

that the nonparametric estimator is asymptotically normal. In the case of structural change, this

condition is often violated. Thus the comparison becomes quite challenging and needs further

detailed investigation, which is beyond the scope of this paper. Such a potential research topic is

left for future study.
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Appendix

Proof of Theorem 1. We first prove (i). For any z ∈ R,

Pr
(
γ (n, h)σ−1

α (x) (ᾱ (x)− α (x)) < z
)

= Pr
(
γ (n, h)σ−1

α (x) (max{α̃ (x) , α1 (x)} − α (x)) < z|α̃ (x) < α1 (x)
)
× Pr (α̃ (x) < α1 (x))

+ Pr
(
γ (n, h)σ−1

α (x) (max{α̃ (x) , α1 (x)} − α (x)) < z|α̃ (x) ≥ α1 (x)
)
× Pr (α̃ (x) ≥ α1 (x))

= Pr
(
γ (n, h)σ−1

α (x) (α1 (x)− α (x)) < z
)
× Pr (α̃ (x) < α1 (x)) + (19)

Pr
(
γ (n)σ−1 (α̃ (x)− α (x)) < z|α̃ (x) ≥ α1 (x)

)
× Pr (α̃ (x) ≥ α1 (x)) .

First term in (19): When α (x) > α1 (x) ,

Pr
(
γ (n, h)σ−1

α (x) (α1 (x)− α (x)) < z
)
→ Pr (−∞ < z) = 1.

When α (x) = α1 (x) ,

Pr
(
γ (n, h)σ−1

α (x) (α1 (x)− α (x)) < z
)
→
{

1, if z > 0
0, if z ≤ 0

.

Second term in (19):

Pr (α̃ (x) < α1 (x))

= Pr
(
γ (n, h)σ−1

α (x)σ−1 (α̃ (x)− α (x)) < γ (n, h)σ−1
α (x)σ−1 (α1 (x)− α (x))

)
→

{
Pr (Z < −∞) = 0, if α (x) > α1 (x)
Pr (Z < 0) = Φ (0) , if α (x) = α1 (x)

.

Third term in (19): When α (x) = α1 (x),

Pr
(
γ (n, h)σ−1

α (x) (α̃ (x)− α (x)) < z|α̃ (x) ≥ α1 (x)
)

=
Pr
(
γ (n, h)σ−1

α (x) (α̃ (x)− α (x)) < z, γ (n, h)σ−1
α (x) (α̃ (x)− α1 (x)) ≥ 0

)
Pr
(
γ (n, h)σ−1

α (x) (α̃ (x)− α1 (x)) ≥ 0
)

=
Pr
(
γ (n, h)σ−1

α (x) (α̃ (x)− α (x)) < z, γ (n, h)σ−1
α (x) (α̃ (x)− α (x)) ≥ γ (n, h)σ−1

α (x) (α1 (x)− α (x))
)

Pr
(
γ (n, h)σ−1

α (x) (α̃ (x)− α (x)) ≥ γ (n) (α1 (x)− α (x))
)

→

{
Φ(z)−Φ(0)

1−Φ(0) , if z > 0

0, otherwise
.

When α (x) > α1 (x),

Pr
(
γ (n, h)σ−1

α (x) (α̃ (x)− α (x)) < z|α̃ (x) ≥ α1 (x)
)

= Φ (z) .
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Fourth term in (19):

Pr (α̃ (x) ≥ α1 (x))

= 1− Pr
(
γ (n, h)σ−1

α (x)σ−1 (α̃ (x)− α (x)) < γ (n, h)σ−1
α (x) (α1 (x)− α (x))

)
→

{
1− Pr (Z < −∞) = 1, if α (x) > α1 (x)
1− Pr (Z < 0) = 1− Φ (0) , if α (x) = α1 (x)

.

Therefore, combining the four terms leads to, (i.a) when α (x) > α1 (x), Pr
(
γ (n, h)σ−1

α (x) (ᾱ (x)− α (x)) < z
)
→

Φ (z) and (i.b) when α (x) = α1 (x), for z > 0,Pr
(
γ (n, h)σ−1

α (x) (ᾱ (x)− α (x)−Bm (x)) < z
)
→

Φ (z); for z = 0, Pr
(
γ (n, h)σ−1

α (x) (ᾱ (x)− α (x)) < z
)
→ Φ (0); for z < 0, Pr

(
γ (n, h)σ−1

α (x) (ᾱ (x)− α (x)) < z
)
→

0. Written compactly, we have Pr
(
γ (n, h)σ−1

α (x) (ᾱ (x)− α (x)) < z
)

= Φ (z) 1{z>0}.

To prove (ii), note that

γ (n, h)σ−1
α (x) (ᾱ (x)− α (x))

= γ (n, h)σ−1
α (x) (α1 (x)− α (x)) + γ (n, h)σ−1

α (x) (α̃ (x)− α1 (x)) 1[γ(n,h)σ−1
α (x)(α̃(x)−α1(x))>0]

= γ (n, h)σ−1
α (x) (α1 (x)− α (x)) +

γ (n, h)σ−1
α (x) (α̃ (x)− α (x) + α (x)− α1 (x)) 1[γ(n,h)σ−1

α (x)(α̃(x)−α1(x))>0]

d→ Zb(x)1[Zb(x)>0] − b (x) .

by Assumption (A.1) and (A.2).

Proof of Corollary 1. For a standard normal random variable Z and a constant b, we can easily

show that E1[Zb>0] = Φ (b), E
[
Z1[Zb>0]

]
= ϕ (b), E

[
Z21[Zb>0]

]
= −bϕ (b) + Φ (b), E

[
Zb1[Zb>0]

]
=

ϕ (b) + bΦ (b) and E
[
Z2
b 1[Zb>0]

]
= Φ (b) + bϕ (b) + b2Φ (b). Therefore, we have

E
[
Zb(x)1[Zb(x)>0] − b (x)

]
= EZ1[Zb(x)>0] + b (x)E1[Zb(x)>0] − b (x)

= ϕ (b (x)) + b (x) Φ (b (x))− b (x) ,

and

V ar
[
Zb(x)1[Zb(x)>0] − b (x)

]
= V ar

[
Zb(x)1[Zb(x)>0]

]
= E

{[
Zb(x)1[Zb(x)>0]

]2
}
−
{
E
[
Zb(x)1[Zb(x)>0]

]}2

= Φ (b (x)) + b (x)ϕ (b (x)) + b2 (x) Φ (b (x))− [ϕ (b (x)) + bΦ (b (x))]2 .
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Proof of Theorem 2. Write

γ (n, h)σ−1
α (x) (α̂ (x)− α (x))

= γ (n, h)σ−1
α (x)

(
E∗
[
α̃∗ (x) 1[α̃∗(x)≥α1(x)]

]
+ α1 (x)E∗

[
1[α̃∗(x)<α1(x)]

]
− α (x)

)
= γ (n, h)σ−1

α (x)
(
E∗
[
(α̃∗ (x)− α (x)) 1[α̃∗(x)≥α1(x)]

]
+ (α1 (x)− α (x))E∗

[
1[α̃∗(x)<α1(x)]

])
.(20)

For the first term in (20) we have

γ (n, h)σ−1
α (x)

(
E∗
[
(α̃∗ (x)− α (x)) 1[α̃∗(x)≥α1(x)]

])
= E∗

[
γ (n, h)σ−1

α (x) (α̃∗ (x)− α (x)) 1[α̃∗(x)≥α1(x)]

]
= E∗[γ (n, h)σ−1

α (x) (α̃∗ (x)− α (x))× 1[γ(n,h)σ−1
α (x)(α̃∗(x)−α(x))≥γ(n,h)σ−1

α (x)(α1(x)−α(x))]]

d→ EW
[
W1[W≥−b(x)]|Z

]
, (21)

where W |Z ∼ N (Z, 1). Note that

EW
[
W1[W≥−b(x)]|Z

]
= EW [W |Z]− EW

[
W1[W<−b(x)]|Z

]
= Z −

∫ −b(x)

−∞
wϕ (w − Z) dw

= Z −
∫ −b(x)−Z

−∞
(s+ Z)ϕ (s) ds

= Z − ZΦ (−b (x)− Z)−
∫ −b(x)−Z

−∞
sϕ (s) ds

= Z − ZΦ
(
−Zb(x)

)
+ ϕ

(
−Zb(x)

)
.

Similarly, for the second term in (20) we get

γ (n, h)σ−1
α (x) (α1 (x)− α (x))E∗

[
1[α̃∗(x)<α1(x)]

] p→ −b (x) ΦZ

(
−Zb(x)

)
, (22)

by Slutsky’s theorem.

Putting (21) and (22) together into (20) gives the desired result.

Proof of Corollary 2. We can first show that Eϕ (−Zb) = ϕ ∗ ϕ (−b), Eϕ2 (−Zb) = ϕ2 ∗ ϕ (−b),

E [Zϕ (−Zb)] = −ϕ∗ϕ′ (−b), E [ZΦ (−Zb)] = −ϕ∗ϕ (b), E
[
Z2Φ (−Zb)

]
= Φ∗ϕ′′ (−b)+Φ∗ϕ (−b),
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E
[
Z2Φ2 (−Zb)

]
= Φ2 ∗ ϕ′′ (−b) + Φ2 ∗ ϕ (−b), and E [ZΦ (−Zb)ϕ (−Zb)] = − (Φ · ϕ) ∗ ϕ′ (−b). To

complete the proof, we only need to show that,

E
[
Z − Zb(x)Φ

(
−Zb(x)

)
+ ϕ

(
−Zb(x)

)]
= 0 + ϕ ∗ ϕ (−b (x))− b (x) Φ ∗ ϕ (−b (x)) + ϕ ∗ ϕ (−b (x))

= 2ϕ ∗ ϕ (−b (x))− b (x) Φ ∗ ϕ (−b (x)) .

and

E
[
Z − Zb(x)Φ

(
−Zb(x)

)
+ ϕ

(
−Zb(x)

)]2
= EZ2 + E

[
Zb(x)Φ

(
−Zb(x)

)]
+ E

[
ϕ
(
−Zb(x)

)]2 − 2E
[
ZZb(x)Φ

(
−Zb(x)

)]
+2E

[
Zϕ
(
−Zb(x)

)]
− 2E

[
Zb(x)Φ

(
−Zb(x)

)
ϕ
(
−Zb(x)

)]
= 1 + Φ2 ∗ ϕ′′ (−b (x)) + Φ2 ∗ ϕ (−b (x))

−2bΦ2 ∗ ϕ′ (−b (x)) + b2 (x) Φ2 ∗ ϕ (−b (x)) + ϕ2 ∗ ϕ (−b (x))

−2Φ ∗ ϕ′′ (−b (x))− 2Φ ∗ ϕ (−b (x)) + 2b (x) Φ ∗ ϕ′ (−b (x))

−2ϕ ∗ ϕ′ (−b (x)) + 2 (Φ · ϕ) ∗ ϕ′ (−b (x))− 2b (x) (Φ · ϕ) ∗ ϕ (−b (x)) .

Proof of Theorem 3. By definition,

α̂ (x) = E∗ᾱ∗ (x)

= E∗
[
α̃∗ (x) 1[α̃∗(x)≥α1(x)]

]
+ E∗α1 (x)

[
1[α̃∗(x)<α1(x)]

]
≡ A1 +A2,

where

A2 = E∗
[
α1 (x) 1[α̃∗(x)<α1(x)]

]
= α1 (x)E∗

[
1[α̃∗(x)−α̃(x)<α1(x)−α̃(x)]

]
= α1 (x)EW

[
1[W<−b(x)]|Z

]
+Op

(
1

γ (n, h)

)
= α1 (x) Φ

(
−Zb(x)

)
+Op

(
1

γ (n, h)

)
,
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and

A1 = E∗
[
α̃∗ (x) 1[α̃∗(x)≥α1(x)]

]
= E∗

{
[α̃∗ (x)− α̃ (x)] 1[α̃∗(x)≥α1(x)]

}
+ E∗α̃ (x) 1[α̃∗(x)≥α1(x)]

≡ A11 +A12,

with

A11 = E∗
{

[α̃∗ (x)− α̃ (x)] 1[α̃∗(x)≥α1(x)]

}
=

1

γ (n, h)
E∗
{
γ (n, h) [α̃∗ (x)− α̃ (x)] 1[γ(n,h)(α̃∗(x)−α(x))≥γ(n,h)(α1(x)−α(x))]

}
=

1

γ (n, h)
EW

[
W1[W≥−b(x)]|Z

]
+ op

(
1

γ (n, h)

)
= op

(
1

γ (n, h)

)
,

and

A12 = α̃ (x)E∗
[
1[α̃∗(x)≥α1(x)]

]
= α̃ (x)EW

[
1[W≥−b(x)]|Z

]
= α̃ (x) Φ

(
Zb(x)

)
+Op

(
1

γ (n, h)

)
.

Combining the results completes the proof.
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Table 4: Empirical Results

Panel A. Forecasting Annualized Equity Premium Qt(k = 12) at Month t

Forecast begins from 1960:01 Forecast begins from 1980:01

LHA/GHA LHAp/GHA LHApb/GHA LHA/GHA LHAp/GHA LHApb/GHA

d/p 0.974 0.963 0.963 0.984 0.975 0.978
e/p 0.979 0.966 0.966 0.990 0.981 0.981
se/p 1.045 1.016 1.009 0.986 0.978 0.976
b/m 1.012 0.999 0.993 1.007 0.997 0.993
roe 1.010 1.000 0.999 1.003 0.999 0.998
t-bill 1.013 0.986 0.983 1.002 0.996 0.993
lty 1.017 0.997 0.989 0.977 0.973 0.971
ts 1.071 1.031 1.017 0.923 0.929 0.932
ds 0.965 0.907 0.899 0.907 0.879 0.871
inf 0.990 0.975 0.979 1.044 1.013 1.008
nei 0.963 0.962 0.962 0.850 0.851 0.848

index 1.006 0.998 0.985 1.033 1.028 1.003

Panel B. Forecasting Monthly Equity Premium Qt(k = 1) at Month t

Forecast begins from 1960:01 Forecast begins from 1980:01

LHA/GHA LHAp/GHA LHApb/GHA LHA/GHA LHAp/GHA LHApb/GHA

d/p 1.015 0.993 0.991 0.996 0.994 0.990
e/p 1.028 0.992 0.991 0.993 0.992 0.989
se/p 1.035 1.007 1.003 1.002 1.000 0.996
b/m 1.008 1.004 0.998 0.999 0.999 0.995
roe 1.043 1.021 1.025 1.002 1.000 0.995
t-bill 1.047 1.026 1.015 1.017 1.024 1.002
lty 1.029 1.022 1.008 1.011 1.008 0.998
ts 1.025 1.011 1.024 1.090 1.053 1.046
ds 1.012 1.005 1.009 1.034 1.021 1.022
inf 1.011 0.999 0.997 1.034 1.025 1.023
nei 1.030 1.012 1.007 1.048 1.023 1.008

index 1.023 1.011 1.002 1.024 1.012 1.003
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