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Abstract

This paper considers the problem of improving the estimation of a one-way
random effects error component model. A nonparametric estimator is proposed,
its structure deÞned and its asymptotic properties are proven. Monte Carlo
shows that the proposed estimator performs almost as well as the parametric
estimator in linear technology, but drastically outperforms the parametric esti-
mator when the technology becomes nonlinear. The estimator is then applied in
order to estimate a production function for a panel of U.S. States.
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1 Introduction

Economic research has been enriched by the increased availability of panel (longitu-

dinal) data that measure cross-sectional units over a period of time.1 The primary

advantage with panel over cross-sectional data is that the researcher has increased

ßexibility when modeling differences in the cross-sectional units. The basic framework

for this analysis is the following model:

yit = α+ xitβ + ui + vit,

where i = 1, 2, ...,N, t = 1, 2, ..., T , yit is the endogenous variable, α is the constant

term, xit is a matrix of k exogenous variables, β is a k × 1 unknown parameter, ui
is known as the individual effect and vit is the random error. This is known as the

one-way error component (correction) model.2 The individual effect is what separates

the one-way error component model from the classical linear regression model, it is

constant over time and is speciÞc to each cross-sectional unit i.

There are three basic frameworks used to generalize and estimate this model:

random effects, Þxed effects and maximum likelihood estimation. The random ef-

fects approach treats ui as a group speciÞc disturbance.. This framework is most

appropriate when the cross-sectional units are believed to be sampled from a large

population. The Þxed effects approach treats the individual effect as a group spe-

ciÞc constant term within the regression model. This approach is most appropriate

when the cross-sectional units are the complete set of the population, meaning the

researcher can be conÞdent that the differences between the cross-sectional units can

be viewed as parametric shifts of the regression function. Maximum likelihood es-

timation treats the ui as random disturbances that follow a particular distribution.

This approach is most appropriate when the distribution of the individual effect is

known. Since most economic data is a sample taken from a larger population, in this

paper we consider the estimation of random effects models where ui is random.3

1For the beneÞts and limitations of standard panel data and error correction models as well as
econometric estimation, one should consult Baltagi (2001) or Hsiao (2002).

2The term, one-way error component model, comes from the structure of the error terms εit =
ui + vit, as opposed to the two-way error component model in which a parameter only indexed by
time, λt, is added. Only the one-way error component model will be discussed in this paper and the
two-way model is left for future research.

3For further discussion and tests to detmine which method is appropiate as well as estimation by
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In the case of linear regressions, like the one above, a particular concern has been

with the linearity of the functional form connecting the variables of the model. Often

the true technology is unknown and linear regressions are performed without eco-

nomic reasoning due to their straightforward estimation procedures and well-known

properties. This concern initially spawned an interest in transformations of the en-

dogenous and exogenous variables, leading to the use of ßexible speciÞcations, such as

the translog functional form. Although approaches such as these have served econo-

metrics well, there has always been some worry that the functional form might be

more complex. Thus, it is worthwhile considering nonparametric estimation if the

functional form is unknown. However, there is not much on the nonparametric esti-

mation of the panel data models, although see Porter (1996), Ullah and Roy (1998),

Lin and Carroll (2000) and Berg, Li and Ullah (2000). In view of this a nonparametric

kernel estimator is proposed for the one-way error component random effects model.

The asymptotic and Þnite sample properties of this estimator are then developed.

Further, an application with this estimator is presented (estimation of a production

function in a panel of U.S. States).

This paper is organized as follows: Section 2 gives the model, notation, proposes

a new estimator and derives the theoretical estimates. Section 3 provides the Monte

Carlo setup and summarizes the results of the experiments. Section 4 provides an

empirical example. Finally, Section 5 concludes the paper.

2 The Model

Let us consider a nonparametric one-way error component model as

yit = m(xit) + εit, (1)

where i = 1, 2, ...,N, t = 1, 2, ..., T , yit is the endogenous variable, xit is a vector of

k exogenous variables and m(·) is an unknown smooth function. Further, εit follows
the one-way error component speciÞcation

εit = ui + vit, (2)

the other techniques, see Greene (2002).
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where ui is i.i.d. (0, σ2
u), vit is i.i.d. (0, σ

2
v) and ui and vit are uncorrelated for all q

and ls, where q is different from l; q, l ∈ i and s ∈ t.

Let εi = [εi1, εi2, . . . , εiT ]0 be a T × 1 vector. Then V ≡ E(εiε
0
i), takes the form

V = σ2
vIT + σ2

uiT i0T , (3)

where I is an identity matrix of dimension T and i is a T × 1 column vector of ones.
Since the observations are independent over q and l, the covariance matrix for the

full NT × 1 disturbance vector ε, Ω = E(εε0) is

Ω = V ⊗ IN . (4)

We are interested in estimating the unknown function m(x) at a point x and the

slope ofm(x), β(x) = ∇m(x), where ∇ is the gradient vector ofm(x). The parameter
β(x) is interpreted as a varying coefficient. We consider the usual panel data situation

of large N and small T .

Nonparametric kernel estimation of m(x) and β(x) can be obtained by using local

linear least squares (LLLS) estimation. This is obtained by minimizing the local least

squares or weighted least squares of errors

X
i

X
t

(yit −Xitδ(x))
2K

µ
xit − x

h

¶
= (y −Xδ(x))K(x)(y −Xδ(x)) (5)

with respect tom(x) and β(x), where y is a NT×1 vector, X is a NT×(k+1) matrix
generated by Xit = (1 (xit − x)), δ(x) = (m(x), β(x))0 is a (k+1)× 1 vector, K(x)
is an NT ×NT diagonal matrix of kernel (weight) functions K(xit−x

h
) and h is the

bandwidth (smoothing) parameter. Generally kernel functions can be any probability

function having a Þnite second moment (here we use the standard normal kernel).

The estimator so obtained is

bδ(x) = (X 0K(x)X)−1X 0K(x)y (6)

The estimator of m(x) is then given by bm(x) = (1 0)bδ(x) , whereas bβ(x) can be
extracted from bδ(x) as bβ(x) = (0 1)bδ(x). The estimator in (6) is called LLLS

estimator. Asymptotic normality for the cross-sectional case is proven by Li and
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Wooldridge (2000) and Kniesner and Li (2002) derive a proof for the case of panel

data.4

The LLLS estimator in (6) however ignores the information contained in the

disturbance vector covariance matrix Ω. In view of this we introduce a new estimator,

local linear generalized least squares (LLGLS) estimator, by minimizing

(y −Xδ(x))0
p
K(x)Ω−1

p
K(x)(y −Xδ(x)) (7)

with respect to δ(x). This gives the estimator d(x)

d(x) = (X 0pK(x)Ω−1
p
K(x)X)−1X 0pK(x)Ω−1

p
K(x)y. (8)

The objective function in (7) amounts to doing GLS (linear) Þts to the points local

to x.5 The LLGLS estimator in (8) however depends upon the unknown parameters

σ2
u and σ2

v. An estimator of σ
2
v is obtained by using the within estimator. The exact

form of this bσ2
v is bσ2

v =
1

NT

X
i

X
t

( \vit − vi)
2 (9)

where

X
i

X
t

( \vit − vi)
2 =

X
i

X
t

[(yit − yi)− (xit − xi)β
∗(xit)]2 (10)

in which yi =
1
T

P
t

yit, xi = 1
T

P
t

xit and

β∗(x) = [
X
i

X
t

(xit − xi)
0(xit − xi)Kit]

−1
X
i

X
t

(xit − xi)
0(yit − yi)Kit, (11)

4For more information on the choices of K and h see Fan and Gijbels (1992) and Pagan and Ullah
(1999).

5We also consider an alternative nonparametric estimator which takes the form: δ̂(x)ANPFGLS =

(X0Ω̂−
1
2 K(X)Ω̂−

1
2 X)−1(X0Ω̂−

1
2 K(X)Ω̂−

1
2 Y ). Although it looks similar, there is an inherent ßaw in

the way the Alternative Nonparametric Feasible Generalized Least Squares (ANPFGLS) estimator
transforms the data. By simply looking at the matrix structure it becomes evident. It shows
that in the ANPFGLS setup the variables are Þrst adjusted for heteroskedasticity (i.e. X0Ω̂−

1
2 =

X∗), and then run through the kernel (i.e. X∗0K(X)). The basic idea behind the nonparametric
estimator is to provide a separate estimate for each value of x, the formulation of the ANPFGLS
gives a separate estimate for each value of x∗. Therefore it is this process of the variables being
adjusted for heteroskedasticy before they are smoothed which causes the mispeciÞcation, whereas
the NPFGLS estimators Þrst transform the data correctly (i.e. X0K(X)) and then proceed to adjust
it for heteroskedasticity.
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where Kit = K
¡
xit−x

h

¢
.

One estimate of σ2
u is obtained as a combination of bσ2

v and bσ2
ε being

bσ2
u = bσ2

ε +
1

T
bσ2
v, (12)

in which

bσ2
ε =

1

N − k

P
i

bε2
i , (13)

where

P
i

bε2
i =

1

N

P
i

h
(yi − y)− (xi − x) eβ(xi)i2

, (14)

where

eβ(x) =
P
i

(yi − y) (xi − x)K
¡
xi−x
h

¢
P
i

(xi − x)2 K
¡
xi−x
h

¢ . (15)

where y = 1
N

P
i

yi and x = 1
N

P
i

xi.

Alternative estimators of σ2
u and σ2

v can be obtained by noting that V (εit) ≡ σ2
ε =

σ2
u + σ2

v and

cov(εqt, εlt0) = σ2
u for q 6= l

and zero otherwise. Thus

bσ2
ε =

1

NT

X
i

X
t

bε2
it (16)

and

bσ2
u =

1

N(T − 1)
X
i

X
t

X
t 6=t0
bεitbε0it0 (17)

where bεit = yit −Xit
bδ(xit) is the LLLS residual based on the Þrst stage estimator ofbδ(x) in (6).6

6Note that estimation of the third variance term is straightforward. Also, it has been noted
by Maddala and Mount (1973) and Taylor (1980) that more efficient esimation of the variance
components does not necessilarly lead to more effecient estimates of m(x) and β(x).
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Substituting the estimators of σ2
u and σ2

v from (9) and (12) or (16) and (17) into

(8) gives a feasible linear generalized least squares (FLGLS) or nonparametric feasible

generalized least squares (NPFGLS) estimator as

bδ(x)NPFGLS = (X
0pK(x)bΩ−1

p
K(x)X)−1X

p
K(x)bΩ−1

p
K(x)y.

Consistency of bδ(x) is straightforward under the standard regularity conditions,
but asymptotic normality requires somewhat stronger assumptions as stated in Li and

Wooldridge (2000, p. 340). Asymptotic normality is established under the following

theorem.

THEOREM:

Under the standard assumptions

D(NT )

µbδ(x)− δ(x)−
µ
h2µkW

0

¶¶
→ N(0,Σx)

where D(NT ) =

Ã
(NThk)

1
2 0

0 (NThk+2)
1
2

!
, µk =

1
2cktr(m

00(x)), W = tr(Ω−1),

Σx =

µ
dkσ

2
ε/f(x)W 0
0 vkσ

2
εIk/c

2
kf(x)W

¶
, ck =

R
K(ψ)ψψ0dψ, dk =

R
K2(ψ)dψ

and vk =
R
K2(ψ)ψψ0dψ, where ψ is deÞned as xit−x

h
.

The proof is given in the appendix. It loosely follows the method used by Li and

Wooldridge (2000) for the cross-sectional case. Our proof differs by incorporating

information about the variance parameters. Also note that the proof is given for the

most general case and is easily modiÞed to satisfy the above scenario.

3 Monte Carlo Results

Although asymptotic results give clues as to the performance of the estimators, most

economic panel data is Þnite. This section uses Monte Carlo simulations to examine

the Þnite sample performance of the proposed NPFGLS estimator. Following the

methodology of Baltagi, Chang and Li (1992), the following data generating process

is used:

yit = α+ xitβ + x2
itγ + ui + vit,
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where xit is generated by the method of Nerlove (1971).7 The value of α is chosen

to be 5, β is chosen to be 0.5 and γ takes the values of 0 (linear technology) and

2 (quadratic technology). The distribution of ui and vit are generated separately as

i.i.d. Normal. Total variance of σ2
v + σ2

u = 20 and ρ = σ2
u/(σ

2
u + σ2

v) is varied to be

0.1, 0.4 and 0.8.

For comparison, we compute the following estimators of δ:

(I) Parametric (linear) Feasible GLS (FGLS) estimator

bδFGLS = (X
0bΩ−1X)−1(X 0bΩ−1Y ).

(II) NPFGLS estimator

bδNPFGLS = (X
0pK(x)bΩ−1

p
K(x)X)−1X

p
K(x)bΩ−1

p
K(x)y.

Reported are the estimated bias and mean squared error (MSE) for each esti-

mator. These are computed via Bias(bm) = M−1
P
j

(bmj − m∗), and MSE(bm) =
M−1

P
j

(bmj −m∗)2 where M is the number of replications, bmj is the estimated value

of m∗ at the jth replication and m∗ = α+ xβ + x2γ. Similarly for the varying coeffi-

cient parameter, Bias(bβ) =M−1
P
j

(bβj−β∗) andMSE(bβ) =M−1
P
j

(bβj−β∗)2, wherebβj is the estimated value of β
∗ at the jth replication and β∗ = β + 2xγ. M = 1000

is used in all simulations, T is varied to be 3 and 5, while N takes the values 10, 20

and 50. The simulation results are given in Tables 1 through 4. The smallest MSE

for each case (for a given N , T , ρ and γ) is shown as a boldface number.8

Tables 1 and 2 report the result for γ = 0 (linear technology). In each case, the

parametric estimators outperform the nonparametric estimators inMSE. This result

is expected since the true underlying technology is linear and because nonparametric
7The xit were generated as follows: xit = 0.1t + 0.5xit−1 + wit, where xi0 = 10 + 5wi0 and

wit ∼ U [− 1
2
, 1

2
].

8 In the tables only local estimates of δ̂ are given. The speciÞc form being

δ̂(x)NPFGLS = (X
0
K(x)

1
2 Ω̂−1

K(x)
1
2 X)−1

XK(x)
1
2 Ω̂−1

K(x)
1
2 y,

where K(x) = INT ×K
(
xit−x

h

)
. These estimates are similar to the global ones, except that rather

than being evaluated at each value of x and then averaged, they are only evaluated at the mean value
of x. Being that these estimates are evaluated at the mean of x, they appear to perform better in
Monte Carlo exercises that evaluate at the mean of x. It should be noted however that this method
rarely outperforms the global measures in empirical data and is usually only used for computational
ease. Further, replacing these with the global estimates does not affect the conclusions of the paper.
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estimators are known to have small sample bias.9 Contrary to the Þrst two tables,

the results of Tables 3 and 4 are in support of the NPFGLS estimators. The NPFGLS

estimators outperform the parametric estimators drastically in both Bias andMSE.

This table shows the major drawback of the parametric type estimators and the

strengths of the nonparametric type estimators. When the technology is complex,

parametric estimators are often mispeciÞed and the nonparametric estimators, with

their complete ßexibility, are better able to adapt.

4 Empirical Example

The econometric estimation techniques involved in the discussion of the public versus

private capital returns debate have received much attention over the past decade.

This discussion was started regarding the method used in Aschauer (1989). Using

a time series on national data from 1949-1985 he constructs a Cobb-Douglas (CD)

production function and uses Ordinary Least Squares to estimate the return to public

and private capital, and employment. His results suggest that a signiÞcant portion

of the decline during the 1970�s of U.S. productivity was caused by falling rates of

public capital investment. Econometricians and others argue that his results are

misleading because of the techniques he uses in his paper. Much of the criticism (see

Munnell 1992 for a more in-depth discussion) surrounds the choice of national versus

state or local data. A panel data set (e.g. states over time) can possibly control for

the problem of the believed spurious relationship between output and public capital

caused by nonstationarity in the time series. However, switching from time series to

panel data does not seem to be sufficient. Even within the panel data literature there

is much discussion on which model most appropriately represents the data. Also,

some authors feel that the production function is not simply a function of aggregate

public capital, private capital and labor.

Garcia-Milà, McGuire and Porter (1996) decompose public capital into three com-

ponents: Highways, Waters and Sewers, and Other. Their model is:

9Using different methods in order to obtain window width (e.g. Cross-Validation) may lead to
equally optimal results for the nonparametric estimator (at a cost of increased program running
time).
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GSPit = aKit + bLit + cGit + vit + ui,

where GSP is Gross State Product, K is private capital, L is employment, and

G is a vector of the three components of public infrastructure. Their paper reports

estimates of the log-linear CD production functions under RE.10 Further, they provide

alternative estimates of the RE model by taking Þrst differences of the logged data.

Their Þndings show that the returns to public capital are larger than those for public

capital. Further, the Þrst differences model shows the returns to public capital to be

negative (although not signiÞcant).

Here we will be testing the assumption that the parametric speciÞcation is ap-

propriate for this data set. Our model becomes

GSPit = m(x) + vit + ui,

where x includes the Þve inputs. The mean returns to each input are shown in

Table 5.11 Some of the properties of the data discovered by Garcia-Milà, McGuire

and Porter (1996) hold. Labor has the highest return, with private capital second,

followed by the three sectors of public capital. This is not surprising. What is

interesting is that the mean returns for the NPFGLS estimator are much closer to

one another. A conclusion more consistent with microeconomic theory. However,

only looking at the means in a nonparametric framework is sometimes misleading.

Plotting the estimates for all values of x reveals more information. Figure 1 shows

histograms of the nonparametric returns to each of the inputs.12 Not only are the

means different, the returns appear to change over the range of x. A simple glance at

the graphs suggests that none of the variables enter the production function linearly.

This presumption is backed by the test provided by Fan and Ullah (1999). Further,

the Li and Wang (1998) test rejects the parametric speciÞcation of the model.

The results of the Þrst differenced model are also interesting, but for different

reasons. Looking at Table 5, the parametric and nonparametric methods evaluated

at the means appear to be much closer than before. This occurs because taking
10They also estimate the model under OLS and Þxed effects procedures.
11All regressions are controlled for time effects. Further, optimal bandwidths are chosen using

Least-Squares Cross-Valiation.
12Other public capital is not included here, and in Figure 2, because the returns are near zero.
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the Þrst difference of the data takes away much of the nonlinearity. If one were

to choose this approach, the nonparametric model would also suggest that public

capital does not contribute signiÞcantly to private output. However some disagree to

Þrst differencing altogether. Munnell (1992) argues that Þrst differencing often yields

implausible coefficients for labor and other variables. Figure 2 shows the majority of

the estimates for the return to labor to be close to 1. This suggests that investing

into labor will yield a return to private output of almost the same amount. To many

this seems highly implausible. Also, Munnell states that Þrst differencing destroys

the long-term relationship in the data, which is what we are attempting to estimate.

Given the results of this exercise and the arguments of Munnell (1992), we do not

suggest using Þrst differencing for this or similar data sets.

5 Concluding Remarks

This paper examines the problem of improving the estimation of a one-way random ef-

fects error component model.13 A nonparametric estimator is proposed, its structure

is deÞned, asymptotic properties proven and its Þnite sample results are generated

through a Monte Carlo exercise. The Monte Carlo results of section 3 show that the

parametric estimators provide slightly smaller MSE when the true underlying tech-

nology is linear and correctly speciÞed. Although less efficient in the aforementioned

exercises, the NPFGLS estimators provide acceptable estimation. On the other hand,

when the technology becomes nonlinear, the NPFGLS estimators perform best, with

the MSE of the linear parametric estimator up to 70 times that of the NPFGLS

estimator. Thus, it is suggested that the NPFGLS estimators be used in practice

because the true underlying technology is usually unknown; and as Tables 3 and 4

demonstrate, the consequences of choosing the wrong estimator may be quite severe.

These results are applied to a production function data set of U.S. States. The results

showed that the CD model is mispeciÞed. It also suggests that using Þrst differencing

in order to answer questions on these returns may be inappropriate.

13Throughout the paper, the existence of random individual effects is assumed. In practice one
may want to test for the existence of random individual effects.
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Appendix

Following Li and Wooldridge (2000) we rewrite d(x) as

d(x) =

 P
i

KiwiiGN

¡
1

xi−x

¢ ¡
1 (xi − x)0

¢
+
P
i 6=j

√
Ki

p
KjwijGN

¡
1

xi−x
¢ ¡

1 (xi − x)0
¢ −1

X
i

KiwiiGN

µ
1

xi − x

¶
yi +

X
i 6=j

p
Ki

p
KjwijGN

µ
1

xi − x

¶
yi


where

GN =

µ
h2 0
0 Ik

¶
,

Ik = G−1
N GN ,

Ki = K

µ
xi − x

h

¶
and

Ω−1
ij ≡ wij .

Multiplying both the numerator and denominator by 1
Nhk+2 and substituting the Tay-

lor expansion
¡
yi =

¡
1 (xi − x)0

¢
δ(x) + (xi − x)m00(x) (xi − x)0 /2 +Rm(xi, x) + εi

¢
into the above equation gives

d(x) =

 1
Nhk+2

P
i

Kiwii

¡
h2

xi−x

¢ ¡
1 (xi − x)0

¢
+ 1

Nhk+2

P
i 6=j

√
Ki

p
Kjwij

¡
h2

xi−x

¢ ¡
1 (xi − x)0

¢

−1


1

Nhk+2

P
i

Kiwii

¡
h

xi−x

¢µ ¡
1 (xi − x)0

¢
δ(x)

+(xi − x)0m00(x)(xi − x)/2 +Rm(xi, x) + εi

¶
+ 1

Nhk+2

P
i 6=j

√
Ki

p
Kjwij

¡
h2

xi−x

¢µ ¡
1 (xi − x)0

¢
δ(x)

+(xi − x)0m00(x)(xi − x)/2 +Rm(xi, x) + εi

¶
 .

After simplifying this expression it becomes obvious that
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d(x) = δ(x) +


1

Nhk+2

P
i

Kiwii

µ
h2 h2(xi − x)0

(xi − x) (xi − x)(xi − x)0

¶
+ 1

Nhk+2

P
i 6=j

√
Ki

p
Kjwij

µ
h2 h2(xi − x)0

(xi − x) (xi − x)(xi − x)0

¶

−1

 1
Nhk+2

P
i

Kiwii

¡
h2

xi−x

¢
((xi − x)0m00(x)(xi − x)/2 +Rm(xi, x) + εi)

+ 1
Nhk+2

P
i 6=j

√
Ki

p
Kjwij

¡
h2

xi−x

¢
((xi − x)0m00(x)(xi − x)/2 +Rm(xi, x) + εi)


≡ δ(x) +

¡
A1,x

¢−1
(A2,x +A3,x) + (s.o.)

where

A1,x =

1
Nhk+2

P
i

Kiwii

µ
h2 h2(xi − x)0

(xi − x) (xi − x)(xi − x)0

¶
+ 1

Nhk+2

P
i 6=j

√
Ki

p
Kjwij

µ
h2 h2(xi − x)0

(xi − x) (xi − x)(xi − x)0

¶ ,

A2,x =
1

Nhk+2

X
i

Kiwii

µ
h2

xi − x

¶
(xi − x)0m00(x)(xi − x)/2

+
1

Nhk+2

X
i 6=j

p
Ki

p
Kjwij

µ
h2

xi − x

¶
(xi − x)0m00(x)(xi − x)/2,

A3,x =
1

Nhk+2

X
i

Kiwii

µ
h2

xi − x

¶
εi +

1

Nhk+2

X
i 6=j

p
Ki

p
Kjwij

µ
h2

xi − x

¶
εi

and

s.o. =
1

Nhk+2

X
i

Kiwii

µ
h2

xi − x

¶
Rm(xi, x)+

1

Nhk+2

X
i 6=j

p
Ki

p
Kjwij

µ
h2

xi − x

¶
Rm(xi, x)

where (s.o.) has smaller order than
¡
A1,x

¢−1
(A2,x).We can now rewrite the expression

as

D(N)(d(x)− δ(x)) = D(N)
¡
A1,x

¢−1
(A2,x +A3,x) + (s.o.).

We will prove the theorem if we prove the following four statements:

(i) D(N)
¡
A1,x

¢−1
(A2,x +A3,x) = D(N)M−1(A2,x +A3,x) + op(1)

13



(ii) D(N)M−1(A2,x +A3,x) = RD(N)(A2,x +A3,x) + op(1)

(iii) D(N)A2,x =
¡(Nhk+4)

1
2 µkf(x)W
0

¢
+ op(1)

(iv) D(N)A3,x → N(0, V ) in dist

where

M =

µ
f(x)W 0

ckf
0(x)W ckf(x)WIk

¶
.

Further

R = diag(M−1)

and

V =

µ
dkσ

2
εf(x)W 0
0 vkσ

2
εf(x)WIk

¶
.

Proof of (i). Note that D(N)
¡
A1,x

¢−1
(A2,x +A3,x) = D(N)M−1(A2,x +A3,x) +

D(N)
³¡

A1,x
¢−1 −M−1

´
(A2,x+A3,x).Thus, we only need to show thatD(N)

³¡
A1,x

¢−1 −M−1
´
(A2,x+

A3,x) = op(1). This can be shown by Þrst examining the asymptotic behavior of each

element in A1,x. DeÞning

A1,x =

µ
A1,x

11 A1,x
12

A1,x
21 A1,x

22

¶
yields

A1,x
11 =

1

Nhk+2

X
i

Kiwiih
2 +

1

Nhk+2

X
i 6=j

p
Ki

p
Kjwijh

2,

A1,x
21 =

1

Nhk+2

X
i

Kiwii(xi − x) +
1

Nhk+2

X
i 6=j

p
Ki

p
Kjwij(xi − x),

A1,x
12 =

1

Nhk+2

X
i

Kiwiih
2(xi − x)0 +

1

Nhk+2

X
i 6=j

p
Ki

p
Kjwijh

2(xi − x)0,

and

A1,x
22 =

1

Nhk+2

X
i

Kiwii(xi − x)(xi − x)0 +
1

Nhk+2

X
i 6=j

p
Ki

p
Kjwij(xi − x)(xi − x)0.

14



By taking the Þrst element we achieve

E(A1,x
11 ) =

1

Nhk

X
i

E(Ki)wii +
1

Nhk

X
i 6=j

E
³p

Ki

p
Kj

´
wij

=
1

hk

Z
K

µ
xi − x

h

¶
f(xi)dxi

1

N

X
i

wii

+
1

hk

Z
K

µ
xi − x

h

¶1
2

f(xi)dxi

Z
K

µ
xj − x

h

¶ 1
2

f(xj)dxj
1

N

X
i 6=j

wij

→ f(x)
1

N

X
i

wii + op(1)

= f(x)tr
¡
Ω−1

¢
+ op(1)

= f(x)W + op(1).

A1,x
21 is decomposed similarly as

E
³
A1,x

21

´
=

1

h2

Z
f(x+ ψh)K(ψ)hψdψ

1

N

X
i

wii

+
1

h2

Z
K

µ
xi − x

h

¶ 1
2

f(xi)dxi

Z
K

µ
xj − x

h

¶ 1
2

f(xj)dxj
1

N

X
i 6=j

wij

→ ckf
0(x)tr

¡
Ω−1

¢
+ op(1)

= ckf
0(x)W + op(1).

Next, the term A1,x
12 = h2(A1,x

21 )
0 = Op(h

2). Finally, A1,x
22 can be shown as

E
³
A1,x

22

´
= f(x)

Z
K(ψ)ψψ0dψ

1

N

X
i

wii

+
1

h2

Z
K

µ
xi − x

h

¶ 1
2

f(xi)dxi

Z
K

µ
xj − x

h

¶ 1
2

f(xj)dxj
1

N

X
i 6=j

wij

→ ckf(x)tr
¡
Ω−1

¢
Ik + op(1)

= ckf(x)WIk + op(1).

Thus we have

A1,x =

µ
f(x)W 0

ckf
0(x)W ckf(x)WIk

¶
+ op(1).

15



By inverting this matrix (through the method of the partitioned inverse) we achieve

¡
A1,x

¢−1
=

Ã
1

f(x)W + op(1) Op(h
2)

−f 0(x)
f2(x)W

+ op(1)
Ik

ckf(x)W + op(1)

!
and thus

¡
A1,x

¢−1 −M−1 =

µ
op(1) Op(h

2)
op(1) op(1)Ik

¶
which completes the proof of (i).

Proof of (ii). This holds because the off diagonal elements of M−1 are op(1).

SpeciÞcally,

³
Nhk+2

´ 1
2
A2,x

1 =
³
Nhk+2

´ 1
2
Op(h

2)

= Op

µ³
Nhk+6

´ 1
2

¶
= op(1)

and

³
Nhk+2

´1
2
A2,x

2 =
³
Nhk+2

´1
2
Op

µ³
Nhk

´ 1
2

¶
= Op (h)

= op(1).

Proof of (iii). Premultiplying A2,x by D(N) gives

16



D(N) =

µ ¡
Nhk

¢ 1
2 A2,x

1

(Nhk+2)
1
2 A2,x

2

¶

=

µ ¡
Nhk

¢ 1
2

 P
i

Kiwiih
2(xi − x)0m00(x)(xi − x)/2

+
P
i 6=j

√
Ki

p
Kjwijh

2(xi − x)0m00(x)(xi − x)/2


(Nhk+2)

1
2

 P
i

Kiwiih
2(xi − x)0m00(x)(xi − x)/2

+
P
i 6=j

√
Ki

p
Kjwijh

2(xi − x)0m00(x)(xi − x)/2


¶

→
µ¡

Nhk
¢ 1

2 h2µkf(x)W + op(1)

(Nhk+2)
1
2 Op(h2)

¶

=

µ¡
Nhk

¢ 1
2 h2µkf(x)W

0

¶
+ op(1)

which proves (iii).

Proof of (iv). This proof will examine the variance of each component ofD(N)A3,x

as well as the covariance between the two components. First,

V AR

µ³
Nhk

´ 1
2
A3,x

1

¶
= E

µ
Nhk

³
A3,x

1

´2
¶

→ f(x)σ2
ε

Z
K2(ψ)dψ

1

N

X
i

wii + o(1)

= dkf(x)σ
2
εW + o(1).

Next

V AR

µ³
Nhk

´1
2
A3,x

2

¶
= σ2

ε

Z
f(x+ hψ)K2(ψ)ψψ0dψ

1

N

X
i

wii

→ vkf(x)σ
2
εWIk + o(1).

The covariance is shown to go to

COV

µ³
Nhk

´1
2
A3,x

1 ,
³
Nhk

´1
2
A3,x

2

¶
=

³
Nhk+1

´
E
³
A3,x

1 , A3,x
2

´
= O(h)

= o(1).
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Hence, V AR
¡
D(N)A3,x

¢
= V + o(1) and since A3,x has a zero mean

D(N)A3,x → N(0, V ).

Finally, by proving the four statements, we can show that

D(N)

µ
d(x)− δ(x)−

µ
h2µkW

0

¶¶
= RD(N)

¡
A2,x +A3,x

¢−µh2µkW

0

¶
+ op(1)

= RD(N)A3,x + op(1)

→ R (N(0, V )) + op(1)

→ N(0, RV R)

= N(0,Σx).

Now we note that bΩ is a consistent estimator of Ω, the proof of it follows from the re-
sults of Amemiya (1971) for the parametric model. Thus the asymptotic distribution

of D(N)
³bδ(x)− δ(x)

´
is the same as that of D(N) (d(x)− δ(x)). ¥
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Table 1 - Linear Technology (γ = 0) - Estimates of m

T = 3 ρ = 0.1
N = 10 N = 20 N = 50
Bias MSE Bias MSE Bias MSEbmFGLS 0.02461 0.81206 -0.00294 0.263450 0.00101 0.152292bmNPFGLS 0.03227 1.18472 -0.00918 0.358010 0.02481 0.334819

T = 5 ρ = 0.1
N = 10 N = 20 N = 50
Bias MSE Bias MSE Bias MSEbmFGLS -0.00415 0.62618 0.00701 0.262428 -0.01735 0.12318bmNPFGLS 0.03685 1.14297 0.00230 0.580311 -0.01315 0.25352

T = 3 ρ = 0.4
N = 10 N = 20 N = 50
Bias MSE Bias MSE Bias MSEbmFGLS 0.09199 1.29724 0.02132 0.68479 -0.00176 0.23748bmNPFGLS 0.04473 1.62509 0.02872 0.95959 0.00232 0.54860

T = 5 ρ = 0.4
N = 10 N = 20 N = 50
Bias MSE Bias MSE Bias MSEbmFGLS -0.00965 1.08460 0.00787 0.56886 0.00764 0.22496bmNPFGLS -0.00925 1.62514 0.01551 0.81964 -0.02416 0.34916

T = 3 ρ = 0.8
N = 10 N = 20 N = 50
Bias MSE Bias MSE Bias MSEbmFGLS -0.01835 1.58223 0.01502 0.89115 0.00918 0.37374bmNPFGLS 0.01257 2.40996 0.04550 1.20262 -0.01792 0.53778

T = 5 ρ = 0.8
N = 10 N = 20 N = 50
Bias MSE Bias MSE Bias MSEbmFGLS 0.06109 1.64919 -0.03037 0.76996 0.00668 0.28034bmNPFGLS -0.01066 2.40569 -0.01820 1.08072 0.00536 0.44972
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Table 2 - Linear Technology (γ = 0) - Estimates of β

T = 3 ρ = 0.1
N = 10 N = 20 N = 50
Bias MSE Bias MSE Bias MSEbβFGLS 0.04717 0.43331 -0.03045 0.26559 0.00498 0.08858bβNPFGLS 0.09091 1.30399 -0.02208 0.74755 0.03207 0.54615

T = 5 ρ = 0.1
N = 10 N = 20 N = 50
Bias MSE Bias MSE Bias MSEbβFGLS -0.00855 0.25194 0.01213 0.17773 -0.00236 0.04905bβNPFGLS 0.06144 2.61958 -0.00354 1.48246 -0.00432 0.74635

T = 3 ρ = 0.4
N = 10 N = 20 N = 50
Bias MSE Bias MSE Bias MSEbβFGLS 0.03625 0.46752 -0.00015 0.18585 -0.00420 0.06197bβNPFGLS -0.03703 1.32680 -0.02840 0.79431 0.00041 0.48636

T = 5 ρ = 0.4
N = 10 N = 20 N = 50
Bias MSE Bias MSE Bias MSEbβFGLS 0.00386 0.17615 0.01756 0.08143 0.00871 0.03467bβNPFGLS 0.00991 1.96978 -0.00893 1.08968 -0.04652 0.55036

T = 3 ρ = 0.8
N = 10 N = 20 N = 50
Bias MSE Bias MSE Bias MSEbβFGLS 0.02128 0.20419 -0.01315 0.08525 -0.01586 0.03017bβNPFGLS 0.01243 0.77846 -0.00564 0.43128 -0.03533 0.23332

T = 5 ρ = 0.8
N = 10 N = 20 N = 50
Bias MSE Bias MSE Bias MSEbβFGLS 0.00467 0.05750 -0.00071 0.02854 0.00137 0.01069bβNPFGLS -0.04696 0.92974 0.01424 0.52818 -0.00487 0.24382
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Table 3 - Quadratic Technology (γ = 2) - Estimates of m

T = 3 ρ = 0.1
N = 10 N = 20 N = 50
Bias MSE Bias MSE Bias MSEbmFGLS 3.75215 13.95897 3.78125 14.36996 1.38247 13.83682bmNPFGLS 1.25748 2.259489 1.01324 1.487497 -0.64823 0.69626

T = 5 ρ = 0.1
N = 10 N = 20 N = 50
Bias MSE Bias MSE Bias MSEbmFGLS 3.19402 11.45857 3.21542 11.81433 3.27112 11.80253bmNPFGLS 0.60992 1.52437 0.45886 0.80338 0.329321 0.42009

T = 3 ρ = 0.4
N = 10 N = 20 N = 50
Bias MSE Bias MSE Bias MSEbmFGLS 3.59057 13.24741 3.73497 14.14550 3.69340 13.72657bmNPFGLS 1.45033 2.18517 0.85695 1.08555 0.60328 0.67794

T = 5 ρ = 0.4
N = 10 N = 20 N = 50
Bias MSE Bias MSE Bias MSEbmFGLS 3.21889 12.00314 3.28223 11.51401 3.30367 11.18568bmNPFGLS 0.70980 1.92347 0.43402 0.98756 0.25790 0.41860

T = 3 ρ = 0.8
N = 10 N = 20 N = 50
Bias MSE Bias MSE Bias MSEbmFGLS 3.75286 14.88077 -2.35830 14.53756 3.67594 14.25223bmNPFGLS 0.96821 2.66539 0.75107 1.43185 0.44664 0.64704

T = 5 ρ = 0.8
N = 10 N = 20 N = 50
Bias MSE Bias MSE Bias MSEbmFGLS 3.39286 13.66158 3.27061 11.75863 3.25525 11.04261bmNPFGLS 0.54470 2.216837 0.26445 1.12261 0.13944 0.45376
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Table 4 - Quadratic Technology (γ = 2) - Estimates of β

T = 3 ρ = 0.1
N = 10 N = 20 N = 50
Bias MSE Bias MSE Bias MSEbβFGLS 2.76221 8.66174 2.90400 8.97976 2.89316 8.53274bβNPFGLS -0.26873 1.69491 -0.26373 0.85174 -0.36253 0.53852

T = 5 ρ = 0.1
N = 10 N = 20 N = 50
Bias MSE Bias MSE Bias MSEbβFGLS 5.87036 35.40215 5.93808 35.62152 6.05484 37.40021bβNPFGLS 0.12010 2.86717 -0.23052 1.61403 -0.51341 1.21027

T = 3 ρ = 0.4
N = 10 N = 20 N = 50
Bias MSE Bias MSE Bias MSEbβFGLS 3.03288 10.38349 3.06586 9.88796 3.12776 10.00722bβNPFGLS -0.05755 1.43259 -0.30976 0.88407 -0.28894 0.48019

T = 5 ρ = 0.4
N = 10 N = 20 N = 50
Bias MSE Bias MSE Bias MSEbβFGLS 5.68197 33.21481 5.92401 35.38354 6.02191 36.17050bβNPFGLS 0.22978 2.18748 -0.24992 1.28177 -0.54674 0.96792

T = 3 ρ = 0.8
N = 10 N = 20 N = 50
Bias MSE Bias MSE Bias MSEbβFGLS 3.31846 12.05829 3.44486 12.29401 3.51921 12.52890bβNPFGLS 0.03322 0.98089 -0.08389 0.51563 -0.12502 0.25223

T = 5 ρ = 0.8
N = 10 N = 20 N = 50
Bias MSE Bias MSE Bias MSEbβFGLS 5.79115 34.09982 5.91963 35.26351 5.96645 35.51767bβNPFGLS 0.09283 0.96495 -0.23768 0.72277 -0.51123 0.57375
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Table 5 - Mean Returns to Inputs

Log Log First Difference First Difference
CD RE NP RE CD RE NP RE

Private Capital 0.191 0.379 0.303 0.152
Labor 0.756 0.527 0.919 0.869
Public Capital
Highways 0.120 0.320 -0.024 0.082
Water and Sewers 0.043 0.048 -0.012 -0.003
Other -0.048 -0.069 -0.049 -0.051
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