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ABSTRACT
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1 Introduction

We propose a new non-linear model of expected returns that combines time series information with

cross-sectional information on firm-specific returns. Though this general purpose is not novel, for

instance the empirical testing of classical asset pricing models such as CAPM and APT is car-

ried out combining time series and cross-sectional information, the introduction of cross-sectional

information embedded in the cross-sectional ranking of returns is new. Our objective is the de-

velopment of a time series model for the cross-sectional rankings that will be helpful to forecast

expected returns, which in turn will be the basis of some trading strategies.

Let yi,t be the return of firm i at time t, and {yi,t}Mi=1 be the collection of asset returns of the
M firms that constitute the market at time t. For each time t, we order the asset returns from the

smallest to the largest, and we define zi,t, the Varying Cross-sectional Rank (VCR) of firm i within

the market, as the proportion of firms that have a return less than or equal to the return of firm i.

We write

zi,t ≡M−1
MX
j=1

1(yj,t ≤ yi,t), (1)

where 1(·) is the indicator function, and for M large, zi,t ∈ (0, 1].
A graphical introduction to our main idea is contained in Figure 1, in which zi,t is the shaded

area of the cross-sectional histogram of returns. A stylized description of the problem that we aim

to analyze is as follows. For one period to the next, the VCR changes. We draw a histogram

to represent the VCR of realized asset returns, which is time-varying. Our objective is to model

the dynamics of the VCR zi,t jointly with the dynamics of the asset return yi,t. To illustrate the

different dynamics of yi,t and zi,t, we choose four points in time. Consider the movements of yi,t

and zi,t going from t1 to t4.We observe that from t1 to t2, the overall market has gone down as well

as the return and the VCR of asset i, yi,t1 > yi,t2 and zi,t1 > zi,t2 . However, from t2 to t3, the asset

return has decreased yi,t2 > yi,t3 but its VCR has improved zi,t2 < zi,t3 . In relation to its peers,

asset i is a better performer. The opposite happens on going from t3 to t4. The overall market is

going up; for asset i, the return increases yi,t3 < yi,t4 but its VCR is unchanged zi,t3 = zi,t4 . In this

case the asset, even though is a good performer, comparatively speaking, has been outperformed by

its peers. Note that the time series yi,t conveys univariate information about asset i but the time

series zi,t implicitly conveys information about the full market and, in this sense, it is a multivariate

measure. Our interest is the jointly time series modeling of the return yi,t and the VCR zi,t.

The important question is whether there is time dependence in zi,t. In our preliminary investi-
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gation, we have observed that, though there is no linear dependence of the ARMA type, there are

some assets that tend to stick to the upper or lower ranks (broadly defined) of the cross-sectional

distribution of returns while some others tend to move around very frequently. It seems that there

is some time persistence in rank (high or low) though not of the linear type. In addition, from a

cross-sectional perspective, the rank is a dependent variable. Any movement, small or large, in an

asset return will affect not only the rank of this asset but also the rank of the remaining assets.

Only in the exceptional and improbable case that all asset returns move in the same direction

and by more or less similar amount, the overall ranking will not be affected. Because of this high

cross-sectional dependence, we consider that small movements in the asset ranking will not contain

significant information and that we should focus in the large movements in ranking, which most

likely are the result of news in the overall market and/or of news concerning a particular asset.

For these reasons, we analyze the variability in VCR rather than the VCR itself. Focusing on large

rank movements, we define, at time t, a sharp jump as a binary variable that takes the value one

when the there is a minimum (upward or downward) movement of 0.5 in the ranking of asset i ,

and zero otherwise:

Ji,t ≡ 1( |zi,t − zi,t−1| ≥ 0.5). (2)

A jump of this magnitude brings the asset return above or below the median of the cross-sectional

distribution of returns. Note that our notion of jumps differs from the more traditional meaning of

the word in the context of continuous-time modelling of the univariate return process. A jump in

the cross-sectional rank implicitly depends on numerous univariate return processes.

Now, the analytical problem becomes to model the joint distribution of the return yi,t and

the jump Ji,t, i.e. f(yi,t, Ji,t|Ft−1) where Ft−1 is the information set up to time t − 1. Since
f(yi,t, Ji,t|Ft−1) = f1(Ji,t|Ft−1)f2(yi,t|Ji,t,Ft−1), our task will be accomplished by modelling the

marginal distribution of the jump and the conditional distribution of the return conditioning on

the jump. As Ji,t is a Bernoulli variable, the marginal distribution of the jump is f1(Ji,t|Ft−1) =

p
Ji,t
i,t (1 − pi,t)

(1−Ji,t) where pi,t ≡ Pr(Ji,t = 1|Ft−1) is the conditional probability of a jump in the

cross-sectional ranks. We model pi,t within the context of a dynamic duration model specified in

calendar time as in Hamilton and Jordà (2002). Though in event time the traditional question in

duration analysis would be to analyze the expected length of time between two jumps, in calendar

time the question will focus on the likelihood of a sharp jump in the rank of a given asset. The

calendar time approach is necessary for our analysis because asset returns are reported in calendar

time (days, weeks, etc.) and it has the advantage of incorporating any other available information
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also reported in calendar time.

The important implication of modeling f(yi,t, Ji,t|Ft−1) = f1(Ji,t|Ft−1)f2(yi,t|Ji,t,Ft−1) is that

the marginal return distribution, say g(yi,t|Ft−1), is a mixture distribution where the mixture

weights are given by pi,t. The result is therefore a highly nonlinear model for the expected return

E(yi,t+1|Ft). We assess the performance of the nonlinear model in an out-of-sample forecasting

exercise within the context of investment decision making. We consider two types of criteria. In

the first type, we deal with an investor whose interest is to maximize profits and risk-adjusted

profits of a portfolio long in stocks. The second type criteria is to consider an investor who worries

about potential large losses and wishes to add a Value-at-Risk (VaR) evaluation to her trading

strategy. Based on the one-step ahead forecast of returns provided by our mixture model, we

design a trading rule that will be compared to a set of different trading rules within the framework

of White (2000). It will be shown that the proposed trading rule is superior to the other trading

rules.

The organization of the paper is as follows. In section 2, we provide the joint modelling of

asset returns and jumps in VCR. We present the estimation results for the weekly returns of the

constituents of the SP500 index. In section 3, we assess the out-of-sample performance of our

model. We explain the trading rules, forecast evaluation criteria, and the statistical framework to

compare different trading rules. Finally, in section 4 we conclude.1

2 Jumps in Cross-sectional Rank and Asset Returns

In this section, our purpose is to build an econometric model that combines time information and

cross-sectional information about firm-specific returns. First we discuss the model for the cross-

sectional jump f1(Ji,t|Ft−1) and then the model for the returns f2(yi,t|Ji,t,Ft−1).

A natural starting point to incorporate the rank in our empirical analysis is to understand its

most basic time series properties. In our sample of weekly returns for the constituents of the SP500

index, which will be explained in more detail in the following sections, we have found that there is

no linear dependence either in zi,t or in (zi,t−z̄t)2 and consequently, further modeling of the ARMA-
GARCH type of zi,t have yielded insignificant parameter estimates.2 It might be possible to find a

1Due to constraints on the size of the manuscript, we also provide a supplementary appendix that contains
intermediate results and further discussion about the methodology used in the paper.

2For only eight firms in our estimation sample the p-value of the Box-Pierce-Ljung Q(4) for zi,t is smaller than
5%. Within the 466 firms, the average p-value is 0.48, the minimum is 0.001 and the maximum is 0.99. For (zi,t− z̄t)

2

the minimum p-value of the LM tests for ARCH(4) is 0.06, the maximum 0.98 and the average p-value is 0.41. These
results seem to indicate that there is no statistical evidence of linear dependence in the first and second moments of
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non-linear model for zi,t but we will not pursue this route as we do not have much guidance from

any theoretical or empirical model of the cross-sectional ranking in the present literature. Instead,

as we mention in the introduction, we have observed that while some assets tend to stick to the

upper or lower ranks (above or below the median) some others tend to move around very frequently.

For example in the empirical section we find that the stocks in the information/technology sector

tend to jump more often as compared to the stocks in the utility sector. Our objective is to model

the persistence/dynamics of the VCR in a non-linear fashion, by introducing a duration variable

that measures how long the asset return remains in the upper or lower ranks.

For these reasons, in (2) we define a sharp jump as a binary variable that takes the value one

when the there is a minimum (upward or downward) movement of 0.5 in the ranking of asset i on

going from time t − 1 to t, and zero otherwise. The choice of the magnitude of the jump is not

arbitrary. The sharpest jump that we can consider is 0.5. In every time period, we need to allow for

the possibility of a jump, either up or down, in the following period regardless of the present rank

of the asset. For instance, if we choose a jump greater than 0.5, say 0.7, and zi,t = 0.4, then the

probability of jumping up or down in the next time period is zero. Note that the defined jump does

not imply that the return will be above or below the median. As an example, if zi,t−1 = 0.4 and

zi,t = 0.6, then Ji,t = 0 but the return at time t will be above the cross-sectional median of returns.

However, if Ji,t = 1, then the asset return has moved either above or below the median. Note

that an upward (downward) jump implies neither a higher (lower) return, nor a larger (smaller)

variance. This is so because the cross-sectional rank is the result of the interaction of the relative

movements of all individual assets in the market.

Our objective is to model the joint conditional probability density function of returns and jumps

f(yi,t, Ji,t|Ft−1; θ), where Ft−1 is the information set up to time t− 1, which may contain the past
realizations of returns, jumps, and VCRs. To simplify notation, we drop the subindex i, but in

the following analysis it should be understood that the proposed modelling is performed for every

single firm in the market. We factor the joint probability density function as the product of the

marginal density of the jump and the conditional density of the return

f(yt, Jt|Ft−1; θ) = f1(Jt|Ft−1; θ1)f2(yt|Jt,Ft−1; θ2),

where θ = (θ01 θ
0
2)
0. For a sample {yt, Jt}Tt=1, the joint log-likelihood function is

TX
t=1

ln f(yt, Jt|Ft−1; θ) =
TX
t=1

ln f1(Jt|Ft−1; θ1) +
TX
t=1

ln f2(yt|Jt,Ft−1; θ2).

the VCR.
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Let us call L1(θ1) =
PT

t=1 ln f1(Jt|Ft−1; θ1) and L2(θ2) =
PT

t=1 ln f2(yt|Jt,Ft−1; θ2). The maximiza-

tion of the joint log-likelihood function can be achieved by maximizing L1(θ1) and L2(θ2) separately
without loss of efficiency by assuming that the parameter vectors θ1 and θ2 are “variation free” in

the sense of Engle et al. (1983).

2.1 Modelling the jump in cross-sectional rank f1(Jt|Ft−1; θ1)

On modelling f1(Ji,t|Ft−1), our paper also connects with the literature in microstructure of financial
markets and duration analysis (Engle and Russell, 1998). This line of research aims to model events

(e.g., trades) and waiting times between events. The question in duration analysis is the length of

time between two events given some information set. In this paper, the event is the jump in VCR of

the asset return. When we model the expected duration between jumps (or its mirror image pi,t),

our analysis is performed in calendar time, as in Hamilton and Jordà (2002), to allow the analysis

of information that is reported in a calendar basis.

In order to model the conditional probability of jumping, we define a counting process N(t) as

the cumulative number of jumps up to time t, that is, N(t) =
Pt

n=1 Jn. This is a non-decreasing

step function that is discontinuous to the right and to the left and for which N(0) = 0. Associated

with this counting process, we define a duration variable DN(t) as the number of periods between

two jumps. Note that because our interest is to model the jump jointly with returns and these

are recorded in a calendar basis (daily, weekly, monthly, etc.), the duration variable needs to be

defined in calendar time instead of event time as it is customary in duration models. The question

of interest is, what is the probability of a jump at time t in the VCR of the asset return of firm i

given all available information up to time t− 1? This is the conditional hazard rate pt

pt ≡ Pr(Jt = 1|Ft−1) = Pr(N(t) > N(t− 1)|Ft−1), (3)

which is the conditional probability of a jump. From (3), we note that pt is time-varying because

it depends on the information set Ft−1, and it is cross-sectional because Jt depends on the VCR

of the asset return in relation to the other firms in the market. Furthermore, because Jt = 1, pt

assesses the possibility of being in the upper ranks (winner) or in the lower ranks (loser) of the

cross-sectional distribution of asset returns.

It is easy to see that the probability of jumping and duration must have an inverse relationship.

If the probability of jumping is high, the expected duration must be short, and vice versa. Let ΨN(t)

be the expected duration. The expected duration until the next jump in the cross-sectional rank is
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given by ΨN(t) =
P∞

j=1 j(1− pt)
j−1pt = p−1t .3 Consequently, to model (3), it suffices to model the

expected duration and compute its inverse. Following Hamilton and Jordà (2002), we specify an

autoregressive conditional hazard (ACH) model. The ACH model is a calendar-time version of the

autoregressive conditional duration (ACD) of Engle and Russell (1998). In both ACD and ACH

models, the expected duration is a linear function of lag durations. However as the ACD model

is set up in event time, there are some difficulties on how to introduce information that arrives

between events. This is not the case in the ACH model because the set-up is in calendar time. In

the ACD model, the forecasting object is the expected time between events; in the ACH model, the

objective is to forecast the probability that the event will happen tomorrow given the information

known up to today. A general ACH model is specified as

ΨN(t) =
mX
j=1

αjDN(t)−j +
rX

j=1

βjΨN(t)−j . (4)

Since pt is a probability, it must be bounded between zero and one. This implies that the conditional

duration must have a lower bound of one. Furthermore, as we mentioned above, working in calendar

time has the advantage that we can incorporate information that becomes available between jumps

and can affect the probability of a jump in future periods. We specify the conditional hazard rate

as

pt = [ΨN(t−1) + δ
0
Xt−1]−1, (5)

where Xt−1 is a vector of relevant calendar time variables such as past VCRs and past returns.

Given a sample of observed jumps in VCR, the log-likelihood function for θ1 = (α0, β0, δ0)0 is

L1(θ1) =
TX
t=1

ln f1(Jt|Ft−1; θ1) =
TX
t=1

[Jt ln pt(θ1) + (1− Jt) ln(1− pt(θ1))] . (6)

2.2 Modelling the conditional return f2(yt|Jt,Ft−1; θ2)

We assume that the return to asset i may behave differently depending upon the occurrence of a

jump. We distinguish between active and passive stocks depending on the reasons why the jump in

the asset ranking has occurred. A sharp jump in the VCR may happen because: (i) the asset has

had an unusual return (an active movement in the asset ranking), (ii) the overall market may have

moved (up or down) in the opposite direction from the asset return (a passive movement in the

asset ranking), and (iii) a combination of active and passive movements. If a jump has occurred,

3Note that ∞
j=0(1−pt)j = p−1t . Differentiating with respect to pt yields

∞
j=0−j(1−pt)j−1 = −p−2t .Multiplying

by −pt gives ∞
j=0 j(1− pt)

j−1pt = p−1t and thus ∞
j=1 j(1− pt)

j−1pt = p−1t
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the return was pushed either towards the lower tail or upper tail of the cross-sectional distribution

of returns, and in relation to the market, this asset becomes either a loser or a winner. However,

when Jt = 1, being a winner (loser) does not imply extraordinary positive (negative) returns; in

addition, as an asset return can be in the top (bottom) of the cross-sectional distribution of returns

and be negative (positive). Likewise, an asset may not have experienced any jump Jt = 0, and

experience a large return, positive or negative. The modelling of two potential different states

(whether a jump has occurred or not) will permit to differentiate whether the conditional expected

return is driven by active or/and passive movements in the asset ranking in conjunction with its

own return dynamics.

A priori, we hypothesize different dynamics in these two states. A general specification is

f2(yt|Jt,Ft−1; θ2) =
½

N(µ1,t, σ
2
1,t) if Jt = 1,

N(µ0,t, σ
2
0,t) if Jt = 0,

(7)

where µj,t =
R
yt+1 · f2(yt|Jt = j,Ft−1; θ2)dyt+1 and σ2j,t =

R
y2t+1 · f2(yt|Jt = j,Ft−1; θ2)dyt+1−µ2j,t

(j = 1, 0). Whether these two states are present in the data is an empirical question and it will be

answered through statistical testing. The normal density in each state is an assumption which may

be modified depending upon the performance of the model. For instance, a thick-tailed density or a

skewed density may be needed if there is remaining kurtosis or skewness left in the data. Standard

diagnostic tests will shed further light on the need to modify the chosen density.

The log-likelihood function L2(θ2) =
PT

t=1 ln f2(yt|Jt,Ft−1; θ2) is

L2(θ2) =
TX
t=1

ln

⎡⎣ Jtq
2πσ21,t

exp

(
−1
2

µ
yt − µ1,t
σ1,t

¶2)
+

1− Jtq
2πσ20,t

exp

(
−1
2

µ
yt − µ0,t
σ0,t

¶2)⎤⎦ ,
where θ2 includes all parameters in the conditional means and conditional variances under both

regimes.

2.3 A mixture model for expected returns

If the two proposed states are granted in the data, the marginal density function of the asset return

must be a mixture of two normal density functions where the mixture weights are given by the

probability of jumping pt:

g(yt|Ft−1; θ) ≡
1X

Jt=0

f(yt, Jt|Ft−1; θ)

=
1X

Jt=0

f1(Jt|Ft−1; θ1)f2(yt|Jt,Ft−1; θ2)

= pt · f2(yt|Jt = 1,Ft−1; θ2) + (1− pt) · f2(yt|Jt = 0,Ft−1; θ2), (8)
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as f1(Jt|Ft−1; θ1) = pJtt (1− pt)
(1−Jt). Therefore, the one-step ahead forecast of the return is

E(yt+1|Ft; θ) =
Z

yt+1 · g(yt+1|Ft; θ)dyt+1 = pt+1(θ1) · µ1,t+1(θ2) + (1− pt+1(θ1)) · µ0,t+1(θ2). (9)

The expected return is a function of the probability of jumping pt, which is a nonlinear function

of the information set as shown in (5). Hence the expected returns are nonlinear functions of the

information set, even in a simple case where µ1,t and µ0,t are linear.

2.4 Estimation Results

We collect the weekly returns from January 1, 1990 to December 27, 2005 for all the constituents

of the SP500 index. The full sample is split into the estimation sample that runs for the first

eleven years, from January 1, 1990 to December 27, 2000 (with R = 573 weeks), and the prediction

sample from January 2, 2001 to December 27, 2005 (with P = 260 weeks). The set of firms in the

SP500 index is not fixed; over time new firms are coming into the index and some others drop out.

Consequently, the sample size for each individual firm may differ depending on the date in which

it became a member of the SP500. For instance, Microsoft is a constituent of the SP500 for all our

sample period but Yahoo, which was created years after 1990, enters in the SP500 in April 1996.

The sample size for the in-sample estimation analysis varies across firms with a maximum in-sample

size of 573 weekly returns. The only restriction that we impose in the estimation sample arises from

the need of having a minimum of observations to carry out the model estimation. We require at least

four years of data (208 weekly returns) prior to December 27, 2000. This requirement constrains

the in-sample analysis to 466 companies. However, new firms will show up during the prediction

sample and some other will drop out. We also account for these changes in the constituents of the

SP500 in the out-of-sample forecasting.

In the supplementary appendix (Table S.1), we summarize the unconditional moments (mean,

standard deviation, skewness, and kurtosis) of all 500 firms in the estimation sample. The frequency

distribution of the unconditional mean is unimodal with a weekly mean return of 0.029%. For

the unconditional standard deviation, the median value is 5.25%. The coefficient of skewness

is predominantly negative with a median value of −0.12. All the firms have a large coefficient of
kurtosis with a median value of 10.34. We calculate the Box-Pierce-Ljung statistics up to the fourth

order to test for autocorrelation in returns and we find mild autocorrelation for about one-third of

the firms. However, the Box-Pierce-Ljung test up to the fourth order to test for autocorrelation

in squared returns indicates strong dependence in second moments for all the firms in the SP500

index.

8



2.4.1 Estimation Results for f1(Jt|Ft−1; θ1)

For 466 firms, we fit a conditional duration model as in (4) and (5). The information set consists

of past durations, past returns and past VCRs : {DN(t)−j , yt−j , zt−j ; j = 1, 2, . . .}. The duration
time series for every firm is characterized by clustering — long (short) durations are followed by

long (short) durations, and consequently the specification of an ACH model may be warranted.

We maximize the log-likelihood function (6) with respect to the parameter vector θ1 ≡ (α0, β0, δ0)0.
Based on standard model selection criteria (t-statistics and log-likelihood ratio tests), we select the

following final specification

pt = [ΨN(t−1) + δ
0
Xt−1]−1 (10)

ΨN(t) = αDN(t)−1 + βΨN(t)−1

δ
0
Xt−1 = δ1 + δ2yt−11(zt−1 ≤ 0.5) + δ3yt−11(zt−1 > 0.5)

The conditional duration model is an ACH(1,1). There is a nonlinear effect of the predetermined

variables on duration. The effect of past returns on duration depends on whether the VCR of the

asset is above or below the median.

In the supplementary appendix (Table S.2), we report the cross-sectional frequency distributions

of the estimates θ̂1 ≡ (α̂, β̂, δ̂1, δ̂2, δ̂3)
0 for all the 466 firms in the estimation sample. All the

parameters are statistically significant at the customary 5% level. For α̂, the median is 0.34 with

90% of the firms having an α̂ below 0.47. For β̂, its frequency distribution is highly skewed to the

right with a median of 0.07 and with 90% of the firms having a β̂ below 0.30. The median α̂ + β̂

is 0.42 and for 90% of the firms, the α̂ + β̂ is below 0.67. The estimates δ̂2 and δ̂3 have mostly

opposite signs, the former is predominantly positive and the latter is predominantly negative. The

effect of δ̂2 and δ̂3 in expected duration depends on the interaction between the VCR and the sign

of the return. There are four possible scenarios. For instance, for most of the cases when δ̂2 is

positive and δ̂3 is negative, if the past asset return is positive and below (above) the median market

return, its expected duration is longer (shorter) and the probability of a jump is smaller (larger),

other things equal. On the contrary, when the past asset return is negative and below (above) the

median market return, its expected duration is shorter (longer) and the probability of a jump is

larger (smaller), other things equal. Both δ̂2 and δ̂3 have a very skewed cross-sectional frequency

distributions. For δ̂2, the median value is 0.57 with 90% of the firms having a δ̂2 below 1.67. For

δ̂3, the median value is −0.64 with 90% of the firms having a δ̂3 above −1.83. Roughly speaking,
for a representative firm with median parameter estimates, the expected duration is approximately
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between 3 and 4 weeks, and since E(pt) ≥ [E(ΨN(t−1)+δ
0
Xt−1)]−1, a lower bound for the expected

probability of a jump is between 25 and 33%.

In Table 1A we report the median estimates of the parameters of the duration model for the

industrial sectors that are represented in the SP500 index. There are ten sectors in the index,

which have been reduced to eight.4 The largest share corresponds to the Consumer Goods sector

with 25.2% of the SP500 companies, and the Information Technology sector with 17.7% of the

firms. The smallest share corresponds to the Energy sector with 5.5% of the firms. Ceteris paribus,

the larger α̂ + β̂, the longer the expected duration and the lower the probability of a jump. The

Information Technology sector has the smallest α̂ + β̂ = 0.33 while the Utilities sector has the

largest α̂ + β̂ = 0.50, indicating that the former has a higher tendency to move from the lower

cross-sectional ranks to the upper and vice versa. On the contrary, the Utilities sector is relatively

more stable. In the columns labeled δ̂2 and δ̂3, we report the median impact of the calendar

variables on the probability of a jump. As we mention above, the median δ̂2 is strictly positive, and

the median δ̂3 is strictly negative and larger in magnitude than δ̂2 for all sectors but one (Finance).

Most importantly, it is the joint effect of (α̂, β̂, δ̂2,δ̂3), which is summarized in the column labeled

p̂t the median probability of a jump in each sector. Not surprisingly, the Information Technology

sector has the largest median probability with p̂t = 0.45, which means that about every 2.5 weeks

these stocks jump from the top (bottom) to the bottom (top) of the cross-sectional distribution

of the market. On the other side of the spectrum, we have the Utilities sector with the smallest

median probability p̂t = 0.13, which implies jumps every 7.5 weeks approximately.

2.4.2 Estimation Results for f2(yt|Jt,Ft−1; θ2)

We proceed to estimate (7). Since this model is already nonlinear, we restrict the specification

of the conditional mean and conditional variance in each state (Jt = 1 or Jt = 0) to parsimonious

linear functions of the information set. The selected specification of (7) is

f2(yt|Jt,Ft−1; θ2) =
½

N(µ1t, σ
2
1t) if Jt = 1

N(µ0t, σ
2
0t) if Jt = 0

, (11)

µ1t ≡ E(yt|Ft−1, Jt = 1) = ν1 + γ1yt−1 + η1zt−1,

µ0t ≡ E(yt|Ft−1, Jt = 0) = ν0 + γ0yt−1 + η0zt−1,

σ21t = σ20t = σ2t = E(�2t |Ft−1, Jt) = ω + ρ�2t−1 + τσ2t−1,
4Consumer Discretionary Product and Consumer Staple Product are combined to form one category, namely

Consumer Goods. Information Technology and Telecommunication Services are merged into one group, namely
Information Technology.
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where �t−1 = (yt−1 − µ1,t−1)Jt−1 + (yt−1 − µ0,t−1)(1− Jt−1) and θ2 = (ν1, γ1, η1, ν0, γ0, η0, ω, ρ, τ)
0.

We arrive to this specification by sequentially implementing a battery of likelihood ratio tests. We

aim to gather statistical evidence for or against the mixture of normals that we propose in (7). The

first null hypothesis of interest states the same dynamics in the conditional mean for both states, i.e.

H1
0 : ν1 = ν0, γ1 = γ0, η1 = η0, where in both the restricted and the unrestricted models we assume

a constant conditional variance, σ21t = σ20t = σ2. This null is rejected very strongly for all the firms

in the SP500 index.5 Next, we relax the assumption of constant variance across states and write

a second null hypothesis as H2
0 : ν1 = ν0, γ1 = γ0, η1 = η0, where, in both the restricted and the

unrestricted models, we assume σ21t = σ20t = σ2t with σ2t specified as in (11). For all firms, we reject

again very strongly this null hypothesis and hence, we conclude that there is statistical evidence

in favor of different dynamics in the conditional mean across states jointly with a time-varying

conditional variance. Following the rejection of H1
0 and H

2
0 , we test for equal conditional variances

maintaining the nonlinearity in the conditional mean, i.e. µ1t 6= µ0t as in (11), H
3
0 : σ

2
1t = σ20t. In

the unrestricted model, the conditional mean is specified as in (11) and the conditional variances

follow a GARCH(1,1) process with different parameters depending on Jt = 1 or Jt = 0. We fail

to reject the third hypothesis to finally entertain a model as in (11). Within this model, the well

known unconditional leptokurtosis of asset returns is explained by a location-mixture of normals

with time-varying conditional variances.

The estimation results for the 466 firms are summarized in the supplementary appendix (Table

S.3), where we report the cross-sectional frequency distributions of the parameters estimates in the

conditional mean and conditional variance. All parameters are statistically significant at the 5%

level. When we consider asset returns for which a jump has taken place, the marginal impact of

past returns, γ̂1, is predominantly negative, with a median value of −0.44, though there is wide
range of values (−1.64, 0.52). The negative sign is expected for “active” stocks in which the jump
in ranking is mainly associated with a reversal in its past returns, as opposed to “passive” stocks in

which the jump is mainly associated with movements in other asset returns. The marginal effect of

past VCRs, η̂1, is also predominantly negative, with a median value of −0.38 and a wide range of
(−2.15, 1.54). For a given asset, and keeping everything else equal, a negative (positive) sign seems
to indicate that the jump in VCR is on average associated with a decrease (increase) in expected

returns. Eventually the combination of both effects will determine the expected return. We can say

that on average an asset for which γ̂1 and η̂1 are set to the median values, |γ̂1| = 0.44 > |η̂1| = 0.38,
5We do not report all the testing results for the 466 firms but they are available upon request.
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should be considered an “active” stock. When there is no jump, the marginal effect of past returns,

γ̂0, is predominantly positive with a median value of 0.36 such that positive (negative) returns are

followed by positive (negative) returns. As for the marginal effect of past VCRs, η̂0, it seems to be

small with a median value of 0.03 and of either sign.

In Table 1B, we report the median values of the parameter estimates for every industrial sector

represented in the SP500 index. We observe that γ̂1 and η̂1 are both negative and, for most sectors,

|γ̂1| > |η̂1| . In the no-jump state, γ̂0 and η̂0 are both mostly positive with γ̂0 significantly larger

than η̂0. The model for the conditional variance is a standard GARCH(1,1). The persistence is

measured by ρ̂+ τ̂ . The median persistence is 0.93, with a median value for ρ̂ of 0.04 and a median

value for τ̂ of 0.89. A leverage effect in the conditional variance does not seem to be warranted as

the different specifications of the conditional mean across states take care of potential asymmetries

in returns.

We run standard diagnostic checks in the standardized residuals corresponding to model (11).

A summary of these tests over the 466 firms follows:

residual residual residual residual p-value p-value
mean std.dev. skewness kurtosis of Q(4) of Q2(4)

mean 0.00 1.00 0.01 3.02 0.61 0.89
median 0.00 0.99 0.01 3.01 0.67 0.99
max 0.00 1.19 0.36 4.57 0.99 1.00
min 0.00 0.82 0.00 2.66 0.00 0.12

The specification (11) passes standard diagnostic checks for model adequacy, which provide strong

support for the mixture of normals. The model performs extremely well on modelling the reported

skewness and kurtosis of the unconditional distribution (Table S.1), delivering standardized resid-

uals that are symmetric and have a kurtosis of 3. The p-values of the Box-Pierce-Ljung Q(4) and

McLeod-Li Q2(4) statistics of order four for the standardized residuals and squared standardized

residuals are above the 5% significance level for all the firms but one, concluding that there is not

significant linear dependence left in the data.6 However, given the nonlinearity of the model, a more

drastic check on the adequacy of the model is to assess its out-of-sample forecasting performance,

which we analyze in the following section.

6As pointed out by Hong and Lee (2003) and Chen (2007), the asymptotic null distributions of the Box-Pierce-
Ljung and McLeod-Li statistics will be affected by the estimation of the standardized residuals. Therefore the p-values
reported here should be interpreted with caution and taken just as a rough guide for diagnostic checking.
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3 Out-of-sample evaluation of the VCR model

In this section we assess the performance of the proposed VCR model within the context of invest-

ment decision making. We consider two major scenarios. First, we deal with an investor whose

interest is to maximize profits from trading stocks. We assume that her trading strategy — what to

buy, what to sell — depends on the forecast of the returns based on the VCR model in Equations

(10) and (11). This trading strategy will be called VCR-Mixture Trading Rule and it is based on

the one-step ahead forecast of individual asset returns based on the VCR model. The superiority

of the proposed specification depends on its potential ability to generate larger profits than those

obtained with more standard models. However, given that large profits can be generated at the

expense of engaging in high risk strategies, we account for this possibility by assessing excess asset

returns per unit of risk. To this end, we consider two objective functions, one based on the tra-

ditional Sharpe ratio (SR) and the other based on a modified Sharpe ratio (MSR). In the second

scenario, we consider a situation where the investor wishes to assess potential large losses by adding

a Value-at-Risk (VaR) evaluation of her trading strategy.

3.1 VCR-Mixture Trading Rule

We proceed as follows. For each firm i in the market (466 firms), we compute the one-step ahead

forecast of the return as in (9)

ŷi,t+1(θ̂t) = pt+1(θ̂1,t) · µ̂1,t+1(θ̂2,t) + (1− pt+1(θ̂1,t)) · µ̂0,t+1(θ̂2,t), t = R, . . . , T − 1, (12)

where θ̂ = (θ̂
0
1, θ̂

0
2)
0, θ̂1 = (α̂, β̂, δ̂1, δ̂2,δ̂3)0, and θ̂2 = (ν̂1, γ̂1, η̂1, ν̂0, γ̂0, η̂0, ω̂, ρ̂, τ̂)

0.7 Based on the

forecasted returns {ŷi,t+1(θ̂t)}T−1t=R , the investor predicts the VCR of all assets in relation to the

overall market, that is,

ẑi,t+1 =M−1
MX
j=1

1(ŷj,t+1 ≤ ŷi,t+1), t = R, . . . , T − 1, (13)

and buys the top K performing assets if their return is above the risk-free rate. In every subsequent

out-of-sample period (t = R, . . . , T −1), the investor revises her portfolio, selling the assets that fall
out of the top performers and buying the ones that rise to the top, and she computes the one-period

7The sequence of one-step ahead forecasts is obtained with a “rolling” sample of size R. For a sample size of
T and with the first R observations, we estimate the parameters of the model θ̂R and compute the one-step ahead
forecast ŷi,R+1(θ̂R). Next, using observations 2 to R+ 1, we estimate the model again to obtain θ̂R+1 and calculate
the one-step ahead forecast ŷi,R+2(θ̂R+1). We keep rolling the sample one observation at a time until we reach T − 1,
to obtain θ̂T−1 and the last one-step forecast ŷi,T (θ̂T−1).
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portfolio return

πt+1 = K−1
MX
j=1

yj,t+1 · 1(ẑj,t+1 ≥ zKt+1), t = R, . . . , T − 1, (14)

where zKt+1 is the cutoff cross-sectional rank to select the K best performing stocks such thatPM
j=1 1(ẑj,t+1 ≥ zKt+1) = K. We form a portfolio with the top 1% (K = 5 stocks) performers in the

SP500 index. Every asset in the portfolio is weighted equally.8

The out-of-sample forecast runs from January 2, 2001 through December 27, 2005. By the very

nature of the SP500 index, over time some firms are added and some drop, consequently the index

needs to be updated periodically. During the forecasting period, there were 105 companies that

were added to the index replacing the same number of companies in the process. To avoid any

survivorship bias, at every point in time in the out-of-sample analysis we deal with 500 companies.

We consider the dates in which the companies are added and deleted from the SP500 index. If

a company is deleted on a given week, it will no longer be included in the out-of-sample forecast

evaluation from that week onwards. Similarly, if a new company is added on a given week, we

estimate the duration and expected returns models for this company and we will include it in

the forecast evaluation from that week onwards. At any point in time, we face the possibility of

choosing, by the prediction of the VCR-Mixture Trading Rule, a stock for the optimal portfolio

that may drop from the SP500 index in the next period. However, in our analysis, we have not

encountered such a possibility and the one-period-ahead predicted optimal portfolio always contains

companies that are constituents of the SP500 index in the following period.

3.2 Competing trading rules

To evaluate the out-of-sample performance of the VCR model, we compare it with that of various

competing models. The second trading rule is a simple alternative to the VCR-Mixture rule which

is constructed by imposing H10 : µ1,t = µ0,t = µt in (11). This trading rule has no mixture and thus

enable to assess the importance of the nonlinearity in the VCR-Mixture Trading Rule. It will be

called VCR Trading Rule because µt depends on the lagged VCR zt−1 of an asset while it ignores

the mixture of two normal densities. The one-step ahead forecast for every asset in the market is

obtained from a linear specification of the conditional mean where the regressors are past returns

and past VCRs. As in the previous rule, the rolling sample scheme is used to obtain the sequence of

8We also carried out the analysis for the top 2% (10 stocks) performers. As expected, the realized profit was
smaller but the risk-weighted profit (captured by the Sharpe ratio) did not change significantly. Thus, the qualitative
nature of our conclusions remains the same.
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one-step ahead forecasts ŷi,t+1. The ordinal rank is predicted by (13) and the investor follows the

same strategy of (14) as before by buying the top five performing assets and revising her portfolio

in every period.

The third trading rule is a buy-and-hold strategy of the market portfolio. At the beginning of

the forecasting interval, the investor buys the SP500 index and holds it until the end of the interval.

At any given t, the one-period portfolio return is πt = ym,t where ym,t is the return to the SP500

index. This strategy will be called Buy-and-Hold-the-Market Trading Rule.

In summary, these three trading rules aim to assess the predictability of stock returns: the VCR-

Mixture Trading Rule claims that stock returns are non-linearly predictable, the VCR Trading Rule

claims that stock returns are linearly predictable, and the Buy-and-Hold-the-Market Trading Rule

claims that actively managed portfolios have no advantage over passively index investing.

In addition to the above three models, we also consider four classes of technical trading rules con-

sidered by Sullivan, Timmermann and White (1999): Filter-Rule, Moving-Average-Rule, Channel-

Break-Out-Rule, and Support-and-Resistance-Rule. All of these four trading rules are based on the

SP500 index and they can be considered rules that exploit the momentum in returns. For each

of the four technical trading rules, we consider four parameterizations. See the supplementary

appendix for further explanation.

3.3 Forecast evaluation criteria

The first type of evaluation criterion is to compute the return of each trading strategy over the

forecasting sample (R+1, T ). There are P ≡ T −R periods in this interval. For every trading rule

we compute the “mean trading return”

MTR = P−1
T−1X
t=R

πt+1.

The rule that provides the largest MTR would be a preferred trading strategy. We also correct

MTR according to the level of risk of the chosen portfolio. We consider two broad types of risk-

corrected criteria: one is based on the Sharpe ratio, and the other based on VaR calculations to

manage catastrophic losses. The criterion based on the traditional Sharpe ratio is given by the

excess return per unit of risk measured by the standard deviation of the selected portfolio

SR = P−1
T−1X
t=R

(πt+1 − rf,t+1)

σπt+1(θ̂t)
,
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where rf,t+1 is the risk free rate. A modified Sharpe ratio (MSR) can also be implemented when

the excess return is measured per unit of VaR. It is defined as

MSR = P−1
T−1X
t=R

(πt+1 − rf,t+1)

V aRα
t+1(θ̂t)

,

where V aRα
t+1(θ̂t) is the one-step ahead VaR forecast of πt+1 at a given nominal tail coverage

probability α. The above three evaluation criteria, MTR,SR,MSR, are to be maximized.

The second type of evaluation criteria will be useful to an investor who wishes to control for

catastrophic events by maintaining a minimum amount of capital to cushion against excessive

losses. We would like to evaluate each trading rule according to their ability to allocate the optimal

amount of capital for unlikely events. For this purpose a Value-at-Risk evaluation criterion is useful.

Consider a portfolio of assets whose realized return is given by πt+1.We are interested in V aRα
t+1(θ),

the one-step ahead Value-at-Risk forecast of πt+1 at a given nominal tail coverage probability α.

This is defined as the conditional quantile such that Pr[πt+1 ≤ V aRα
t+1(θ)|Ft] = α. For the VCR

Trading Rule and the Buy-and-Hold-the-Market Trading Rule, where we assume a location-scale

distribution of πt+1, the forecast of the portfolio VaR can be estimated as V aRα
t+1(θ̂t) = µπt+1(θ̂t)+

Φ−1t+1(α)σ
π
t+1(θ̂t), where µ

π
t+1(θ̂t), σ

π
t+1(θ̂t) are the forecasts of the portfolio return and conditional

standard deviation respectively, Φt+1(·) is the conditional cumulative distribution function of the
standardized portfolio return, and θ̂t is the parameter vector estimated with information up to time

t. For the VCR-Mixture Trading Rule, where we are interested in the VaR of a portfolio of K asset,

each one following a mixture of conditional normal distributions, the computation of the VaR is

not straightforward because a mixture of normals does not belong to the location-scale family. We

implement the analytical Monte Carlo method of Wang (2001), which is described in some detail

in the supplementary appendix.

We evaluate the trading rules according to three VaR-based loss functions. The first loss function

aims to minimize the amount of capital to put aside (that is required to protect the investor against

a large negative return), the second loss function assesses which trading rule provides the correct

predicted tail coverage probability, and the third loss function is the tick function which evaluates

which trading rule provides the best quantile forecast.

The first VaR-based loss function V1 sets the mean predicted “minimum required capital”,

MRCα
t+1(θ̂t),

V1 ≡ P−1
T−1X
t=R

MRCα
t+1(θ̂t) ' P−1

T−1X
t=R

V aRα
t+1(θ̂t).
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A formula for MRCα as a function of V aRα with α = 0.01 is set by the Bassel Accord. See Jorion

(2000, p. 65). We approximate the formula by setting MRCα ' V aRα. Over the forecast period,

the trading rule that provides the lowest amount of capital to put aside will be preferred.

The second VaR-based loss function V2 aims to choose the trading rule that minimizes the

difference between the nominal and the empirical lower tail probability. It is an out-of-sample eval-

uation criterion based on the likelihood ratio statistic of the binary variable 1(πt+1 < V aRα
t+1(θ̂t)).

Over the forecasting period, consider the following counts n1 =
PT−1

t=R 1(πt+1 < V aRα
t+1(θ̂t)) and

n0 =
PT−1

t=R 1(πt+1 ≥ V aRα
t+1(θ̂t)). Note that P = T − R = n0 + n1. If the V aRα has been cor-

rectly forecasted, it must be that n1 = P × α and n0 = P × (1− α). The predictive log-likelihood

function of α given a sample
n
1(πt+1 < V aRα

t+1(θ̂t))
oT−1
t=R

is L(α) = ln (αn1(1− α)n0) and the

maximum likelihood estimator of α is α̂ = n1/P. If we were to test for the null hypothesis that

E[1(πt+1 ≤ V aRα
t+1(θ̂t))] = α, the likelihood ratio test −2(L (α)− L(α̂)) would be a suitable sta-

tistic. The loss function V2 is based on this statistic, as it is a distance measure between α and α̂.

A trading rule that minimizes V2 will be preferred.

V2 ≡ P−1 [−2(L (α)− L(α̂))]

= P−1
T−1X
t=R

2

∙
1(πt+1 < V aRα

t+1(θ̂t)) ln
α̂

α
+ 1(πt+1 > V aRα

t+1(θ̂t)) ln
1− α̂

1− α

¸
.

The third VaR-based loss function V3 is the tick function used in quantile estimation (Koenker

and Bassett, 1978)

V3 ≡ P−1
T−1X
t=R

(πt+1 − V aRα
t+1(θ̂t))

h
α− 1(πt+1 < V aRα

t+1(θ̂t))
i
.

The trading rule that provides the smallest V3 is preferred.

The question of interest is, among a set of trading rules, which one is the best? Each rule

produces different forecasts that are evaluated according to the six objective functions introduced

above. The best trading rule is the one that provides the maximum of MTR,SR,MSR and the

minimum of V1, V2, and V3. To compare the trading rules in terms of the six criteria we use the

“reality check” proposed by White (2000) and modified by Hansen (2005). Given a benchmark

trading rule, we aim to compare the values of the evaluation function produced by the other

trading rules to that of the benchmark. We formulate a null hypothesis that says that the best of

the competing trading rules is no better than the benchmark rule. If we reject the null hypothesis,

there is at least one competing trading rule that produces a better value than the benchmark. A

brief sketch of the formal testing procedure is provided in the supplementary appendix.
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3.4 Evaluation of trading rules

The out-of-sample performance of the aforementioned trading rules is provided in Table 2. In Panel

A, the trading rules are evaluated according to the MTR function; in Panel B, according to SR

and MSR; and in Panel C, according to the three VaR-based loss functions. In all cases, the

maximum in-sample size for the rolling estimation is R = 573, and the out-of-sample forecasting

period has P = 260 weeks. The stationary bootstrap of Politis and Romano (1994) with the

bootstrap smoothing parameter 0.25 (corresponding to the mean block length of 4) is implemented

with 1000 bootstrap resamples. In the first column of each table, we report the benchmark trading

rule to which the remaining rules will be compared.

In Panel A, we report the value of MTR for each trading strategy. The VCR-Mixture Trading

Rule produces a weekly mean trading return of 0.93% that is significantly more than the next most

favorable rule, which is the Buy-and-Hold-the-Market Trading Rule with a weekly mean return

of −0.02%. We also find that all the technical trading rules are clearly dominated by the VCR-
Mixture rule. In each row, a benchmark rule is compared with all the remaining 18 rules. When

the VCR-Mixture Rule is the benchmark, the White’s reality check p-value is 1.000 and Hansen’s

p-value is 0.956, indicating that it is not dominated by any of the other 18 trading rules. When

any other rule is taken as a benchmark, these reality check p-values are less than 1%, indicating

that they are easily dominated.

Following upon some of the criticisms of the profitability of momentum strategies, the superior

MTR of the VCR-Mixture Trading Rule may be the result of forming portfolios that are very risky

and consequently, the profits we observe are just due to a compensation for risk. To assess the

return-risk trade off, we implement the Sharpe ratio and a modified version of it. In Panel B, the

largest SR (largest mean return per unit of standard deviation) is provided by the VCR-Mixture

rule with a weekly return of 0.22%, which is lower than the mean return provided by the same rule

under theMTR criterion, but still a dominant return when compared to the mean returns provided

by the VCR Trading Rule and Buy-and-Hold-the-Market Trading Rule. The White p-value is 1.000

and Hansen’s p-value is 0.954 indicating the superiority of the VCR-Mixture rule. The results for

the Modified Sharpe ratio (MSR, mean return per unit of VaR) are qualitatively identical. MSR

is the largest for the VCR-Mixture rule with a weekly return of 0.793 (for the 1% VaR) and 0.881

(for the 5% VaR). In both cases the White’s p-values are 1.000 and Hansen’s p-values are above

0.90.

In Panel C, we report the out-of-sample performance of the three trading rules evaluated accord-
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ing to the VaR-based loss functions V1, V2, and V3, for α = 0.01, 0.05. The results for α = 0.01, 0.05

are virtually identical for all the three loss functions. With respect to V1, the VCR-Mixture Trad-

ing Rule dominates the other two rules as it provides the least amount of required capital. When

we consider V2, the same results hold. The VCR-Mixture rule delivers the best tail coverage by

estimating a tail coverage probability of α̂ = 0.013 at a nominal rate α = 0.01, and α̂ = 0.05 at a

nominal rate of α = 0.05. Finally, with respect to the tick function V3, the reality check p-values

indicate that neither the Buy-and-Hold-the-Market strategy nor the VCR-Mixture strategy are

dominated.

In addition to the six forecast criteria reported in Table 2, we have also computed the mean

squared forecast errors (MSFE) of the returns, P−1
PT−1

t=R M−1PM
i=1(ŷi,t+1−yi,t+1)2, and the MSFE

of the VCRs, P−1
PT−1

t=R M−1PM
i=1(ẑi,t+1 − zi,t+1)

2. Based on these MSFE losses, we compare

the VCR-Mixture Trading Rule and the VCR Trading Rule. With the VCR Trading Rule as

the benchmark, the reality check p-values for both of the MSFE loss functions are 0.000, clearly

indicating that the VCR-Mixture Trading Rule is better than the VCR Trading Rule and thus

the importance of nonlinearity in the conditional mean of the return process due to the weighted

mixture of normal densities.

3.5 Betas, average cumulative profits, and transaction costs

We have calculated the beta of the selected portfolios, through a CAPM-type time series regression,

over each period of the forecasting interval (P = 260 weeks). For the winner portfolio, in 70% of

the forecasting periods the average beta of the portfolio chosen by the VCR-Mixture Trading Rule

is greater than 1, and in 14% of the periods is greater than 1.5. In Figure 2, we plot the evolution

of the portfolio beta over the forecasting period for the VCR-Mixture Trading Rule and the VCR

Trading Rule. There is no observable pattern. The VCR-Mixture Trading Rule tends to pick up

stocks over the full spectrum of risk with portfolio betas as low as 0.18 and as high as 1.79.

In Figure 3, we plot the average cumulative profits over the forecasting period from the three

aforementioned trading rules. With the exception of a few periods at the beginning of the forecasting

sample, the weekly average return provided by the VCR-Mixture Trading Rule clearly dominates

the other two rules.

Since the VCR-Mixture Trading Rule and the VCR Trading Rule involve dynamic adjustments

of the portfolio in every week of the forecasting sample, it is natural to ask whether the transaction

costs involved will render these strategies unprofitable. Given that the Buy-and-Hold-the-Market
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strategy does not incur into any transaction cost, we calculate the threshold transaction cost associ-

ated with the VCR-Mixture strategy such that an investor is indifferent between the VCR-Mixture

portfolio or holding the SP500 index. We assume that the transaction cost is a certain percentage

(ct) of the price paid to buy or sell a certain portfolio. Let Pit and rpt be the price and excess

return of the VCR-Mixture portfolio at time t respectively, and let rmt be the excess return ob-

tained by holding the SP500 index. The threshold (or break-even) transaction cost ct is obtained

by solving the equation that equates returns at every time period t, that is, ln [Pi,t(1− ct)]−
ln [Pi,t−1(1 + ct)] = rmt. Hence, ct =

1−exp(Dit)
1+exp(Dit)

, where Dit ≡ rmt − rpt. The average and the me-

dian values of ct over the out-of-sample forecasting period is 17% and 36% respectively. By any

industry standards these costs are exorbitant. Thus, transaction costs are not a deterrent to the

implementation of the VCR-Mixture Trading Rule.

4 Conclusion

We have proposed a trading rule that is based on a non-linear time series model for expected returns.

The novelty of the proposed modeling lies on the investigation of the dynamics of the cross-sectional

rank of asset returns, which is conducted within the context of a duration model. For the weekly

returns of the constituents of the SP500 index, we have modelled the joint dynamics of the cross-

sectional rank and the asset return by analyzing (1) the marginal probability distribution of a jump

in the cross-sectional rank, and (2) the probability distribution of the asset return conditional on a

jump. As a result, we claim that the expected return is generated by a mixture of normal densities

weighted by the probability of jumping. Though the proposed model passes a battery of standard

diagnostics and given the non-linear nature of the model we judge the adequacy of our specification

within a forecasting exercise. Based on the one-step ahead forecast of the mixture model, we have

designed a trading rule that is evaluated, over the forecasting sample, within the context of several

evaluation functions: trading return, risk-adjusted trading return (Sharpe ratios), and VaR-based

loss functions. When we compare our trading rule based on the proposed VCR-mixture model,

against eighteen other different trading rules (some model-based and some technical), we find that

in all cases considered it is the dominant rule.
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TABLE 1.  In-Sample Estimation 
 

Panel A  
Median Values of the Parameter Estimates of 1θ   

 in the ACH Model for );|( 111 θ−ℑttJf  in Equation (10)  
 

Industry Sectors 
in the SP500 Index 

% of firms βα ˆˆ +  2δ̂  3δ̂  tp̂  

Consumer Goods 25.2 0.456 0.542 -0.573 0.257 
Energy   5.5 0.359 0.769 -0.840 0.347 
Finance 16.5 0.444 0.959 -0.488 0.257 
Health Care   11.2 0.387 0.501 -0.672 0.326 
Industrials 11.2 0.451 0.586 -0.946 0.238 
Information Technology 17.7 0.334 0.318 -0.413 0.447 
Material   6.4 0.437 0.587 -0.690 0.290 
Utilities   6.4 0.497 0.851 -1.101 0.132 
All sectors    100.0 0.422 0.571 -0.641 0.267 
 
 

Panel B   
Median Values of the Parameter Estimates of 2θ  

 in the Model for );,|( 212 θ−ℑttt Jyf  in Equation (11)  
 

Industry Sectors 
in the SP500 Index 

% of firms 
1γ̂  0γ̂  1η̂  0η̂  τρ ˆˆ +  

Consumer Goods 25.2 -0.445 0.345 -0.375 -0.010 0.909 
Energy 5.5 -0.591 0.384 -0.252 0.022 0.940 
Finance 16.5 -0.422 0.347 -0.369 0.058 0.972 
Health Care 11.2 -0.319 0.365 -0.658 0.031 0.899 
Industrials 11.2 -0.415 0.338 -0.358 0.056 0.885 
Information Technology 17.7 -0.419 0.480 -0.422 0.015 0.920 
Material 6.4 -0.444 0.353 -0.473 -0.036 0.965 
Utilities 6.4 -0.575 0.136 -0.069 0.208 0.909 
All sectors 100.0 -0.440 0.358 -0.378 0.029 0.925 
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TABLE 2. Out-of-Sample Evaluation of Trading Rules 
 

Panel A 
 Mean Trading Return (MTR) 

 MTR White 
p-value 

Hansen 
p-value  

VCR-Mixture Rule  0.926 1.000 0.956 
VCR Rule -0.297 0.001 0.000 
Buy-and-Hold-the-Market Rule -0.019 0.001 0.000 
Filter-Rule (0.05) -0.052 0.001 0.000 
Filter-Rule (0.10) -0.032 0.001 0.000 
Filter-Rule (0.20) -0.023 0.009 0.004 
Filter-Rule (0.50) -0.081 0.002 0.001 
Moving-Average Rule (10, 2) -0.034 0.003 0.000 
Moving-Average Rule (20, 2) -0.076 0.001 0.000 
Moving-Average Rule (10, 4) -0.049 0.001 0.000 
Moving-Average Rule (20, 4) -0.047 0.001 0.000 
Channel-Break-Out Rule (4, 0.05) -0.055 0.001 0.000 
Channel-Break-Out Rule (10, 0.05) -0.076 0.000 0.000 
Channel-Break-Out Rule (4, 0.10) -0.089 0.000 0.000 
Channel-Break-Out Rule (10, 0.10) -0.060 0.001 0.000 
Support-and-Resistance Rule (2) -0.124 0.002 0.000 
Support-and-Resistance Rule (4) -0.054 0.001 0.000 
Support-and-Resistance Rule (8) -0.080 0.004 0.001 
Support-and-Resistance Rule (16) -0.082 0.001 0.000 

 
 

Panel B 
Sharpe Ratio (SR) and Modified Sharpe Ratio (MSR) 

  White 
p-value  

Hansen 
p-value 

Sharpe Ratio SR   
VCR-Mixture Rule 0.218 1.000 0.954 
VCR Rule 0.076 0.020 0.121 
Buy-and-Hold-the-Market Rule 0.019 0.022 0.109 
    
Modified Sharpe Ratio with 01.0=α  MSR   
VCR-Mixture Rule 0.793 1.000 0.923 
VCR Rule 0.030 0.000 0.000 
Buy-and-Hold-the-Market Rule 0.008 0.000 0.000 
    
Modified Sharpe Ratio with 05.0=α  MSR   
VCR-Mixture Rule 0.881 1.000 0.912 
VCR Rule 0.039 0.000 0.000 
Buy-and-Hold-the-Market Rule 0.010 0.000 0.000 
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Panel C 
Three VaR Based-Loss Functions 

 V1 White 
p-value 

Hansen 
p-value 

V2 α̂  White 
p-value   

Hansen 
p-value 

V3 White  
p-value 

Hansen 
p-value 

VaR with 01.0=α            
VCR-Mixture Rule 2.748 1.000 0.879 0.002 0.013 1.000 0.999 0.070 0.832 0.712 
VCR Rule 9.172 0.000 0.000 0.089 0.085 0.000 0.000 0.478 0.000 0.000 
Buy-and-Hold-the-
Market 

5.467 0.000 0.000 0.005 0.023 0.000 0.000 0.090 0.618 0.418 

           
VaR with 05.0=α            
VCR-Mixture Rule 1.724 1.000 0.945 0.000 0.050 1.000 0.929 0.255 0.259 0.145 
VCR Rule 6.973 0.000 0.000 0.049 0.138 0.002 0.001 0.604 0.000 0.000 
Buy-and-Hold-the-
Market 

4.103 0.000 0.000 0.000 0.050 1.000 0.929 0.121 0.973 0.861 

 
 
Notes: The out-of-sample period is P=260 and the in-sample period is R=573. In each row of 
the panels, we report the values of the forecast evaluation functions together with the reality-
check p-values of White (2000) and Hansen (2005). The null hypothesis is that no other trading 
rules are better than the selected benchmark. A large reality-check p-value indicates that the 
null hypothesis cannot be rejected. In Panel A, MTR represents the profit accrued from the 
respective trading rules. When the VCR-Mixture Rule is the benchmark, the reality check p-
value 1.000 means that this benchmark rule is not dominated by any of the other 18 trading 
rules. In Panel B, SR represents the average profit per unit of standard deviation accrued from 
the respective trading rules. MSR represents the average profit scaled by VaR with different 
tail probabilities (0.01 or 0.05). When the VCR-Mixture Rule is the benchmark, the reality 
check p-value is again 1.000 which means this benchmark rule is not dominated by any of the 
other two trading rules. In Panel C, V1 , V2 , and V3 represent the three VaR-based loss 
functions (MRC, coverage failure rate, and the tick loss). α̂  denotes the empirical failure rate 
at the nominal rate α . When the VCR-Mixture Rule is the benchmark, the p-values are very 
large for all V1 , V2  and V3 , implying that this benchmark trading rule is not dominated by the 
other two trading rules.  
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FIGURE 1 
Stylized Description of the Modeling Problem 
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FIGURE 2 
Beta of the Winner Portfolio 

Forecasting sample: January 2, 2001 to December 27, 2005 
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FIGURE 3 
Average Cumulative Percentage Profits 

Forecasting sample: January 2, 2001 to December 27, 2005 
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