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1 Introduction

Linear models are frequently used for economic predictions. They are popular for their simplicity,

computational efficiency, easy interpretation, and straightforwardness to impose prior known

constraints. Campbell and Thompson (2008) consider applying sign restriction to the linear

forecasting model of stock returns. The sign restriction (monotonicity constraint) is taken

to alleviate parameter uncertainty and to reconcile often contradicting in-sample and out-of-

sample performance of predictors. They show that once a sensible restriction on the sign of

a coefficient is imposed, the out-of-sample forecasting performance of many predictors can be

improved and sometimes beat the historical average return forecast. Hillebrand et al (2009)

incorporate the bagging (bootstrap aggregating) approach of Gordon and Hall (2009) to smooth

sign restrictions in linear forecasting models and show that the bagging sign restriction approach

has more predictive power than the simple sign restriction of Campbell and Thompson (2008).

However, possible misspecification of a linear model can undermine its forecasts compared

to those produced via nonlinear models. In this paper we extend this literature by considering

nonlinear models, in particular, nonparametric (NP) and semiparametric (SP) kernel regressions

with imposing the local monotonicity constraints on the local coefficients of a predictor and

with applying bagging to the constraints. Chen and Hong (2009) find that, in the prediction

of asset returns, nonparametric kernel regression model has a better forecasting power than the

historical mean, due to the higher signal-to-noise ratio resulted from nonparametric models.

However, Chen and Hong (2009) do not consider the monotonicity restriction as well as bagging

in their nonlinear forecasting exercise. This paper is to consider nonlinear models subject to

local monotonicity constraint and their bagging versions.

Nonparametric estimation with constraints has long history that dates back to the work of

Brunk (1955). Classical references on estimation under restriction include Barlow et al (1972),

Ramsay (1988), Mammen (1991), Matzkin (1994) and Chen (2007), to name a few. Recent

work on imposing monotonicity on nonparametric regression function includes Hall and Huang

(2001), Dette et al (2006) and Chernozhukov et al (2007), among others. Hall and Huang (2001)

propose a novel method of imposing the monotonicity constraint on a class of nonparametric

kernel estimations. Their estimator is constructed by re-weighting the kernel for each response

data point so that the impact of each observation on the estimated regression function can be

controlled to satisfy a constraint. Their method is rooted in a conventional kernel framework

and is extended by Du et al (2013) and Henderson and Parmeter (2009) to allow for a broader

class of conventional constraints and to develop tests for these constraints.

Our contributions are as given below. First, we consider NP and SP models to generalize

the linear models considered in Goyal and Welch (2008), Campbell and Thompson (2008) and

Hillebrand et al (2009). These NP/SP regressions can capture possibly neglected nonlinearity

in linear models and could improve the predictive ability of the predictors, as demonstrated

in our Monte Carlo simulation and application to the equity premium prediction. Second, we

consider a new method of imposing the monotonicity constraint on the NP and SP regressions.
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This is to make the prediction more accurate as we employ more information than Chen and

Hong (2009). Our monotonicity constraint is a local restriction while it is global monotonicity in

Campbell and Thompson (2008). Third, we use bagging to smooth the monotonicity constraint

in NP and SP regressions as Hillebrand et al (2009) do in linear regressions. It has been shown

in Bühlmann and Yu (2002) that bagging can reduce asymptotic mean squared error in linear

regressions. We obtain the similar results that hold locally in NP and SP regressions. Fourth, we

conduct a simulation study to demonstrate how the asymptotic results work in finite samples.

We also conduct an empirical study in predicting equity premium using the same data from

Campbell and Thompson (2008) to demonstrate the practical merit of the bagging monotonicity

constrained NP and SP regression models. Fifth, in our simulation and empirical application,

we find that, despite its simplicity to implement, our bagging constrained NP regression almost

always and clearly outperforms the constrained NP regression of Hall and Huang (2001). Sixth,

we introduce a new forecast evaluation measure based on the second order stochastic dominance

(SOSD) of the squared forecast errors, by which we can compare forecasting models in entire

predictive distribution of squared forecast errors rather than just in mean of squared forecast

errors. The new SOSD criterion enables us to compare forecasting models over different parts of

the predictive distributions of squared forecast errors, e.g., over small size errors vs big size errors,

as demonstrated using our empirical results for the equity premium prediction application. We

show that imposing sensible constraints reduces the chance of making the big size forecast errors

and thereby improves the forecasting ability of models.

The paper is organized as follows. Section 2 presents the NP and SP methods with local

monotonicity constraints and with bagging. Sections 3, 4, 5 establish the asymptotic properties

of each of parametric, nonparametric, semiparametric bagging constrained estimators and fore-

casts. Section 6 conducts Monte Carlo simulation to compare our proposed bagging constrained

NP and SP forecasts with forecasts from linear models and from the constrained NP method of

Hall and Huang (2001). Section 7 presents empirical results on the equity premium prediction.

Section 8 concludes.

2 Estimation with Constraints

Many economic models try to establish a relationship between a variable of interest yt and a

scalar or vector predictor variable xt. For the maximum clarity of presentation, we consider the

case that xt is a scalar. All the results in this paper would follow when xt is a vector, except

that such extensions would raise issues such as the curse of dimensionality or what notion of

monotonicity to impose that deserve further effort to explore. In forecasting, the s-step ahead

forecast of yn+s at time t = n given that xn = x is defined as

mn,s(x) = E(yn+s|xn = x). (1)

Sometimes a priori constraint may be suggested from economic theory, often in the form of

bounds. For example, the marginal propensity to consume is less than 1; production technology
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is concave; the regression function mn,s(x) is positive, monotonic, homogeneous, homothetic,

and etc. To this end, estimators or forecasts may be subject to constraints. In this paper, we

focus on slope constraint (i.e., monotonicity) of a curve that relates y and x, while constraints

of other type like curvature may be possible as well within our framework.

2.1 Parametric Estimation with Constraints

First, consider a parametric linear model with a single regressor x:

mn,s(x) = α+ βx (2)

Goyal and Welch (2008) use the unconstrained ordinary least squares (OLS) estimators α̃, β̃ in

the prediction of stock returns using a predictor x. Note that α̃ and β̃ satisfy

α̃ = ȳn − β̃x̄n (3)

where ȳn = 1
n

∑n
t=1 yt and x̄n = 1

n

∑n
t=1 xt.

If a monotonicity constraint (positive slope) is considered as sensible, one can estimate β

through thresholding using an indicator function as done by Campbell and Thompson (2008),

β̄ = 1{β̃>0} · β̃, (4)

ᾱ = 1{β̃>0} · α̃+ 1{β̃≤0} · ȳn.

Note that the relationship between ᾱ and β̄ remains as in (3)

ᾱ = ȳn − β̄x̄n, (5)

since ᾱ = 1{β̃>0} · α̃+ 1{β̃≤0} · ȳn = 1{β̃>0} ·
(
ȳn − β̃x̄n

)
+ 1{β̃≤0} · ȳn = ȳn − 1{β̃>0} · β̃x̄n.

As the constraint is imposed using a hard-thresholding indicator function, it can introduce

significant bias and variance. Gordon and Hall (2009) propose a bagging constrained estimator

β̂ =
1

J

J∑
j=1

β̄∗(j) ≡ E∗β̄∗, (6)

where β̄∗(j) = 1{β̃∗(j)>0} · β̃
∗(j) and here β̃∗(j) is the unconstrained OLS estimator from the jth

bootstrap sample (j = 1, . . . , J). We use E∗(·) to denote the bootstrap average. It can be shown

that

α̂ ≡ ȳn − β̂x̄n = E∗ᾱ∗. (7)

Bühlmann and Yu (2002) show that this bagging constrained estimator can have smaller asymp-

totic mean squared error (AMSE), notwithstanding the larger asymptotic bias.
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2.2 Nonparametric Estimation with Constraints

Despite its simplicity a parametric linear model like yt = α + βxt + ut may be subject to

misspecification because it may be that E(ut|xt) 6= 0 due to possible neglected nonlinearity.

This is to be avoided via a nonparametric regression, yt = m (xt) + ut, where m (xt) = E (yt|xt)
and ut = yt − E (yt|xt). Kernel estimators of m (xt) such as Nadaraya-Watson or local linear

estimators are common practice in the nonparametric literature. Yet, in the face of information

derived from economic theory, we may wish to impose some constraints (e.g., monotonicity,

positivity) on the nonparametric kernel regression models. Hall and Huang (2001) propose a

re-weighted kernel method to impose constraints on a general class of kernel estimators, which

is followed by Du et al (2013) and Henderson and Parmeter (2009). Alternatively, we propose

here to use bagging to impose constraints in nonparametric kernel regression models.

2.2.1 Nonparametric Estimation with Constraints: Hall and Huang (2001)

Consider a general class of kernel estimator written as weighted average of y’s

m̂n,s(x) =
1

n− s

n−s∑
t=1

At(x)yt+s, (8)

where At (x) is the weighting function. For example, At (x) = k
(
xt−x
h

)
/
∑n−s

t=1 k
(
xt−x
h

)
for the

Nadaraya-Watson estimator. Hall and Huang (2001) suggested an estimator

m̂n,s(x|p) =
n−s∑
t=1

ptAt(x)yt+s, (9)

where p = (p1, . . . , pn−s)
′. Note that (8) is a special case of (9) with the uniform weights

p0 = ( 1
n−s , . . . ,

1
n−s)

′. p is to be estimated by p̂ = arg minpD(p) subject to the constraints and

additional conditions such as
∑n−s

t=1 pt = 1 and p ≥ 0, with a distance function D(p) between

p and p0. For example, D(p) = (p− p0)′(p− p0), or D(p) = (p1/2 − p
1/2
0 )′(p1/2 − p

1/2
0 ) if

the elements of p and p0 are on the unit interval, e.g., probability weights. In the case of

monotonicity, the constraint is ∂m̂n,s(x|p)/∂x > 0.

2.2.2 Nonparametric Estimation with Constraints: Bagging

Take the first order Taylor series expansion of m(xt) around x so that

yt = m(xt) + ut = m(x) + (xt − x)m(1)(x) + vt

= α(x) + xtβ(x) + vt = Xtδ(x) + vt (10)

where Xt = (1 xt) and δ(x) = [α(x) β(x)′]′ with α(x) = m(x)− xβ(x) and β(x) = m(1)(x). The

local linear least square (LLLS) estimator of δ(x) is then obtained by minimizing

n∑
t=1

v2
tKh(xt, x) =

n∑
t=1

(yt −Xtδ(x))2Kh(xt, x), (11)
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where Kh(xt, x) = K
(
xt−x
h

)
is a decreasing function of the distance of the regressor xt from the

evaluation point x, and h → 0 as n → ∞ is the bandwidth which determines how rapidly the

weights decrease as the distance of xt from x increases. The LLLS estimator is given by

δ̃(x) = (X′K(x)X)−1X′K(x)y, (12)

where X is an n× (k + 1) matrix with the tth row Xt (t = 1, . . . , n), y is an n× 1 vector with

elements yt (t = 1, . . . , n), and K(x) is the n × n diagonal matrix with the diagonal elements

Kh(xt, x) (t = 1, . . . , n). Then we have LLLS estimators α̃(x) = (1 0)δ̃(x) and β̃(x) = (0 1)δ̃(x).

Using the constrained LLLS estimator β̄(x)

β̄(x) = 1{β̃(x)>0} · β̃(x), (13)

we get the bagging constrained LLLS estimator β̂(x)

β̂(x) =
1

J

J∑
j=1

β̄(x)∗(j) = E∗β̄(x)∗. (14)

Observing (3) and (5), the unconstrained LLLS estimator is

α̃(x) = ȳ(x)− β̃(x)x̄(x), (15)

where

ȳ(x) =

∑n
t=1Kh(xt, x)yt∑n
t=1Kh(xt, x)

= (i′K(x)i)−1i′K(x)y, (16)

x̄(x) =

∑n
t=1Kh(xt, x)xt∑n
t=1Kh(xt, x)

= (i′K(x)i)−1i′K(x)x,

with i being an n × 1 vector of unit elements and x being an n × 1 vector with elements

xt (t = 1, . . . , n). Following the same steps as for β̄(x) and β̂(x), the two constrained LLLS

estimators for α(x) are obtained as

ᾱ(x) = ȳ(x)− β̄(x)x̄(x), (17)

α̂(x) = ȳ(x)− β̂(x)x̄(x), (18)

or equivalently α̂(x) = 1
J

∑J
j=1 ᾱ(x)∗(j) = E∗ᾱ(x)∗.

We derive explicit formula for the NP forecast from the above. Note that from (10) we have

the unconstrained NP forecast,

m̃ (x) = α̃(x) + xβ̃(x) = ȳ(x)− β̃(x)x̄(x) + xβ̃(x)

= ȳ(x)− β̃(x) [x̄(x)− x] . (19)

Similarly, we get the constrained NP forecast

m̄ (x) = ȳ(x)− β̄(x) [x̄(x)− x] , (20)

and the bagged constrained NP forecast

m̂ (x) = ȳ(x)− β̂(x) [x̄(x)− x] . (21)
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2.3 Semiparametric Estimation with Constraints

Let us consider the model

y = α+ βx+ u

= α+ βx+ E(u|x) + [u− E(u|x)] (22)

= α+ βx+ E(u|x) + v

= m(x) + v

where m(x) = α + βx + E(u|x), E(u|x) 6= 0,and v = u − E(u|x) such that E(v|x) = 0. In

model (22) the linear component in many cases plays the guiding role, like the benchmark linear

model in the forecasting of equity premium (Section 7), while the nonparametric component of x,

E(u|x), behaves like a type of unknown departure or correction for the misspecified linear model.

Since such departure is unknown, it is not unreasonable to treat E(u|x) as a nonparametrically

unknown function, and the model m(x) in (22) as semiparametric. In recent literature, Glad

(1998) and Martins-Filho et al (2008) have discussed the issue of reducing estimation biases

through using a potentially misspecified parametric form in the first step rather than simply

nonparametrically estimating the conditional mean function m(x) = E(y|x). The function of

interest, m(x), is then estimated by a two step procedure. This two step estimator of m(x) is

consistent and asymptotically normal, see Martins-Filho et al (2008). In the first step α and

β are obtained by the OLS estimation, and the second step involves an LLLS estimation of

E(u|x) by using NP regression of ũ = y − α̃ − β̃x on x. Let ξ̃ (x) be the intercept and η̃ (x)

be the slope function of the NP regression. Thus the LLLS estimator can be represented by

ξ̃ (x)− η̃ (x) (x̄ (x)− x). This two-step algorithm leads to an unconstrained SP estimator of m (·)
as

m̃sp(x) = α̃+ β̃x+ ξ̃ (x)− η̃ (x) (x̄ (x)− x) (23)

= α̃+ ξ̃ (x)− η̃ (x) x̄ (x) +
{
β̃ + η̃ (x)

}
x,

the slope of which is estimated by

β̃ (x) ≡ β̃ + η̃ (x) . (24)

To impose the local monotonicity constraint, we define our constrained SP estimator as

β̄ (x) = 1{β̃(x)>0} · β̃ (x) (25)

When β̃ (x) ≤ 0, the slope of the regression function is zero, i.e., β̄ (x) = 0. In this case, instead

of fitting a semiparametric model, local constant kernel estimator should be adopted. This

observation leads to the following local monotonicity constrained SP forecast

m̄sp(x) = m̃sp(x) · 1{β̃(x)>0} + m̃lc(x) · 1{β̃(x)≤0}, (26)

where m̃lc(x) = ȳ(x) is the local constant kernel estimator of m (x) as in (16).
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With having m̄sp(x) obtained, similarly to (6), we get the bagging constrained SP forecast

from

m̂sp(x) =
1

J

J∑
j=1

m̄∗(j)sp (x) = E∗m̄∗sp(x), (27)

with m̄
∗(j)
sp (x) obtained from the jth bootstrap sample.

3 Sampling Properties of Parametric Estimators

Sampling properties of parametric estimators, including constrained parametric estimator and

bagging constrained estimator, are presented in this section, while NP and SP estimators are

treated in the two subsequent sections. Sampling properties of constrained parametric estimator

have been established by Judge and Yancey (1986) under normality distribution. With general

distribution condition of the unconstrained estimator, we prove the superiority of the constrained

estimator (in terms of MSE) if the constraint is correctly specified. We also present the local

asymptotic theory for the constrained estimator and its bagging version.

3.1 Constrained Parametric Estimator

Theorem 1. Let the unconstrained estimator β̃ of β have a cumulative distribution func-

tion (CDF) denoted by Fβ̃ (·). Then we have the following for the constrained estimator

β̄ = max{β̃, β1}, for some given constant β1, (1) Fβ̄ (z) = Fβ̃ (z) · 1{z≥β1}. (2) biasβ̄ ≥ biasβ̃.

(3) V ar
(
β̄
)
≤ V ar

(
β̃
)

if biasβ̃ ≥ 0 and β1 ≤ β and (4) MSE
(
β̄
)
≤MSE

(
β̃
)

if β1 ≤ β.
Remark 1. Theorem 1 establishes that the constrained estimator, β̄, has a condensed density

and it is biased upward, compared to its unconstrained counterpart, β̃. Part 1 depicts its CDF

in terms of that of Fβ̃ (·). The indicator function compresses all the mass for β̃ that lie below β1

to β1. Part 2 states that β̄ is biased upward compared to β̃. This upward bias is due to the max

operator in its definition. If the constraint is an upper bound instead of a lower bound, then

the min operator will incur downward bias. Part 3 shows that β̄ would have smaller variance,

provided that the constraint is correctly specified and β̃ is biased upward, while part 4 dictates

the superiority of β̄ in terms of MSE when the constraint is correct. It’s yet clear that, even

if the constraint is wrongly specified, there could still be reduction in MSE and variance for β̄.

However, this will require further conditions on Fβ̃ (·). These conditions are not informative,

therefore we do not proceed in that direction.

Lovell and Prescott (1970) and Judge and Yancey (1986) consider the case in which β̃ has

a normal distribution. Judge and Yancey (1986, p. 50) depict a figure showing that, the

performance of β̄ relative to that of β̃ depends on δ ≡ β1 − β. The constrained estimator is

superior for a large range values of δ, and when δ →∞, MSE
(
β̄
)

is equal to the mean squared

error of an equality constrained estimator, i.e. β̄ = β1. Under the normality assumption,
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V ar
(
β̄
)
≤ V ar

(
β̃
)

over the whole range of parameter space and the former will approach the

variance of the equality constrained estimator as δ →∞. �

Next, we consider asymptotic distribution of β̄ under suitable assumptions as stated in the

following theorem.

Theorem 2. Consider an unconstrained parametric estimator β̃ of β with

γ (n)σ−1
β

(
β̃ − β

)
d→ Z (28)

γ (n)σ−1
m (m̃ (x)−m (x))

d→ Z

and Z is a random variable with CDF F (·), where σβ is the asymptotic standard deviation of

β̃ and σm is that of m̃ (x), and limn→∞ γ (n) = ∞. Then for β̄ = max{β̃, β1} and some given

constant β1, we have,

1. when β > β1, γ (n)σ−1
β

(
β̄ − β

) d→ Z .

2. when β = β1, Pr
(
γ (n)σ−1

β

(
β̄ − β

)
< z
)
→ F (z) · 1{z≥0}.

3. when β > β1, γ (n)σ−1
m (m̄ (x)−m (x))

d→ Z.

If we further assume that

γ (n)σ−1
β (β − β1) = b, (29)

for some constant b, and that F is standard normal CDF Φ (with its PDF ϕ) and Zb = Z + b,

then

4. limn→∞ γ (n)σ−1
β

(
β̄ − β

)
= Zb1{Zb>0} − b.

5. limn→∞ γ (n)σ−1
β E

(
β̄ − β

)
= ϕ (b) + bΦ (b)− b.

6. limn→∞ V ar

[(
γ (n)σ−1

β

)1/2
β̄

]
= Φ (b)+bϕ (b)−ϕ2 (b)−2bϕ (b) Φ (b)+b2Φ (b) [1− Φ (b)] .

Remark 2(a). Theorem 2 states the limiting distribution of β̄. Parts 1 and 2 present the usual

asymptotic distribution when the constraint is strict (i.e., β > β1) and when the parameter is

on the boundary (i.e., β = β1). Part 1 confirms the intuition that, as long as the constraint is

strict, it will not be violated by the unconstrained estimator β̃ when the sample size is large

enough. This leads to the conclusion that β̄ would be asymptotically equivalent to β̃ in this

case. On the other hand, when β is on the boundary, the limiting CDF compresses all the mass

of negative values at 0. Part 4 establishes the local asymptotic distribution of β̄ that depends

on the drift parameter b with asymptotic bias and variance given in part 5 and 6. It is easy
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to see that, if b is allowed to grow as n, Zb1{Zb>0} − b will collapse to Z, and result in part 4

becomes that in part 1. Similarly, part 2 is reproduced with part 4 when b = 0. Part 3 presents

the limiting distribution of m̄ (x), the constrained estimator of m (x) = E (y|x) = α + βx. The

local asymptotic result for m̄ (x) (and other estimators of m(x) in the following sections) with

local drift parameter b is complicated to establish and requires further conditions. We did not

explore this in this paper.

Remark 2(b). Theorem 2 only requires β̃ satisfy some limiting theorem with asymptotic

standard deviation σβ. This is a very weak condition that is met by a large class of estimators.

We do not specify the convergence rate γ (n) but simply let it explode as n increases. This general

setting accommodates both estimators with standard convergence rate
√
n and estimators with

nonstandard convergence rate, e.g., n1/3 or n3/2. The condition γ (n)σ−1
β (β − β1) = b can be

stated alternatively as β = β1 + γ−1 (n)σβb for some constant b. It dictates that the true

parameter β is a Pitman type drift to the specified bound β1, with a drift parameter b. The

local drift rate is the same as the convergence rate of β̃. Extensions to higher or lower rate than

this convergence rate (γ−1 (n)) can be made by letting b = bn go to either infinity or zero as n

increases. We do not explore this issue here. �

3.2 Bagged Constrained Parametric Estimator

Theorem 3. Let an unconstrained estimator β̃ of β and its bootstrap version β̃∗ have the

following asymptotics,

γ (n)σ−1
β

(
β̃ − β

)
d→ Z,

γ (n)σ−1
β

(
β̃∗ − β̃

)
d→ Z, (30)

with Z being a standard normal random variable, where σβ is the asymptotic standard deviation

of β̃ and limn→∞ γ (n) = ∞. Further the constrained estimator is β̄ = max
{
β̃, β1

}
, where β1

satisfies

γ (n)σ−1
β (β − β1) = b, (31)

for some constant b and denote Zb = Z + b. Then, for the bagged version of β̄, β̂ ≡ E∗β̄∗, we

have

1. γ (n)σ−1
β

(
β̂ − β

)
d→ Z − ZbΦ (−b− Z) + ϕ (−b− Z) .

2. limn→∞ γ (n)σ−1
β E

(
β̂ − β

)
= 2ϕ ∗ ϕ (−b)− bΦ ∗ ϕ (−b) .

3. limn→∞ V ar

[(
γ (n)σ−1

β

)1/2
β̂

]
= 1 + Φ2 ∗ϕ′′ (−b) + Φ2 ∗ϕ (−b)− 2bΦ2 ∗ϕ′ (−b) + b2Φ2 ∗

ϕ (−b) +ϕ2 ∗ϕ (−b)− 2Φ ∗ϕ′′ (−b)− 2Φ ∗ϕ (−b) + 2bΦ ∗ϕ′ (−b)− 2ϕ ∗ϕ′ (−b) + 2 (Φ · ϕ) ∗
ϕ′ (−b)− 2b (Φ · ϕ) ∗ ϕ (−b)− [2ϕ ∗ ϕ (−b)− bΦ ∗ ϕ (−b)]2 .
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4. If γ (n)σ−1
m (m̃ (x)−m (x))

d→ Z and β > β1, then γ (n)σ−1
m (m̄ (x)−m (x))

d→ Z.

Remark 3(a). We adopted the notation f ∗ g to denote the convolution of two functions f and

g, which is defined as f ∗ g (s) =
∫
f (t)× g (s− t) ds.

Remark 3(b). It is clear from part 2 of Theorem 3 that both bias and variance of the bagging

constrained estimator depend on the parameter b, which measures how accurate β1, the lower

bound of β, is. We compare the AMSE of bagging constrained estimator with that without

bagging, and numerical calculation reveals the superiority of bagging when b > 0.392. Figure 1

plots the asymptotic variance, asymptotic squared bias and asymptotic mean squared error of β̂

together with those of β̄, against values of b in the range of [−1, 5]. It is seen that our bagging

estimator enjoys a large reduction in asymptotic mean squared error for values of b ∈ [1, 3].

Remark 3(c). (30) requires that bootstrap work for β̃, i.e., β̃∗ has the same asymptotic

distribution as β̃. The necessary and sufficient conditions for this bootstrap consistency can be

found in Mammen (1992). We emphasize that we do not require that bootstrap work for β̄. In

fact, the bootstrap fails for β̄ as noted in Andrews (2000, p. 401). It is this bootstrap failure

for β̄ that leads to Theorem 3. Theorem 3 shows that the asymptotic distribution of β̂ ≡ E∗β̄∗

is different from the asymptotic distribution of β̄ which is shown in Theorem 2. The difference

is depicted in Figure 1. �

Figure 1 About Here

4 Sampling Properties of Nonparametric Estimators

We consider sampling properties of NP estimators under constraint and their bagging versions.

4.1 Constrained Nonparametric Estimator

Theorem 4. Let the nonparametric estimator β̃ (x) of β (x) with

γ1 (n, h)σ−1
β (x)

(
β̃ (x)− β (x)

)
d→ Z, (32)

γ2 (n, h)σ−1
m (x) (m̃ (x)−m (x)−Bm (x))

d→ Z,

where limn→∞ γi (n, h) =∞, i = 1, 2, h is the bandwidth satisfying h = cnτ for some c > 0, τ <

0, Z is a standard normal random variable, σβ (x) is the asymptotic standard deviation of β̃ (x),

σm (x) is the asymptotic standard deviation of m̃ (x), Bm (x) = 1
2h

2m(2) (x)
∫
v2k (v) dv+op

(
h2
)

is the asymptotic bias m̃ (x). Then the following limiting statements hold for the constrained

estimator β̄ (x) = max{β̃ (x) , β1 (x)}, for some given β1 (x),

1. when β (x) > β1 (x), γ1 (n, h)σ−1
β (x)

(
β̄ (x)− β (x)

) d→ Z.

2. when β (x) = β1 (x), Pr
(
γ1 (n, h)σ−1

β (x)
(
β̄ (x)− β (x)

)
< z
)
→ Φ (z) · 1{z≥0}.
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3. when β (x) > β1 (x), γ2 (n, h)σ−1
m (x) [m̄(x)−m (x)−Bm (x)]

d→ Z.

If we further assume that γ1 (n, h)σ−1
β (β(x)− β1(x)) = b(x), for some real function b(x), and

denote Zb(x) = Z + b(x), then

4. limn→∞ γ1 (n, h)σ−1
β (x)

[
β̄(x)− β(x)

]
= Zb(x)1{Zb(x)>0} − b(x).

5. limn→∞ γ1 (n, h)σ−1
β (x)E

[
β̄(x)− β(x)

]
= ϕ (b(x)) + b(x)Φ (b(x))− b(x).

6. limn→∞ V ar

[(
γ1 (n, h)σ−1

β (x)
)1/2

β̄(x))

]
= Φ (b(x))+b(x)ϕ (b(x))−ϕ2 (b(x))−2b(x)ϕ (b(x)) Φ (b(x))+

b2(x)Φ (b(x)) [1− Φ (b(x))] .

Remark 4(a). The above theorem shows the results for NP estimators with constraints. The

implications are similar to the previous theorem on constrained parametric estimators. Note

that the constraint bound β1 (x) can vary for different values of x. As a special case in which

β1 (x) = β1, a constant, it is efficient to adopt the restriction if it is correctly specified via the

constrained estimator. However, when the constraint is invalid, β̄ (x) will be inconsistent.

Remark 4(b). The constrained estimator of m (x), m̄(x), has the same asymptotic property as

the unconstrained nonparametric estimator, when the constraint is strict, as established in part 3

of Theorem 4. This first order equivalence agrees with that of the estimators of Mammen (1991).

The implication for bandwidth selection for the constrained estimator m̄(x) is that the classical

cross-validation approach shall apply. The bias term Bm (x) goes to zero if γ2 (n, h)h2 tends to

zero as n tends to infinity. However, when the constraint is invalid, the constraint estimator is

generally inconsistent1. Thus, a test based on the difference between the constrained estimator

and unconstrained estimator could be developed to check the validity of the constraint. Other

distribution-free tests could also be applied for this purpose, see, e.g., Lee, Linton and Whang

(2009), and Delgado and Escanciano (2012).

4.2 Bagged Constrained Nonparametric Estimator

Theorem 5. Let an estimator β̃ (x) of β (x) and its bootstrap version β̃∗ (x) have the following

asymptotic,

γ1 (n, h)σ−1
β (x)

(
β̃ (x)− β (x)

)
d→ Z,

γ1 (n, h)σ−1
β (x)

(
β̃∗ (x)− β̃ (x)

)
d→ Z, (33)

where Z is a standard normal random variable, limn→∞ γ1 (n, h) = ∞, h is the bandwidth

satisfying h = cnτ for some c > 0, τ < 0, σβ (x) is the asymptotic standard deviation of β̃ (x).

1One exception is when both the constraint is invalid and β1 (x) = 0. In this case, the constrained estimator
is the Nadaraya-Watson estimator that remains consistent.
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Define β̄ (x) = max
{
β̃ (x) , β1 (x)

}
, with some known β1 (x) < β (x) that satisfies

γ1 (n, h)σ−1
β (x) (β (x)− β1 (x)) = b (x) , (34)

where b (·) is some real function and denote Zb(x) = Z + b(x). For the bagged version of β̄ (x),

β̂ (x) ≡ E∗β̄∗ (x), we have

1. γ1 (n, h)σ−1
β (x)

(
β̂ (x)− β (x)

)
d→ Z − Zb(x)Φ (−b (x)− Z) + ϕ (−b (x)− Z) .

2. limn→∞ γ1 (n, h)σ−1
β E

[
β̂ (x)− β (x)

]
= 2ϕ ∗ ϕ (−b (x))− b (x) Φ ∗ ϕ (−b (x)) .

3. limn→∞ V ar

[(
γ1 (n, h)σ−1

β (x)
)1/2

β̂ (x)

]
= 1 + Φ2 ∗ϕ′′ (−b (x)) + Φ2 ∗ϕ (−b (x))− 2bΦ2 ∗

ϕ′ (−b (x)) + b2 (x) Φ2 ∗ ϕ (−b (x)) + ϕ2 ∗ ϕ (−b (x))− 2Φ ∗ ϕ′′ (−b (x))− 2Φ ∗ ϕ (−b (x)) +

2b (x) Φ ∗ϕ′ (−b (x))− 2ϕ ∗ϕ′ (−b (x)) + 2 (Φ · ϕ) ∗ϕ′ (−b (x))− 2b (x) (Φ · ϕ) ∗ϕ (−b (x))−
[2ϕ ∗ ϕ (−b (x))− b (x) Φ ∗ ϕ (−b (x))]2 .

4. If γ2 (n, h)σ−1
m (x) (m̃ (x)−m (x)−Bm (x))

d→ Z,whereBm (x) = 1
2h

2m(2) (x)
∫
v2k (v) dv+

op
(
h2
)

is the asymptotic bias m̃ (x), σm (x) is the asymptotic standard deviation of m̃ (x),

and γ2 (n, h) follows similar conditions as γ1 (n, h) ,then

γ2 (n, h)σ−1
m (x) [m̂(x)−m (x)−Bm (x)]

d→ Z. (35)

Remark 5(a). Condition (33) requires that bootstrap works for the slope estimator β̃ (x).

See Hall (1992) or Horowitz (2001) for validity of bootstrap for local nonparametric estimators.

Note that this condition may rule out some range of bandwidths, which is an important issue

that deserves separate studies. For this paper, we consider the use of cross-validation to select

the optimal bandwidth for the unconstrained estimator and use that same bandwidth for the

bagged estimator. The choice of the bandwidth for bagging estimator is left for future research.

Remark 5(b). When b (·) admits a constant function, the limiting distribution in part 1 is the

same as in the parametric case. That is, for all possible values of x, γ1 (n, h)σ−1
β (x)

(
β̂ (x)− β (x)

)
converges to the same random variable as γ1 (n)σ−1

β

(
β̂ − β

)
does in the parametric case.

�

5 Sampling Properties of Semiparametric Estimators

SP estimators and their bagging versions are considered in this section. We present, in sequence,

their sampling properties in the following two theorems.
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5.1 Constrained Semiparametric Estimator

Theorem 6. Consider an estimator β̃ (x) of β (x) with

γ1 (n, h)σ−1
β (x)

(
β̃ (x)− β (x)

)
d→ Z, (36)

where Z is a standard normal random variable, σβ (x) is the asymptotic standard deviation of

β̃ (x), limn→∞ γ1 (n, h) =∞, h is the bandwidth satisfying h = cnτ for some c > 0, τ < 0. Then

the constrained estimators β̄ (x) and m̄sp (x) as defined earlier, for some given constant β1 (x)

satisfying β (x) ≥ β1 (x), have the following properties,

1. when β (x) > β1 (x), γ1 (n, h)σ−1
β (x)

(
β̄ (x)− β (x)

) d→ Z.

2. when β (x) = β1 (x), Pr
(
γ1 (n, h)σ−1

β (x)
(
β̄ (x)− β (x)

)
< z
)
→ Φ (z) · 1{z≥0}.

3. when β (x) > β1 (x), the semiparametric estimator has

γ2 (n, h)σ−1
m (x) [m̄sp (x)−m (x)−Bm (x)]

d→ Z, (37)

for some γ2 (n, h) with similar properties as that in Theorem 4 and σm (x) > 0, where

Bm (x) =
1

2
h2m(2) (x)

∫
v2k (v) dv + op

(
h2
)
, (38)

the same as the asymptotic bias of m̃sp (x).

If we further assume that γ1 (n, h)σ−1
β (β(x)− β1(x)) = b(x), for some real function b(x),

and denote Zb(x) = Z + b(x), then

4. limn→∞ γ1 (n, h)σ−1
β

[
β̄(x)− β(x)

]
= Zb(x)1[Zb(x)>0] − b(x).

5. limn→∞ γ1 (n, h)σ−1
β E

[
β̄(x)− β(x)

]
= ϕ (b(x)) + b(x)Φ (b(x))− b(x).

6. limn→∞ V ar

[(
γ1 (n, h)σ−1

β (x)
)1/2

β̄(x))

]
= Φ (b(x))+b(x)ϕ (b(x))−ϕ2 (b(x))−2b(x)ϕ (b(x)) Φ (b(x))+

b2(x)Φ (b(x)) [1− Φ (b(x))] .

Remark 6. The result shows that the estimation of m (x) via the SP method is a consistent

estimator of the true function m (x), the same property that is possessed by the NP estimator but

not by the parametric estimator under misspecification. Parts 1 and 2 establish the asymptotic

properties of the constrained slope estimator when the constraint is strict and when the equality

constraint holds. Part 3 shows the asymptotic equivalence between constrained SP estimator and

unconstrained SP estimator. The result for unconstrained estimator is first proved by Martins-

Filho et al (2008). Part 4 considers the local asymptotics for the constrained slope estimator,

with asymptotic bias and variance given in Parts 5 and 6.
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5.2 Bagged Constrained Semiparametric Estimator

Theorem 7. Let an unconstrained estimator β̃ (x) of β (x) and its bootstrap version β̃∗ (x)

have the following asymptotic,

γ1 (n, h)σ−1
β (x)

(
β̃ (x)− β (x)

)
d→ Z, (39)

γ1 (n, h)σ−1
β (x)

(
β̃∗ (x)− β̃ (x)

)
d→ Z,

where Z is a standard normal random variable, limn→∞ γ1 (n, h) = ∞, h is the bandwidth

satisfying h = cnτ for some c > 0, τ < 0. Let β1 (x) satisfy

γ1 (n, h)σ−1
β (x) (β (x)− β1 (x)) = b (x) , (40)

where b (·) is some real function. For the bagged version of β̄ (x), β̂ (x) ≡ E∗β̄∗ (x), as defined

earlier we have

1. γ1 (n, h)σ−1
β (x)

(
β̂ (x)− β (x)

)
d→ Z [1− Φ (−b (x)− Z)] + ϕ (−b (x)− Z) .

2. limn→∞ γ1 (n, h)σ−1
β E

[
β̂ (x)− β (x)

]
= 2ϕ ∗ ϕ (−b (x))− b (x) Φ ∗ ϕ (−b (x)) .

3. limn→∞ V ar

[(
γ1 (n, h)σ−1

β (x)
)1/2

β̂ (x)

]
= 1 + Φ2 ∗ϕ′′ (−b (x)) + Φ2 ∗ϕ (−b (x))− 2bΦ2 ∗

ϕ′ (−b (x)) + b2 (x) Φ2 ∗ ϕ (−b (x)) + ϕ2 ∗ ϕ (−b (x))− 2Φ ∗ ϕ′′ (−b (x))− 2Φ ∗ ϕ (−b (x)) +

2b (x) Φ ∗ϕ′ (−b (x))− 2ϕ ∗ϕ′ (−b (x)) + 2 (Φ · ϕ) ∗ϕ′ (−b (x))− 2b (x) (Φ · ϕ) ∗ϕ (−b (x))−
[2ϕ ∗ ϕ (−b (x))− b (x) Φ ∗ ϕ (−b (x))]2 .

4. If γ2 (n, h)σ−1
m (x) (m̃sp (x)−m (x)−Bm (x))

d→ Z, where

Bm (x) =
1

2
h2m(2) (x)

∫
v2k (v) dv + op

(
h2
)

(41)

is the asymptotic bias m̃sp (x), and γ2 (n, h) follows similar conditions as γ1 (n, h) , then

γ2 (n, h)σ−1
m (x) [m̂sp(x)−m (x)−Bm (x)]

d→ Z. (42)

Remark 7. Theorem 7 shows that the bagging constrained semiparametric estimator m̂sp(x) is

asymptotically equivalent to its unconstrained counterpart. The dependence of the asymptotic

distribution on the drift function b (·) remains the same as those in Theorem 5. Thus Remark

5 applies here, which we do not intend to repeat.
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6 Simulation

We perform Monte Carlo simulation to examine the finite sample properties of our proposed

bagging NP and SP estimators. We consider the following data generating process (DGP) that

features monotonicity in the conditional mean of yt given xt

DGP : yt+1 = ax3
t + et+1, (43)

where et ∼ i.i.d.N (0, 1), xt ∼ i.i.d.N
(

1
2 , σ

2
x

)
, with σ2

x = 2, 3, 4, 5 and a = 0.0128. We replicate

the process for 100 times, with J = 100 bootstrap samples taken for bagging in each replication.

We take n = 200 observations for in-sample estimation. The 1000 out-of-sample forecast values

of ŷ from the various forecasting models presented in the next subsection are computed over the

1000 equidistant evaluation points on the realized support of {xt}nt=1 generated from N
(

1
2 , σ

2
x

)
.

For the NP and SP estimators, we use cross-validation to select a bandwidth that minimizes

the integrated mean squared error and use this same bandwidth for the 100 bootstrap samples

generated within each replication.

Consider a forecasting model

Model : yt+s = m (xt) + ut+s. (44)

For a given evaluation predictor value x, we are interested in forming a forecast ŷn+s =

mn,s (x|In) , where In = {xn0 , ..., xn, yn0 , ..., yn} is used to estimate a model. In the Monte

Carlo simulation of this section, s = 1 and we fix both n0 = 1 and n = 200, and estimate

various models using the R ≡ n − n0 + 1 observations. Then we take 1000 equidistant fixed

evaluation points {x}1000
1 on a range of N

(
1
2 , σ

2
x

)
. The same 1000 equidistant evaluation points

are used for all 100 Monte Carlo replications. In each Monte Carlo replication i (i = 1, . . . , 100),

1000 values of
{
m̂(i)(x)

}
are computed at each of 1000 x values, and also 1000 values of{

û(i)(x) ≡ 0.0128x3 − m̂(i)(x)
}

are computed in each replication i. We compute the Monte Car-

lo average of the squared û(i)(x) over i for each evaluation point x, 1
100

∑100
i=1 û

(i)2(x) ≡ û2(x).

Then we use the 1000 values of the squared forecast errors
{
û2(x)

}1000

1
to compute the evalua-

tion criteria discussed later in Section 6.2. The number of observations for in-sample estimation

is R ≡ n−n0 +1 = 200, and the number of the out-of-sample evaluation points is P = 1000. The

simulation takes 90 minutes to run on a quad-core laptop. The computer codes are available on

the authors’ websites.

In the empirical application of Section 7, s = 1, 6, 12, and we move the time t = n at

which a pseudo out-of-sample forecast is made. We use a rolling window of fixed size R = 120

months from t = n0 (≡ n−R+ 1) to t = n for in-sample estimation of a model. We then

compute s months ahead forecasts of the equity premium yn+s, with n moving forward from

1960M1 to 2005M12, resulting in the total of P = (552− s) evaluation points over the 46 years.

Once ŷn+s is obtained, we define the forecast error ûn+s ≡ yn+s − ŷn+s. We use the (552− s)
squared forecast errors

{
û2
n+s

}2005M12−s
n=1960M1

to compute the evaluation measures discussed later.
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The number of observations for in-sample estimation is R ≡ n− n0 + 1 = 120, and the number

of the out-of-sample evaluation points is P = 552− s.

6.1 Forecasting Models

We consider the historical mean model (HM) as a benchmark

mHM
n,s (x|In) =

1

R

n∑
t=n0

yt.

and three linear regression models denoted as L, L-P, and L-P-B:

mL
n,s (x|In) = α̃+ β̃x,

mL-P
n,s (x|In) = ᾱ+ β̄x,

mL-P-B
n,s (x|In) = α̂+ β̂x,

where
(
α̃, β̃

)
is the unconstrained OLS estimators, β̄ = max

(
β̃, 0
)
, ᾱ = ȳn − β̄x̄n, β̂ =

1
J

∑J
j=1 β̄

∗(j) with β̄∗ = max
(
β̃∗, 0

)
, and α̂ = ȳn − β̂x̄n. Nonparametric models include LLLS

forecast (NP), LLLS forecast with positive slope constraint (NP-P), the bagged LLLS forecast

with positive slope constraint (NP-P-B)

mNP
n,s (x|In) = ȳ(x)− β̃(x) [x̄(x)− x] ,

mNP-P
n,s (x|In) = ȳ(x)− β̄(x) [x̄(x)− x] ,

mNP-P-B
n,s (x|In) = ȳ(x)− β̂(x) [x̄(x)− x] ,

and the monotonicity-constrained NP model proposed by Hall and Huang (2001) (NP-HH)

mNP-HH
n,s (x|In) =

n−s∑
t=1

p̂tAt(x)yt+s.

Semiparametric models include SP, SP-P, and SP-P-B

mSP
n,s (x|In) = m̃sp (x) as defined in (23),

mSP-P
n,s (x|In) = m̄sp (x) as defined in (26),

mSP-P-B
n,s (x|In) = m̂sp (x) as defined in (27).

6.2 Evaluation Criteria

As discussed earlier, the Monte Carlo mean (averaged over 100 replications) of squared errors{
û2(x)

}P
1

for each of P evaluation points will be used to compute the evaluation criteria. We
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consider two such criteria. The first criterion is based on the mean of the squared errors (averaged

over P = 1000 evaluating x points) of model M

MSEM =
1

P

∑
∀x

û2(x). (45)

Further we compute the percentage reduction in the MSE of a model M (MSEM) relative to

that of the historical mean model (MSEHM) by the following formula,

100R2 = 100×
(

1− MSEM

MSEHM

)
. (46)

This is the out-of-sample R2 (multiplied by 100) as reported in Campbell and Thompson (2008).

We also report the decomposition of MSE into squared bias and variance (averaged over 1000

evaluation points) for the conditional mean estimators.

The second criterion is new. It provides a better view of the whole predictive distribution of

the squared forecast errors
{
û2(x)

}P
1

. Statistical criteria such as MSE, R2 and likelihood values

are based on a summary statistic (e.g., mean) of
{
û2(x)

}P
1
. Instead, as suggested in Granger

(1999), a more desirable procedure is to associate an economic value with
{
û2(x)

}P
1

rather than

just a summary statistic. The economic value of a model can be associated with a cost or a

utility, which can then be compared using the second order stochastic dominance (SOSD) of the

predictive distributions of
{
û2(x)

}P
1

for competing models. Denote the CDF of squared forecast

errors
{
û2(x)

}P
1

from Model M as FM (·) . We define the SOSD criterion as

SOSDM (r) =

∫ r

0

[
FM (s)− FHM (s)

]
ds, r > 0, (47)

where HM is taken as the benchmark model and the CDFs are estimated by their empirical

distributions F (s) = 1
P

∑
∀x 1{û2(x)≤s}.

We can show (not presented here for space but available from the authors) that, if SOSDM (r) >

0 for all r > 0, then E
(
û2

M

)
< E

(
û2

HM

)
. Therefore, the second-order-stochastic dominance im-

plies the mean-squared-error dominance (but not vice versa). Hence SOSD would also imply

the dominance in 100R2.

Compared to 100R2 which measures the percentage gain in the mean of squared forecast

errors, SOSDM (r) delivers more information on the entire distribution of the squared forecast

errors from Model M. For example, when SOSDM (r) is positive for all positive r, it implies

that Model M produces squared forecast errors that are relatively smaller than those of the

benchmark model. The role of SOSD (r) becomes more significant when 100R2 cannot differ-

entiate the relative performances of the models under comparison. Following McFadden (1989),

Granger (1999), and Linton et al (2005), we report the average (avg) and the maximum (max)

of SOSD (r) over r (1000 equidistant evaluation points in the range of squared forecast errors)

in Table 2 and Table 3, in addition to 100R2.
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While we have compared the empirical distribution of squared forecast errors
{
û2(x)

}P
1

, the

SOSD measure will be identical if we compare the empirical distributions of the absolute forecast

errors {|û(x)|}P1 . We can also show that, if SOSDM (r) > 0 for all r > 0, then E (|ûM|) <
E (|ûHM|) . Therefore, the second-order-stochastic dominance implies the mean-absolute-error

dominance (but not vice versa). In fact, we can show that, if SOSDM (r) > 0 for all r > 0,

then E (c (ûM)) < E (c (ûHM)) for any symmetric convex function c (·). For asymmetric convex

loss functions, convex loss stochastic dominance criterion could be adopted. We do not explore

this issue here but direct interested readers to Granger (1999 Chapter 3) for more details. We

will demonstrate the use of our new forecasting evaluation criterion using “the SOSD plots” (as

shown Figure 2) in the empirical application in Section 7.

6.3 Simulation Results

The simulation results are presented in Table 1 and Table 2. Table 1 presents the variance,

squared bias and MSE of the estimators of the conditional mean m (x). It is clear from Table

1 that bagging estimators generally have larger bias compared to the constrained estimators.

For example, when σ2
x = 2, the squared bias of NP-P is 0.282 while that for NP-P-B is 0.431.

However, the reduction in variance is substantial via bagging, as can be seen that the variance

for NP-P is 8.471 and it is reduced to be 7.434 for NP-P-B. This leads to an improvement in

MSE for the bagging constrained estimators. Thus, we see similar properties of the conditional

mean estimator as those of the slope estimators, as depicted in Figure 1, although the constraint

is imposed on the slope β (x) but not on the conditional mean m (x).

We summarize the findings in Table 2 as follows:

First, note the varying slope of the cubic curve in the DGP in (43). A larger value of σ2
x

would expand the range of the evaluation points {x} to the steeper area of the cubic curve.

When σ2
x = 2 (small), the evaluation points will be mostly in the flat area of the cubic curve.

That corresponds to the area with small values of b near zero in Figure 1c. The reduction in

AMSE (hence the gain in 100R2) would be large as shown in Figure 1c. Table 2 confirms this

by showing that the gains from imposing the monotonicity constraints and from bagging is large

in this case. 100R2 is 42.0, 52.8, 58.2 for each of SP, SP-P, SP-P-B. The increase of these values

is substantial. Similar observation can be made for avgrSOSD(r) and maxr SOSD(r). When

σ2
x = 4 (large), the evaluation points will be in a wider range of the cubic curve including the

areas with steeper slope. That corresponds to the area with large values of b in Figure 1c,

where the reduction in AMSE (hence the gain in 100R2) is small. Table 2 again confirms that

by showing the small gains from imposing the monotonicity constraints and from bagging. For

example, 100R2 is 91.8, 92.1, 92.5 for each of SP, SP-P, SP-P-B. The increase of these values is

negligible. Similar observation can be made for avgrSOSD(r) and maxr SOSD(r). The same

pattern is observed for NP, NP-P, NP-P-B when they are compared with small and large values

of σ2
x.

Second, note also the varying curvature of the cubic curve in DGP, which exhibits stronger
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nonlinearity as we move further away from the inflection point. Therefore the nonlinearity is

stronger with a larger value of σ2
x. When the range of the evaluation x points expands to the

stronger nonlinear part of the cubic curve, there are larger gains by using nonlinear models (NP

and SP) over the linear model (L). When σ2
x = 5 (large), 100R2 is about 63 for L, while it

is much larger, nearly 96 for NP and SP. Similar observation can be made for avgrSOSD(r)

and maxr SOSD(r). When σ2
x = 2 (small), the evaluation points will be near the flat part of

the curve where nonlinearity is weak. And there, L is even better than the nonlinear NP/SP

forecasts in all three criteria, 100R2, avgrSOSD(r) and maxr SOSD(r). Interestingly though, as

remarked in the previous paragraph, the improvement by imposing the monotonicity constraint

and by using bagging is much stronger for the nonlinear NP/SP models than for the linear

model. There is little gain from L to L-P to L-P-B, while the gains are substantial from NP to

NP-P to NP-P-B and also from SP to SP-P to SP-P-B.

Third, the constraint helps with NP and SP models, as seen that R2 gets larger in NP-P, NP-

HH and SP-P. This improvement in R2 is due to the accuracy gain in estimation that is achieved

at points where monotonicity is violated. At points where monotonicity is met, constrained

model and unconstrained model perform the same since the constraint is not binding. The

extent of the improvement from imposing the constraint depends on (i) the frequency of points

where violations of constraints occur and (ii) the magnitude of the violations at these points.

Monotonicity is satisfied in the estimated linear models (when σ2
x is not too small) so that L

and L-P perform more or less the same.

Fourth, the simple monotonicity constrained NP-P model is generally better than NP-HH

of Hall and Huang (2001). When bagging is added, NP-P-B is even better than NP-HH (unless

σ2
x is too large).

Fifth, bagging enhances the performance of the constrained NP/SP models (unless σ2
x is

too large). It is also found that, with bagging, our constrained models, NP-P-B and SP-P-B,

outperform NP-HH. Note that bagging does not improve for the linear model as much, because

the monotonicity constraint is more likely to be met for L and because the constraint is less

likely to be violated globally than locally.

Sixth, a positive value of 100R2 for a model indicates that the benchmark HM is dominated

by the model. It is clear that all models are better than HM for all values of σ2
x. However,

this may be due to the design in our simulation. In empirical application to predicting equity

premium in the next section, it will be shown (Table 3) that HM is indeed very hard to be

beaten by a linear model even with the monotonicity constraint and bagging. This is reflected

in the paper title of Campbell and Thompson (2008), and is a reason that HM has been taken

as a benchmark in the vast literature on financial return predictability. Nevertheless, we will

see in the next section that NP and SP can easily beat the HM, and even more easily with the

monotonicity constraint and bagging.

Seventh, the nonlinear models, NP and SP, are substantially better than L when σ2
x is not

too small. This signals the serious nonlinearity in the DGP. NP and SP are quite competing,

with NP possibly slightly better than SP, due to the fact that the linear guide for SP is not
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present in the DGP. However, it is interesting to see that, once the monotonicity constraint is

imposed, SP-P is always better than NP-P and also SP-P-B is always better than NP-P-B. It

seems the constraint and bagging help SP more than NP.

Eighth, the role of SOSD is expected to be more significant when 100R2 cannot distinguish

the relative performance of models under comparison because the SOSD looks at the entire

predictive distribution of the squared forecast errors rather than just their mean. However, we

do not see such a case yet from using the current simulation design. In Table 2, SOSD generally

tends to convey the same signal about the forecasting models as 100R2 does. We will be able

to discuss the advantage of the distribution measure (SOSD) over the mean measure (100R2)

using Figure 2 for our empirical application in the next section.

Table 1 About Here

Table 2 About Here

All of the above simulation results are consistent with the asymptotic results of Sections 3, 4,

5. It would be interesting to examine how the theory applies in practice in actual economic data

application where the DGP is not known. In the next section, we examine this in forecasting

the U.S. equity premium.

7 Application: Predicting the Equity Premium

As noted by Fama and French (2002), equity premium (the difference between the expected

return on the market portfolio of common stocks and the rate of return on risk-free assets such

as short term T-bills) plays an important role in decisions of portfolio allocation, in estimating

the cost of capital, in debate of investing social security funds in stocks, and in many other

economic and financial applications. However, the predictability of equity premium has been an

unsettled issue in the financial literature as reviewed by Campbell and Thompson (2008) and

many references therein.

Goyal and Welch (2008) examine various predictors that have been suggested as good instru-

ments in the equity premium prediction literature but report their poor performance in both

in-sample and out-of-sample forecasts relative to the historical mean of stock returns. Campbell

and Thompson (2008) introduce a perspective of a real-world investor who would use a prior

belief on the regression slope coefficient such that it must satisfy the expected sign. This simple

but sensible sign constraint leads to a better out-of-sample performance of predictors that have

significant in-sample forecasting power. Chen and Hong (2009) went further to argue that such

sign restriction imposed by Campbell and Thompson (2008) is a form of nonlinearity and suggest

to use NP methods instead of linear models to form forecast of stock returns. They confirm the

conclusion of Campbell and Thompson (2008).

As an alternative to these approaches, we impose the sign restriction on the local slope

coefficients in estimation of the NP and SP forecast models. In that sense, we combine the two
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ideas of Campbell and Thompson (2008) and Chen and Hong (2009), imposing monotonicity on

NP/SP models. We compare linear models of Goyal and Welch (2008), Campbell and Thompson

(2008), Hillebrand et al (2009), with our proposed NP and SP models with constraints imposed

and also with bagging implemented. The out-of-sample forecasting comparison is based on

100R2 and SOSD, relative to the historical mean return forecast. John Campbell and Sam

Thompson kindly share their data in our study. We consider using one predictor at a time and

impose their sign restrictions on the slope parameters, but locally for the NP and SP models.

For details on data description and the sign restrictions, we refer to Campbell and Thompson

(2008).

Our dependent variable y to be forecast is the annualized (compounded for 12 months) equity

premium on the S&P500 returns over the short term T-Bill rate, and the predictor variable x

is one of the following four predictors: smoothed earning-price ratio (se/p), yields on 3-Month

Treasury Bill on the secondary market (t-bill), long term yields on U.S. government bonds (lty),

and default spread (ds). Both y and x series are in monthly frequency.

As discussed earlier in Section 6, the in-sample estimation starts from 1950M1 and the first

forecast begins in 1960M1. We keep a fixed window of in-sample size of 120 observations and

roll the in-sample estimation window forward till the last available observation on 2005M12. To

evaluate various HM/L/NP/SP models considered in this paper, we report out-of-sample 100R2

together with avgrSOSD(r) and maxr SOSD(r) measures defined in Section 6.2. In Table 3

and Figure 2, we only present the results for s = 1 as the results for s = 6, 12 (available upon

request) show the same patterns with respect to nonlinearity and monotonicity. For bagging

estimators in time series setting, the block bootstrap method is used. We consider the block

length to be 1, 4 and 12 but the main results do not change much. Therefore, we only report

the result for block length equal to 4. See Härdle, Horowitz and Kreiss (2003) and references

therein for details of block bootstrap method for time series.

7.1 Empirical Results

We summarize the findings from Table 3 as follows:

First, a salient feature of the results is the nonlinear predictability of the equity premium,

which confirms earlier results of Chen and Hong (2009). For all four predictors, NP and SP

models perform much better than L (and better than HM too!), with an improvement in R2

over 10% achieved by SP-P-B. The only exception is NP-HH, which is worse than linear models

for se/p and ds. The impressive performance of parametrically guided SP models confirms the

earlier conclusion by Martins-Filho et al (2008). Except with se/p, linear models are worse than

HM, even though imposing constraint enhances their performance.

Second, another salient feature is the monotonicity, which improves the forecasting ability

of NP and SP models although the improvement is sometimes small. This small improvement is

due to mainly two facts: (1) the computed evaluation criteria 100R2 and SOSD, are aggregated

(global) measures such that some significant local improvement may be averaged down, and (2)
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inherent uncertainty in the noise component of a model dominates the parameter estimation

uncertainty in the signal component of the model in order of γ(n, h) as presented in Theorems

2-7. The first fact is that, at many of P out-of-sample months, the monotonicity constraint is

locally met (i.e., not binding) and thus no improvement will be achieved by imposing such a

constraint for those months. It is at these (possibly many) data points that the improvement of

forecasts made over other data points is offset, because our evaluation criteria are the averages

over all P points. The second fact dictates that parameter estimation error vanishes at a rate

γ(n, h) as sample size increases but innovation uncertainty will not. The constraint and bagging

can reduce the parameter estimation error and improve forecasts for a finite sample size, but

their contribution vanishes as the sample size increases.

Third, bagging improves the constrained NP and SP forecasts. The improvement of R2 is

around 1-2%. For example, for ds, NP-P-B improves 100R2 by more than 2.1% compared to

NP-P. Bagging makes all constrained SP models work better.

Fourth, the average SOSD and maximum SOSD measures in Table 3 are consistent with

100R2. SOSD also favors constrained models over unconstrained ones and shows that bagging

helps to improve the forecasting performance of constrained models.

Table 3 About Here

We summarize the findings from Figure 2 as follows:

Figure 2 shows plots of SOSD(r) as a function of squared forecasting errors r, and thus will

be called “the SOSD plot”. The x-axis is r for the squared forecast error while the y-axis is

SOSD(r) as defined in (47). The SOSD plots show where the forecast gains are achieved for

different sizes of forecast errors. The size of forecast error is measured in square in Figure 2,

while it can be measured in any norm such as modulus.

Figure 2 reports the SOSD plots for lty. The SOSD plots for the other three predictors are

similar in pattern and in ranking and so are not presented here. Figure 2 shows that SP-P-

B produces many more moderately sized forecast errors than other models because SOSD(r)

increases steeply over the moderate values of r (between 0.05 and 0.1) and then flattened for large

values of r (large size forecast errors). In other word, the SOSD plot reveals that constrained

models perform better by reducing the magnitude of forecasting errors. Hence, the sensible

constraints would help avoiding big mistakes.

The SOSD plots in Figure 2 show that SOSD(r) > 0 for all r > 0 for all NP and SP models.

That means, for lty, these models stochastically dominate the HM model in any symmetric

convex cost (loss) functions. To the contrary, SOSD(r) < 0 for all r > 0 for all three L models

even with the monotonicity constraint and bagging. That means, for lty, the L models are

stochastically dominated by HM in any symmetric convex cost functions. Interestingly, for NP-

HH, Figure 2 shows that SOSD(r) crosses zero once from below and stay above zero for large

value of r (> 0.07). This indicates that NP-HH is worse than HM when the forecast error size

can be small (likely when the stock market is calm), but NP-HH becomes better than HM when
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the squared forecast errors are large (likely when the stock market are volatile). With this in

mind, looking at the SOSD plots again for the linear models (L, L-P, L-P-B), we note that, for

all sizes of the forecast errors, whether small or large, the linear models using lty make poorer

forecasts than HM.

This type of forecast evaluation and comparison is not possible with the mean-based measure

like 100R2. The novelty of the SOSD plots is that we can examine the entire predictive distribu-

tion of the squared forecast errors, through which we are enabled to see how/when models are

performing in forecasting over the different magnitude of the forecast errors and over different

levels of market volatility.

Figure 2 About Here

8 Conclusions

Incorporating valuable economic information in economic modeling and forecasting deserves

more attention in both theoretical and applied research. This paper considers nonparametric

and semiparametric regression models with imposing such economic constraints as monotonic-

ity. Our approach is an alternative approach to Hall and Huang (2001), Du et al (2013), and

Henderson and Parmeter (2009). It is based on bagging, as in Hillebrand et al (2009), that

improves the simple constrained linear regression model considered in Campbell and Thompson

(2008). It is based on nonparametric models so that possible model misspecification of neglect-

ing nonlinearity may be avoided. It reduces the computational time by eschewing the issue

of solving weights to training units through the optimization problem considered in Hall and

Huang (2001). Asymptotic properties of our bagging constrained NP and SP estimators and

forecasts are established. Monte Carlo simulations are conducted to show their finite sample

performance which demonstrates the practical merits of using our proposed methods.

We introduce a new forecasting evaluation criterion based on the second order stochastic

dominance in the size of forecast errors, which enables us to compare the competing forecasting

models over different sizes of forecast errors. The size of forecast errors may be measured in

square, in modulus, or in any norm. The new SOSD criterion can compare forecasting models

via the entire predictive distributions of a norm of the forecast errors, e.g., over small size errors,

moderate size errors, or big size errors, as demonstrated using our empirical results for the equity

premium prediction application. With the use of new forecasting evaluation criterion, it is seen

that imposing monotonicity constraints can mitigate the chance of making the large size forecast

errors.

We apply the proposed approach for imposing economic constraints to predict the U.S. equity

premium and show its usefulness likely under high market volatility. Although the predictability

of equity premium has been an unsettled issue, our work together with those of Campbell
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and Thompson (2008) and Hillebrand et al (2009) reveal the value of constraints in economic

modeling and forecasts.

Our results also confirm Chen and Hong (2009) that SP models usually outperform NP

models, and thus should incite the applications of the SP models in future economic and financial

research.

Appendix

A Proof of Main Theorems

Proof of Theorem 1. (1) By the definition of β̄, it is clear that it cannot take values less than

β1, which implies that Fβ̄ (z) = 0 if z < β1. When z = β1, we have Fβ̄ (z) = Pr
(
β̄ < β1

)
+

Pr
(
β̄ = β1

)
= Pr

(
β̃ ≤ β1

)
= Fβ̃ (β1) = Fβ̃ (z) .When z > β1, Fβ̄ (z) = Pr

(
β̄ ≤ z

)
= Pr

(
β̄ < β1

)
+

Pr
(
β̄ = β1

)
+ Pr

(
β1 < β̄ ≤ z

)
= Fβ̃ (β1) + Pr

(
β1 < β̃ ≤ z

)
= Fβ̃ (z) .

(2) Note that

Eβ̄ =

∫ ∞
−∞

zdFβ̄ (z) =

∫ β1

−∞
zdFβ̄ (z) +

∫ ∞
β1

zdFβ̄ (z)

= β1Fβ̄ (β1) +

∫ ∞
β1

zdFβ̃ (z) = β1Fβ̃ (β1) +

∫ ∞
β1

zdFβ̃ (z)

≥
∫ β1

−∞
zdFβ̃ (z) +

∫ ∞
β1

zdFβ̃ (z) = Eβ̃,

where the third equality makes use of the property of Fβ̄ (z) established in (1).

(3) Note that for
..
β = β̄ or β̃, we have V ar

( ..
β
)

= MSE
( ..
β
)
−
[
bias

( ..
β
)]2

.It is known from

(1) that bias
(
β̄
)
≥ bias

(
β̃
)
≥ 0, if Eβ̃ ≥ β. V ar

(
β̄
)
≤ V ar

(
β̃
)

will be implied from the fact

which is stated in (4).

(4) The proof is parallel to that in (2). By definition,

MSE
(
β̄
)

=

∫ ∞
−∞

(z − β)2 dFβ̄ (z) =

∫ β1

−∞
(z − β)2 dFβ̄ (z) +

∫ ∞
β1

(z − β)2 dFβ̄ (z)

= (β1 − β)2 Fβ̄ (β1) +

∫ ∞
β1

(z − β)2 dFβ̃ (z) = (β1 − β)2 Fβ̃ (β1) +

∫ ∞
β1

(z − β)2 dFβ̃ (z)

≤
∫ β1

−∞
(z − β)2 dFβ̃ (z) +

∫ ∞
β1

(z − β)2 dFβ̃ (z) = MSE
(
β̃
)
,

where the inequality follows from β ≥ β1. �
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Proof of Theorem 2. For any z ∈ R,

Pr
(
γ (n)σ−1

β

(
β̄ − β

)
< z
)

= Pr
(
γ (n)σ−1

β

(
max{β̃, β1} − β

)
< z
)

= Pr
(
γ (n)σ−1

β

(
max{β̃, β1} − β

)
< z|β̃ < β1

)
× Pr

(
β̃ < β1

)
+ Pr

(
γ (n)σ−1

β

(
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)
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)
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(
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)
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(
γ (n)σ−1

β (β1 − β) < z
)
× Pr

(
β̃ < β1

)
+

Pr
(
γ (n)σ−1

β

(
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)
< z|β̃ ≥ β1

)
× Pr

(
β̃ ≥ β1

)
in which, (i) when β > β1,

Pr
(
γ (n)σ−1

β (β1 − β) < z
)
→ Pr (−∞ < z) = 1,

since limn→∞ γ (n) =∞, and when β = β1,

Pr
(
γ (n)σ−1

β (β1 − β) < z
)

=

{
1, if z > 0
0, if z ≤ 0

(ii)

Pr
(
β̃ < β1

)
= Pr

(
γ (n)σ−1

β

(
β̃ − β

)
< γ (n)σ−1

β (β1 − β)
)

→
{

Pr (Z < −∞) = 0, if β > β1

Pr (Z < 0) = F (0) , if β = β1

(iii)

Pr
(
γ (n)σ−1

β

(
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)
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)
=

Pr
(
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β

(
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)
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β
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)

Pr
(
γ (n)σ−1

β
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=
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(
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β

(
β̃ − β

)
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β

(
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)
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)
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β

(
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)
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)
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{
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1−F (0) , if z > 0;

0, otherwise.

and (iv)

Pr
(
β̃ ≥ β1

)
= 1− Pr

(
β̃ < β1

)
= 1− Pr

(
γ (n)σ−1

β

(
β̃ − β

)
< γ (n)σ−1

β (β1 − β)
)

→
{

1− Pr (Z < −∞) = 1, if β > β1

1− Pr (Z < 0) = 1− F (0) , if β = β1
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Therefore, combining (i)-(iv) leads to, (1) when β > β1,

Pr
(
γ (n)σ−1

β

(
β̄ − β

)
< z
)
→ 1× 0 + F (z)× 1 = F (z)

and (2) when β = β1, for z > 0,

Pr
(
γ (n)

(
β̄ − β

)
< z
)
→ 1× F (0) +

F (z)− F (0)

1− F (0)
× (1− F (0)) = F (z)

and for z = 0,

Pr
(
γ (n)σ−1

β

(
β̄ − β

)
< z
)
→ 1× F (0) + 0× (1− F (0)) = F (0) .

When z < 0,

Pr
(
γ (n)σ−1

β

(
β̄ − β

)
< z
)
→ 0.

(3) is trivial to show thus omitted here.

To prove (4), note that

γ (n)σ−1
β

(
β̄ − β

)
= γ (n)σ−1

β (β1 − β) + γ (n)σ−1
β

(
β̃ − β1

)
1{γ(n)(β̃−β1)>0}

d→ Zb1{Zb>0} − b.

Therefore, we have (5)

E
[
Zb1{Zb>0} − b

]
= EZ1{Zb>0} + bE1{Zb>0} − b = φ (b) + bΦ (b)− b,

by Lemma 1, and (6)

V ar
[
Zb1{Zb>0} − b

]
= V ar

[
Zb1{Zb>0}

]
= E

{[
Zb1{Zb>0}

]2}− {E [Zb1{Zb>0}
]}2

.

We need to find

E
{[
Zb1{Zb>0}

]2}
= E

{[
(Z + b) 1{Zb>0}

]2}
= EZ21{Zb>0} + b2E1{Zb>0} + 2bE

[
Z1{Zb>0}

]
= Φ (b)− bφ (b) + b2Φ (b) + 2bφ (b)

= Φ (b) + bφ (b) + b2Φ (b) ,

where in the third equality we used (i) E1{Zb>0} = Φ (b) and (ii) E
[
Z1{Zb>0}

]
= φ (b) and (iii)

EZ21{Zb>0} = −bφ (b) + Φ (b) by Lemma 1. Combining the results leads to (6). �

Proof of Theorem 3. (1) Note that we can write

β̂ = E∗β̄∗ = E∗
[
max

{
β̃∗, β1

}]
= E∗

[
β̃∗1{β̃∗≥β1} + β11{β̃∗<β1}

]
= E∗

[
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]
+ β1E

∗
[
1{β̃∗<β1}

]
.
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Therefore,
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β
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d→ EW
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,

where W ∼ N (Z, 1).
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[
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= EW [W ]− EW
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]
= Z −
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−∞

wϕ (w − Z) dw = Z −
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−∞

(s+ Z)ϕ (s) ds

= Z − ZΦ (−b− Z)−
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−∞

sϕ (s) ds = Z − ZΦ (−b− Z) + ϕ (−b− Z) .

(ii) Similarly, we get γ (n)σ−1
β (β1 − β)E∗

[
1{β̃∗<β1}

]
p→ −bΦ (−b− Z) , by Slutsky’s theorem.

Putting together (i) and (ii) gives the result in (1).

(2) From (1), we get

lim
n→∞

E
[
γ (n)σ−1

β

(
β̂ − β

)]
= E {Z − ZbΦ (−b− Z) + ϕ (−b− Z)}

= EZ − E [ZΦ (−b− Z)]− bE [Φ (−b− Z)] + Eϕ (−b− Z)

= 0− [−ϕ ∗ ϕ (−b)]− bΦ ∗ ϕ (−b) + ϕ ∗ ϕ (−b)
= 2ϕ ∗ ϕ (−b)− bΦ ∗ ϕ (−b)

where we used Lemma 2.

(3) We need to prove that

lim
n→∞

E
[
γ (n)σ−1

β

(
β̂ − β

)]2
= E [Z − ZbΦ (−b− Z) + ϕ (−b− Z)]2

= EZ2 + E
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[
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−2E [ZZbΦ (−b− Z)] + 2E [Zϕ (−b− Z)]− 2E [ZbΦ (−b− Z)ϕ (−b− Z)]

= 1 + Φ2 ∗ ϕ′′ (−b) + Φ2 ∗ ϕ (−b)− 2bΦ2 ∗ ϕ′ (−b) + b2Φ2 ∗ ϕ (−b)
+ϕ2 ∗ ϕ (−b)− 2Φ ∗ ϕ′′ (−b)− 2Φ ∗ ϕ (−b) + 2bΦ ∗ ϕ′ (−b)
−2ϕ ∗ ϕ′ (−b) + 2 (Φ · ϕ) ∗ ϕ′ (−b)− 2b (Φ · ϕ) ∗ ϕ (−b)

where we used Lemma 2.
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The proof for part (4) is trivial. �

Proof of Theorem 4. The proofs for part (1) and (2), (4), (5) and (6) follows that in Theorem

2. We prove part (3). Note that m̄ (x) = m̃LC (x) · 1{β̃(x)≤β1(x)} + m̃LL (x) · 1{β̃(x)>β1(x)}.

γ2 (n, h)σ−1
m (x) [m̄(x)−m (x)−Bm (x)]

= γ2 (n, h)σ−1
m (x) [m̃LC (x)−m (x)−Bm (x)] · 1{β̃(x)≤β1(x)}

+γ2 (n, h)σ−1
m (x) [m̃LL (x)−m (x)−Bm (x)] · 1{β̃(x)>β1(x)}

≡ l1 · 1{β̃(x)≤β1(x)} + l2 · 1{β̃(x)>β1(x)},

where,

l1 = γ2 (n, h)σ−1
m (x) [m̃LC (x)−m (x)−Bm (x)] = Op (1) ,

and

l2 = γ2 (n, h)σ−1
m (x) [m̃LL (x)−m (x)−Bm (x)]

d→ Z.

Note that

1{β̃(x)≤β1(x)} = 1{γ1(n,h)σ−1
β (x)[β̃(x)−β(x)]≤γ1(n,h)σ−1

β (x)[β1(x)−β(x)]} → 1{Z≤−∞} = op (1)

Similarly, we can show that 1{β̃(x)>β1(x)} = 1−1{β̃(x)≤β1(x)}
p→ 1. Combining these results leads

to γ2 (n, h)σ−1
m (x) [m̄(x)−m (x)−Bm (x)]

d→ Z. �

Proof of Theorem 5. The proofs for parts (1-3) parallel those in Theorem 3. We prove part

(4). Note that

m̂ (x) = ȳ(x)− β̂(x) [x̄(x)− x]

m̃ (x) = ȳ(x)− β̃(x) [x̄(x)− x] .

Therefore, we have

m̂ (x)− m̃ (x) =
[
β̃(x)− β̂(x)

]
× [x̄(x)− x]

=
{[
β̃(x)− β (x)] + [β (x)− β̂(x)

]}
× [x̄(x)− x]

= O

(
1

γ1 (n, h)

)
×O

(
1

γ2 (n, h)

)
= o

(
1

γ2 (n, h)

)
.

Therefore, we have the equivalence of m̂ (x) and m̃ (x) asymptotically. �

Proof of Theorem 6. The proofs for part (1) and (2), (4), (5) and (6) follows that in Theorem

2. We only need to prove part (3) of the theorem. Since

m̄sp(x) = ᾱ+ ξ̄ (x) + η̄ (x) x̄ (x) + β̄ (x)x,

m̃sp(x) = α̃+ ξ̃ (x) + η̃ (x) x̄ (x) + β̃ (x)x,
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we know that

m̄sp (x)− m̃sp (x) = [ᾱ− α̃] +
[
ξ̃ (x)− ξ̄ (x)

]
+ [η̃ (x)− η̄ (x)] x̄ (x) +

[
β̃ (x)− β̄ (x)

]
= 1{β̃(x)<β1(x)} [m̃lc (x)− m̃sp (x)] = 1{β̃(x)<β1(x)} [m̃lc (x)−m (x) +m (x)− m̃sp (x)]

= 1{β̃(x)<β1(x)}Op
(

1

γ2 (n, h)

)
= op (1)×Op

(
1

γ2 (n, h)

)
= op

(
1

γ2 (n, h)

)
.

that is, m̄sp (x) and m̃sp (x) share the same asymptotic distribution. It is implied from Theorem

3 of Martins-Filho et al (2008) that γ2 (n, h) σ̄−1
m (x) [m̃sp (x)−m (x)−Bm (x)]

d→ Z ∼ N (0, 1) .

Combining the results completes the proof. �

Proof of Theorem 7. Part (1-3) follows in steps similar to part (1-3) of Theorem 5. We prove

part (4). Note that

m̄sp(x) = ᾱ+ ξ̄ (x) + η̄ (x) x̄ (x) + β̄ (x)x,

m̂sp(x) = α̂+ ξ̂ (x) + η̂ (x) x̄ (x) + β̂ (x)x,

Therefore, we have

m̂sp (x)− m̄sp (x) = E∗m̄∗sp (x)− m̄sp (x)

= E∗
[
m̃∗sp (x)− m̃sp (x)

]
+ E∗

{
1{β̃(x)<β1(x)}

[
m̃∗lc (x)− m̃lc (x) + m̃∗sp (x)− m̃sp (x)

]}
= op

(
1

γ2 (n, h)

)
+ op (1)× op

(
1

γ2 (n, h)

)
= op

(
1

γ2 (n, h)

)
Therefore, we have the equivalence of m̂sp (x) and m̄sp (x) asymptotically, which completes the

proof. �

B Lemmas

We collect useful lemmas that are used in the proof of the main theorems. We use Z to denote

a standard normal random variable with CDF Φ (·) and PDF ϕ (·), b to denote some constant,

and 1{·} an indicator function. Define Zb = Z + b.

Lemma 1. (a) E1{Zb>0} = Φ (b). (b) E
[
Z1{Zb>0}

]
= ϕ (b). (c) E

[
Z21{Zb>0}

]
= −bϕ (b) +

Φ (b). (d) E
[
Zb1{Zb>0}

]
= ϕ (b) + bΦ (b). (e) E

[
Z2
b 1{Zb>0}

]
= Φ (b) + bϕ (b) + b2Φ (b).

Proof of Lemma 1. (a) E1{Zb>0} = E1{Z>−b} =
∫∞
−b dΦ (z) = 1 − Φ (−b) = Φ (b). (b)

EZ1{Zb>0} =
∫∞
−b zϕ (z) dz = −

∫∞
−b ϕ

′ (z) dz = −ϕ (z) |∞−b = ϕ (b). (c) EZ21{Zb>0} =
∫∞
−b z

2ϕ (z) dz =

−
∫∞
−b zϕ

′ (z) dz = −zϕ (z) |∞−b+
∫∞
−b ϕ (z) dz = −bϕ (b)+Φ (b). (d) E

[
Zb1{Zb>0}

]
= EZ1{Zb>0}+

bE1{Zb>0} = ϕ (b)+bΦ (b). (e) E
[
Z2
b 1{Zb>0}

]
= E

[
(Z + b)2 1{Zb>0}

]
= EZ21{Zb>0}+b

2E1{Zb>0}+

2bE
[
Z1{Zb>0}

]
= Φ (b)− bϕ (b) + b2Φ (b) + 2bϕ (b) = Φ (b) + bϕ (b) + b2Φ (b) .
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Lemma 2. (a) Eϕ (−Zb) = ϕ ∗ ϕ (−b). (b) Eϕ2 (−Zb) = ϕ2 ∗ ϕ (−b). (c) E [Zϕ (−Zb)] =

−ϕ ∗ϕ′ (−b). (d) E [ZΦ (−Zb)] = −ϕ ∗ϕ (b). (e) E
[
Z2Φ (−Zb)

]
= Φ ∗ϕ′′ (−b) + Φ ∗ϕ (−b). (f)

E
[
Z2Φ2 (−Zb)

]
= Φ2 ∗ ϕ′′ (−b) + Φ2 ∗ ϕ (−b). (g) E [ZΦ (−Zb)ϕ (−Zb)] = − (Φ · ϕ) ∗ ϕ′ (−b) .

Proof of Lemma 2.

(a) Eϕ (−Zb) = Eϕ (−b− Z) =
∫∞
−∞ ϕ (−b− z)ϕ (z) dz = ϕ ∗ ϕ (−b) .

(b) Eϕ2 (−Zb) = Eϕ2 (−b− Z) =
∫∞
−∞ ϕ

2 (−b− z)ϕ (z) dz = ϕ2 ∗ ϕ (−b) .

(c) E [Zϕ (−Zb)] = E [Zϕ (−b− Z)] =
∫∞
−∞ zϕ (−b− z)ϕ (z) dz = −

∫∞
−∞ ϕ (−b− z)ϕ′ (z) dz =

−ϕ ∗ ϕ′ (−b) .

(d) E [ZΦ (−Zb)] = E [ZΦ (−b− Z)] =
∫∞
−∞ zΦ (−b− z)ϕ (z) dz = −

∫∞
−∞Φ (−b− z)ϕ′ (z) dz

= −
{

Φ (−b− z)ϕ (z) |∞z=−∞ −
∫∞
−∞−ϕ (−b− z)ϕ (z) dz

}
= −ϕ ∗ ϕ (−b) .

(e) E
[
Z2Φ (−Zb)

]
= E

[
Z2Φ (−b− Z)

]
=
∫∞
−∞ z

2Φ (−b− z)ϕ (z) dz

=
∫∞
−∞Φ (−b− z) [ϕ (z) + ϕ′′ (z)] dz = Φ ∗ ϕ′′ (−b) + Φ ∗ ϕ (−b) .

(f) E
[
Z2Φ2 (−Zb)

]
= E

[
Z2Φ2 (−b− Z)

]
=
∫∞
−∞ z

2Φ2 (−b− z)ϕ (z) dz

=
∫∞
−∞Φ2 (−b− z) [ϕ (z) + ϕ′′ (z)] dz = Φ2 ∗ ϕ′′ (−b) + Φ2 ∗ ϕ (−b) .

(g) E [ZΦ (−Zb)ϕ (−Zb)] = E [ZΦ (−b− Z)ϕ (−b− Z)] =
∫∞
−∞ zΦ (−b− z)ϕ (−b− Z)ϕ (z) dz

= −
∫∞
−∞Φ (−b− z)ϕ (−b− Z)ϕ′ (z) dz = − (Φ · ϕ) ∗ ϕ′ (−b) .
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