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ABSTRACT

Multivariate GARCH (MGARCH) models are usually estimated under multivariate normality.
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dynamic conditional correlation (DCC) model of Engle (2002), the varying correlation (VC) model
of Tse and Tsui (2002), and the BEKK model of Engle and Kroner (1995). Empirical analysis
with three foreign exchange rates indicates that the C-MGARCH models outperform DCC, VC,
and BEKK in terms of in-sample model selection and out-of-sample multivariate density forecast,
and in terms of these criteria the choice of copula functions is more important than the choice of
the volatility models.
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1 Introduction

Modeling the conditional covariance matrix is in the core of financial econometrics, as it is crucial

for the asset allocation, financial risk management, and derivatives pricing. The multivariate gen-

eralized autoregressive conditional heteroskedasticity (MGARCH) models in the literature include

the BEKK model by Engle and Kroner (1995), the dynamic conditional correlation (DCC) model

by Engel (2002), and the varying correlation (VC) model by Tse and Tsui (2002). However, these

models have been estimated under the multivariate normality assumption, while this assumption

has been rejected in much of the empirical findings — Fama and French (1993), Richardson and

Smith (1993), Longin and Solnik (2001), Mashal and Zeevi (2002), among many others.

The aim of this paper is to model MGARCH for non-normal multivariate distributions using

copulas. We propose a simple new model named a Copula-based Multivariate GARCH model, or

in short C-MGARCH model, which permits modeling conditional correlation (by MGARCH) and

dependence (by a copula) separately and simultaneously for non-normal multivariate distributions.

Our approach is based on a transformation, which removes the linear correlation from the

dependent variables to form uncorrelated dependent errors. The dependence structure is controlled

by a copula while the correlation is modeled by an MGARCH model. The C-MGARCH model can

capture the dependence in the uncorrelated errors ignored by all existing MGARCH models. For

every MGARCH model, the corresponding C-MGARCH model can be constructed.

Simulation and empirical analysis are conducted to demonstrate the superiority of the new

model over existing MGARCH models such as the DCC, the VC, and the BEKK models. The

paper takes advantage of both MGARCH models and of copulas. While a number of existing

papers have used copulas to model dependence (particularly in the tails) and/or to model non-

normality (e.g., skewness, fat tail), the current paper is the first that models MGARCH with copula

distributions. The model is therefore able to model the conditional correlations and conditional

dependence simultaneously.

The paper is organized as follows. Section 2 provides a brief review on MGARCH models.

Section 3 introduces the new C-MGARCH model with uncorrelated dependent errors. In Section

3, we focus on the bivariate case. Section 4 considers the multivariate extensions in several different

way. Section 5 conducts empirical analysis for comparison of existing MGARCH models with their

corresponding C-MGARCH models in terms of in-sample model selection criteria and out-of-sample

(OOS) density predictive ability. The C-MGARCHmodels outperform corresponding DCC, VC and

BEKK models when they are applied to three foreign exchange rates (French Franc, Deutschemark,
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and Italian Lira). Section 6 concludes. Section 7 is Appendix on copulas.

2 MGARCH Models

We begin with a brief review of three MGARCH models. Suppose a vector of the m return series

{rt}nt=1 with E(rt|Ft−1) ≡ µt = 0 and E(rtr0t|Ft−1) ≡ Ht where Ft−1 is the information set (σ-field)

at time t−1. For simplicity, we assume the conditional mean µt is zero. ForHt, many specifications

have been proposed.

Engle and Kroner (1995) propose the BEKK model

Ht = Ω+A(rt−1r0t−1)A
0 +BHt−1B0, (1)

With the scalar or diagonal specifications on A and B, we obtain the scalar BEKK (SBEKK) or

the diagonal BEKK. We use the SBEKK in Section 5, which is

Ht = (1− a− b)Ω̄+ a(rt−1r0t−1) + bHt−1, (2)

where Ω̄ = n−1
Pn

t=1 rtr
0
t is the sample covariance matrix of rt.

Instead of modeling Ht directly, conditional correlation models decompose Ht into DtRtDt,

where D2
t ≡ diag(Ht). As the conditional covariance matrix for εt ≡ D−1t rt is the conditional

correlation matrix for rt, The DCC model of Engle (2002) models Qt, the covariance matrix of εt,

via a variance-targeting scalar BEKK model:

Qt = (1− a− b) Q̄+ a(εt−1ε0t−1) + bQt−1, (3)

where Q̄ is the sample covariance matrix of ε̂t. A transformation Rt = diagQ−1t Qt diagQ−1t makes

the conditional correlation matrix for rt.

The VC model of Tse and Tsui (2002) uses the following specification

Rt = (1− a− b) R̄+ aR̃t−1 + bRt−1, (4)

where R̄ is the positive definite unconditional correlation matrix with ones in diagonal, and R̃t =PM
i=1 ε1,t−iε2,t−i/

³PM
i=1 ε

2
1,t−i

PM
i=1 ε

2
2,t−i

´1/2
.1

1 In Tse and Tsui (2002), a necessary condition to guarantee R̃t positive definite is M > k. Another necessary
condition for non-singularity of R̃t, which should be added, is that M should be bigger than the maximum number
of observations of consecutive zeros of εi,t, i = 1, ..., k. In the empirical section, we set M = 5, which is transaction
days in one week.

2



3 New Model: C-MGARCH

In the vast existing MGARCH literature, the distribution for rt is assumed to be a certain bivariate

elliptical distribution (e.g., bivariate normal or Student’s t) with mean µt (= 0) and conditional

covariance Ht. The standardized errors et = H
−1/2
t rt would then have the same bivariate elliptical

distribution with zero mean and identity covariance: E(et|Ft−1) = 0 and E(ete0t|Ft−1) = I. How-

ever, Embrechts et al. (1999) point out some wide-spread misinterpretations of the correlation, e.g.,

that no-correlation does not imply independence and a positive correlation does not mean “positive

dependence” (Lehmann 1966). Here, the identity conditional covariance matrix of et itself does not

imply independence except when et follows an elliptical distribution.

The key point of this paper is that we permit dependence among the elements of et even if they

are uncorrelated as shown by E(ete0t|Ft−1) = I. The C-MGARCH model specifies the dependence

structure and the conditional correlation separately and simultaneously. The former is controlled

by a copula function and the latter is modeled by an MGARCH model for Ht.

We use the (similar) notation of Joe (1996). Let F1,··· ,m denote an m-variate distribution, with

continuous univariate margins F1, . . . , Fm. Let FS denote the higher order margins where S is a

subset of {1, 2, . . . ,m} with cardinality at least 2. The densities, when they exist, are denoted as
fS . For example, F{1,2} is the bivariate margin of the variable 1 and variable 2 with S = {1, 2}.
A simplifying notation without braces for the subset S is used, e.g., F12 ≡ F{1,2}. For j /∈ S,

Fj|S ≡ F{j}∪S
FS

denotes the conditional distribution of variable j given those whose indices are in

S, e.g., F1|2 = F12
F2

. The corresponding conditional density (if it exists) is denoted as fj|S. Denote

ui ≡ Fi(ηi) for the probability integral transform of ηi.

In Section 3 we focus on the bivariate case with m = 2. In Section 4 the multivariate cases with

m ≥ 2 are considered. Before we introduce our new C-MGARCH model, we first briefly review the
copula theory (with some more details in Appendix).

3.1 Copula

Although there are many univariate distributions used in econometrics, for multivariate distribution

there are few competitive candidates besides multivariate normal distribution and multivariate

Student’s t distribution. However, the multivariate normal distribution is not consistent with the

well-known asymmetry and excess kurtosis in financial data although it is easy to use. In this paper,

we use the recently popular copulas to construct uncorrelated dependent errors. The principle

characteristic of a copula function is its ability to decompose the joint distribution into two parts:
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marginal distributions and dependence structure. Different dependence structures can combine

the same marginal distributions into different joint distributions. Similarly, different marginal

distributions under the same dependence structure can also lead to different joint distributions.

Definition (Copula): A function C : [0, 1]2 → [0, 1] is a copula if it satisfies (i) C(u1, u2) =

0 for u1 = 0 or u2 = 0; (ii)
P2

i=1

P2
j=1(−1)i+jC(u1,i, u2,j) ≥ 0 for all (u1,i, u2,j) in [0, 1]2

with u1,1 < u1,2 and u2,1 < u2,2; and (iii) C(u1, 1) = u1, C(1, u2) = u2 for all u1, u2 in [0, 1]. ¥
The relationship between a copula and joint distribution function is illuminated by Sklar’s

(1959) theorem.

Sklar’s Theorem: Let F12 be a joint distribution function with margins F1 and F2. Then there

exists a copula C such that for all η1, η2,

F12(η1, η2) = C(F1(η1), F2(η2)) = C(u1, u2). (5)

Conversely, if C is a copula and F1 and F2 are marginal distribution functions, then the function

F12 defined above is a joint distribution function with margins F1 and F2. ¥
The joint density function f12(η1, η2) is

f12(η1, η2) =
∂2F12(η1, η2)

∂η1∂η2
(6)

=
∂2C(u1, u2)

∂u1∂u2
· ∂F1(η1)

∂η1
· ∂F2(η2)

∂η2
= c(F1(η1), F2(η2)) · f1(η1) · f2(η2),

where the copula density is c(u1, u2) =
∂2C(u1,u2)
∂u1∂u2

. For independent copula C(u1, u2) = u1u2,

c(u1, u2) = 1. An important property of copula function is its invariance under the increasing and

continuous transformation, such as log transformation.

The joint survival function C̄(u1, u2) is C̄(u1, u2) = Pr(U1 > u2, U2 > u2) = 1 − u1 − u2 +

C(u1, u2). The survival copula of C(u1, u2) is CS(u1, u2) = u1+u2−1+C(1−u1, 1−u2). The joint
survival function and the survival copula are related through C̄(u1, u2) = CS(1− u1, 1− u2). The

density of survival copula can be expressed through the density of original copula as cS(u1, u2) =

c(1− u1, 1− u2).

Upper tail dependence λU and lower tail dependence λL defined as

λU = lim
a↑1
Pr[η2 > F−12 (a)|η1 > F−11 (a)] = lim

a↑1
[1− 2a+ C(a, a)]

1− a
,

λL = lim
a↓0
Pr[η2 6 F−12 (a)|η1 6 F−11 (a)] = lim

a↓0
C(a, a)

a
,
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measure the dependence in extreme cases. The tail dependence of each copula is discussed in

Appendix.

In this paper, we use the independent (I) copula, Gumbel (G) copula, Clayton (C) copula, Frank

(F) copula, Gumbel survival (GS) copula, and Clayton survival (CS) copula. Their functional forms

and properties are discussed in Appendix. From (6), the log-likelihood function for {ηt}nt=1 is:

Lη(θ) =
nX
t=1

ln f12(η1,t, η2,t;θ)

=
nX
t=1

ln f1(η1,t; θ1) + ln f2(η2,t; θ2) + ln c
¡
F1(η1,t; θ1), F2(η2,t; θ2); θ3

¢
(7)

where n is the number of the observations and θ = (θ01 θ
0
2 θ

0
3)
0 are the parameters in the marginal

densities f1(·) and f2(·), and the copula shape parameter. The log-likelihood is decomposed into
two parts, the first two terms related to the marginals and the last term related to the copula.

3.2 Related literature using copula

We note that the MGARCH models discussed in Section 2 can also be put in the copula framework

with elliptical copulas (normal or Student’s t). For example, to estimate for Ht = DtRtDt, the

DCC model of Engle (2002) assumes the normal margins for elements of εt = D−1t rt = (ε1,t ε2,t)0

and the normal copula for u1,t = Φ(ε1,t; θ1) and u2,t = Φ(ε2,t; θ2) (where Φ(·) is the univariate
normal CDF) with the copula shape parameter being the time-varying conditional correlation Rt.2

This is to assume the bivariate normal distribution. Let (θ01 θ02)0 be parameters in Dt, and θ3 in

Rt. The log-likelihood function for the DCC model has the form:

Lr(θ) = −1
2

nX
t=1

2 ln(2π) + r0tH
−1
t rt + ln |Ht| (8)

= −1
2

nX
t=1

¡
2 ln(2π) + r0tD

−2
t rt + ln |Dt|2

¢− 1
2

nX
t=1

¡
ln |Rt|+ ε0tR

−1
t εt − ε0tεt

¢
,

where the first part corresponds to the normal marginal log-likelihood and the second part corre-

sponds to the normal copula log-likelihood. See (25) for the normal copula function in Appendix.

In this case the margins contain Dt and the copula contains Rt.

To accommodate the deviations from bivariate normality in the financial data, there have been

other related attempts in the literature that use copulas. However, these works focus on modeling

the conditional dependence instead of the conditional correlation. For example, taking the empirical

2However, if non-normal margins are assumed, Rt is not the the conditional correlation of rt and Ht is not
MGARCH of rt.
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distribution functions for the margins and a parametric function for the copula, Breymann et

al. (2003) and Chen and Fan (2006) estimate D2
t ≡ diag(Ht) using univariate realized volatility

estimated from high frequency data or using univariate GARCH models. In that framework,

estimated are the univariate conditional variances D2
t and the conditional dependence, but not the

conditional correlation Rt nor the conditional covariance Ht.

The aim of our paper is different than those of the above mentioned papers. We model the

conditional covariance Ht for non-normal multivariate distributions using copulas. Our model is

to separately quantify the conditional correlation (by MGARCH) and the remaining dependence

(by copula). We now introduce such a model. The idea is to have the new C-MGARCH model

inherited from the existing MGARCH models to model Ht, at the same time it is also to capture

the remaining dependence in the uncorrelated dependent standardized errors et = H
−1/2
t rt.

3.3 Structure of C-MGARCH model

For m = 2, let rt = (r1,t r2,t)0, ηt = (η1,t η2,t)0, and et = (e1,t e2,t)0. The C-MGARCH model can

be formulated as follows:

ηt|Ft−1 ∼ F12(η1,t, η2,t;θt), (9)

et = Σ
−1/2
t ηt,

rt = H
1/2
t et,

where E(et|Ft−1) = 0, E(ete0t|Ft−1) = I, E(ηt|Ft−1) = 0, and E(ηtη0t|Ft−1) = Σt = (σij,t).

By the Sklar’s theorem, F12(η1,t, η2,t;θt) = C(F1(η1,t; θ1,t), F2(η2,t; θ2,t); θ3,t), where C(·, ·) is the
conditional copula function.

The conventional approach is to assume bivariate independent normality for ηt (C(u1, u2) =

u1u2, i.e., σ12 = 0), while our approach is to assume a dependent copula for ηt keeping et uncor-

related (C(u1, u2) 6= u1u2). The main contribution of our C-MGARCH model is that it permits

modeling the conditional correlation and dependence structure, separately and simultaneously.

As the Hoeffding’s (1940) lemma shows, the covariance between η1 and η2 is a function of

marginal distributions F1(·) and F2(·), and joint distribution F12(·). See Lehmann (1966), Shea
(1983), and Block and Fang (1988).

Hoeffding’s Lemma: Let η1 and η2 be random variables with the marginal distributions F1

and F2 and the joint distribution F12. If the first and second moments are finite, then

σ12(θ) =

ZZ
R2
[F12(η1, η2;θ)− F1(η1; θ1)F2(η2; θ2)] dη1dη2. (10)
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¥
By Hoeffding’s Lemma and Sklar’s Theorem, the off-diagonal element σ12,t of the conditional

covariance matrix Σt between η1,t and η2,t at time t, can be expressed as

σ12,t(θt) =

ZZ
R2
[C (F1(η1; θ1,t), F2(η2; θ2,t); θ3,t)− F1(η1; θ1,t)F2(η2; θ2,t)] dη1dη2. (11)

For simplicity, we assume that the marginal standard normal distribution (for which θ1, θ2 are

known) and the copula parameter θ3 is not time-varying: θt ≡ θ = θ3.3 This makes σ12,t(θt) ≡
σ12(θ) and Σt(θt) ≡ Σ(θ).

The log-likelihood function for {ηt}nt=1 is:

Lη(θ) =
nX
t=1

ln f1(η1,t) + ln f2(η2,t) + ln c(F1(η1,t), F2(η2,t);θ). (12)

Because rt = H
1/2
t Σ

−1/2ηt, the log-likelihood function for {rt}nt=1 is:

Lr(θ,α) = Lη(θ) +
nX
t=1

ln
¯̄̄
Σ1/2(θ)H

−1/2
t (α)

¯̄̄
, (13)

where
¯̄̄
Σ1/2H

−1/2
t

¯̄̄
is the Jacobian of the transformation from ηt to rt, and α is the parameter

vector in the MGARCH model for Ht (DCC, VC, SBEKK). We maximize Lr(θ,α) to estimate all
parameters in one step, with the diagonal elements ofΣ being normalized (σii = 1) for identification.

Remark 1: Because et = Σ
−1/2
t ηt, if Σ

−1/2
t = Σ−1/2 ≡ (aij), then e1,t = a11η1,t + a12η2,t and

e2,t = a12η1,t + a22η2,t would be linear combinations of two dependent random variables η1,t and

η2,t. Even if each of η1,t and η2,t has the margins of standard normal distribution, the marginal

distributions of e1,t and e2,t are not normal because η1,t and η2,t are not independent. If normal

margins of ηt are chosen for non-independent copula, then the marginal distributions of et are

non-normal. A nice feature of the C-MGARCH model is to allow the non-normal margins of rt

even if we assume the normality of ηt. Therefore, the C-MGARCH model not only allows the

non-normal joint distribution of rt but also allow the (implied) non-normal marginal distributions

of the elements of rt. Note that if the copula for ηt is the independence copula, then we obtain

the bivariate normality for rt if we use the normal margins for the elements of ηt. Therefore, the

better fit of the non-independence copula of ηt may be due to the non-normality of the bivariate

joint density of rt and also due to the non-normality of the margins of the elements of rt. ¤
3θ3,t may be modelled to be time-varying. For example, for Gumbel copula, θ3,t = 1+exp(a+ bθ3,t−1+ cu1,t−1+

du2,t−1).
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Remark 2: The aim of the paper is to model MGARCH Ht under the non-normal density

of rt. It is to extend the vast literature on the univariate GARCH with non-normal distribution

to the multivariate case.4 To model MGARCH with non-normal multivariate density, we take

an extra step to separate the remaining dependence (not captured by the conditional correla-

tion) from the correlation and model both the conditional correlation and dependence directly.

The extra step is a transformation et = Σ−1/2ηt, to have the conditional second moments Ht

to explicitly enter in the density function, while the non-normal dependent copula is assumed for

ηt. This extra step to separate et and ηt is the main innovation of our model. Under normal-

ity, uncorrelatedness and independence are equivalent. Under conditional normality, therefore,

et = (e1,t e2,t)
0 are conditionally uncorrelated (E(e1,te2,t|Ft−1) = 0) and also independent. Un-

der non-normality, uncorrelatedness and independence are not equivalent. Under non-normality,

et = (e1,t e2,t)
0 should remain to be conditionally uncorrelated (E(e1,te2,t|Ft−1) = 0) so that Ht

be the conditional second moment, but et = (e1,t e2,t)0 can be dependent. So we call et uncorre-

lated dependent errors. To separate the remaining dependence (not captured by the conditional

correlation by Ht), we assume that ηt =
¡
η1,t η2,t

¢0 may be correlated (E(η1,tη2,t|Ft−1) 6= 0) and
dependent (F12 (η1, η2) 6= F1 (η1)F2 (η2)), so that σ12 may not be zero (i.e., et and ηt are not the

same). At the same time, the joint distribution of rt = (r1,t r2,t)0 is non-normal, because the joint

distribution F12 (η1, η2) of ηt is not normal and rt = H
1/2
t Σ

−1/2ηt. Therefore we are able to model

the MGARCH of rt, using the non-normal distribution of rt. ¤
Remark 3: The C-MGARCH model nests all existing MGARCH models. When the copula for

ηt is independent copula, Σ is diagonal. In addition, if marginal distributions for ηt are standard

normal, the C-MGARCH model degenerates to the corresponding MGARCH model with bivariate

normal distribution for rt. The C-MGARCH model inherits the dynamics of Ht from existing

MGARCH models. For every MGARCH model, we can construct the corresponding C-MGARCH

models with uncorrelated dependent errors. ¤
Remark 4: The C-MGARCH model permits modeling conditional correlation and dependence

separately and simultaneously with non-elliptically distributed dependent errors, and remove cor-

relation from dependence to form the uncorrelated dependent errors. The remaining dependence

4On the univariate GARCH literature with univariate non-normal densities, see Bond (2001) for a review and
Bao et al (2006) for comparing the density forecasts. There are some papers where MGARCH is modelled under
non-normal densities. See Bauwens et al (2006) for a survey. However, unlike in the univariate GARCH models
under the non-normal distribution, in the multivariate GARCH models one can not simply replace the multivariate
normal density with the multivariate non-normal density as the latter density may not be parametrized in terms of
the conditional second moments. Therefore one should carefully formulate a multivariate density for modelling of
MGARCH. A nice example is the multivariate skew density of Bauwens and Laurent (2005).
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is then captured by a copula. To our knowledge, no previous models incorporate correlation and

dependence at the same time. Instead, they focus only on the dependence by modeling shape pa-

rameter in copula, Kendall’s τ , or Spearman’s (. Different from the existing financial applications

of copula theory, which focus on (conditional) dependence and ignore the (conditional) correlation,

our C-MGARCH models aim to model both dependence and correlation. ¤
Remark 5: The variance-covariance approach to optimal portfolio allocation is rooted on the

assumption of multivariate normality or ellipticality. Without multivariate normality or ellipticality,

the variance-covariance approach may not be valid in that we do not consider the higher moments of

the joint (non-normal) distribution of the assets for portfolio allocation. The appropriate approach

to portfolio allocation under non-normality has been an active research area. For example, Harvey

and Siddique (2000), Patton (2004), Krause and Litzenberger (1976), Singleton and Wingender

(1986), among others, attempted to incorporate the higher moments (conditional skewness and

conditional kurtosis) in asset pricing and portfolio analysis. In this framework, modelling the

conditional higher moments (or cumulants) may also be computed from the generalization of the

Hoeffding’s formula. Heoffding’s lemma (Hoeffding 1940) gives an integral representation of the

covariance of two or more random variables in terms of the difference between their joint and

marginal probability functions. The cumulant generalization of the Hoeffding’s formula gives an

integral representation of the cumulants of two or more random variables (Block and Fang 1988,

Theorem 1). While we only focus on the conditional second moment (MGARCH) in this paper,

generalization to the conditional higher moments may be possible using the cumulant generalization

of the Hoeffding’s formula. Hence, our C-MGARCH model is a simple case that can certainly be

generalized to the conditional higher moments of the multivariate non-normal distributions. ¤
Remark 6: Given the marginal distributions and the copula, one can always work out the

implied correlation. In fact, Patton (2006, Footnote 19 and Figure 2) calculated the implied con-

ditional correlations. Our paper is motivated to compute directly the conditional correlation and

dependence, simultaneously and separately. What makes our paper different from some of the

papers in the MGARCH literature using non-normal multivariate density is that our paper takes

advantage of existing MGARCH models and of copulas. By doing this we model the conditional

correlation (by MGARCH) directly and at the same time the conditional dependence (by copula)

as well.5 ¤
5The semiparametric copula-based multivariate dynamic (SCOMDY) model of Chen and Fan (2006) is different

from our C-MGARCH model. The SCOMDY model is a multivariate model (like ours) to model the non-normal
distribution using the copula function for the standardized process by using univariate conditional variance, the
diagonal elements of Ht. However, the SCOMDY model does not model the conditional co-variance, the off-diagonal
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Remark 7: In the previous version of this paper, Lee and Long (2005), we reported Monte

Carlo simulations to see how our model works in estimation, especially because it involves the

Hoeffding’s lemma with the numerical integration. We generate samples of moderate size n = 500

via the method of Nelsen (1999) for bivariate systems simulated from the C-MGARCH models (9)

with normal margins, with each of DCC, VC, and SBEKK models for Ht, and with Archimedean

copulas. Lee and Long (2005) discuss the details on how to generate ηt and rt. We then estimate

C-MGARCH models. In summary, the Monte Carlo simulation confirms that the one-step QML

estimation procedure works very well. As a referee pointed out that this can also be seen from the

empirical results, to save space we delete the Monte Carlo simulations (available upon request). ¤

4 m-Variate C-MGARCH

In this section we extend the bivariate C-MGARCH in Section 3.3 to m-variate C-MGARCH with

m ≥ 2. The m-variate C-MGARCH model is formulated as follows

ηt|Ft−1 ∼ F1,··· ,m (ηt;θ) ,

et = Σ
−1/2
t ηt,

rt = H
1/2
t et,

where E (et|Ft−1) = 0, E (ete0t|Ft−1) = I, E (ηt|Ft−1) = 0, and E (ηtη0t|Ft−1) = Σ = (σij). In

order to estimate the C-MGARCH model, we need to construct the joint CDF F1,··· ,m (ηt;θ) from

which we obtain the bivariate margins Fij
¡
ηi, ηj

¢
to compute σij , the joint PDF f1,··· ,m, and the

log-likelihood Lη(θ).
Let Cij denote the bivariate copula associated with the bivariate margin Fij

Cij(Fi(ηi), Fj(ηj); θij) = Fij(ηi, ηj), (14)

where θij is the copula parameter. Once Fij (i, j = 1, . . . ,m) is obtained, σij is determined

by Hoeffding’s Lemma. (If we assume the standard normality on the margin Fi of ηi, then the

diagonal elements of Σ are normalized at σii = 1 for identification.)

4.1 How to construct F1,··· ,m (ηt;θ)

To obtain the joint density F1,··· ,m with the bivariate margins Fij , we consider two methods. They

are different in construction and have some advantages and disadvantages.

elements of Ht (unlike ours) and it only models the conditional dependence.
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4.1.1 Method 1

The first method is based on Joe (1996), who derives a class of m-variate distributions with m(m−
1)/2 dependence parameters from given univariate margins and bivariate copula margins.

For m = 3, given univariate margins (F1, F2, F3), bivariate marginal copulas (F12, F23), and a

bivariate conditional copula (C13|2), the trivariate joint distribution is

F123 (η1, η2, η3; θ12, θ13, θ23) =

Z y2

−∞
C13|2

¡
F1|2 (η1|z2; θ12) , F3|2 (η3|z2; θ23)

¢
F2 (dz2) (15)

where F1|2, F3|2 are conditional CDF’s obtained from F12/F2, F23/F2, respectively.6 By construc-

tion, (15) is a proper trivariate distribution with univariate margins F1, F2, F3, and bivariate

margins F12, F23. The (1, 3) bivariate margin of F123 can be obtained as

F13 (η1, η3; θ12, θ23, θ13) = F123 (η1,∞, η3; θ12, θ23, θ13) . (16)

Note that F13 depends on all three dependence parameters θ12, θ23, θ13. In general, it will not be

the same as C13 (F1, F3; θ) for some θ. The different copula functions can be chosen for C12, C23,

and C13|2.

For m = 4, we first obtain F234 in the same way to get F123 in (15). Given the bivariate margin

F23, we obtain the conditional CDFs F1|23 = F123/F23 and F4|23 = F234/F23. Then following Joe

(1996), the 4-variate distribution is

F1234 (η1, η2, η3, η4; θ12, · · · , θ34) (17)

=

Z η2

−∞

Z η3

−∞
C14|23(F1|23 (η1|z2, z3; θ12, θ13, θ23) , F4|23 (η4|z2, z3; θ23, θ24, θ34))F23 (dz2dz3; θ23)

where F23 (dz2dz3; θ23) = c23 (F2 (z2) , F3 (z3) ; θ23) · f2 (z2) · f3 (z3) dz2dz3 by applying the chain
rule to (14) for F23. This can be extended recursively and inductively to obtain higher dimensional

distributions. See Joe (1996, p. 122).

4.1.2 Method 2

The second method is to use the multivariate Archimedean m-copulas, that can be obtained from

the symmetricity and associativity properties of Archimedean copulas. See Joe (1997, p. 87),

6This equation (15) holds because f123 (η1, η2, η3) = f13|2 (η1, η3|η2) f2(η2) implies

F123 (η1, η2, η3) =
η2

−∞
F13|2 (η1, η3|η2) f2(z2)dz2,

and F13|2 (η1, η3|η2) = C13|2 F1|2, F3|2 by Sklar theorem.
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Nelsen (1999, p. 121), and Embrechts et al (2003, p. 373) for derivation of

F1,··· ,m (η; θ) = C1,··· ,m (u; θ)

= ϕ−1 (ϕ (u1) + ϕ (u2) + · · ·+ ϕ (um)) ,

where ϕ is the generator of an Archimedean copula. We discuss the m-variate Archimedean copulas

in Appendix. From C1,··· ,m (u), we derive the bivariate copula function Cij (ui, uj) between ui and

uj by setting all uk = 1, ∀k 6= i, j. Once Fij
¡
ηi, ηj

¢
= Cij (ui, uj) (i, j = 1, . . . ,m) is obtained, σij

is determined by Hoeffding’s Lemma.

Remark 8: The associativity property of Archimedean copulas is not shared by other copulas

in general and thus Method 2 is generally for Archimedean copulas. Another disadvantage of

Method 2 is that it assumes the same dependence structure for all pairs of (ui, uj), i.e., the same

copula function Cij = C with the same parameter θij = θ.7 This is to set all the off-diagonal

elements of Σ to take the same value (σij = σ), which is obviously restrictive as can be seen from

estimated values of θij and σij in our empirical results (Tables 1-3) for different pairs of three

foreign exchange series. While this may be restrictive for in-sample estimation especially for a large

m, our empirical analysis for m = 3 shows this may not be a serious problem in OOS forecasting

as the resulted parsimony with only one parameter can reduce the effect of parameter estimation

uncertainty in OOS forecasting.8 ¤
Remark 9: A different method other than the above two methods may also be possible. For

example, Joe (1997, p. 156) provides a three variable extension of the Frank copula with multiple

shape parameters. For more discussion of the multivariate copula functions, see Joe (1997, Sections

5.3 and 5.5). We do not use this method in our empirical analysis in the next section, where we

only consider Method 1 and Method 2. ¤

4.2 Joint density f1,··· ,m (ηt;θ) and the likelihood

Let θ be the copula parameters and α be the MGARCH parameters to parameterizeHt, e.g., DCC,

VC, and BEKK as discussed in Section 2. The log-likelihood of {rt}nt=1 is

Lr1,··· ,m(θ,α) = Lη1,··· ,m(θ) + ln |Σ1/2(θ)H−1/2t (α)| (18)

7 In Section 5, we use the 3-variate Frank copula as shown in (27) with m = 3. It can be easily seen that
C123 (u1, u2, 1; θ) = C12 (u1, u2; θ) , and they have the same shape parameter θ.

8The effects of parameter estimation on prediction densities have been studied in recent literature, e.g., Pascual
et al. (2001).

12



where

Lη1,··· ,m(θ) =
nX
t=1

ln f1,··· ,m(ηt;θ). (19)

Therefore, in order to get the log-likelihood, we need to get the joint density f1,··· ,m(ηt;θ).

4.2.1 Likelihood for Method 1

For m = 3, from (15), we obtain the joint 3-density as follows:

f123 (η1, η2, η3; θ12, θ13, θ23) (20)

≡ ∂3F123 (η1, η2, η3; θ12, θ13, θ23)

∂η1∂η2∂η3

=
∂2

∂η1∂η3
C13|2

¡
F1|2 (η1|η2; θ12) , F3|2 (η3|η2; θ23)

¢ · f2 (η2)
=

∂2

∂u1|2∂u3|2
C13|2

¡
F1|2 (η1|η2; θ12) , F3|2 (η3|η2; θ23)

¢ · ∂F1|2 (η1|η2; θ12)
∂η1

· ∂F3|2 (η3|η2; θ23)
∂η3

· f2 (η2)
= c13|2(u1|2, u3|2) · f1|2 (η1|η2; θ12) · f3|2 (η2|η2; θ23) · f2 (η2) ,

where u1|2 ≡ F1|2 (η1|η2; θ12) and u3|2 ≡ F3|2 (η3|η2; θ23) . This generalizes Equation (4) of Patton
(2006). Note that even for 3-variate distribution we only need a bivariate copula function for

Method 1. Then the log-likelihood function for {ηt}nt=1 is

Lη123(θ) =
nX
t=1

ln c13|2(u1|2,t, u3|2,t) + ln f1|2
¡
η1,t|η2,t; θ12,t

¢
+ ln f3|2

¡
η3,t|η2,t; θ23,t

¢
+ ln f2

¡
η2,t
¢
.

The log-likelihood function for {rt}nt=1 is Lr123(θ,α) = Lη123(θ) +
Pn

t=1 ln
¯̄̄
Σ1/2(θ)H

−1/2
t (α)

¯̄̄
.

For m = 4, from (17), we obtain the joint 4-density as follows:

f1234
¡
η1, η2,η3, η4; θ12, · · · , θ34

¢
(21)

=
∂2

∂η1∂η4

Ã
∂2F1234

¡
η1, η2,η3, η4; θ12, · · · , θ34

¢
∂η2∂η3

!
= c14|23(u1|23, u4|23) · f1|23 (y1|y2, y3) · f4|23 (y4|y2, y3) · c23 (u2, u3) · f2 (y2) · f3 (y3) .

Note that for the 4-variate distribution we only need bivariate copula functions for Method 1. Then

the log-likelihood function can be obtained similarly, from (18), (19), and (21).

13



4.2.2 Likelihood for Method 2

For m = 3, the (conditional) joint PDF function of ηt is

f123(η1, η2, η3) ≡
∂3F123(η1, η2, η3)

∂η1∂η2∂η3
(22)

=
∂3C(F1(η1), F2(η2), F3(η3))

∂η1∂η2∂η3

=
∂3C(F1(η1), F2(η2), F3(η3))

∂u1∂u2∂u3
· ∂F1(η1)

∂η1
· ∂F2(η2)

∂η2
· ∂F3(η3)

∂η3
= c(u1, u2, u3) · f1(η1) · f2(η2) · f3(η3).

Note that for the 3-variate distribution we need the 3-variate copula function for Method 2 (while

we only need bivariate copulas for Method 1). The log-likelihood function can be obtained similarly,

from (18), (19), and (22).

5 Empirical Analysis

The objective of this section is to compare the C-MGARCHmodels with the conventional MGARCH

models in terms of in-sample estimation and OOS forecasting. To elucidate the effect of the distinct

feature of the C-MGARCH model, we adopt the same normal marginal distribution so that the

difference arises only from the copula density.

We examine three foreign exchange (FX) rate series (in U.S. dollars) — French Franc (FF),

Deutschemark (DM), and Italian Lira (IL). The return series are 100 times the log-difference of

the exchange rates. The daily spot FX series are from the Federal Reserve Statistical Release. The

entire sample period that we consider is daily from 1993 to 1997 with T = 1256 observations. We

split the sample in two parts. The in-sample estimation period is from January 4, 1993 to December

31, 1996 (R ≡ 1005 observations). The OOS forecast validation period is from January 5, 1997 to

December 31, 1997 (P ≡ T −R = 251 observations).

We use the “fixed scheme” for which we estimate the parameters at t = R (December 31, 1996)

using the sample of size n = R, and fix the parameters at these estimated values (no updating)

to make one-day-ahead density forecasts throughout the total P = 251 days in 1997.9 The results

are presented in Tables 1-4, with in-sample estimation results in Panel A and the OOS forecasting

results in Panel B.
9The parameters β∗t−1 can be estimated based on the whole subsample {rt−1, . . . , r1}, a rolling sample

{rt−1, . . . , rt−R} of size R, or a fixed sample {rR, . . . , r1} at the end of the in-sample. We use the fixed scheme
in this paper. See West and McCracken (1998, p. 819) for more discussion on these three forecasting schemes.
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5.1 In-sample estimation

For the in-sample comparison between our C-MGARCH models and MGARCH models, we present

in Panel A of each table the following three model selection criteria:

logL = Lr(θ̂R, , α̂R)/R

AIC = −2 logL(θ̂R, α̂R) + 2k/R

SIC = −2 logL(θ̂R, α̂R) + k ln (R) /R

where k is the number of parameters in each model and

(θ̂R, α̂R) = argmax
θ,α

Lr(θ,α) =
RX
t=1

ln f(ηt;θ)+ ln
¯̄̄
Σ1/2(θ)H

−1/2
t (α)

¯̄̄
. (23)

To test for the null hypothesis that Σ is an identity matrix, it can be tested by the likelihood

ratio (LR) statistic

LRR = −2×R× [(logL of MGARCH) − (logL of C-MGARCH)] ,

which is asymptotically χ2-distributed (with d.f. equal to m(m− 1)/2 for Method 1 and d.f. equal
to one for Method 2). The log-likelihood ratio of two models is the entropy gain in the sense of

Vuong (1989). The superiority of Gumbel Survival copula for FF-DM (Table 1A), Gumbel copula

for DM-IL (Table 2A) and Frank copula for FF-IL (Table 3A) over the independent copula indicates

that the conditional joint distributions of these three pairs of FX return series are not bivariate

normal. For example, for FF-DM, LRR = 176.88 to compare I-DCC and GS-DCC (Table 1A).

For all three bivariate pairs of FF-DM, DM-IL, FF-IL, the LR statistics obtained from Panel A

of each tables confirm the conditional multivariate non-normality. For all three families (DCC,

VC, BEKK), the independent copula yields the smallest (worst) logL. The ranking of the different

copula functions are robust to the different MGARCH models, implying that the choice of the

copula function is more important than the choice of the MGARCH (DCC, VC, BEKK). The best

models are GS-MGARCH model for FF-DM (Table 1A), G-MGARCH for DM-IL (Table 2A), and

F-MGARCH for FF-IL (Table 3A), for all three specifications of Ht.10

It is interesting to note the tail dependence properties implied by the best selected C-MGARCH

model. Gumbel Survival copula chosen for FF-DM has the asymmetric tail dependence with positive
10We use a symbol G for Gumbel copula, C for Clayton copula, F for Frank copula, GS for Gumbel survival copula,

CS for Clayton survival copula, and I for independent copula. Then a C-MGARCH model with a particular copula
function and a particular MGARCH specification of Ht will be denoted like G-DCC, C-VC, GS-SBEKK, I-DCC. In
trivariate case it will be denoted as (e.g.) I-I-I-MGARCH for the benchmark model and GS-G-F-MGARCH with GS
for the (1, 2) pair FF-DM, G copula for (2, 3) pair DM-IL, and Frank copula for (1, 3) pair FF-IL.
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lower tail dependence (λL > 0) and zero upper tail dependence (λU = 0). For DM-IL, Gumbel

copula is selected, which has the asymmetric tail dependence with positive upper tail dependence

(λU > 0) and zero lower tail dependence (λL = 0). For the FF-IL pair, the model selection criteria

select Frank copula, which has symmetric tail dependence.11

For the trivariate system of FF-DM-IL (Table 4A), we compare three C-MGARCH models (GS-

G-F-MGARCH using Method 1, F-F-F-MGARCH using Method 1, and F-F-F-MGARCH using

Method 2) with the benchmark MGARCH (I-I-I-MGARCH). The benchmark MGARCH yields the

worst values for logL, AIC, and SIC. The best model in terms of these three model selection criteria

is the F-F-F-MGARCH with Method 1 for DCC and VC families, and the GS-G-F-MGARCH with

Method 1 for SBEKK family. While Method 1 works better than Method 2 in terms of the three

model selection criteria, the performance of Method 2 is quite encouraging as it is only slightly

worse but much simpler to use than Method 1.

Panel A in each of the three tables also presents the estimated copula shape parameters θ̂R, their

robust standard errors, and the corresponding σ̂ij obtained from the Hoeffding’s lemma. For FF-

DM (Table 1A), the estimated Gumbel Survival copula parameter θ̂R = 1.10 gives σ̂12 = 0.14 for

GS-DCC. GS-VC and GS-SBEKK have the similar values for θ̂R = 1.09, 1.08, and for σ̂12 = 0.13,

0.12, respectively. For DM-IL (Table 2A), the estimated Gumbel copula parameters θ̂R (= 1.16,

1.19, 1.15) and σ̂12 (= 0.22, 0.25, 0.20) are bigger than those of FF-DM. For FF-IL (Table 3A), the

estimated Frank copula shape parameter θ̂R is 3.11 in F-DCC, 3.51 in F-VC, and 3.17 in F-SBEKK,

and all significantly positive, and the corresponding values of σ̂12 are 0.44, 0.48, 0.44, indicating

the remaining dependence in the standardized uncorrelated errors et is substantial.

5.2 Out-of-sample predictive ability

Let β = (θ0 α0)0 and its estimate β̂R = (θ̂
0
R α̂0R)0 be obtained from (23). Suppose there are l + 1

models in a set of the competing density forecast models, possibly misspecified. We compare l = 5

bivariate C-MGARCH models and l = 3 trivariate C-MGARCH models with the corresponding

benchmark MGARCHmodel. Let these models be indexed by j (j = 0, 1, . . . , l) with the jth density

forecast model denoted by ψj
t (rt;β

j
t−1) for t = R+1, . . . , T. The benchmark model is indexed with

j = 0. If a density forecast model ψt(rt;β0) coincides with the true density ϕt(rt) almost surely for

11 If the copula of ηt is independent, the copula of et is also independent. If the copula C(u1, u2) of ηt is the
independent copula, Σ and Σ−1 are diagonal. If Σ = Σ−1 = I, then et= ηt. Therefore, if the copula C(u1, u2) of ηt
is the independent copula, the copula for et is also independent copula. However, as pointed out by an anonymous
referee, we should note that et and ηt may not necessarily share the same important features. For example, the tail
dependence for ηt may not necessarily indicates the same direction of the tail dependence for et or rt. Unfortunately,
these are unknown properties unless Σ is diagonal even for the linear transform et = Σ−1/2ηt.
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some θ0 ∈ Θ, then the one-step-ahead density forecast is said to be optimal because it dominates
all other density forecasts for any loss functions (Diebold et al. 1998, Granger and Pesaran 2000).

As in practice it is rarely the case that we can find an optimal model, our task is to investigate

which density forecast model approximates the true conditional density most closely. If a metric is

defined to measure the distance of a given model to the truth, we then compare different models

in terms of this distance.

Following Bao et al. (2006), we compare C-MGARCH models by comparing the conditional

Kullback-Leibler (1951) information criterion (KLIC), It
¡
ϕ : ψj ,βt−1

¢
= Eϕt ln

h
ϕt (rt) /ψ

j
t

³
rt;β

j
t−1
´i

,

where the expectation is with respect to the true conditional density ϕt (·|Ft−1). While KLIC is not

a metric as noted in White (1994, p. 9), KLIC can be used as if it is a metric as long as the bench-

mark model is fixed and all the other models are compared against the benchmark.12 Following

White (1994), we define the distance between a density model and the true density as the minimum

KLIC, It(ϕ : ψj ,β∗jt−1) = Eϕt ln[ϕt (rt) /ψ
j
t (rt;β

∗j
t−1)], where β

∗j
t−1 = argmin It

³
ϕ : ψj ,βj

t−1
´
is the

pseudo-true value of βj
t−1. To estimate β

∗j
t−1, we split the data into two parts — one for the estimation

and the other for OOS validation. We use the “fixed scheme” for which we estimate the parameters

only once at t = R (December 31, 1996) using the sample of size R = 1005, and fix the parameters at

these estimated values (no updating) to make one-day-ahead density forecasts ψj
t (rt; β̂

j
R) through-

out t = R+1, . . . , T for the total P = 251 days in year 1997. We use the observations {rR, . . . , r1}
to estimate the unknown parameter vector β∗jR and denote the estimate as β̂

j
R. Under some regu-

larity conditions, we can consistently estimate β∗jR by β̂
j
R = argmaxR

−1PR
t=1 lnψ

j
t

¡
rt;β

j
¢
, i.e., it

is obtained from (23). See White (1994) for the sets of conditions for the existence and consistency

of β̂
j
R.

Using β̂R, we can obtain the OOS estimate of EIt(ϕ : ψj ,β∗jR ) by

IR,P (ϕ : ψ) ≡ P−1
TX

t=R+1

ln
h
ϕt(rt)/ψ

j
t (rt; β̂

j
R)
i
,

where P ≡ T − R is the size of the OOS period. Since the KLIC takes a smaller value when a

model is closer to the truth, we can regard it as a loss function. Note that the OOS average of the

KLIC-differential between the benchmark model 0 and model j is then simply the log-ratio of the

12KLIC does not satisfy some basic properties of a metric, I (ψ1 : ψ2) 6= I (ψ2 : ψ1) and KLIC does not satisfy a
triangle inequality. However, as noted in Bao et al (2006), as we use the KLIC in comparing various C-MGARCH
models with a fixed benchmark model (i.e., MGARCH), KLIC can serve as a distance metric with respect to the
fixed benchmark.
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predicted likelihoods

IR,P (ϕ : ψ0)− IR,P (ϕ : ψj) =
1

P

TX
t=R+1

ln[ψj
t (rt; β̂

j
R)/ψ

0
t (rt; β̂

0
R)]. (24)

When we compare multiple l C-MGARCH models using various copulas against a benchmark

MGARCH model, the null hypothesis of interest is that no C-MGARCH model is better than the

benchmark MGARCH. White (2000) proposes a test statistic (so called “Reality Check”) and the

bootstrap procedure to compute its p-value.13

Panel B in each of Tables 1-4 reports the density forecast comparison in terms of the OOS

KLIC together with the Reality Check p-values. For OOS forecasting for P = 251 days (from

Jan/05/1997 to Dec/31/1997), we report the OOS average of the predicted log-likelihood

1

P

TX
t=R+1

lnψt(rt; β̂R) ≡
1

P

TX
t=R+1

ln f123

³
ηt; θ̂R

´
+
1

P

TX
t=R+1

ln
¯̄̄
Σ1/2(θ̂R)H

−1/2
t (α̂R)

¯̄̄
,

which is reported under “logL” in Panel B. In addition, we also report the OOS standard deviation

of the predicted log-likelihood, which is reported under “std(logL)”. In general, the in-sample

results in Panel A and the OOS results in Panel B are consistent, in that the in-sample ranking

across the C-MGARCH models is generally carried over to the OOS predictive ranking of the

models.

For bivariate pairs of FF-DM, DM-IL, FF-IL, the density forecast comparison confirms the non-

normality. For all three families (DCC, VC, BEKK), the independent copula yields the smallest

(worst) predictive likelihood. For FF-DM, Table 1B shows the predictive superiority of C-MGARCH

models based on Gumbel Survival copula over the MGARCH model with the bivariate normal

distribution is significant (with Reality Check p-values 0.000, 0.000, 0.001, respectively for DCC,

VC, SBEKK families). For DM-IL (Table 2B), the best density forecast copula function is Gumbel

13For Reality Check test in our paper, it may worth making the following two remarks on the parameter estimation
uncertainty and the nestedness problem: (1) In general, the distribution of test statistic may be rather complicated
because it depends on parameter estimation uncertainty (West, 1996). However, we note that one of the significant
merits of using the KLIC as a loss function in comparing density forecast models is that parameter estimation
uncertainty does not affect asymptotic inference. This is due to the use of the same objective function for the in-
sample parameter estimation (minimizing the KLIC to get β̂R) and for the out-of-sample forecast validation (using
the KLIC as a forecast evaluation criterion). See West (1996) and Bao et al (2006) for more details. (2) While
the Reality Check permits some of the competiting C-MGARCH models to nest the benchmark, it requires that
at least one of them not nest the benchmark (White 2000, p. 1105-1106). In our case, some C-MGARCH models
nest the benchmark when the parameter space includes the value of θ to make a copula independent. For example,
Gumbel-MGARCH with θ = 1 makes MGARCH. But Clayton-MGARCH and Frank-MGARCH do not nest the
benchmark as the parameter space of θ does not make them independent. In addition, treating the test conditional
on the estimated parameter values θ̂

j

R in line with Giacomini and White (2006), the OOS reality check inference may
handle the nested cases as well.
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for all DCC, VC, BEKK families and is significantly better than MGARCH (with Reality Check

p-values 0.036, 0.000, 0.022, respectively for DCC, VC, SBEKK families). For FF-IL (Table 3B),

the predictive superiority of C-MGARCH models based on Frank copula over the MGARCH model

is also very significant (with Reality Check p-values 0.001, 0.000, 0.000, respectively for DCC, VC,

SBEKK families). The C-MGARCH models are significantly better than the benchmark MGARCH

model even after accounting for potential data-snooping bias due to the specification search over

five different copula functions.

For trivariate case of FF-DM-IL (Table 4B), the independent copula yields the worst predictive

likelihood. The largest (best) predicted likelihood is obtained from F-F-F-MGARCH with Method 2

for DCC family, from F-F-F-MGARCH with Method 1 for VC family, and from GS-G-F-MGARCH

with Method 1 for SBEKK family (with Reality Check p-values 0.000, 0.000, 0.000, respectively

for DCC, VC, SBEKK families). The results are strong in favor of the trivariate C-MGARCH in

terms of both the in-sample fit and out-of-sample forecasting.

Our generalization of MGARCH models using copula is analogous to the efforts in the literature

to use non-normal densities in estimation of the univariate GARCH models. Bao et al (2006) find

that the choice of the density (e.g., skewness and fat tails, or different departures from normality)

is more important than the choice of the volatility model (e.g., symmetric vs. asymmetric condi-

tional variance) in modeling financial time series. Our empirical results show that this univariate

conclusion is carried over to the multivariate case. Comparing the KLIC based on the in-sample

fitted log-likelihood and the OOS predicted log-likelihood, we find that the choice of the density

(different copula functions for different tail dependence or different departures from normality) is

more important than the choice of the volatility model (e.g., DCC, VC, and BEKK) because once

a right copula function has been chosen the ranking of the C-MGARCH models does not change

with the different dynamic specifications of Ht.

6 Conclusions

In this paper we propose a new MGARCH model, namely, the C-MGARCH model. The C-

MGARCH model includes a conventional MGARCH model as a special case. The C-MGARCH

model is to exploit the fact that the uncorrelated errors are not necessarily independent. The C-

MGARCH model permits modeling the conditional covariance for the non-elliptically distributed

financial returns, and at the same time separately modeling the dependence structure beyond the

conditional covariance. We compare the C-MGARCH models with the corresponding MGARCH
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models using the three foreign exchange rates. The empirical results from the in-sample and OOS

analysis clearly demonstrate the advantages of the new model.

7 Appendix

We present here some details on copula functions for two widely used copula families — elliptical

copula family and Archimedean copula family. The former includes the Gaussian copula and the

Student’s t copula. The latter includes Gumbel copula, Clayton copula and Frank copula. We also

discuss the survival copulas of Archimedean copulas and m-variate Archimedean copulas.

7.1 Elliptical copulas

Gaussian copula: Let R be the symmetric, positive definite correlation matrix and ΦR(·, ·) be
the standard bivariate normal distribution with correlation matrix R. The density function of

bivariate Gaussian copula is:

cGaussian(u1, u2) =
1

|R|1/2 exp(−
1

2
η0(R−1−I)η), (25)

where η = (Φ−1(u1) Φ−1(u2))0 and Φ−1(·) is the inverse of the univariate normal CDF. The bivariate
Gaussian copula is:

CGaussian(u1, u2;R) = ΦR
¡
Φ−1(u1),Φ−1(u2)

¢
.

Hu (2003) shows the bivariate Gaussian copula can be approximated by Taylor expansion:

CGaussian(u1, u2; θ) ≈ u1u2 + θ · φ(Φ−1(u1))φ(Φ−1(u2)),

where φ is the density function of univariate Gaussian distribution and θ is the correlation coefficient

between η1 and η2. Both the upper tail dependence λU and the lower tail dependence λL are zero,

reflecting the asymptotic tail independence of Gaussian copula.

Student’s t copula: Let ωc be the degree of freedom, and TR,ωc(·, ·) be the standard bivariate
Student’s t distribution with degree of freedom ωc and correlation matrix R. The density function

of bivariate Student’s t copula is:

cStudent’s t(u1, u2;R, ωc) = |R|− 1
2
Γ(ωc+22 )Γ(ωc2 )

Γ(ωc+12 )2

(1 + η0R−1η
ωc

)−
ωc+2
2

Π2i=1(1 +
η2i
ωc
)−

ωc+1
2

where η = (t−1ωc (u1), t
−1
ωc (u2))

0, u1 = tω1(x), u2 = tω2(y), and tωi(·) is the univariate Student’s t
CDF with degree of freedom ωi. The bivariate Student’s t copula is

CStudent’s t(u1, u2;R, ωc) = TR,ωc

¡
t−1ωc (u1), t

−1
ωc (u2)

¢
.
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It has two copula parameters θ = (R ωc)
0. The upper tail dependence λU of Student’s t copula is

λU = 2 − 2tωc+1
¡√

ωc + 1
√
1− ρ/

√
1 + ρ

¢
, where ρ is the off-diagonal element of R. Because of

the symmetry property, the lower tail dependence λL can be obtained easily.

7.2 Archimedean copulas

Archimedean copula can be expressed as

C(u1, u2) = ϕ−1(ϕ(u1) + ϕ(u2)),

where ϕ is a convex decreasing function, called generator. Different generator will induce different

copula in the family of Archimedean copula. The Kendall’s τ = 1 + 4
Z 1

0

ϕ(u)
ϕ0(u)du.

Gumbel copula: The generator for Gumbel copula is ϕθ(x) = (− lnx)θ. For θ ≥ 1 (θ = 1 for
independence and θ →∞ for more dependence), the CDF and PDF for Gumbel copula are

CGumbel(u1, u2; θ) = exp{−[(− lnu1)θ + (− lnu2)θ]1/θ},

cGumbel(u1, u2; θ) =
CGumbel(u1, u2; θ)(lnu1 lnu2)

θ−1{[(− lnu1)θ + (− lnu2)θ]1/θ + θ − 1}
u1u2[(− lnu1)θ + (− lnu2)θ]2−1/θ

.

The Kendall’s τ for Gumbel copula is τ = 1 − 1
θ . This one-to-one mapping relationship between

τ and θ clearly shows the copula shape parameter θ controlling the dependence structure. The

dependence structure of Gumbel copula are asymmetric: λU = 2− 21/θ and λL = 0.

The survival copula of Gumbel copula has mirror image to Gumbel copula. Its CDF and PDF

are

CGS(u1, u2; θ) = u1 + u2 − 1 + exp{−[(− ln(1− u1))
θ + (− ln(1− u2))

θ]1/θ}, θ ≥ 1
cGS(u1, u2; θ) = cGumbel(1− u1, 1− u2; θ).

The Kendall’s τ for Gumbel survival copula is τ = 1− 1
θ . Gumbel Survival copula has the positive

lower tail dependence: λU = 0 and λL = 2− 21/θ.
Clayton copula: The generator for Clayton copula is ϕθ(x) =

x−θ−1
θ . For θ > 0, the CDF and

the PDF for Clayton copula are

CClayton(u1, u2; θ) = (u−θ1 + u−θ2 − 1)−1/θ,

cClayton(u1, u2; θ) =
(1 + θ)(u−θ1 + u−θ2 − 1)−

1
θ
−2

(u1u2)θ+1
.

The Kendall’s τ for Clayton copula is θ
θ+2 . The upper tail dependence λU = 0 and the lower tail

dependence is λL = 2−1/θ.
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Frank copula: The generator for Frank copula is ϕθ(x) = − ln(e
−θx−1
e−θ−1 ). For θ ∈ R\ {0}, the

CDF and PDF for Frank copula are

CFrank(u1, u2; θ) = −1
θ
ln

∙
1 +

(e−θu1 − 1)(e−θu2 − 1)
(e−θ − 1)

¸
, (26)

cFrank(u1, u2; θ) =
−θ(e−θ − 1)e−θ(u1+u2)

[(e−θ − 1) + (e−θu1 − 1)(1− e−θu2 − 1)]2 .

The dependence structure described by Frank copula is symmetric: θ > 0 for positive dependence,

θ → 0 for independence, and θ < 0 for negative dependence.

7.3 Multivariate Archimedean copulas

The multivariate Archimedean m-copulas can be obtained from the symmetry and associativity

properties of Archimedean copulas. See Joe (1997, p. 87), Nelsen (1999, p. 121), and Embrechts

et al (2003, p. 373) for derivation of

C1,··· ,m (u; θ) = ϕ−1 (ϕ (u1) + ϕ (u2) + · · ·+ ϕ (um)) ,

where ϕ is the generator of an Archimedean copula.

The m-variate Clayton copula function with θ > 0 (Nelsen 1999, Example 4.21) is:

CClayton1,··· ,m (u; θ) =
³
u−θ1 + · · ·+ u−θm −m+ 1

´−1/θ
.

The m-variate Gumbel copula function with θ ≥ 1 (Nelsen 1999, Example 4.23) is:

CGumbel1,··· ,m (u; θ) = exp

½
−
h
(− lnu1)θ + (− lnu2)θ + · · ·+ (− lnun)θ

i1/θ¾
.

The m-variate Frank copula function is:

CFrank1,··· ,m (u; θ) = −
1

θ
ln

"
1 +

¡
e−θu1 − 1¢ ¡e−θu2 − 1¢ · · · ¡e−θun − 1¢

(e−θ − 1)n−1
#
. (27)
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Table 1. Bivariate C-MGARCH (FF-DM) 
 

Panel A. In-sample Results 
    MGARCH C-MGARCH 
    I G GS C CS F 
DCC θ   1.0507 1.0970 0.1199 0.0030 1.7024 
 se(θ)   0.0048 0.0401 0.0019 0.0010 0.2045 
 σ   0.0789 0.1429 0.0917 0.0024 0.2600 
 logL -0.5893 -0.5081 -0.5013 -0.5038 -0.5093 -0.5074 
 AIC 1.1945 1.0341 1.0206 1.0254 1.0366 1.0326 
  SIC 1.2336 1.0781 1.0646 1.0694 1.0806 1.0766 
VC θ   1.0419 1.0887 0.1218 0.0021 0.8741 
 se(θ)   0.0028 0.0030 0.0016 0.0151 0.0778 
 σ   0.0659 0.1320 0.0930 0.0017 0.1373 
 logL -0.6032 -0.5205 -0.5124 -0.5153 -0.5217 -0.5212 
 AIC 1.2222 1.0590 1.0427 1.0484 1.0612 1.0602 
  SIC 1.2614 1.1030 1.0867 1.0924 1.1052 1.1042 
SBEKK θ   1.0391 1.0788 0.1146 0.0021 0.7356 
 se(θ)   0.0021 0.0020 0.0015 0.0031 0.0643 
 σ   0.0617 0.1186 0.0879 0.0017 0.1159 
 logL -0.5736 -0.5008 -0.4938 -0.4957 -0.5017 -0.5013 
 AIC 1.1511 1.0076 0.9936 0.9975 1.0094 1.0086 
  SIC 1.1609 1.0223 1.0083 1.0121 1.0241 1.0233 

Notes: Daily changes in log exchange rates for French Franc and Deutschemark from January 4, 1993 to December 
31, 1996 (R = 1005) are used. MGARCH is the C-MGARCH with the Independent copula (denoted as I). Estimated 
are five other C-MGARCH models with Gumbel copula (G), Gumbel Survival copula (GS), Clayton copula (C), 
Clayton Survival copula (CS), and Frank copula (F). For space, only copula shape parameter estimates and their 
robust standard errors are reported. The parameter estimates are from the one-step QMLE. The numbers in 
parentheses are the standard errors calculated from the robust QMLE covariance matrix of the parameters. θ is the 
copula shape parameter. Each copula function has only one shape parameter. σ is the off-diagonal element of Σ. 
logL, AIC, and SIC are as defined in Section 5. The largest in-sample average of the estimated log-likelihood (logL) 
and smallest AIC and SIC for each family are in bold font to indicate the best C-MARCH model of each family.  
 
 

Panel B. Out-of-sample Results 
    I G GS C CS F   
DCC logL -0.1785 -0.1050 -0.1071 -0.1099 -0.1109 -0.1032 RC = 0.000 
  std(logL) 0.9776 1.0810 1.0869 1.0945 1.0869 1.1216   
VC logL -0.2217 -0.1227 -0.1225 -0.1266 -0.1286 -0.1245 RC = 0.000 
  std(logL) 0.9650 1.1816 1.1899 1.1962 1.1927 1.2044   
SBEKK logL -0.1299 -0.1020 -0.0995 -0.1032 -0.1061 -0.1039 RC = 0.001 
  std(logL) 1.0159 1.0776 1.0899 1.0916 1.0853 1.0960   

Notes: The out-of-sample forecast period is daily from January 5, 1997 to December 31, 1997 (with P = 251 days). 
logL denotes the out-of-sample average of the predicted log-likelihood. std(logL) denotes the out-of-sample standard 
deviation of the predicted log-likelihood. The largest logL for each family is in bold font to indicate the best C-
MARCH model of each family. The reality check p-values (denoted as RC) are reported to compare the five C-
MGARCH models with the benchmark MGARCH model with I copula. We use 1000 bootstrap samples of the 
“stationary bootstrap” with the mean block size equal to 5 days (a week) (i.e., with the stationary bootstrap 
smoothing parameter (1/5)). The benchmark model in each family is MGARCH with Independent (I) copula. We 
also computed the modified reality check p-values of Hansen (2005) which all turn out to be exactly the same as 
those of White (2000) in all four tables in our paper.  
 



Table 2. Bivariate C-MGARCH (DM-IL) 
 

Panel A. In-sample Results 
    MGARCH C-MGARCH 
    I G GS C CS F 
DCC θ   1.1587 1.0502 0.0608 0.0762 1.3689 
  se(θ)   0.0039 0.0018 0.0013 0.0019 0.0472 
  σ   0.2183 0.0781 0.0479 0.0595 0.2118 
  logL -1.4001 -1.3859 -1.3877 -1.3889 -1.3893 -1.3896 
  AIC 2.8162 2.7897 2.7934 2.7957 2.7964 2.7972 
  SIC 2.8553 2.8337 2.8374 2.8397 2.8404 2.8412 
VC θ   1.1884 1.0474 0.0502 0.0976 1.7717 
  se(θ)   0.0047 0.0020 0.0013 0.0020 0.0436 
  σ   0.2510 0.0740 0.0397 0.0755 0.2697 
  logL -1.4300 -1.3948 -1.3984 -1.3997 -1.3990 -1.3977 
  AIC 2.8760 2.8076 2.8148 2.8174 2.8159 2.8133 
  SIC 2.9151 2.8516 2.8588 2.8614 2.8599 2.8573 
SBEKK θ   1.1456 1.0457 0.0609 0.0789 1.1843 
  se(θ)   0.0036 0.0017 0.0012 0.0020 0.0457 
  σ   0.2031 0.0716 0.0479 0.0616 0.1844 
  logL -1.4032 -1.3871 -1.3892 -1.3898 -1.3902 -1.3901 
  AIC 2.8103 2.7802 2.7844 2.7856 2.7863 2.7861 
  SIC 2.8201 2.7948 2.7991 2.8002 2.8010 2.8008 

Notes: Daily changes in log exchange rates for Deutschemark and Italian Lira from January 4, 1993 to December 31, 
1996 (R = 1005) are used. Also see notes for Table 1A. 
 
 

Panel B. Out-of-sample Results 
    I G GS C CS F   
DCC logL -0.9849 -0.9750 -0.9875 -0.9844 -0.9786 -0.9630 RC = 0.036 
  std(logL) 1.0360 1.1215 1.0992 1.0919 1.0910 1.1233   
VC logL -1.0152 -0.9532 -0.9630 -0.9621 -0.9563 -0.9481 RC = 0.000 
  std(logL) 1.0500 1.1625 1.1369 1.1309 1.1357 1.1563   
SBEKK logL -0.9043 -0.8910 -0.8884 -0.8909 -0.8931 -0.8840 RC = 0.022 
  std(logL) 1.1106 1.1614 1.1469 1.1346 1.1328 1.1454   

Notes: See notes for Table 1B. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 3. Bivariate C-MGARCH (FF-IL) 
 

Panel A. In-sample Results 
  MGARCH C-MGARCH 
  I G GS C CS F 
DCC θ  1.2033 1.0342 0.0501 0.0771 3.1094 
 se(θ)  0.0061 0.0019 0.0012 0.0020 0.0500 
 σ  0.2667 0.0542 0.0396 0.0602 0.4381 
 logL -1.3011 -1.2799 -1.2826 -1.2826 -1.2826 -1.2752 
 AIC 2.6182 2.5777 2.5830 2.5832 2.5832 2.5682 
 SIC 2.6573 2.6217 2.6270 2.6272 2.6272 2.6122 
VC θ  1.1984 1.0378 0.0507 0.0660 3.5098 
 se(θ)  0.0073 0.0019 0.0012 0.0020 0.0827 
 σ  0.2616 0.0597 0.0401 0.0518 0.4807 
 logL -1.3223 -1.2858 -1.2877 -1.2879 -1.2882 -1.2801 
 AIC 2.6604 2.5896 2.5932 2.5937 2.5943 2.5782 
 SIC 2.6995 2.6336 2.6372 2.6377 2.6383 2.6222 
SBEKK θ  1.2144 1.0318 0.0495 0.0809 3.1688 
 se(θ)  0.0060 0.0019 0.0011 0.0021 0.0400 
 σ  0.2780 0.0507 0.0392 0.0631 0.4447 
 logL -1.3059 -1.2824 -1.2855 -1.2853 -1.2853 -1.2767 
 AIC 2.6159 2.5707 2.5769 2.5766 2.5765 2.5593 
 SIC 2.6256 2.5854 2.5915 2.5912 2.5912 2.5740 

Notes: Daily changes in log exchange rates for French Franc and Italian Lira from January 4, 1993 to December 31, 
1996 (R = 1005) are used. Also see notes for Table 1A. 
 
 

Panel B. Out-of-sample Results 
    I G GS C CS F   
DCC logL -0.9142 -0.8841 -0.9049 -0.8994 -0.8957 -0.8613 RC = 0.001 
  std(logL) 1.0935 1.1504 1.1536 1.1478 1.1460 1.2047   
VC logL -1.0133 -0.9687 -0.9817 -0.9812 -0.9792 -0.9613 RC = 0.000 
  std(logL) 1.0686 1.1090 1.1355 1.1328 1.1192 1.2082   
SBEKK logL -0.8440 -0.8027 -0.8055 -0.8062 -0.8069 -0.7802 RC = 0.000 
  std(logL) 1.1390 1.2230 1.2169 1.2079 1.2050 1.2475   

Notes: See notes for Table 1A. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 4. Trivariate C-MGARCH (FF-DM-IL) 
 

Panel A. In-sample Results 
    MGARCH C-MGARCH (Method 1)   C-MGARCH (Method 1)   C-MGARCH  
      C12 C23 C13|2 C12 C23 C13|2  (Method 2) 
    I-I-I GS G F F F F F-F-F 
DCC θ   1.0045 1.0020 1.4980 -0.0460 0.0132 6.0080 1.6320 
  se(θ)   0.0013 0.0015 0.1423 0.0027 0.0026 0.0525 0.0264 
  σ   0.0075 0.0033 0.2380 -0.0073 0.0021 0.6332 0.2500 
 logL -1.0978  -0.9893    -0.9754   -0.9917 
  AIC 2.2175  2.0065    1.9786   2.0072 
  SIC 2.2175   2.0065     1.9786   2.0072 
VC θ   1.0041 1.0029 1.4980 -0.0908 0.0550 6.4788 1.3453 
  se(θ)   0.0007 0.0013 0.1102 0.0023 0.0023 0.0524 0.0242 
  σ   0.0067 0.0049 0.2388 -0.0144 0.0087 0.6564 0.2084 
 logL -1.1296  -1.0059    -0.9926   -1.0095 
  AIC 2.2810  2.0397    2.0131   2.0428 
  SIC 2.2810   2.0397     2.0131   2.0428 
SBEKK θ   1.0020 1.0020 5.3495 0.0439 -0.0418 1.4980 1.7040 
  se(θ)   0.0003 0.0005 0.0528 0.0126 0.0106 0.0732 0.0239 
  σ   0.0033 0.0033 0.6259 0.0070 -0.0066 0.2066 0.2602 
 logL -1.0893  -0.9716    -0.9866   -0.9863 
  AIC 2.1825  1.9532    1.9831   1.9785 
  SIC 2.1825   1.9532     1.9831   1.9785 

Notes: Daily changes in logarithms of three foreign exchange rates for FF, DM, and IL from January 4, 1993 to 
December 31, 1996 (R = 1005) are used. The 3-variate distributions are obtained from Method 1 and Method 2 as 
discussed in Section 4. When Method 1 is used there are three copula parameters (for three pair-wise copulas C12, 
C23, and C13|2). We consider four models: MGARCH with the 3-variate Independent copula (denoted as I-I-I), C-
MGARCH with GS-G-F copula using Method 1, C-MGARCH with F-F-F copula using Method 1, and C-MGARCH 
with 3-variate Frank copula using Method 2. θ is the copula shape parameter(s). Method 1 using GS-G-F copula or 
F-F-F copula has three copula parameters. Method 1 using the trivariate Frank copula has only one copula shape 
parameter. The notation σ is to denote the off-diagonal elements of Σ. Method 1 has the three distinct off-diagonal 
elements of Σ. Method 2 has the three identical off-diagonal elements of Σ because the three pairwise bivariate 
copula functions have the same shape parameter θ. The largest average log-likelihood (logL) and smallest AIC and 
SIC for each family are in bold font to indicate the best C-MARCH model of each family. Also see notes for Table 
1A. 
 
 

Panel B. Out-of-sample Results 
    I-I-I GS-G-F FFF1 FFF2   
DCC logL -0.2448 -0.0842 -0.0681 -0.0550 RC = 0.000 
  std(logL) 1.1929 1.3824 1.4116 1.4782   
VC logL -0.3220 -0.0673 -0.0565 -0.0641 RC = 0.000 
  std(logL) 1.2048 1.5290 1.5190 1.5849   
SBEKK logL -0.0727 0.0103 0.0011 -0.0070 RC = 0.000 
  std(logL) 1.2917 1.4836 1.4111 1.5016   

Notes: The reality check p-values are reported to compare the three C-MGARCH models with the benchmark 
MGARCH model with I-I-I copula. The three trivariate C-MGARCH models, denoted as GS-G-F (using Method 1), 
FFF1 (F-F-F using Method 1), and FFF2 (F-F-F using Method 2), are the same models as considered in Panel A. See 
also notes for Table 1B. 


