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Abstract

We examine how one can use information in the entire yield curve to improve forecasts
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(PC) method and Nelson-Siegel (NS) exponential components modeling of the yield curve. The
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we term as CF-NS), that is a new way of combining forecasts when the yield curve is used for
forecasting. In out-of-sample forecasting of monthly output growth and inflation, we find that
the CF method is more successful than the CI method, CF-NS is more stable than CF using
PC factors, and that CF-NS using two or three factors (capturing the level, slope and curvature
of the yield curve) generally works the best in out-of-sample forecasting of output growth and
inflation.
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1 Introduction

The usefulness of yield curve on predicting macroeconomic activities has been long documented in

the literature with many different points of the yield curve and various methodologies examined.

For example Stock and Watson (1989) find that two interest rate spreads, the difference between the

six month commercial paper rate and six-month Treasury bill rate, and the difference between the

ten year and one year Treasury bond rates, are good predictor of real activities, thus contributing

to their Index of Leading Indicators. Bernanke (1990), Friedman and Kuttner (1991), Estrella and

Hardouvelis (1991), and Kozicki (1997), among many others, have then investigated a variety of

yields and yield spreads individually on their ability to forecasting macro variables. Hamilton and

Kim (2002) and Diebold, Piazzesi, and Rudebusch (2005) provide a brief summary on this line of

research and the link between the yield curve and the macroeconomic activities.

Recently, researchers start to study the entire yield curve for its predictive power of real activity

and inflation. In a sequence of papers, Stock and Watson (1999, 2002, 2004, 2005a) investigate fore-

casts of output (real GDP or Industrial Production) growth and/or inflation using over a hundred

of economic indicators, including ten interest rates and nine yield spreads, by various methods.

Ang, Piazzesi and Wei (2006) suggest the use of the short rate, the five year to three month yield

spread, and lagged GDP growth in forecasting GDP growth out-of-sample. The choice of these two

yield curve characteristics, as they argue, is because they have almost one-to-one correspondence

with the first two principal components of short rate and five yield spreads that account for 99.7%

of quarterly yield curve variation. Another group of studies focus on modeling and/or forecasting

yield curve itself. Diebold and Li (2006), following Nelson and Siegel (1987), use a modified three-

factor model to capture the dynamics of the entire yield curve and apply to yield curve forecasting.

They show that the three factors may be interpreted as level, slope and curvature, and find en-

couraging results on term-structure forecasts at long horizons. Diebold, Rudebusch, and Aruoba

(2006) examine the correlations between Nelson-Siegel yield factors and macroeconomic variables.

They find that the level factor is highly correlated with inflation, and the slope factor is highly

correlated with real activity.

In the mean time, various methodologies on exploring yield information for real activity predic-

tion are proposed, either theory based or non-theory based. Ang and Piazzesi (2003) and Piazzesi

(2005) study the role of macroeconomic variables in a no-arbitrage affine yield curve model. Es-

trella (2005) constructs an analytical rational expectations model to investigate the reasons for the

success of the slope of the yield curve (the spread between long-term and short-term government
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bond rates) on real economic activity and inflation prediction. The model in Ang, Piazzesi and

Wei (2006) is a no-arbitrage dynamic model (using lag of GDP growth and yields as regressors)

that characterizes expectations of GDP growth. Rudebusch and Wu (2004) provide an example

of a macro-finance specification that employs more macroeconomic structure and includes both

rational expectations and inertial elements. In contrast, Stock and Watson (1999, 2002, 2004,

2005a), without modeling theoretically the term-structure, advocate methods that aim at solving

the large-N problem: forecast combinations and factor models. They compare comprehensively the

performance of various types of forecast combinations with factor models, particularly those using

principal component (PC) approach, on the large-N predictor information set. They find gener-

ally the most accurate forecasts are produced by the factor models. Similar to the factor model

approach in its methodologically simple and parsimonious nature, the Nelson-Siegel (NS) exponen-

tial components framework of Diebold and Li (2006) involves neither no-arbitrage nor equilibrium

approach but shrinkage principle in its essence, whereas being proven to be practically successful

in yield curve forecasting.

In this paper, we investigate how one can utilize the entire yield curve information to improve the

prediction of macro-economic variables, such as monthly personal income growth and CPI inflation.

With parsimony in mind, we consider two alternative factorizing frameworks for incorporating the

entire yield curve information. The first factorizing framework is based on the PC method, and

the second is based on the NS exponential components of the yield curve.

In Huang and Lee (2006), studies on combination of forecasts (CF, see Timmermann (2005) for a

survey) vs. combination of information (CI, forecast generated by combining all the information into

one super model) show that the CF method has its merits on out-of-sample forecasting practice.

They find that generally CF methods are more successful than CI methods in their empirical

application of equity premium prediction, similar to the result of Stock and Watson (2004) in

forecasting output growth.

The main contribution of this paper is to combine the advantages of CF with the parsimony

of NS framework. To do that, we introduce a new forecasting method (which we term as CF-NS),

that applies the NS factorizing framework to CF. The newly proposed CF-NS method is (i) first

to combine individual forecasts with three sets of fixed weights that are the three normalized NS

exponential loadings corresponding respectively to yield curve level, slope and curvature factors

as in Diebold and Li (2006), (ii) then to estimate a regression of the variable to be forecast on

these three combined forecasts, and (iii) finally to form the forecast based upon this regression.
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See Section 2.2 for details. Out-of-sample forecasting results show that forecasting output growth

and inflation generally require two or three NS factors. The CF-NS method using only the first

factor (capturing the level of the yield curve) is shown to be the CF method with simple average

of forecasts, and it is found to be inferior to the CF-NS with two or three factors (capturing the

level, slope and curvature of the yield curve) in out-of-sample forecasting of output growth and

inflation. Our empirical study demonstrates that the CF-NS method is generally the best method

that uses information in the entire yield curve in forecasting output growth and inflation. The

likely reason for its superior performance is due to its ability to capture parsimoniously the slope

and curvature information in the yield curve to reflect the uneven contributions from the individual

yields in predicting the output growth and inflation. We also discuss that when forecasts are highly

correlated and similar, the optimal forecast combination should assign a negative weight to the

inferior forecast, which is similar to the “pairs trading” strategy in the finance literature (see, for

example, Gatev, Goetzmann, and Rouwenhorst (2006)).

Finally, for inflation forecasting, we compare these yield-curve-based factor forecasting methods

with Stock and Watson’s (2005b) IMA(1,1) univariate model and find CF with PC or our CF with

NS factorizing framework has better performance in long horizons. Yet, we find that it appears to

be harder to outperform IMA(1,1) in more recent years, which may indicate diminishing forecasting

power of the yield curve within the Great Moderation (periods after mid 1980s, see Kim and Nelson

1999).

The rest of the paper is organized as follows. In Section 2 the two factorizing frameworks (PC

and NS) along with the CI and CF schemes are described. Section 3 presents the empirical analysis

to examine the out-of-sample forecasting performance of alternative forecasting methods. Section

4 concludes.

2 How to Use Information in the Yield Curve: Methods

In this section, we describe the two forecasting methods, CI and CF, as two alternative ways to

combine the entire yield curve information, either directly (CI) or indirectly (CF). In forming the

combinations, we focus on two different approaches to factorizing the yield curve: the principal

component approach and the Nelson-Siegel framework. The relative advantages of these two com-

peting factorizing approaches will be discussed subsequently in detail. For comparison purpose,

we also include forecast combination methods that have been proven to be successful in various

empirical applications in the literature (see Stock and Watson 2004, Timmermann 2005), namely
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the equally weighted CF, median CF, and CF with shrinkage weights.

Let yt+h denote the variable to be forecast (output growth or inflation) using the yield infor-

mation up to time t, where h denotes the forecast horizon. The predictor vector xt contains the

information about the entire yield curve at various maturities: xt ≡ (xt(τ1), xt(τ2), . . . , xt(τN))0

where xt(τ i) denotes the yield for maturity of τ i months at time t (i = 1, 2, . . . , N). The construc-

tion of xt for seventeen fixed maturities of 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108,

and 120 months, is detailed in Section 3.1.

2.1 Factorizing yield curve information directly: CI forecasting schemes

The simplest CI scheme is the OLS using directly xt as the regressor set. That is, we run OLS

regression yt+h = (1 x0t)α+ εt+h to obtain estimated coefficients α̂T and the forecast is constructed

as ŷT+h = (1 x0T )α̂T . Denote this forecasting scheme as “CI-Unrestricted”.

CI-PC: When the dimension of xt is large, we know that the CI-Unrestricted is very likely of poor

out-of-sample performance due to problems such as over-fitting and parameter estimation error.

The factor model with Principal Component (PC) approach that factorizes the entire yield curve

information is thus promising since it works on mitigating such dimensionality problem through

rank reduction. The procedure is as follows:

xt = ΛFt + vt, (1)

yt+h = (1 F 0t)γ + ut+h. (2)

In equation (1), by applying the classical principal component methodology, the latent common

factors F = (F1 F2 · · · FT )0 is solved by:

F̂ = XΛ̂/N (3)

where N is the size of xt, X = (x1 x2 · · · xT )0, and factor loading Λ̂ is set to
√
N times the

eigenvectors corresponding to the r largest eigenvalues of X 0X (see, for example, Bai and Ng

2002). Once γ̂T is obtained from (2) by regressing yt on (1 F̂ 0t−h) (t = h + 1, h + 2, . . . , T ), the

forecast is constructed as ŷCI-PCT+h = (1 F̂ 0T )γ̂T . Denote this forecasting scheme as “CI-PC”.

If the true number of factors r is unknown, it could be estimated by minimizing a penalized

version of the sum of squared residuals of factor model (1) (divided by NT ) according to Bai and

Ng (2002). However, Bai and Ng (2002) focus on the true structure of the factor representative part

given by equation (1), while the estimation procedure and the asymptotic inference for estimated
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number of factors have little to do with the forecasting model in equation (2) which however is our

main interest. Moreover, to achieve consistency in estimating r, Bai and Ng (2002) require N →∞
but N in our subsequent empirical study is only seventeen. Therefore, we estimate r by standard

information criteria such as AIC and BIC, for which estimated number of factors k is selected by

min 1≤k≤kmaxICk = ln(SSR(k)/T ) + g(T )k, where kmax is the hypothesized upper limit for the

true number of factors r (we choose kmax = N = 17 in our empirical study), SSR(k) is the sum of

squared residuals from estimation of the forecasting model (2) using k estimated factors, and the

penalty function g(T ) = 2/T for AIC and g(T ) = lnT/T for BIC. k can be fixed at some small

values like 1, 2, or 3 as well.

CI-NS: Alternatively, to factorize the entire yield curve, one can take the modified Nelson-Siegel

(NS) three-factor framework as in Diebold and Li (2006). It proceeds by first fitting the yield curve

period by period using the three-factor model:

xt(τ) = β1t + β2t

µ
1− e−λτ

λτ

¶
+ β3t

µ
1− e−λτ

λτ
− e−λτ

¶
+ ηt(τ). (4)

(β̂1t, β̂2t, β̂3t) are the three time-varying parameters that are interpreted as factors corresponding

to level, slope and curvature, which capture the entire yield curve dynamics over time and are

shown to be highly correlated with the empirical level, slope, and curvature of the yield curve (see

Diebold and Li (2006) for details).1 Once they are estimated by running OLS regression of xt(τ) on

1,
³
1−e−λτ

λτ

´
, and

³
1−e−λτ

λτ − e−λτ
´
, for various maturities τ at each t, we then use them to serve

as regressors in the following forecasting regression:

yt+h = (1 β̂1t β̂2t β̂3t)δ + �t+h. (5)

The CI-NS forecast is computed as: ŷCI-NST+h = (1 β̂1T β̂2T β̂3T )δ̂T where δ̂T is the estimate of δ

using information up to time T . This method is comparable to CI-PC with number of factors

fixed at k = 3. It differs from CI-PC, however, in that the three NS factors (β̂1t, β̂2t, β̂3t) bear

intuitive interpretations as level, slope and curvature of the yield curve while the first three principal

components may not have a clear interpretation. In the empirical section, additionally we consider

two alternative CI-NS schemes by including only the level factor β̂1t (denoted CI-NS-Level), or only

1Similar to CI-NS, alternatively one can use the empirical level, slope, and curvature of yield curve to run a
regression of y on these three empirical measures, that are the 10-year yield, the difference between 10-year and 3-
month yields, and twice the 2-year yield minus sum of 3-month and 10-year yields, respectively, as defined in Diebold
and Li (2006). Empirically we find this method is comparable to the CI-NS method but worse in most cases (thus not
reported). Such a result is not surprising by noting that the three empirical measures capture only partial (several
points) information in the yield curve while the three β̂’s capture the dynamics of entire yield curve.
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the level and slope factors (β̂1t, β̂2t) (denoted CI-NS-Level+Slope) to see whether the level factor

or the combination of level and slope factors have dominant contribution in forecasting output

growth and inflation.

2.2 Factorizing yield curve information indirectly: CF forecasting schemes

Instead of pooling all the yield information directly into one model, one may first run regressions

of yt+h on each element xit ≡ xt(τ i) of xt to generate individual forecasts ŷ
(i)
T+h = (1 xiT )âi,T

(i = 1, 2, . . . , N) and then combine them through some weighting methods. We consider various

combination weights. Two simple CF methods are to take equal weights (denoted CF-Mean) to

compute ŷCF-MeanT+h = 1
N

PN
i=1 ŷ

(i)
T+h, and to take the median of the set of N individual forecasts

(denoted CF-Median). Besides these simple weighting methods, the combination weights wi may

be estimated from the data to explore more cross-sectional information from the set of individual

forecasts. These CF methods are CF-RA, CF-PC, and CF-NS, which we discuss below. Among

them, CF-NS is the new method introduced in this paper.

CF-RA: Granger and Ramanathan (1984) suggest to estimate the combination weights wi by

Regression Approach:

yt+h = w0 +
NX
i=1

wiŷ
(i)
t+h + et+h. (6)

As the individual forecasts ŷ(i)T+h are constructed to be unbiased, we form the CF-RA predictor

with zero intercept: ŷCF-RAT+h =
PN

i=1 ŵi,T ŷ
(i)
T+h.

When N is large, the noise in estimating combination weights can dominate any potential

improvement (see Min and Zellner 1993), hence we also consider shrinkage weights based on CF-

RA to reduce the noise. Let CF-RA(κ) denote the shrinkage forecasts considered in Stock and

Watson (2004, p. 412) (see also Aiolfi and Timmermann 2006) with the shrinkage parameter κ

controlling for the amount of shrinkage on CF-RA towards the equal weighting (CF-Mean). The

shrinkage weight used is wi,T = θŵi,T +(1−θ)/N with θ = max{0, 1−κN/(T −h−T0−N)}, where
N is the number of individual forecasts, and T0 is the time when the first pseudo out-of-sample

forecast is generated.2 For simplicity we consider a spectrum of different values of κ, that are

chosen such that CF-RA(κ) for the largest chosen value of κ is closest to CF-Mean. For space we

report for κ = 0, 1 in Tables 2 and 3.
2 In our empirical study, we compute the out-of-sample forecasts by rolling window scheme with in-sample esti-

mation window of size R, and choose T0, the time when the first pseudo out-of-sample forecast is generated, at the
middle point of each rolling window so that it moves along with rolling windows as T is moving towards the end of
the out-of-sample period.
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CF-PC: Further, for reasons similar to those for CI-PC, we consider factorizing the vector of

individual forecasts Ŷt+h ≡ (ŷ(1)t+h, ŷ
(2)
t+h, . . . , ŷ

(N)
t+h)

0 by extracting their principal components and

form predictor CF-PC (combination of forecasts with principal component approach). See Chan,

Stock and Watson (1999), Stock and Watson (2004), and Huang and Lee (2006). Specifically we

decompose the covariance matrix of these individual forecasts Ŷt+h as QΛQ0, where the diagonal

elements of Λ are the eigenvalues and the columns of Q are the associated eigenvectors. Denote the

largest k eigenvalues by λ1, λ2, . . ., and λk, and denote the associated eigenvectors by q1, q2, . . .,

and qk. The first k principal components of Ŷt+h are then defined by F̂
(i)
t+h = q0iŶt+h, i = 1, 2, . . . , k.

From using each F̂
(i)
t+h, i = 1, 2, . . . , k in a regression of yt+h on it, we form a PC combined forecast

(denoted as CF-PC (1st), CF-PC (2nd), and so on, respectively) where the weights are proportional

to the eigenvector qi at each out-of-sample point in time.

We can further combine k0 of these PC combined forecasts to produce additional forecasts.

First we estimate

yt+h =

k0X
i=1

biF̂
(i)
t+h + ut+h, (7)

for t = T0, . . . , T .3 From this equation we construct a forecast (denoted as CF-PC(k = k0))

as ŷCF-PCT+h =
Pk0

i=1 b̂i,T F̂
(i)
T+h. The number of principal components k0, can be selected either by

information criteria such as AIC and BIC, or fixed at small values like 1, 2, or 3.

CF-NS: Finally, motivated by the principle of parsimony, we apply the NS exponential factorizing

framework to CF, and call it CF-NS (combination of forecasts with NS exponential factorizing

framework). Note that while the CF-PC method is suited for data of many kinds, the CF-NS

method we propose is tailored to forecasting using yield curve. It uses fixed factor loadings

1,

µ
1− e−λτ i

λτ i

¶
,

µ
1− e−λτ i

λτ i
− e−λτ i

¶
,

that are the NS exponential factor loadings for yield curve distillation, and hence avoids the estima-

tion of factor loadings (as CF-PC does) that may potentially deteriorate out-of-sample forecasting

performance in case of large noise in the data (the fixed factor loadings may be interpreted as

another type of shrinkage, similar to using fixed equal weights in CF-Mean). The procedure of

CF-NS is as follows. First, we note that after normalization, these three sets of fixed weights (the

3We do not include an intercept term in the regression model because each estimated principal component may
be regarded as already unbiased since they are linear combinations of individual forecasts which are bias-adjusted
by construction. In addition, we find that excluding intercept term generally helps us achieve better forecasting
performance than the one including intercept term.
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three NS exponential loadings) can be used as forecast combination weights. Therefore, we form

three NS combined forecasts as follows:

z1,t+h =
1

s1

NX
i=1

ŷ
(i)
t+h

z2,t+h =
1

s2

NX
i=1

µ
1− e−λτ i

λτ i

¶
ŷ
(i)
t+h

z3,t+h =
1

s3

NX
i=1

µ
1− e−λτ i

λτ i
− e−λτ i

¶
ŷ
(i)
t+h

where s1 ≡
PN

i=1 1 = N , s2 ≡
PN

i=1

³
1−e−λτi

λτ i

´
, and s3 ≡

PN
i=1

³
1−e−λτi

λτ i
− e−λτ i

´
.4 Note that by

construction, z1,T+h = 1
N

PN
i=1 ŷ

(i)
t+h is the CF-Mean. In Figure 1 we plot the three normalized

NS exponential loadings, which shows that the first combined forecast z1,t+h has equal weights

on all individual forecasts ŷ(i)t+h and thus captures the yield curve level factor (may be denoted as

CF-NS-Level, which is the same as CF-Mean); the second combined forecast z2,T+h has decreasing

weights assigned to individual forecasts using yields with increasing maturities and thus captures

the yield curve slope factor and is denoted as CF-NS-Slope; and the third combined forecast z3,T+h

has first increasing then decreasing weights for individual forecasts from yields with increasing

maturities and thus captures the yield curve curvature factor and is therefore denoted as CF-NS-

Curvature. The CF-NS-Slope and CF-NS-Curvature methods are examined in order to see the

separate contributions of the NS combined forecasts that capture slope or curvature factor only.

To see how the three NS combined forecasts contribute to forecasting the variable of interest

yt+h jointly, one can pool these three NS combined forecasts by regression:

yt+h = c1z1,t+h + c2z2,t+h + c3z3,t+h + vt+h (8)

to get ŷCF-NST+h =
P3

i=1 ĉi,T zi,T+h. In the empirical section, the two CF-NS forecasts considered

are: CF-NS-All with no restrictions on c’s and CF-NS-Level+Slope with the restriction c3 = 0 in

equation (8).

Additionally, with the N = 17 individual forecasts we have in our empirical study, instead of

using NS fixed loadings to combine them into CF-NS-All, we could use only the individual forecasts

based on 3-month, 2-year, and 10-year yields (components of yield curve empirical level, slope, and

curvature measures (Diebold and Li 2006) and use regression to combine these three forecasts only

(denoted CF-Empirical-Measures) to avoid the large-N problem at the same time accounting for

4 In our empirical study, (τ1 τ2 . . . τN ) = (3 6 9 12 15 18 21 24 30 36 48 60 72 84 96 108 120), the seventeen
maturities in months.
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representative information in the yield curve. However, this method is ignoring information in

other yields so its performance is found to be worse than CF-NS-All in our empirical analysis. To

incorporate the entire yield curve information through CF, alternatively one can combine forecasts

from the three NS factors (β̂’s), i.e., using β̂1, β̂2, and β̂3 separately to generate three individual

forecasts and then combining them with a regression (denoted CF-NS-Factors). Performance of

CF-NS-Factors is very close to that of CF-Empirical-Measures, but not necessarily better because

the three NS factors are estimated even though they capture more information in the yield curve.

That CF-NS-All is generally better than these two alternatives is probably due to the argument

we elaborate in the next section (Section 3.4.7).

3 Forecasting Output Growth and Inflation: Empirics

This section presents the empirical analysis where we describe the data, implement forecasting

methods introduced in the previous section on forecasting output growth and inflation, and ana-

lyze out-of-sample forecasting performances. This allows us to draw the differences between out-

put growth and inflation forecasting using the same yield curve information and to compare the

strengths of different methods.

3.1 Data

Two forecast targets, output growth and inflation, are constructed respectively as the monthly

growth rate of Personal Income (PI, seasonally adjusted annual rate) and monthly change in CPI

(Consumer Price Index for all urban consumers: all items, seasonally adjusted) from 02/1970 to

09/2005. PI and CPI data are obtained from the website, http://research.stlouisfed.org/fred2/

of Federal Reserve Bank at St. Louis. In Section 2, we use yt+h to denote the variable to be

forecast (output growth or inflation) using the yield information xt up to time t. yt+h may be

obtained after proper transformation of the original variables (PI or CPI). For instance, when

forecasting the monthly growth rate of PI, we set yt+h = 1200[(1/h) ln(PIt+h/PIt)] as the forecast

target (as used in Ang, Piazzesi and Wei (2006)). For the consumer price index (CPI), we set

yt+h = 1200[(1/h) ln(CPIt+h/CPIt)] as the forecast target (as used in Stock and Watson (2005b)).

Our yield curve data consist of U.S. government bond prices, coupon rates, and coupon struc-

tures, as well as issue and redemption dates. We calculate zero-coupon bond yields using the

unsmoothed Fama-Bliss (1987) approach. We measure the bond yields on the second day of each

month. We also apply several data filters designed to enhance data quality and focus attention
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on maturities with good liquidity. First, we exclude floating rate bonds, callable bonds and bonds

extended beyond the original redemption date. Second, we exclude outlying bond prices less than

50 or greater than 130 because their price discounts/premium are too high and imply thin trading,

and we exclude yields that differ greatly from yields at nearby maturities. Finally, we use only

bonds with maturity greater than one month and less than fifteen years, because other bonds are

not actively traded. Indeed, to simplify our subsequent estimation, using linear interpolation we

pool the bond yields into fixed maturities of 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 48, 60, 72, 84, 96,

108 and 120 months, where a month is defined as 30.4375 days.

In Table 1 we provide descriptive statistics of the two forecast targets and yield curve level,

slope, and curvature (empirical measures), over three different sample periods: full sample from

02/1970 to 09/2005, the first out-of-sample evaluation period from 01/1985 to 09/2005, and the

second out-of-sample evaluation period from 01/1995 to 09/2005. The level is defined as the 10-year

yield xt(120), the slope as the difference between the 10-year and 3-month yields xt(120) − xt(3),

and the curvature as the twice the 2-year yield minus the sum of the 3-month and 10-year yields

2xt(24)−(xt(3)+xt(120)). It is clear that both PI growth and CPI inflation become more moderate
and less volatile after 1985. This stylized fact is known as “Great Moderation”. See Kim and Nelson

(1999) and D’Agostino et al. (2005). In particular, there is a substantial drop in the persistency of

CPI inflation over the period of 1985 to 2005. The volatility and persistency of yield curve slope

and curvature do not change much. Yield curve level, however, decreases and stabilizes a lot after

1985 and these trends continue after 1995.

3.2 The choice of yield levels instead of spreads

In predicting macroeconomic variables using the term structure, yield spreads between yields with

various maturities and the short rate are commonly used in the literature. One possible reason for

such a practice is that yield levels are treated as I(1) processes so yield spreads will likely be I(0).

Similarly macroeconomic variables are typically assumed as I(1) and transformed properly into I(0)

so that when using yield spreads to forecast macro targets, issues such as spurious regression are

avoided. In this paper, however, we use yield levels (not spreads) to predict PI growth and CPI

inflation (not change in inflation). First, whether yields and inflation are I(1) or I(0) is still arguable.

Stock and Watson (1999, 2005a,b) use yield spreads and treat inflation as I(1) so they forecast

change in inflation. Inoue and Kilian (2006), however, treat inflation as I(0). Since our target is

forecasting inflation, not change in inflation, we will treat CPI inflation as well as yields as I(0)

in our empirical analysis. Second, we emphasize real-time, out-of-sample forecasting performance
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more than in-sample concerns. As long as out-of-sample forecast performance is unaltered or even

improved, we think the choice of treating them as I(1) or I(0) variables does not matter much.5

Third, using yield levels will allow us to provide clearer interpretations for questions such as, which

part of the yield curve contributes the most towards predicting PI growth or CPI inflation, and

how the different parts of yield curve interact in the prediction, etc.

3.3 Out-of-sample forecasting

We now turn to the specifics related to our forecasting methods introduced in Section 2 and examine

their out-of-sample performance. All forecasting models are estimated by rolling scheme with

window size R. We consider two different out-of-sample evaluation periods: one from 01/1985

to 09/2005 (hence out-of-sample size P = 249 and R = 179), and another more recent one from

01/1995 to 09/2005 (P = 129 and R = 299). In all PC related forecasting methods, we choose the

hypothesized upper limit for the true number of factors, kmax, at seventeen (the total number of

yield levels used). In all NS related methods (for both CI and CF) we set λ, the parameter that

governs the exponential decay rate, at 0.0609 for reasons as in Diebold and Li (2006).6

We compare h-month-ahead out-of-sample forecasting results of those methods introduced in

Section 2 with two simple benchmark models, for h = 1, 3, 6, and 12 months. For both PI growth

and CPI inflation, the first benchmark is the AR model where ŷt+h = ζ̂0,t+ ζ̂1,tyt.
7 For PI growth,

the second benchmark is the model from Ang, Piazzesi and Wei (2006) estimated by OLS (denoted

APW-OLS):

yt+h = φ0 + φ1xt(3) + φ2(xt(60)− xt(3)) + φ3yt + εt+h. (9)

For CPI inflation, the second benchmark is the Stock and Watson’s (2005b) IMA(1,1) univari-

ate model with its moving average coefficient estimated using a ten-year rolling window of past

observations (denoted IMA(1,1)-10-year).

3.4 Results

Tables 2 and 3 present the root mean squared forecast errors (RMSFE) of all methods for PI growth

(Table 2) and CPI inflation (Table 3) forecasts using all seventeen yield levels. These results are

5While not reported for space, we tried forecasting change in inflation and found forecasting inflation directly
using all yield levels improves out-of-sample performances of most forecasting methods by a large margin.

6For different values of λ, the performances of CI-NS and CF-NS change only marginally.
7We use the direct multistep AR method rather than the iterated multistep AR method, as all the other models

discussed in Section 2 and the second benchmark model are based on the direct forecasts that are made using a
horizon-specific estimated model where the dependent variable is the multiperiod ahead value being forecast. The
direct forecasts may be more robust to model misspecification. See Marcellino, Stock, and Watson (2006) for more
discussion.
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summarized as follows.

3.4.1 CF is better than CI.

In most cases, the benchmark models are clearly outperformed either by CF-PC, or CF-NS, or

sometimes CF-RA(κ). The improvements over benchmarks by these methods are sometimes quite

substantial. In contrast, when forecasting PI growth, only in few cases the CI-PC or CI-NS can

beat the benchmark models just by a small margin, and when forecasting CPI inflation, in almost

no cases the benchmarks are beaten by CI schemes with most of them (including CI-PC and CI-NS)

performing much worse than the benchmarks. Both CI-PC and CI-NS are worse than CF models.

This finding, the superior performance of CF in comparison with CI in real-time forecasting, is

consistent with what analytically and empirically demonstrated in Huang and Lee (2006). While

the performance of CF-RA(κ) largely depends upon the choice of κ (the parameter controlling the

amount of shrinkage towards equal weights), CF-PC and CF-NS behave well as long as more than

one factor are included.

In using information in the entire yield curve xt = (x1t . . . xNt)
0 to forecast yt+h, CF combines

individual forecasts ŷ(i)t+h each obtained from using one yield xit at a time or combines particu-

lar combinations of some yields in xt, while CI uses the entire yield information xt in one big

model. When N is large, both CI and CF without using factorization would suffer from parame-

ter estimation error, because α and wi’s need to be estimated for ŷCI-UnrestrictedT+h = (1 x0T )α̂T and

ŷCF-RAT+h =
PN

i=1 ŵi,T ŷ
(i)
T+h. We have considered factor models (PC or NS) to reduce the dimension

of Ŷ ≡ (ŷ(1) . . . ŷ(N))0 for CF and the dimension of x ≡ (x1 . . . xN)0 for CI.
From our empirical results we find that CF (CF-PC and CF-NS) using the factors of forecasts

(ŷ(1) . . . ŷ(N)) is better than CI (CI-PC and CI-NS) using the factors of the yields (x1 . . . xN). The

main reason is that CF incorporates the “relationship” between the forecast target y and predictors

xi’s as the factors are extracted from (ŷ1 . . . ŷN ) after each individual forecast is obtained from

incorporating the relationship between y and each xi, while CI extracts the factors of xt without

taking their relationship with the forecast target y into account. Therefore, in spirit, CF-PC and

CF-NS are similar to the “partial least squares” method. See, e.g., Garthwaite (1994).

3.4.2 CF-NS is more stable than CF-PC.

CF-PC(2nd) and CF-PC(3rd) are poor performers. This indicates that individual PCs (the second

and third one) have bad weights so that they do not work for prediction while the first PC (about

equal weights) works. These can be observed for both output growth (Table 2) and inflation (Table
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3) forecasting results. Looking at the factor loadings in Figure 2 where we plot the average of three

factor loadings associated with the first, second and third principal components in CF-PC, the

second PC and third PC assign negative weights for some individual forecasts and weights bigger

than unity for others. In contrast, the weights used in CF-NS are all between zero and one (see

Figure 1) as they are normalized.8

3.4.3 Slope and curvature factors are important for longer horizon forecasting.

The slope and curvature factors play important role in improving forecasting performance of the

yield curve for both output growth and inflation, especially for long horizon forecasting (h = 3, 6, 12)

and more so as h gets larger.

3.4.4 The number of factors needed depends on the forecast target and the forecast
horizon h.

For one month-ahead (h = 1) forecasting of the PI growth, generally the best method is CF-PC

with only one factor. For the CPI inflation forecasting, for better performance generally we need

two or three factors in CF-PC models. This is also true with CF-NS models. Figure 2 helps us

understand what economic contents these factors in CF-PC may bear. It shows that the first PC

assigns about equal weights to all seventeen individual forecasts that use yields at various maturities

(in months) so that it may be interpreted as the factor that captures the level of the yield curve;

the second PC assigns roughly increasing weights so that it may be interpreted as factor capturing

the slope; and the third PC assigns roughly first decreasing then increasing weights so that it may

be interpreted as factor capturing the curvature. Hence it seems that output growth forecasting

requires only one factor that captures the level of the yield curve for h = 1, while it requires two or

three factors that captures the level, slope and curvature of the yield curve for h > 1.9 When h = 6

or 12, CF-NS-Level+Slope and CF-NS-All perform much better than CF-NS-Level (CF-Mean) for

PI growth forecasting (Table 2). This is also somewhat true for CPI inflation forecasting in Table

3. Both output growth and inflation forecasting generally require two or three factors that captures

8We also experimented with the normalized factor loadings for the CF-PC method, which however turned out to
have quite erratic performances.

9For output growth, Kozicki (1997) finds that the predictive power of the yield spread largely comes from its
usefulness over horizons of a year or so and generally dominates the predictive power associated with the level of
yields. This is similar to what we find. However, for inflation, she finds that although the yield spread helps predict
inflation at moderate horizons of a few years, the level of yields is a more useful predictor of inflation. We note that
Kozicki’s results are based on the in-sample analysis while ours are on out-of-sample forecasting. She uses quarterly
sample from 1970 to 1996.
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the level, slope and curvature of the yield curve for h > 1.10

3.4.5 CF-NS is more successful than IMA(1,1) especially in longer horizon inflation
forecasts.

In forecasting the CPI inflation, although IMA(1,1) is the best model for shorter horizons, we can

beat it by either CF-PC or CF-NS (mostly CF-NS) in longer horizons. Note that in the first out-of-

sample period starting from 1985, CF-NS-All appears to be generating the best forecast and in the

second out-of-sample period starting from 1995, CF-NS-Level+Slope performs generally the best

among all CF-NS methods. To further evaluate the relative out-of-sample performance of these

two competing forecasts, we consider the following unconstrained forecast-encompassing regression

(as in Harvey and Newbold (2005)):

yt+h = d0 + d1ŷ
IMA
t+h + d2ŷ

CF-NS
t+h + ut+h, (10)

where ŷIMAt+h denotes the forecast by IMA(1,1) model, and ŷCF-NSt+h in the first and second out-of-

sample period are forecasts by CF-NS-All and CF-NS-Level+Slope, respectively. Table 4 presents

the estimated regression coefficients (with Newey and West (1987) standard errors in parenthesis)

from regressing CPI inflation yt+h on the two competing forecasts plus a constant in two out-of-

sample periods and for h = 1, 3, 6, and 12. Generally the results are consistent with the RMSFE

results in Table 3: CF-NS-All forecast (in the first out-of-sample period) or CF-NS-Level+Slope (in

the second out-of-sample period) gain bigger weights and are more significant as forecast horizon h

grows. From the “forecast-encompassing” (Chong and Hendry 1986) point of view, in case when we

fail to reject H0 : d1 = 0, we may conclude that the CF-NS forecast encompasses IMA(1,1). Table

4 shows that it seems in most cases neither one encompasses the other but as forecast horizon h

grows, CF-NS is more capable of forecast-encompassing IMA(1,1).

3.4.6 In forecasting inflation, the predictive power of the yield curve for the period
1995-2005 is weaker than for the period 1985-2005.

This is consistent with recent flat/inverted yield curve but no recession. The results in Table 3 show

that it appears to be harder to beat IMA(1,1) in more recent period since for out-of-sample period

starting from 1995 we can outperform IMA(1,1) only at 1-year horizon while for the one starting

from 1985, we can beat it at 3, 6, and 12-month forecast horizons. This is probably due to the

10Wright (2006) finds some similar results in forecasting turning point of the business cycles. He finds that models
that use both the level and the slope give better in-sample fit and out-of-sample predictive performance (in forecasting
recessions using the yield curve) than models with the slope alone.
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“Great Moderation” during which one can hardly improve upon naive univariate models and macro

and financial variables have less predictive power towards predicting inflation (see D’Agostino,

Giannone, and Surico 2005). Our finding may indicate diminishing forecasting power of the yield

curve within the Great Moderation period. This may be explained by the views in Estrella (2005,

p. 742): “In fact, ... the estimates shed some light on the connection between monetary policy

and the varying predictive relationship between the yield spread, output and inflation. Particularly

notable are the estimates in the post-1987 period, which seems to be consistent with strict inflation

targeting and in which the predictive power of the yield spread, though not entirely absent, is

certainly diminished.”

3.4.7 CF-NS-All is better than CF-Mean.

In general, the new method (namely, CF-NS) that we introduce in this paper is the best way to

extract level, slope and curvature information from the yield curve for forecasting output growth

and inflation. The yield curve factors that can not be captured by one single individual forecast

may be well captured by CF methods since they pool all the seventeen individual forecasts together

hence incorporate the entire yield curve information. More importantly, we find here that CF-NS is

better than CF-Mean, due to the fact that slope and curvature information of yield curve matters.

To be more specific, all the seventeen yields matter for predicting the output growth and inflation,

but they do not contribute evenly. This uneven contribution, which is bypassed in CF-Mean (i.e.,

CF-NS-Level), could be uncovered through other CF-NS methods since in forming the combination

weights they include factors that assign unequal weights to individual forecasts thus capturing the

slope and/or curvature (Figure 1) information. The ability of these CF-NS methods to capture

parsimoniously the slope and curvature information in the yield curve attributes to its superior

out-of-sample forecasting performance for output growth and inflation.

This finding that CF-NS is better than CF-Mean is in contrast to the general findings in the

literature that CF-Mean is often found to be the best (see, for example, Timmermann 2005). Stock

and Watson (2004) call this a “forecast combination puzzle” that the simple combinations as in

CF-Mean are repeatedly found to outperform sophisticated/adaptively weighted combinations in

empirical applications. In particular, Smith and Wallis (2005) explores a possible explanation of the

forecast combination puzzle. Their explanation lies in the effect of finite sample estimation error

of the combining weights. However, in our paper, we show cases where using more sophisticated

combining weights as in CF-NS can be clearly better than using the simple weights as in CF-Mean.

We now investigate how this may happen.
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Note that CF-NS-All (ŷCF-NS-AllT+h =
P3

i=1 ĉi,T zi,T+h) is obtained from the regression of equation

(8) with no restrictions on c’s, CF-NS-Level+Slope (ŷCF-NS-Level+SlopeT+h =
P2

i=1 ĉi,T zi,T+h) is obtained

with the restriction c3 = 0, and CF-Mean (ŷCF-MeanT+h = z1,T+h) is obtained with restrictions c1 =

1, c2 = c3 = 0. We also consider three other methods of calculating ĉi,T for CF-NS-All, as reported

in Tables 2 and 3: namely, CF-NS-All-Mean (with ĉi,T =
1
3 for i = 1, 2, 3), CF-NS-All-BMA (with

Bayesian model averaging weights as discussed in Lee and Yang (2006)), and CF-NS-All-Yang (with

weights of Yang (2004)). From Tables 2 and 3, we observe that CF-NS-All-Mean, CF-NS-All-BMA,

and CF-NS-All-Yang are almost the same as CF-Mean, and they are clearly worse than CF-NS-

Level+Slope and CF-NS-All. Therefore the result that CF-NS is better than CF-Mean depends

on how we obtain c’s to form CF-NS. In order to understand it better, we look at the estimated

weights (ĉ1,T ĉ2,T ) for CF-NS-Level+Slope reported in Figure 3 and (ĉ1,T ĉ2,T ĉ3,T ) for CF-NS-All

in Figure 4. The large variation in ĉi,T and the mirror-image behavior between ĉi,T ’s indicate

the collinearity between z’s. The collinearity between z’s is due to the collinearity between the

individual forecasts (ŷ(1) . . . ŷ(N)) which is likely caused by the high correlation among xit’s (yields

at different maturities) that are used to generate the individual forecasts.

This collinearity, however, is not necessarily damaging. Analogous to the “pairs trading” strat-

egy (see, for example, Gatev, Goetzmann, and Rouwenhorst (2006)) which trades on two highly

correlated (or cointegrated) stocks whose prices have moved together historically, CF-NS utilizes a

set of highly correlated/collinear forecasts. In this case, the optimal forecast combination should

include the worse forecasts with negative weights (as short-sale of one in pairs trading) and the bet-

ter forecasts with weights larger than 1 (as long the other in pairs trading). This can be achieved

by the regression approach (such as CF-NS-Level+Slope or CF-NS-All), but not by the meth-

ods restricting the combining weights on the (0 1) interval (such as CF-Mean, CF-NS-All-Mean,

CF-NS-All-BMA, and CF-NS-All-Yang).

Bates and Granger (1969) consider the case of combining two unbiased one-step ahead forecasts.

Let f (1)t and f
(2)
t be forecasts of yt+1 with errors

e
(j)
t+1 = yt+1 − f

(j)
t , j = 1, 2

such that Ee(j)t+1 = 0, Ee
(j)2
t+1 = σ2j , and Ee

(1)
t+1e

(2)
t+1 = ρσ1σ2. A combined forecast

f
(c)
t = kf

(1)
t + (1− k)f

(2)
t

has the forecast error e(c)t+1 = yt+1 − f
(c)
t = ke

(1)
t+1 + (1 − k)e

(2)
t+1 and the forecast error variance
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σ2c = k2σ21 + (1− k)2σ22 + 2k(1− k)ρσ1σ2, which is minimized for the value of k given by

kopt =
σ22 − ρσ1σ2

σ21 + σ22 − 2ρσ1σ2
.

The optimal weight kopt yields the minimum error variance σ2c,opt =
σ21σ

2
2(1−ρ2)

σ21+σ
2
2−2ρσ1σ2

, for which σ2c,opt <

min(σ21, σ
2
2).

The situation kopt < 0 is interesting. In light of the above condition, it appears that an inferior

forecast may still be worth including with negative weight. This happens when σ22 − ρσ1σ2 < 0 or

σ2/σ1 < ρ, i.e., when ρ is a very large positive value, say close to 1, and f (1)t is the inferior forecast

with larger forecast error variance σ1.

As shown in Granger and Newbold (1986, p. 268), the optimal combining weight kopt can be

estimated from

k̂t =

Pt
s=1

³
e
(2)2
s − e

(1)
s e

(2)
s

´
Pt

s=1

³
e
(1)2
s + e

(2)2
s − 2e(1)s e

(2)
s

´
which can be obtained from the regression e

(2)
t+1 = k

³
e
(2)
t+1 − e

(1)
t+1

´
+ e

(c)
t+1.

A common popular recommendation is to ignore ρ. For example, Clemen (1989, p. 562) suggests

“to ignore the effect of correlations in calculating combining weights”. While the optimal weight k̂t

can be negative or overweighted (larger than one) depending on the value of ρ, the use of a simpler

form obtained with the restriction ρ = 0 has been a popular recommendation:

k̂0t =
Pt

s=1 e
(2)2
sPt

s=1

³
e
(1)2
s + e

(2)2
s

´ .
Note that ignoring ρ, k̂0t is always constrained on the (0 1) interval (analogous to the short-sale

constraint). Examples of weights with this constraint include equal weights (as in CF-NS-All-

Mean and CF-Mean), BMA weights (as in CF-NS-All-BMA), and Yang’s (2004) weights (as in

CF-NS-All-Yang).

When ρ is large and positive, the optimal weight on the inferior forecast can be negative. The

forecast combination problem is analogous to that of minimizing the variance of a portfolio, with

the forecast errors playing the role of asset returns (Timmermann 2005). Gatev, Goetzmann, and

Rouwenhorst (2006) show that the “pairs trading” in financial trading strategy profits from the

high correlation in the returns. Analogously, the profitability of using the optimal weight is linked

to the high correlation ρ in the forecasts. Without loss of generality lets assume f (1)t is the inferior

forecast with larger forecast error variance. In combining forecasts, when ρÀ 0, we short the loser

(the worse forecast) with k < 0 and buy the winner (the better one) with (1− k) > 1.
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Figure 5 illustrates how the correlation ρ (similarity of forecasts) matters in the calculation of

the forecast combination weights. When ρ < 0 (two individual forecasts are distinct and fall on the

different sides of y on the U curve of the MSFE loss function) as shown in Figure 5(a), the optimal

weight k̂t on the inferior forecast f
(1)
t falls on (0 1) interval and therefore using k̂0t may not lose

much and can work well. When ρ > 0 (two individual forecasts are similar and fall on the same side

of y) as shown in Figure 5(b), the optimal weight k̂t on the inferior forecast f
(1)
t should be negative

for combined forecast to achieve smaller loss than both individual ones. In this case, the use of k̂0t
ignoring the correlation would be too restrictive. Therefore, when the forecasts (ŷ(1), . . . , ŷ(N)) are

collinear thus resulting highly correlated and similar z’s, CF-NS-All can be better than CF-Mean

since it accounts for the collinearity of z’s by assigning the optimal (non-convex) weights (that are

negative or greater than one).

4 Conclusions

We propose a new forecasting method for forecasting the macro-variables using the entire yield

curve (which we term as CF-NS), that applies the Nelson-Siegel yield curve factorizing framework

to combination of forecasts. The CF-NS method is first to combine forecasts from individual yields

with three sets of fixed weights that are the three normalized Nelson-Siegel exponential factor

loadings corresponding respectively to level, slope and curvature factors of the yield curve, then to

estimate a regression of the variable to be forecast on these three combined forecasts, and finally

to form the forecast based upon this regression.

We have found that CF is better than CI and the newly proposed CF-NS method has better out-

of-sample performance than several popular benchmark models in forecasting monthly PI growth

at all horizons and in forecasting CPI inflation in longer horizons. CF-NS and CF-PC are like

the partial least squares in spirit, in that we extract factors to reduce collinearity (resulted from

individual forecasts using one yield at a time) and at the same time in a way that accounts for

the relationship between the yields xt and the forecast target yt+h. As the three Nelson-Siegel

combined forecasts (z1, z2, z3) are highly positively correlated and similar to each other, the optimal

combination of z’s may be with non-convex weights as CF-NS does when pooling z’s. This resembles

the pairs trading strategy (going short one and long the other) and sheds light on the reasons why

CF-NS works better than CF-Mean.
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Table 1.  Descriptive Statistics 
 
  Mean Std. dev. Min. Max. ρ̂ (1) ρ̂ (12) ρ̂ (30) 

Forecast Targets        
 02/1970-09/2005 7.145  7.466  -48.692 43.468 -0.088  0.252  0.084  
PI Growth 01/1985-09/2005 5.329  7.923  -48.692 43.468 -0.281  0.285  0.026  
 01/1995-09/2005 5.055  6.813  -31.401 43.468 -0.119  0.034  -0.023  
         
 02/1970-09/2005 4.643  3.760  -6.581  21.525 0.642  0.410  0.159  
CPI Inflation 01/1985-09/2005 3.046  2.460  -6.581  14.597 0.310  -0.012  0.006  
 01/1995-09/2005 2.600  2.508  -4.049  14.597 0.140  -0.031  -0.021  
         
Yield Curve         
 02/1970-09/2005 7.604  2.303  3.349  14.925 0.978  0.768  0.520  
Level 01/1985-09/2005 6.686  1.703  3.349  11.663 0.949  0.535  0.387  
 01/1995-09/2005 5.414  0.903  3.349  7.742  0.860  0.342  0.023  
         
 02/1970-09/2005 1.466  1.450  -3.505  4.060  0.930  0.417  -0.116  
Slope 01/1985-09/2005 1.854  1.247  -0.752  4.060  0.949  0.412  -0.070  
 01/1995-09/2005 1.559  1.242  -0.752  3.998  0.938  0.445  0.057  
         
 02/1970-09/2005 -0.054  0.842  -2.375  3.169  0.845  0.380  0.021  
Curvature 01/1985-09/2005 -0.327  0.825  -2.375  1.602  0.910  0.421  -0.079  
 01/1995-09/2005 -0.400  0.939  -2.375  1.602  0.895  0.440  -0.035  
 
Note: We present descriptive statistics for the two forecast targets: monthly Personal Income (PI) growth and 
CPI inflation, and for the yield curve empirical level, slope and curvature, over three different sample periods: 
full sample ranges from 02/1970 to 09/2005, the 1st out-of-sample evaluation period ranges from 01/1985 to 
09/2005, and the 2nd out-of-sample evaluation period ranges from 01/1995 to 09/2005. We define Level as the 
10-year yield, Slope as the difference between the 10-year and 3-month yields, and Curvature as the twice the 
2-year yield minus the sum of the 3-month and 10-year yields. The last three columns contain sample 
autocorrelations at displacements of 1, 12, and 30 months. 

 
 
 
 
 
 
 
 
 
 
 
 



 
Table 2.  PI Growth Forecast 

 
 Forecasts begin: 01/1985  Forecasts begin: 01/1995 
 h=1 H=3 h=6 h=12  h=1 h=3 h=6 h=12 
AR 8.382  4.254  3.107  2.505   6.905  3.769  3.045  2.545 
APW-OLS 8.339  4.132  2.982  2.427   6.661  3.462  2.767  2.390 
          
CF-Mean 8.187  3.955  2.969  2.507   6.899  3.397  2.697  2.311 
CF-Median 8.191  3.955  2.967  2.505   6.896  3.393  2.690  2.298 
CF-RA (κ=0) 10.123  4.820  3.124  3.070   10.219 3.838  2.766  2.370 
CF-RA (κ=1) 9.308  4.362  2.853  2.561   9.578  3.583  2.567  2.203 
CF-PC (AIC) 8.900  4.292  2.881  2.954   6.821  3.716  2.747  2.363 
CF-PC (BIC) 8.336  4.457  2.619  3.495   6.817  3.122  2.737  2.426 
CF-PC (1st) 8.054  3.642  2.549  1.980   6.817  3.150  2.355  1.839 
CF-PC (2nd) 9.813  6.594  6.089  5.823   8.550  5.972  5.637  5.588 
CF-PC (3rd) 9.549  6.421  6.021  6.001   8.215  5.784  5.551  5.331 
CF-PC (k=2) 8.065  3.608  2.483  1.816   6.843  3.216  2.455  2.000 
CF-PC (k=3) 8.061  3.619  2.503  1.780   6.930  3.203  2.433  2.015 
CF-NS-Slope 8.179  3.945  2.957  2.497   6.893  3.392  2.692  2.293 
CF-NS-Curvature 8.187  3.956  2.969  2.508   6.898  3.395  2.694  2.307 
CF-NS-Level+Slope 8.062  3.601  2.470  1.845   6.839  3.208  2.447  1.994 
CF-NS-All 8.057  3.620  2.514  1.798   6.933  3.195  2.459  2.063 
CF-NS-All-Mean 8.184  3.952  2.965  2.503   6.896  3.394  2.694  2.303 
CF-NS-All-BMA 8.184  3.951  2.964  2.502   6.896  3.394  2.694  2.303 
CF-NS-All-Yang 8.184  3.950  2.961  2.495   6.896  3.394  2.693  2.298 
CF-Empirical-Measures 8.067  3.621  2.498  1.812   6.930  3.205  2.447  2.023 
CF-NS-Factors 8.089  3.613  2.509  1.905   6.895  3.275  2.511  1.996 
          
CI-Unrestricted 9.456  4.213  2.850  2.211   7.574  3.888  3.212  2.896 
CI-PC (AIC) 8.203  4.087  2.846  2.170   6.955  3.842  3.204  2.892 
CI-PC (BIC) 8.195  3.944  2.930  2.262   6.894  3.469  3.077  2.905 
CI-PC (k=1) 8.188  3.956  2.969  2.509   6.893  3.386  2.684  2.295 
CI-PC (k=2) 8.173  3.932  2.953  2.485   6.972  3.513  2.860  2.516 
CI-PC (k=3) 8.190  3.952  2.975  2.463   6.995  3.559  2.911  2.616 
CI-NS-Level 8.224  4.029  3.057  2.585   6.971  3.507  2.830  2.503 
CI-NS-Level+Slope 8.172  3.932  2.954  2.489   6.980  3.528  2.882  2.557 
CI-NS-All 8.200  3.963  2.983  2.481   6.997  3.560  2.913  2.612 
 
Note: Forecast target yt+h ≡ 1200[(1/h)ln(PIt+h/PIt)].  



 
 Table 3.  CPI Inflation Forecast 

 
 Forecasts begin: 01/1985  Forecasts begin: 01/1995 
 h=1 H=3 h=6 h=12  h=1 h=3 h=6 h=12 
AR 2.449  1.904  1.646  1.533   2.762  2.181  1.755  1.609 
IMA(1,1)-10-year 2.410  1.832  1.543  1.448   2.531  1.515  1.047  0.870 
          
CF-Mean 2.820  2.230  2.053  2.031   2.892  2.094  1.895  1.924 
CF-Median 2.836  2.252  2.082  2.065   2.889  2.091  1.887  1.909 
CF-RA (κ=0) 2.877  1.827  1.395  1.208   3.081  1.942  1.571  1.594 
CF-RA (κ=1) 2.645  1.682  1.314  1.182   2.939  1.830  1.470  1.477 
CF-PC (AIC) 2.576  1.817  1.377  1.199   2.557  1.936  1.557  1.542 
CF-PC (BIC) 2.522  1.733  1.341  1.088   2.596  1.568  1.389  1.693 
CF-PC (1st) 2.532  1.773  1.412  1.272   2.588  1.569  1.107  0.873 
CF-PC (2nd) 4.135  3.598  3.331  3.206   3.578  2.867  2.617  2.482 
CF-PC (3rd) 3.881  3.358  3.185  3.095   3.578  2.882  2.612  2.448 
CF-PC (k=2) 2.550  1.768  1.378  1.231   2.586  1.557  1.090  0.860 
CF-PC (k=3) 2.501  1.689  1.300  1.216   2.608  1.598  1.177  0.992 
CF-NS-Slope 2.777  2.176  1.998  1.991   2.883  2.071  1.848  1.851 
CF-NS-Curvature 2.825  2.236  2.061  2.039   2.892  2.093  1.893  1.920 
CF-NS-Level+Slope 2.552  1.769  1.378  1.233   2.587  1.558  1.091  0.860 
CF-NS-All 2.494  1.682  1.293  1.218   2.593  1.582  1.166  0.992 
CF-NS-All-Mean 2.806  2.213  2.036  2.019   2.888  2.085  1.878  1.898 
CF-NS-All-BMA 2.804  2.211  2.035  2.019   2.888  2.085  1.878  1.898 
CF-NS-All-Yang 2.801  2.206  2.032  2.025   2.883  2.078  1.877  1.912 
CF-Empirical-Measures 2.503  1.704  1.307  1.209   2.604  1.589  1.166  0.997 
CF-NS-Factors 2.542  1.756  1.310  1.022   2.618  1.609  1.197  1.000 
          
CI-Unrestricted 2.805  2.109  1.830  1.624   3.069  2.469  2.547  2.629 
CI-PC (AIC) 2.667  2.090  1.757  1.616   3.146  2.533  2.592  2.668 
CI-PC (BIC) 2.797  2.075  1.744  1.487   3.403  2.638  2.579  2.676 
CI-PC (k=1) 2.834  2.249  2.078  2.062   2.870  2.059  1.852  1.879 
CI-PC (k=2) 2.796  2.108  1.798  1.690   3.642  3.023  2.860  2.832 
CI-PC (k=3) 2.779  2.100  1.792  1.674   3.485  2.880  2.756  2.807 
CI-NS-Level 3.009  2.438  2.233  2.146   3.108  2.412  2.306  2.423 
CI-NS-Level+Slope 2.784  2.087  1.771  1.676   3.587  2.965  2.815  2.826 
CI-NS-All 2.779  2.101  1.796  1.688   3.497  2.877  2.745  2.790 
 
Note: Forecast target yt+h ≡ 1200[(1/h)ln(CPIt+h/CPIt)]. 



 
 
 

 
Table 4.  Forecast Evaluation of IMA(1,1) vs. CF-NS 

 
 Forecasts begin: 01/1985  Forecasts begin: 01/1995 
 d0 d1 d2  d0 d1 d2 

1.190 0.521 0.113  1.864 0.100 0.230 h=1 
(0.428) (0.109) (0.173)  (0.846) (0.477) (0.355) 
1.340 0.249 0.326  2.044 -0.050 0.279 h=3 

(0.420) (0.081) (0.139)  (0.701) (0.365) (0.293) 
1.379 0.181 0.363  1.914 0.008 0.252 h=6 

(0.365) (0.068) (0.119)  (0.609) (0.328) (0.238) 
1.602 0.163 0.283  2.246 -0.119 0.223 h=12 

(0.327) (0.087) (0.122)  (0.510) (0.244) (0.163) 
 
Note: We present the estimated regression coefficients (with Newey and West (1987) standard errors in 
parenthesis) from regressing CPI inflation yt+h on a constant, forecast by IMA(1,1), and the CF-NS forecast: 
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+++ +++= ˆˆ 210 , 
over the two out-of-sample periods at forecast horizon h=1,3,6, and 12. In the first out-of-sample period 
where forecasts begin 01/1985 the CF-NS forecast used in the regression is from CF-NS-All, while in the 
second one starts from 01/1995 we use forecast from CF-NS-Level+Slope. 



 
Figure 1.  Normalized Nelson-Siegel Exponential Loadings in CF-NS 
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Note: We present the three normalized Nelson-Siegel (NS) exponential loadings in CF-NS that correspond 
respectively to the three NS factors. The horizontal axis refers to the 17 individual forecasts that use yields at 
the 17 maturities (in months). Solid Line denotes the first normalized NS factor loading (1/N), Dashed Line 
denotes the second normalized NS factor loading ((1-e-λτ)/λτ divided by the sum), and Dotted Line denotes the 
third normalized NS factor loading ((1-e-λτ)/λτ-e-λτ divided by the sum), where τ denotes maturity and λ is fixed 
at 0.0609. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure 2.  Factor Loadings of the First Three Principal Components in CF-PC 
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CPI inflation forecast (h =1, 01/85-09/05)
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Note: We present the factor loadings of the first three principal components in CF-PC methods averaged over 
the entire first out-of-sample period (01/1985-09/2005), for both PI growth and CPI inflation forecasting. The 
horizontal axis refers to the 17 individual forecasts that use yields at the 17 maturities (in months). Solid Line 
denotes the loading of the first PC, Dashed Line denotes the loading of the second PC, and Dotted Line 
denotes the loading of the third PC. 
 
 
 
 
 



 
Figure 3.  Estimated Regression Coefficients in CF-NS-Level+Slope 
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CPI inflation forecast (h =1, 01/85-09/05)

-15

-10

-5

0

5

10

15

Jan-85 Jan-89 Jan-93 Jan-97 Jan-01 Jan-05

R
eg

re
ss

io
n 

co
ef

fic
en

ts

c1 c2

 
 

Note: We present the estimated regression coefficients in CF-NS-Level+Slope over the entire first out-of-
sample period (01/1985-09/2005), for both PI growth and CPI inflation forecasting. Solid Line (c1) denotes 
the coefficient for the first combined forecast z1, and Dashed Line (c2) denotes the coefficient for the second 
combined forecast z2. 



 
Figure 4.  Estimated Regression Coefficients in CF-NS-All 
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CPI inflation forecast (h =1, 01/85-09/05)
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Note: We present the estimated regression coefficients in CF-NS-All over the entire first out-of-sample period 
(01/1985-09/2005), for both PI growth and CPI inflation forecasting. Solid Line (c1) denotes the coefficient 
for the first combined forecast z1, Dashed Line (c2) denotes the coefficient for the second combined forecast 
z2, and Dotted Line (c3) denotes the coefficient for the third combined forecast z3. 
 
 
 
 



 
 

Figure 5. Optimal Forecast Combination Depending on ρ  
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