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Abstract
Consider a competitive equilibrium in an economy in which an externality (whose
market is missing) is the only distortion. The implications of implementing a fea-
sible and Pareto-improving policy reform using first-best policy instruments, such
as a Pigouvian tax or a direct quantity control of the externality, are well known.
The aim of this paper is to study and characterize feasible and Pareto-improving
policy reforms in a second-best world with an externality. We consider an exten-
sion of the Diamond and Mirrlees (1971) second-best model that incorporates an
externality and a direct quantity control on the externality as an additional policy
instrument. An apparently counterintuitive finding is that, starting from an initial
equilibrium with no direct quantity control on the externality, it might be Pareto
improving and equilibrium preserving for the regulator to mandate an increase
in the level of a negative externality. In fact, it can be the case that all Pareto-
improving and equilibrium-preserving directions of change require an increase in
the negative externality. We provide intuition for these results by establishing a
nexus between Guesnerie’s [1977, 1995] approach to designing (tax) policy reforms
and the standard Kuhn-Tucker technique for identifying the manifold of feasible
Pareto-optimal states, given the policy instruments available to the government.
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1. Introductory Remarks.

It is common knowledge that, starting from a tight competitive equilibrium in an econ-

omy in which the only distortion is a single externality, a Pareto-improving move would

necessarily require a reduction in the level of a negative externality or an increase in

the level of a positive externality. In this paper, we seek to characterize policy reforms

to combat distortions created by the presence of an externality in a more realistic econ-

omy: one in which there exist other market distortions. In particular, the second-best

model we develop is one in which, apart from the presence of a negative consumption

externality, there also exist distortions brought about by indirect taxation (or subsidiza-

tion), which drives a wedge between consumer and producer prices and hence between

the marginal rates of substitution in consumption and in production. As in the optimal

taxation literature,1 this distortion is rationalized by the inability of the government,

owing to informational and administrative constraints, to implement a system of per-

sonalized lump-sum transfers. Rather, the government can implement a system of

uniform lump-sum transfers.2 To avoid the complications generated by the distribution

of profits, we also assume that the government taxes away all profits of firms.3

Starting from an initial equilibrium in a regime where the government’s policy

instruments comprise only the complete system of indirect taxes, 100-percent taxation

of profits, and the uniform lump-sum transfers, we study the fruitfulness of imposing

quantity controls on the consumption of the externality-causing good. We focus on

quantity controls rather than Pigouvian taxes because we wish to examine, in a second-

best world, the effect of a comprehensive policy reform on the level of the externality.

Even if we assume that the externality-generating good is not a giffen good, it is not

clear in a second-best world that a comprehensive reform that includes an increase,

1 See Ramsey [1927], Diamond and Mirrlees [1971a, 1971b], Diamond [1975], and Guesnerie [1975,
1977, 1979, 1980, 1995]).

2 In the absence of a feasible system of personalized lump-sum transfers, the government might
engage in income redistribution by taxing labor (income), one of the commodities, and redistributing
some or all of the revenue equally to the consumer/workers. Or it might redistribute wealth by taxing
luxuries and subsidizing necessities.

3 Alternatively, one could make the (common) assumption of constant returns to scale (a conical
production set), in which case maximal aggregate profits would be zero.

1



say, in a Pigouvian tax would necessarily entail a decrease in the level of the negative

externality.

To sharpen our focus on the general-equilibrium interactions between externality

policies and tax distortions, we consider the simplest possible externality: one in which

the consumption of a particular good by one consumer imposes negative externalities

on all other consumers.4

Our approach to the study of externality policy reforms in a general-equilibrium

context draws extensively on methods and results in two important literatures that, to

our knowledge, have not yet been exploited in the study of externality policies. The first

is the general-equilibrium literature on tax reform, attributable primarily to Guesnerie

[1977, 1995]. This research takes the view that second-best tax policies (as well as

first-best policies) are typically unachievable because they require quantum leaps from

the existing state of the economy. More realistic are incremental tax-policy reforms

that are Pareto improving and equilibrium preserving. A theoretical counterpart of an

incremental reform is a (differential) direction of change that is Pareto improving and

equilibrium preserving. We adopt the same paradigm in the examination of externality

policies.

The second important literature that we exploit is the research on rationing and

quantity controls, attributable primarily to Tobin and Houthakker [1950-51], Neary and

Roberts [1980], and Guesnerie and Roberts [1984]. The results in this literature greatly

facilitate our analysis of a direct quantity control on the consumption of the externality

generating commodity.

While our main objective in this research is to provide a framework for examining

externality policy reform in a general-equilibrium framework, we do obtain a number

of specific results, some of them surprising. Most notably, we find that, starting in a

4 Our results would require only some minor notational changes and a system of personalized quan-
tity controls if we were to generalize the model to allow consumption of the externality-generating
commodity by multiple consumers, so long as the set of consumers can be partitioned into externality
generators on the one hand and externality victims on the other. By partitioning in this way, we avoid
the issues of strategic interaction that arise if some consumers are both generators and victims. The
type of externality we have in mind is tobacco smoking or the playing of loud music.
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(Diamond-Mirrlees) competitive equilibrium with distortional taxation and no direct

externality quantity control, it might be Pareto improving and equilibrium preserving

for the regulator to mandate an increase in the single negative externality. In fact,

it can be the case that all Pareto-improving and equilibrium-preserving directions of

change require an increase in the negative externality. While this result is at first glance

counterintuitive, it is explained by the presence of other distortions in the economy,

namely the wedge between consumer and producer prices, along with the feedback

effects in a general-equilibrium analysis.5

Section 2 constructs a general-equilibrium model of policy reform with a single

externality, Section 3 contains our general results, and Section 4 provides the intuition

underlying the economic structure of these results. Section 5 concludes.

2. The Model.

2.1. Consumers and Producers.

We examine an economy with n + 1 goods, the first n being the non-externality-

generating goods, indexed by either k or l = 1, . . . , n, and the last being the externality-

generating good, indexed by ν. We assume no externalities in the production of these

n + 1 goods, so that the aggregate (economy wide) production technology is the vec-

tor sum of the individual technology sets. Denote the aggregate technology set by

Y ⊂ Rn+1 and a feasible aggregate (net) production bundle by 〈y, yν〉 ∈ Y . We assume

that Y is closed and strictly convex, at least on a neighborhood of an initial equilibrium,

so that, subject to a given price vector 〈p, ρ〉 ∈ Rn+1\
{
0(n+1)

}
,6 the profit-maximizing

5 A second thought may suggest that this result is not counterintuitive in that it could simply reflect
the fact that a Pigouvian tax on the externality-generating commodity is set too high at the status
quo and the tax is not an available instrument for reform so that the only corrective mechanism for
overtaxation of the bad commodity is to mandate an increase in its consumption. We show in Section 4,
however, that this is not an explanation for the counterintuitive result. In fact, this outcome can occur
irrespective of whether the policymaker can implement a Pigouvian tax on the negative consumption
externality.

6 0(n+1) is the (n + 1)-dimensional zero vector. Note that we do not exclude the possibility of
negative prices.
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aggregate production bundle is unique. In fact, we will want to maintain the existence

of a continuously differentiable supply function, 〈η, ην〉, defined by

〈
η(p, ρ), ην(p, ρ)

〉
= argmaxy,yν

{
p · y + ρ yν | 〈y, yν〉 ∈ Y

}
, (2.1)

at least on a neighborhood of an initial (equilibrium) production price vector.7

Of the m + 1 consumers, one, indexed by h, consumes the externality-generating

good as well as the n non-externality-generating goods, and the other m consumers,

indexed by i or j = 1, . . . , m, consume only the n non-externality-generating goods, but

their welfare levels are adversely affected by this negative externality. Thus, net con-

sumption bundles8 are denoted by 〈xh, νh〉 ∈ Rn+1 and xi ∈ Rn, i = 1, . . . , m, where

νh ∈ R is the (net) quantity of the externality-generating good consumed by consumer

h. But preferences are defined over non-empty (net) consumption sets,9 Xh ⊆ Rn+1

and Xi ⊆ Rn+1, i = 1, . . . , m, where a generic element of Xi is 〈xi, νh〉. We as-

sume that the preferences of consumers are represented by continuous utility functions,

Uh : Xh → R and U i : Xi → R, i = 1, . . . , m, that satisfy local nonsatiation and differ-

entiability on a neighborhood of an initial equilibrium. In addition, we assume that Uh

satisfies strict quasi-concavity on this neighborhood while each U i, i = 1, . . . , m, satis-

fies this property on an appropriate neighborhood of the n-dimensional subspace with

coordinates attached to the non-externality-generating commodities.10 We formalize

our negative-externality scenario by assuming that ∂U i(xi, νh)/∂νh < 0, i = 1, . . . , m.

In our second-best world, consumer prices are not necessarily equal to producer

prices. We denote the consumer price vector by 〈q, π〉 ∈ Rn+1, where q is the price

7 There is, of course, no aggregation problem on the supply side of a competitive economy with
no production externalities (see, e.g., Bliss [1975], Koopmans [1957], or Russell, Breunig, and Chiu
[1998]).

8 Net of endowments, that is.
9 Endowments are implicit in our description of the economy; preferences, primitively defined over

gross consumption bundles, induce an ordering on net consumption bundles, conditional on endow-
ments, which are held constant throughout our analysis.
10 Thus, we do not preclude the existence of fundamental (global) nonconvexities. The Starrett

problem of nonexistence of Arrovian competitive equilibrium is not an issue in our context.
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vector for the n non-externality-generating goods and π is the price of the externality-

generating good. Thus, government indirect taxes or subsidies are given by 〈t, τ〉 :=

〈q, π〉 − 〈p, ρ〉 ∈ Rn+1. The uniform lump-sum transfer is R ∈ R.

Under the assumption that consumer h is subjected to a quantity constraint on

his consumption of the externality-generating good, ν = ν̄, his optimization problem

and constrained indirect utility function are defined by

V̄ h(q, π, R, ν̄) := max
xh,νh

{
Uh(xh, νh) | q · xh + π νh ≤ R ∧ νh = ν̄

}
. (2.2)

Under our regularity conditions, the solution to this optimization problem at the status

quo is unique, yielding a rationed (net) demand system,

∗xh = d̄h(q, π, R, ν̄)

∗νh = d̄h
ν(q, π, R, ν̄) = ν̄,

(2.3)

defined on a neighborhood of initial values of the arguments. We assume, in addition,

that this demand system is continuously differentiable on this neighborhood.

We now exploit the Neary and Roberts [1980] analysis of this system of rationed

demands, first by relating them to the usual (unrationed) demand systems. Under our

regularity conditions (most notably, strict quasi-concavity of Uh on a neighborhood),

there exists a vector of virtual (support) prices that makes the unrationed demand

system identical to the rationed demand system. In particular, Neary and Roberts (pp.

28–29) show that the consumer market prices differ from these virtual prices only with

respect to the price of the rationed commodity. This, of course, makes sense, since the

consumer is free to equate marginal rates of substitution and price ratios of unrationed

goods, and it is optimal to do so. Thus, in our case, there exists a shadow price, πh, of

the externality-causing good and a level of the transfer (“income”), R̃h, such that the

rationed demands at prices 〈q, π〉 and income transfer R, are identical to the unrationed

demands at prices 〈q, πh〉 and income transfer R̃h:

d̄h(q, π, R, ν̄) = dh(q, πh, R̃h)

ν̄ = d̄h
ν(q, π, R, ν̄) = dh

ν(q, πh, R̃h),
(2.4)
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where dh(q, πh, R̃h) and dh
ν(q, πh, R̃h) solve

max
xh,νh

Uh(xh, νh) s.t. q · xh + πh νh ≤ R̃h. (2.5)

To interpret and provide some intuition about (2.4), consider the ration-constrained

and non-ration-constrained expenditure functions dual to (2.2) and (2.5):

Ēh(q, π, ν̄, uh) := min
xh,νh

{
q · xh + π νh | Uh(xh, νh) ≥ uh ∧ νh = ν̄

}
(2.6)

and

Eh(q, πh, uh) := min
xh,νh

{
q · xh + πh νh | Uh(xh, νh) ≥ uh

}
. (2.7)

Neary and Roberts (p. 30) establish the following intuitive relationship between these

two expenditure functions:

Ēh(q, π, ν̄, uh) = Eh(q, πh, uh) + (π − πh) ν̄. (2.8)

That is, the difference between the minimal ration-constrained cost of obtaining utility

level uh and the minimal virtual cost of obtaining this utility is given by the difference

in the costs of purchasing ν̄ of the negative externality at the market price π and the

shadow price πh. This relationship is depicted in Figure 1 for the special case where

n = 1 (hence q is a scalar).

Thus, referring back to the demand systems in (2.4) and noting, from (2.8), that

R̃h = R + (πh − π) ν̄, (2.9)

we see that the last equation in (2.4) implicitly defines πh as a function of q, R, ν̄, and

π, all of which are known values. One can then substitute this value of πh, along with

(2.9) into the first n equations in (2.4) to determine the demands for the non-rationed

commodities, d̄h(q, π, R, ν̄).

Relation (2.8) yields a differential money-metric measure of the welfare effects on

consumer h of a change in the quantity rationing of the externality:

∂Ēh(q, π, ν̄, uh)

∂ν̄
= π − πh. (2.10)
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This is the differential change in income needed to just compensate consumer h for an

infinitesimal change in the level of rationing of the negative externality. If the market

price of the externality good exceeds (is less than) the shadow price for consumer h,

a positive (negative) compensation is required to maintain his utility level when the

externality level is increased (decreased).

A dual (utility) measure of the welfare change of consumer h attributable to an

infinitesimal change in the rationed level of the negative externality good is

∂V̄ h(q, π, R, ν̄)/∂ν̄. By comparing the first-order conditions of the ration-constrained

and virtual utility maximization exercises, (2.2) and (2.5), it can be shown that

∂V̄ h(q, π, R, ν̄)

∂ν̄
= λ̄h (πh − π), (2.11)

where λ̄h is the marginal utility of money evaluated at 〈q, π, R, ν̄〉.

We apply the Neary/Roberts results to our specific context, one where we have as

the starting point an equilibrium in a regime with no quantity rationing and we study

the welfare effects of introducing externality quantity controls into the system. To this

end, define the ration-unconstrained demands of consumer h in the initial situation:

〈
dh(q, π, R), dh

ν(q, π, R)
〉

= argmaxxh,νh

{
Uh(xh, νh) | q · xh + π νh ≤ R

}
. (2.12)

We interpret the initial situation to be a special instance of a quantity control regime

where the ration-constrained level has been set just equal to the ration-unconstrained

level; i.e., ν̄ = dh
ν(q, π, R). In that case, we also have d̄h(q, π, R, ν̄) = dh(q, π, R), and the

market and consumer shadow prices are identical for all goods. In particular, πh = π

and, from (2.11), we find that

∂V̄ h(q, π, R, ν̄)

∂ν̄
= 0. (2.13)

Thus, differentially, a forced change in the consumption of the negative externality im-

poses no utility loss on the consumer of this externality-producing good. The intuition

for this outcome (as originally explained by Guesnerie and Roberts [1984, pp. 68–69])

is as follows: At the initial unrationed situation the indifference surface through the

optimal consumption bundle is tangent to the budget hyperplane. Consequently, a
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forced, infinitesimally small change in consumption of the externality moves the con-

sumer along his budget hyperplane, which is differentially equivalent to moving along

the indifference surface. (In Figure 1, imagine that πh = π.)

Repeated application of the envelope theorem to (2.2) yields the other components

of the gradient of the indirect utility function. As the initial situation is taken as given

in Section 3, to ease (and slightly abuse) the notation, we write the gradient as

∇V̄ h(q, π, R, ν̄) =







−λ̄h d̄h

−λ̄h ν̄
λ̄h

0





 =: Γh. (2.14)

Each externality victim, i = 1, . . . , m, must bear the level of the negative exter-

nality passed on to her by the externality generator and choose her net consumption

vector of the non-externality goods, subject to the budget constraint:

V̄ i(q, R, ν̄) = max
xi

{
U i(xi, ν̄) | q · xi ≤ R

}
, i = 1, . . . , m. (2.15)

Optimization yields the unique set of demands,

∗xi = d̄i(q, R, ν̄), i = 1, . . . , m. (2.16)

The quantity rationing results of Neary and Roberts [1980] prove useful here as

well, providing a framework to solve for the shadow price of the externality for indi-

vidual i. This is accomplished by considering a notional optimization exercise in which

consumer i is free to choose the quantities of all goods, including the externality, to

maximize her utility subject to a budget constraint in all n + 1 quantities. Under our

regularity conditions (principally strict quasi-concavity and differentiability of U i on an

appropriate neighborhood), an argument analogous to that used for consumer h above

identifies a unique vector of shadow prices of all n + 1 goods and a level of income

that makes the demand system (2.16) identical to the demand system obtained from

the notional optimization exercise. As in the case of consumer h, the shadow price

vector differs from the market price vector faced by consumer i only with respect to

the externality-generating good. Since, in her actual optimization problem, the level of

the externality is not a choice variable, it is as if she faces a market price of zero for
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the externality good. Thus, there exists a shadow price πi of the externality-generating

good and a level of income R̃i such that the actual demands of consumer i at market

prices 〈q, 0〉 and income R are identical to her notional demands at prices 〈q, πi〉 and

income R̃i:
d̄i(q, R, ν̄) = di(q, πi, R̃i), i = 1, . . . , m,

ν̄ = di
ν(q, πi, R̃i), i = 1, . . . , m.

(2.17)

An argument similar to that for consumer h (and also attributable to Neary and Roberts

[1980, p. 30]) establishes that

R̃i = R + πiν̄, i = 1, . . . , m, (2.18)

since consumer i acts as if the market price of the negative externality were zero. Along

with (2.18), the last equation in (2.17) implicitly defines πi as a function of q, R, and

ν̄.

In a fashion parallel to the quantity-rationing case, the differential welfare effects

of a change in the level of the externality burden on consumer i can be obtained in

money-metric terms as

∂Ēi(q, ui, ν̄)

∂ν̄
= −πi, i = 1, . . . , m, (2.19)

where Ēi is the expenditure function of consumer i, or, in utility terms, as

∂V̄ i(q, R, ν̄)

∂ν̄
= λ̄iπi, i = 1, . . . , m, (2.20)

where λ̄i is the marginal utility of income of consumer i evaluated at 〈q, R, ν̄〉. Taking

the initial situation as given (and simplifying notation), the gradients of the indirect

utility functions are

∇V̄ i(q, R, ν̄) =







−λ̄i d̄i

0
λ̄i

λ̄i πi





 =: Γi, i = 1, . . . , m. (2.21)
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2.2. Equilibrium-Preserving Policy Reforms.

We first extend Guesnerie’s [1977, 1995] concept of a tax equilibrium to incorporate an

externality quantity control:

Definition: A tax equilibrium with a quantity control on the externality (TEQC) is an

(m + 1)-tuple of consumption vectors, 〈x̂h, ν̂h〉 ∈ Rn+1 and x̂i ∈ Rn, i = 1, . . . , m,

an aggregate production plan, 〈ŷ, ŷν〉 ∈ Rn+1, a uniform lump-sum transfer, R̂ ∈ R,

two price vectors, producer prices 〈p̂, ρ̂〉 ∈ Rn+1\
{
0(n+1)

}
and consumer prices 〈q̂, π̂〉 ∈

Rn+1, and a level of quantity control on the externality, ˆ̄ν ∈ R, such that the following

hold:
x̂h = d̄h(q̂, π̂, R̂, ˆ̄ν)

ν̂h = ˆ̄ν

x̂i = d̄i(q̂, R̂, ˆ̄ν), i = 1, . . . , m,

ŷ = η(p̂, ρ̂)

ŷν = ην(p̂, ρ̂)

x̂h +
∑

i

x̂i ≤ ŷ

and

ˆ̄ν ≤ ŷν ,

(2.22)

where d̄h(q̂, π̂, R̂, ˆ̄ν) and d̄i(q̂, R̂, ˆ̄ν), i = 1, . . . , m, are obtained from the consumer opti-

mization exercises in (2.2) and (2.15) and 〈η(p̂, ρ̂), ην(p̂, ρ̂)〉 is obtained from the aggre-

gate profit-maximization condition in (2.1).11 When the n + 1 (weak) inequalities in

(2.22) hold as equalities, we say that the TEQC is tight, and when any one holds as a

strict inequality, we say that the TEQC is non-tight.

11 Vector notation: for 〈x, y〉 ∈ R2m,

x ≥ y ⇐⇒ xi ≥ yi, i = 1, . . . , m,

x > y ⇐⇒ xi ≥ yi, i = 1, . . . , m, ∧ x �= y,

x � y ⇐⇒ xi > yi, i = 1, . . . , m.

10



In the problem we examine, the status quo is an equilibrium in a regime where

the only government policy instruments are the indirect taxes, the uniform lump-sum

transfers, and the 100-percent tax on profits. This is a “tax equilibrium” in the tax-

reform literature (Guesnerie [1977, 1995]). In the context of our problem, we can refer

to this situation as a TEQC in which the quantity control on the externality is fixed

at a level just equal to the unrationed Marshallian demands at the prevailing prices

and lump-sum transfers. We further assume that the initial equilibrium is tight. With

these qualifications, our status quo is a TEQC, as defined above, with ˆ̄ν = dh
ν(q̂, π̂, R̂),

so that d̄h(q̂, π̂, R̂, ˆ̄ν) = dh(q̂, π̂, R̂), where dh
ν and dh are the unrationed Marshallian

demand functions for the externality-causing and non-externality goods of consumer h,

and where the (weak) inequalities in (2.22) hold as equalities:

d̄h(q̂, π̂, R, ˆ̄ν) +
∑

i

d̄i(q̂, R̂, ˆ̄ν) = η(p̂, ρ̂)

ν̄ = ην(p̂, ρ̂).

(2.23)

The system (2.23) contains 2n+4 unknowns (2(n+1) prices, the uniform lump-sum

transfer, and the level of control on the externality) and only n+1 equations, implying,

at first glance, n + 3 degrees of freedom in choosing solutions. Since, however, the

demand functions are homogeneous of degree zero in 〈q, π, R〉 and the supply functions

are homogeneous of degree zero in 〈p, ρ〉, two normalizations must be adopted, reducing

the number of degrees of freedom to n + 1.

The n + 1 degrees of freedom in solving (2.23) suggests the possibility of a neigh-

borhood of tight TEQC around the status quo. In a similar context, Diewert [1978] has

shown that, under certain regularity conditions, there does exist such a neighborhood.12

Our interest in this paper, however, is in directions of change of government policy that

are (not necessarily tight) equilibrium preserving and Pareto improving.

Definition: A direction of change in government policy—a policy reform—is a (vector-

valued) derivative, denoted 〈q̇, π̇, Ṙ, ˙̄ν, ṗ, ρ̇〉 ∈ R2n+4, of a differentiable, vector-valued

function, f : R → R2n+4, with image f(t) =
〈
q(t), π(t), R(t), ν(t), p(t), ρ(t)

〉
.

12 See also Guesnerie [1995, p. 98].
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In this construction, t can be interpreted as time. As the derivatives in the follow-

ing definition are all evaluated at the initial equilibrium, we lighten the notation by

eliminating the arguments in the images of demand and supply functions.

Definition: Starting from the initial tight TEQC, a policy reform, 〈q̇, π̇, Ṙ, ˙̄ν, ṗ, ρ̇〉 ∈
R2n+4, is equilibrium preserving if

∇q

[
d̄h +

∑

i

d̄i
]

q̇ + ∇π d̄h π̇ + ∇R

[
d̄h +

∑

i

d̄i
]

Ṙ + ∇ν̄

[
d̄h +

∑

i

d̄i
]

˙̄ν

≤ ∇pη ṗ + ∇ρη ρ̇

and

˙̄ν ≤ ∇pην ṗ + ∇ρην ρ̇.

(2.24)

The policy reform 〈q̇, π̇, Ṙ, ˙̄ν, ṗ, ρ̇〉 is tight equilibrium preserving if the weak inequalities

in (2.24) hold as equalities and non-tight equilibrium preserving if any inequality in

(2.24) is a strict inequality.

Condition (2.24) can be expressed in matrix form as follows:13

〈ż, żν〉 := Jd δ ≤ Js 〈ṗ, ρ̇〉 =: 〈ẏ, ẏν〉, (2.25)

where 〈ż, żν〉 and 〈ẏ, ẏν〉 are the net changes in demand and supply, δ = 〈q̇, π̇, Ṙ, ˙̄ν〉 is

the direction of change of the instruments that affect the demand side only, and

Jd :=




∇q

(
d̄h +

∑
i d̄

i
)

∇π

(
d̄h

)
∇R

(
d̄h +

∑
i d̄

i
)

∇ν

(
d̄h +

∑
i d̄

i
)

0(n) 0 0 1



 (2.26)

and

Js :=




∇p(η) ∇ρ(η)

∇p(ην) ∇ρ(ην)



 (2.27)

are the Jacobians of the demand and supply functions.

The following assumption is fundamental to our differential comparative-static

results:14

13 Ordinarily, we treat vectors as abstract elements of a vector space; where matrix notation is
required, we believe the reader can unambiguously infer from the context whether a vector is a column
vector or a row vector.
14 We retain Guesnerie’s [1995, p. 93] name for this assumption, “local regularity 1,” to draw

attention to its salient role in his analysis of policy reform.
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Assumption LR1: The (n + 1) × (n + 1) Jacobian of the aggregate supply function,

Js, is of rank n.

Under LR1, as Guesnerie [1977, 1995] has shown,15 provided that the value of the

vector of aggregate demand responses at producer prices, 〈p̂, ρ̂〉 · 〈ż, żν〉, is less than or

equal to zero, there exists a direction of change in producer prices, 〈ṗ, ρ̇〉, satisfying

〈p̂, ρ̂〉 · 〈ṗ, ρ̇〉 = 0, such that 〈q̇, π̇, Ṙ, ˙̄ν, ṗ, ρ̇〉 is equilibrium preserving. That is 〈ṗ, ρ̇〉
results in an aggregate supply response that will at least meet the aggregate demand

response to 〈q̇, π̇, Ṙ, ˙̄ν〉. The fact that 〈ṗ, ρ̇〉 satisfies 〈p̂, ρ̂〉 · 〈ṗ, ρ̇〉 = 0 is consistent with

the normalization rule, ‖〈p, ρ〉‖ is a constant.

This result assures us that, to identify policy reforms that are equilibrium pre-

serving, we need concentrate on directions of change only with respect to policy in-

struments that affect aggregate demand—namely, q, π, R, and ν̄—and that lead to

demand changes satisfying

〈p̂, ρ̂〉 · 〈ż, żν〉 ≤ 0. (2.28)

Using the first identity in (2.25), along with (2.26), we can re-write this condition as

〈Φq, Φπ, ΦR, Φν̄〉 · δ ≤ 0, (2.29)

where

Φq := 〈p̂, ρ̂〉 · ∇q

(
d̄h +

∑

i

d̄i
)

Φπ := 〈p̂, ρ̂〉 · ∇π

(
d̄h

)

ΦR := 〈p̂, ρ̂〉 ∇R

(
d̄h +

∑

i

d̄i
)

Φν̄ := p̂ ∇ν

(
d̄h +

∑

i

d̄i
)

+ ρ̂.

(2.30)

In this condition, which we henceforth write as

Φ · δ ≤ 0, (2.31)

15 See also the useful discussions and interpretations by Weymark [1979] and Myles [1995].
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where Φ = 〈Φq, Φπ, ΦR, Φν̄〉, Guesnerie [1977, 1995] interprets the elements of Φ as the

marginal production costs of changes in the demand-side instruments, q, π, R, and ν̄.

Thus, Φ · δ is the value at producer prices of the vector of demand responses to δ.

Starting at a TEQC, δ is tight equilibrium preserving if (2.28), and hence (2.31),

holds as an equality and non-tight equilibrium preserving if it holds as an inequality. The

intuition for this result is as follows. At the initial tight equilibrium, where aggregate

profit is maximized on the technology set Y , the initial producer price vector 〈p̂, ρ̂〉 is

the normal of a hyperplane supporting Y at the initial production vector 〈y, yν〉 (see

Figure 2). Thus, for a direction of change of consumption 〈ż, żν〉 and hence the required

change in production 〈ẏ, ẏν〉 to be feasible, the angle formed by 〈p̂, p̂ν〉 and 〈ż, żν〉 must

not be acute. In Figure 2, this angle is obtuse, indicating that (2.28) and (2.31) hold as

strict inequalities, so that δ is non-tight equilibrium preserving. If the angle formed by

〈p̂, ρ̂〉 and 〈ż, żν〉 were a 90-degree angle—i.e., if 〈ż, żν〉 were coincident with a portion

of the supporting hyperplane—δ would be tight equilibrium preserving.

Denote the set of all equilibrium-preserving directions of change with respect to

demand-side instruments by

Q :=
{
δ ∈ Rn+3 | Φ · δ ≤ 0

}
. (2.32)

Although the government is one of the agents in our economy, the government’s

budget surplus position has not been explicitly stated in our description of the status

quo, a tight TEQC. We are justified in ignoring the government’s budget constraint

because of a standard implication of Walras’ Law: if all n + 1 markets clear (as is

the case in the TEQC) and all agents but one in the economy satisfy their budget

constraints as an equality (as do our locally and globally non-satiated consumers), then

so does the last agent (in this case, the government). Proof of a more general statement

can be found in Guesnerie [1977, 1995]: if, in the TEQC, some commodity is in excess

supply, then the government surplus is positive. Thus, ΦA ·δA < 0 implies that, starting

at a tight TEQC, the reform δA (differentially) generates a government surplus.

14



2.3. Pareto-Improving Policy Reforms.

The gradients of the indirect utility functions of the generator and the victims

evaluated at the initial tight TEQC have been defined earlier as Γh and Γi, i = 1, . . . , m

(see equations (2.14) and (2.21)). Thus, we have the following definition:

Definition: A direction of change with respect to q, π, R, and ν̄ (δ = 〈q̇, π̇, Ṙ, ˙̄ν〉) is

Pareto improving if

Γh · δ > 0

Γi · δ > 0, i = 1, . . . , m.
(2.33)

That is, δ is Pareto improving if it increases the utilities of all consumers.16

3. Results: Equilibrium-Preserving and Pareto-Improving Policy Reforms.

Let I = 〈1, . . . n, n + 1, n + 2, ν〉 denote the coordinates of Rn+3 assigned to the set of

potential policy instruments (the n + 1 consumer prices, the income transfer, and the

rationed externality commodity, respectively). We will consider a restriction of the set

of policy instruments to an available subset. Let A be that subset and denote by RA

the respective projection of Rn+3 onto the space spanned by the coordinates identified

in A. In general, this space would be an |A|-dimensional Euclidean space. Let 0A
(

= 0(|A|)) denote the origin of RA and, in an obvious notation, let δA, ΦA, Γh
A, Γi

A,

etc., represent vectors in this space. Similarly, a particular (unspecified) component of,

e.g., the vectors Γi
A and δA will be denoted Γi

a and δa, respectively. Thus, for example,

if the only available instruments are the income transfer and the externality control,

A = {n + 2, ν}, |A| = 2, δA =
〈
Ṙ, ˙̄ν

〉
∈ RA, and the space RA is then obtained as

the projection of Rn+3 onto the space spanned by the coordinates reserved for income

transfers (n+2) and the rationed externality commodity (ν). This is a two-dimensional

Euclidean space.

16 Weymark [1978, p. 344] makes a compelling case for this definition of Pareto improving reforms:
“. . . a direction of price changes which is strictly Pareto-improving in the differentiable case is also
strictly Pareto-improving for small finite changes . . . The differentiable definition can thus be viewed
as an approximation to the finite version.” The same cannot be said for non-strict Pareto-improving
changes.
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We will make extensive use of the following theorem:17

Theorem of the Alternative (Motzkin [1936]):18 Let A, C, and D be n1 × m,

n2 × m, and n3 × m matrices, where A is non-vacuous. Then there exists a vector

x ∈ Rm satisfying

Ax � 0(n1), Cx ≥ 0(n2), and Dx = 0(n3) (∗)

if and only if there do not exist vectors, y1 ∈ Rn1 , y2 ∈ Rn2 , y3 ∈ Rn3, satisfying

AT y1 + CT y2 + DT y3 = 0(m), y1 > 0(n1), y2 ≥ 0(n2), (∗∗)

where AT , CT , DT are the transposes of A, C, and D.

That is, there exists a solution to (∗) if and only if there exists no solution to (∗∗).

Let α = 〈αh, α1, . . . , αm〉 ∈ Rm+1 and define the polyhedral cone generated by the

vectors Γh
A and Γi

A, i = 1, . . . , m:

ΓA :=

{
γ ∈ RA

∣
∣
∣ γ = αhΓh

A +
m∑

i=1

αiΓ
i
A ∧ α ≥ 0(m+1)

}
. (3.1)

The following results, attributable to Weymark [1979], will also be useful:

Lemma 1: There exist Pareto-improving directions of change relative to A if and only

if ΓA ∩ (−ΓA) = ∅; i.e., ΓA is pointed.

Lemma 2: If Γh
A �= 0A and Γi

A �= 0A, i = 1, . . . m, ΓA is pointed if and only if there

exists no vector α > 0(m+1) such that

αhΓh
A +

∑

i

αiΓ
i
A = 0A. (3.2)

A direction of change, δA, is Pareto improving and equilibrium preserving relative

to A if and only if

ΦA · δA ≤ 0, (3.3)

Γh
A · δA > 0, (3.4)

17 In the statement of this theorem, it is essential that we be explicit about matrix transposes, which
we signify by the superscript T .
18 See also Mangasarian [1969], Myles [1995], Blackorby [1999], and Blackorby and Brett [2000].
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and

Γi
A · δA > 0, i = 1, . . . , m. (3.5)

We turn now to our results. To this end, let 1ν
A = 〈0, . . . , 0, 1〉 ∈ RA and define

the ray Γν
A = {γ ∈ RA | γ = κ1ν

A, κ > 0}.

Theorem 1: Suppose that ν̄ is an available instrument and consider a tight equilibrium

in which ΦA �= 0A and there exists an a ∈ A\{ν} such that Γh
a �= 0.

(i) There exists no Pareto-improving and equilibrium-preserving direction of change if

and only if ΦA ∈ ΓA.

(ii) There exist Pareto-improving and equilibrium-preserving directions of change and

all such changes require ˙̄ν > 0 if and only if ΦA ∈
(
ΓA−Γν

A

)
\
(
ΓA∪ (−Γν

A)
)

=: ξA.

(iii) There exist Pareto-improving and equilibrium-preserving directions of change and

all such changes require ˙̄ν < 0 if and only if

(a) ΦA ∈
(
ΓA + Γν

A

)
\
(
ΓA ∪ Γν

A

)
=: ΨA when −1ν

A /∈ ΓA

and

(b) ΦA ∈ ΓC
A (the complement of ΓA) when −1ν

A ∈ ΓA.

(iv) There exist Pareto-improving and equilibrium-preserving directions of change such

that not all such directions of change require ˙̄ν > 0 and not all such changes require

˙̄ν < 0 if and only if −1ν
A /∈ ΓA and ΦA ∈

(
ΓA ∪ ξA ∪ ΨA

)C
=: χA.

Proof: We first show that Pareto-improving directions of change exist when the set

of instruments A includes ν and another instrument a where Γh
a �= 0. Suppose not:

◦
KA = ∅. By Lemma 2, the latter holds if and only if there exists an α > 0(m+1)

satisfying

αhΓh
A +

∑

i

αi Γi
A = 0A. (3.6)
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Two elements of this vector equality are

αhΓh
a +

∑

i

αi Γi
a = 0

∑

i

αiλ̄
iπi = 0 (since Γh

ν = 0).
(3.7)

As λ̄i > 0, πi < 0, and αi ≥ 0 for all i, the second of these equalities implies that

αi = 0 for all i, which, from the first equation, along with Γh
a �= 0, implies that αh = 0,

a contradiction. Hence
◦
KA �= ∅.

Next we prove (i). There exists no equilibrium-preserving and Pareto-improving

direction of change if and only if there is no δA satisfying

−ΦA · δA ≥ 0 ∧ Γh
A · δA > 0 ∧ Γi

A · δA > 0, i = 1, . . . , m. (3.8)

By Motzkin’s Theorem, there exists no solution to (3.8) if and only if there exist a

scalar β and a vector α satisfying

−β ΦA + αh Γh
A +

∑

i

αi Γi
A = 0A, β ≥ 0, α > 0(m+1). (3.9)

If β = 0, αh Γh
A +

∑
i αiΓ

i
A = 0A, and by Lemma 1 there exists no Pareto-improving

direction of change relative to A, a contradiction. Therefore, β > 0, and

ΦA =
αh

β
Γh

A +
∑

i

αi

β
Γi

A ∈ ΓA. (3.10)

We use part (i) to prove part (ii). There exist Pareto-improving and equilibrium-

preserving directions of change and all such changes require ˙̄ν > 0 if and only if ΦA /∈ ΓA

and there exists no vector δA satisfying

Γh
A·δA > 0 ∧ Γi

A·δA > 0, i = 1, . . . , m ∧ −1ν
A·δA ≥ 0 ∧ −ΦA·δA ≥ 0. (3.11)

By Motzkin’s Theorem, the nonexistence of a solution to the displayed inequalities is

equivalent to a solution of the equality,

αhΓh
A +

∑

i

αiΓ
i
A − α01

ν
A − βΦA = 0A, α > 0(m+1), α0 ≥ 0, β ≥ 0. (3.12)
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Suppose that β = 0. Then

αhΓh
A +

∑

i

αiΓ
i
A − α01

ν
A = 0A, α > 0(m+1), α0 ≥ 0, (3.13)

and, in particular,
∑

i

αiπ
iλ̄i − α0 = 0 (3.14)

and

αhΓh
a +

∑

i

αiΓ
i
a = 0. (3.15)

As πiλi < 0 for all i, αi ≥ 0 for all i, and α0 ≥ 0, (3.14) implies that αi = 0 for all

i. This, in turn, along with (3.15), implies that αh = 0 and, hence, α = 0(m+1), a

contradiction. Therefore, β > 0. It follows from (3.12) that α0 > 0, for otherwise we

would have ΦA ∈ ΓA, a contradiction. Hence, in an obvious notation,

ΦA = α̂hΓh
A +

∑

i

α̂iΓ
i
A + α̂0(−1ν

A), 〈α̂h, α̂1, . . . , α̂m〉 > 0(m+1), α̂0 > 0, (3.16)

which establishes (ii).

Next, we prove part (iii), again exploiting (i). There exist Pareto-improving and

equilibrium-preserving directions of change and all such changes require ˙̄ν < 0 if and

only if ΦA /∈ ΓA and there exists no vector δA satisfying

Γh
A ·δA > 0 ∧ Γi

A ·δA > 0, i = 1, . . . , m ∧ 1ν
A ·δA ≥ 0 ∧ −ΦA ·δA ≥ 0. (3.17)

By Motzkin’s Theorem, the nonexistence of a solution to the displayed inequalities are

equivalent to a solution of the equality,

αhΓh
A +

∑

i

αiΓ
i
A + α01

ν
A − βΦA = 0, α > 0(m+1), α0 ≥ 0, β ≥ 0. (3.18)

There are four possible solutions to this equation (with α > 0(m+1) in each case): (a)

α0 = β = 0, (b) α0 = 0 and β > 0, (c) α0 > 0 and β > 0, and (d) α0 > 0 and β = 0.

In case (a),

αhΓh
A +

∑

i

αiΓ
i
A = 0, α > 0(m+1); (3.19)

violating the fact that Γ is a pointed cone (Lemmas 1 and 2). Case (b) is also ruled out,

since it implies that ΦA ∈ ΓA. Case (c) yields the required result in a manner similar
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to (ii), a special case of the restriction in (iii). Finally, case (d) yields, in an obvious

notation,

−1ν
A = α̂hΓh

A +
∑

i

α̂iΓ
i
A (3.20)

or −1ν
A ∈ ΓA and no restriction on ΦA other than ΦA /∈ ΓA. This establishes part (iii).

Part (iv) follows in an obvious way.

Note that the collection of sets identified in the Theorem 1 (ΓA, ξA, ΨA, and χA)

is not necessarily a partition of RA, since, if −1ν
A ∈ ΓA, cases (ii), (iiia), and (iv) are

vacuous. The theorem can be re-stated in terms of partitions of RA as follows:

Corollary: Suppose that ν̄ is an available instrument and consider a tight equilibrium

in which ΦA �= 0A and there exists an a ∈ A\{ν} such that Γh
a �= 0.

(1) If −1ν
A ∈ ΓA, RA can be partitioned into ΓA and ΓC

A, such that

(a) ΦA ∈ ΓA ⇐⇒ ◦
KA ∩ QA = ∅

and

(b) ΦA ∈ ΓC
A ⇐⇒ ◦

KA ∩ QA �= ∅ ∧ ˙̄ν < 0 ∀ δA ∈ ◦
KA ∩ QA.

(2) If −1ν
A /∈ ΓA, RA can be partitioned into ΓA, ΨA, ξA, and χA such that

(a) ΦA ∈ ΓA ⇐⇒ ◦
KA ∩ QA = ∅,

(b) ΦA ∈ ξA ⇐⇒ ◦
KA ∩ QA �= ∅ ∧ ˙̄ν > 0 ∀ δA ∈ ◦

KA ∩ QA,

(c) ΦA ∈ ΨA ⇐⇒ ◦
KA ∩ QA �= ∅ ∧ ˙̄ν < 0 ∀ δA ∈ ◦

KA ∩ QA,

and

(d) ΦA ∈ χA ⇐⇒ ◦
KA ∩ QA �= ∅ ∧ ∃ δA ∈ ◦

KA ∩ QA such that ˙̄ν ≤ 0

∧ ∃ δA ∈ ◦
KA ∩ QA such that ˙̄ν ≥ 0.
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Theorem 1 and its Corollary are illustrated in Figure 3.19 In each case, there is

only one victim, i, and two available instruments, the externality quantity control and

one other (A = {a, ν}). Thus, Γh
A =

〈
Γh

a, 0
〉

and Γi
A =

〈
Γi

a, λ̄i πi
〉

(refer back to

(2.14) and (2.21)).20 For the purpose of illustration, we also assume that Γh
a is positive,

so that Γh
A points in the positive direction of the horizontal axis in each case. Since

λ̄i πi < 0, the direction of Γi
A must be in the lower (open) half-space in each case; for

the purpose of illustration, we assume Γi
a > 0 in each case (e.g., that a is the lump-sum

transfer).

The essence of Theorem 1 and its Corollary and the asymmetry between ˙̄ν > 0 and

˙̄ν < 0 are imbedded in the relationship between the the location of −1ν
A and the sign

of ˙̄ν in the Pareto-improving directions of change (independently of the requirement of

equilibrium preservation). This relationship is evoked in the following theorem:

Theorem 2: Assume that ν̄ is an available instrument (ν ∈ A) and that there exists

another instrument a ∈ A\{ν} such that Γh
a �= 0.21

(i) There exist Pareto-improving directions of change such that ˙̄ν > 0 if and only if

−1ν
A /∈ ΓA.

(ii) There exist Pareto-improving directions of change such that ˙̄ν < 0. Moreover all

such changes require ˙̄ν < 0 if and only if −1ν
A ∈ ΓA.

Proof: (i) There exists no Pareto-improving direction of change such that ˙̄ν > 0 if and

only if there exists no δA solving

Γh
A · δA > 0 ∧ Γi

A · δA > 0 , i = 1, . . . , m ∧ 1ν
A · δA > 0. (3.21)

19 These diagrams are stylized. To be completely accurate, the sets of directions of change in the
policy instruments might have to be restricted to a subset of R2 induced by a particular normalization
for 〈q, π, R〉.
20 The illustrations are also valid, with small changes of interpretation, if A is a superset of {a, ν}

and changes in all instruments in the complement of {a, ν} relative to A are set equal to zero.
21 Note that the maintained condition, Γh

a �= 0 for some a ∈ A\{ν}, is necessary for the existence
of any Pareto-improving directions of change, since, otherwise, as Γh

ν = 0, we have Γh
A = 0A and

Γh
A · δA = 0 for all δA ∈ RA.
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From Motzkin’s Theorem, this holds if and only if there exists an 〈α, α0〉 ∈ Rm+2

satisfying

αhΓh
A +

∑

i

αiΓ
i
A + α01

ν
A = 0A ∧ 〈α, α0〉 > 0(m+2), (3.22)

which is equivalent to

αhΓh
t +

∑

i

αiΓ
i
t = 0 ∀ t ∈ A\{ν}, (3.23)

∑

i

αiλ̄
iπi + α0 = 0, (3.24)

and

〈α, α0〉 > 0(m+2). (3.25)

Suppose α0 = 0. Then (3.24) and (3.25) imply that αi = 0 for all i, which in turn

implies, from the first equality (using Γh
a �= 0 for some a ∈ A\{ν}), that αh = 0, a

contradiction of the condition that 〈α, α0〉 > 0(m+2). Hence, α0 �= 0. Dividing through

(3.22), we obtain

−1ν
A =

αh

α0
Γh

A +
∑

i

αi

α0
Γi

A, (3.26)

or −1ν
A ∈ ΓA. Hence, there exists a Pareto-improving direction of change if and only if

−1ν
A /∈ ΓA.

(ii) There exists no Pareto-improving direction of change such that ˙̄ν < 0 if and

only if there exists no vector δA ∈ RA satisfying

Γh
A · δA > 0 ∧ Γi

A · δA > 0, i = 1, . . . , m ∧ −1ν
A · δA > 0. (3.27)

By Motzkin’s Theorem, this is equivalent to the existence of a solution to

αhΓh
A +

∑

i

αiΓ
i
A + α0(−1ν

A) = 0A, 〈α, α0〉 > 0(m+2). (3.28)

The last equation in this system is

∑

i

λ̄iπiαi − α0 = 0, (3.29)

which, with λ̄iπi < 0 for all i, implies that α0 = αi = 0 for all i. Returning to (3.28),

and remembering that Γh
a �= 0 for some a ∈ A\{ν}, we find that αh = 0, contradicting
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〈α, α0〉 > 0(m+2). This establishes the first sentence in (ii). To prove the second part

of (ii), suppose that there does not exist a solution to

Γh
A · δA > 0 ∧ Γi

A · δA > 0, i = 1, . . . , m ∧ 1ν
A · δA ≥ 0, (3.30)

which is equivalent to the existence of a solution to

αhΓh
A +

∑

i

αiΓ
i
A + α01

ν
A = 0A ∧ α > 0(m+1) ∧ α0 ≥ 0. (3.31)

The argument in the proof of (i) that α0 > 0 remains valid under the restriction in

(3.31), as does the remainder of the proof that −1ν
A ∈ ΓA.22

Theorem 2 is also illustrated in Figure 3. Panels III–V illustrate the case where

−1ν
A /∈ ΓA and the counterintuitive case ( ˙̄ν > 0) is a possible outcome, and Panel II

illustrates the case where −1ν
A ∈ ΓA and all Pareto-improving changes require ˙̄ν < 0.

Our last theorem identifies two sufficient conditions for the existence of Pareto-

improving counterintuitive policy prescription for quantity controls on an externality:

Theorem 3: There exist Pareto-improving directions of change such that ˙̄ν > 0 if (i) ν̄

and R are available instruments or (ii) ν̄ and qk are available instruments and, at the

initial equilibrium, the demands for the kth commodity satisfy

d̄h
k(q, π, R, ν̄) · d̄j

k(q, R, ν̄) > 0 (3.32)

for all j and

d̄i
k(q, R, ν̄) · d̄j

k(q, R, ν̄) > 0 (3.33)

for all i, j.

Proof: From Part (i) of Theorem 1, it suffices to show, in each case, that −1ν
A /∈ ΓC

A.

Suppose that n + 2 ∈ A and ν ∈ A but −1ν
A ∈ ΓA. From the definition of ΓA, we know

that −1ν
A ∈ ΓA only if

∑

i

αiλ̄
iπi = −1, (3.34)

22 In other words, the structure of the model is such that, if Pareto-improving directions of change
require ˙̄ν ≤ 0, they require ˙̄ν < 0, as is evident from the openness of the set

◦
KA.
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and

αhλ̄h +
∑

i

αiλ̄
i = 0, (3.35)

for some α ≥ 0(m+1). Equation (3.35), combined with the positivity of marginal utilities

of income and α ≥ 0(m+1), implies that αh = 0 and αi = 0 for all i, which, given that

πi < 0 for all i, contradicts equation (3.34).

Suppose, contrary to case (ii) that there exists a vector α > 0(m+1) such that

−1ν
A = αhΓh

A +
∑

i αiΓ
i
A, which implies that

∑

i

αiλ̄
iπi = −1 (3.36)

and

αhλ̄hd̄h
k(q, π, R, ν̄) +

∑

i

αiλ̄
hd̄i

k(q, R, ν̄) = 0. (3.37)

But, along with the maintained condition of part (ii), (3.37) implies that αh = αi = 0

for all i, contradicting (3.36).

4. Interpretations of the Results.

In this section, we provide some intuition for our results. Specifically we wish to under-

stand why the counterintuitive policy (requiring the regulator to mandate an increase

in the level of the negative externality) can become a possibility in the context of our

second-best model (one where the policy maker cannot implement personalized lump-

sum transfers) while it will never be Pareto improving and equilibrium preserving at a

competitive equilibrium of a first-best world with an externality.

Our approach is to first establish and exploit a link between Guesnerie’s gen-

eral approach to designing policy reforms and the standard Kuhn-Tucker technique for

identifying the manifold of feasible Pareto-optimal states, given the policy instruments

available to the government. The link so established, along with an application of the en-

velope theorem, provides an economic interpretation of the conditions identified by The-

orem 1 and allows us to distinguish between Guesnerie’s (strong) Pareto-improving and
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equilibrium-preserving reforms and weak Pareto-improving and equilibrium-preserving

reforms at a status quo.

Subsection 4.1 focuses on Theorem 1—in particular, on the intuition underlying

the cases where Pareto-improving and equilibrium-preserving directions of change entail

an increase in the negative externality, starting at a status quo with no quantity control.

For good measure, we also provide a proof in Section 4.2, using our methods, of the

well-known result that if first-best instruments are available to the policy makers then

starting at a competitive equilibrium with no externality control, all Pareto-improving

and equilibrium-preserving policy innovations require a decrease in the negative exter-

nality. The contrast between this case and the strongly counterintuitive case identified

by Theorem 1 helps to explain the role of the wedge in generating the latter. Finally,

in Section 4.3, we look briefly at temporary production inefficiencies along a Pareto-

improving and equilibrium-preserving path with externalities.

For the sake of notational simplicity, we assume throughout this discussion that

all n + 3 demand-side instruments (as well as the producer prices) are available to the

policymaker.

4.1. Explication of Theorem 1.

We associate the following Kuhn-Tucker optimization exercise with a second-best opti-

mum:
Uh(u) := max

q,π,R,ν̄,p,ρ
V h(q, π, R, ν̄) s.t.

V i(q, R, ν̄) ≥ ui, i = 1, . . . , m,

d̄h(q, π, R, ν̄) +
∑

i

d̄i(q, R, ν̄) ≤ η(p, ρ),

ν̄ ≤ ην(p, ρ),

(KT1)

where u is the utility profile 〈u1, . . . , um〉 at the status quo. At a local, interior max-

imum, the following first-order conditions (among others) are satisfied (using the no-

tation of Sections 2 and 3 and again suppressing the arguments of function images to
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ease the notation):

Γh −
∑

i

γiΓ
i − ψ ·

(
∇d̄h +

∑

i

∇d̄i

)
= 0(n+3) (4.1)

and

ψ · ∇η = 0(n+1), (4.2)

where γ = 〈γ1, . . . , γm〉 is the vector of multipliers on the utility constraints in (KT1)

and ψ = 〈ψ1, . . . , ψn+1〉 is the vector of multipliers on the resource constraints in (KT1).

The latter, of course, are the shadow prices of commodities (measured in units of utility

of consumer h). Invoking LR1 (that ∇η has rank n), we find that

ψ = µ〈p, ρ〉, µ > 0, (4.3)

demonstrating that production efficiency holds at the second-best optimum.

The first two terms in each of the equalities in (4.1) represent the marginal benefits

of a change in the respective instrument, measured in units of utility of consumer h

(γi is the trade-off between utilities of consumer h and consumer i, measured along

the second-best utility possiblility frontier). The last term of each equation is the

marginal production cost of changing the respective instrument, again measured in units

of consumer h’s utility (µ = ψl/pl converts the marginal production cost of changing

any instrument into units of consumer h’s utility). Thus, (4.1) simply says that the

net benefit of changing any instrument is zero. Finally, since µ > 0, this condition is

equivalent to condition (i) in Theorem 1, the necessary and sufficient condition for the

non-existence of Pareto-improving and equilibrium-preserving directions of change at a

status quo (see equation (3.9)).23

Consider now the case where the status quo is not a local second best—that is,

where there exist Pareto-improving and equilibrium-preserving directions of change. In

this case, some of the n+3 conditions in (4.1) fail to hold. In terms of Motzkin’s Theorem

23 If αh = 0 in (3.9), renormalize (KT1) by maximizing the indirect utility of consumer i for whom
αi > 0.
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(equation (3.9)), every pair, α := 〈αh, α1, . . . , αm〉 > 0(m+1) and β ≥ 0 violates at least

one of the n + 3 conditions,

αhΓh +
∑

i

αiΓ
i − βΦ = 0(n+3). (4.4)

Thus, for an appropriately chosen α > 0(m+1) and β ≥ 0, we partition the set of

coordinates of Rn+3 into B and C such that, at the status quo (and in an obvious

notation analogous to that introduced to identify available instruments at the beginning

of Section 3),

αhΓh
b +

∑

i

αiΓ
i
b − βΦb = 0 ∀ b ∈ B. (4.5)

and

αhΓh
c +

∑

i

αiΓ
i
c − βΦc �= 0 ∀ c ∈ C. (4.6)

By Motzkin’s Theorem, (4.5) is equivalent to the non-existence of directions of change

with respect to instruments corresponding to the elements of B, namely δB, such that

Γh
B · δB > 0, Γi

B · δB > 0 for all i, and ΦB · δB ≤ 0; i.e., the status quo is a local second

best with respect to the instruments in B.

Now let |B| = t and denote the vector of instrument values corresponding to

the elements of B by b̃ = 〈b̃1, . . . , b̃t〉. Similarly, c̃ = 〈c̃1, . . . , c̃n+3−t〉 is the vector of

instrument values corresponding to the elements of C. We now show that the status

quo satisfying (4.5) and (4.6) is a solution to the following Kuhn-Tucker problem:

Ũh
(
u, c̃

)
:= max

b̃,p,ρ
V h(b̃, c̃) s.t.

V i(b̃, c̃) ≥ ui, i = 1, . . . , m,

d̄h(b̃, c̃) +
∑

i

d̄i(b̃, c̃) ≤ η(p, ρ),

ν̄ ≤ ην(p, ρ).

(KT2)

The first-order conditions for a local interior optimum include (4.2), but (4.1) is

replaced by

Γh
B +

∑

i

γiΓ
i
B − µΦB = 0B. (4.7)
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As µ > 0, a comparison of conditions (4.5) and (4.7) indicates that the status quo is a

solution to KT2 above. The conditions in (4.5) thus have the interpretation that, at

the status quo, the marginal net benefit of changing any instrument in B is zero. On

the other hand, the marginal net benefit of changing any instrument in C,

Γh
c̃r

+
∑

i

γiΓ
i
c̃r
− µΦc̃r , (4.8)

need not be zero.

Theorem 1 provides conditions where, at the status quo, strict Pareto-improving

and equilibrium-preserving directions of change exist. The Kuhn-Tucker approach,

on the other hand, indicates the existence of weak Pareto-improving and equilibrium-

preserving reforms at the status quo. Let 〈∗b (u, c̃), ∗p(u, c̃), ∗ρ(u, c̃)〉 be the vector of

optimal values of b̃, p, and ρ corresponding to KT2. A direction of change in instru-

ments in C, δc, implies a direction of change of the instruments in B: 〈δB, ṗ, ρ̇〉 =

〈∇c̃
∗
b (u, c̃), ∇c̃

∗p(u, c̃), ∇c̃
∗ρ(u, c̃)〉 · δC . From the envelope theorem it follows that, start-

ing at the status quo (a solution to KT2), implementing a reform, 〈δB, ṗ, ρ̇, δC〉, leads to

a new state where the welfare of h is improved, the welfare of the victims is unchanged,

and the resource constraints continue to hold if and only if

[
Γh

C +
∑

i

γiΓ
i
C − µΦC

]
· δC > 0. (4.9)

We now provide some characteristics of directions of change that are strict Pareto

improving and equilibrium preserving.

Result 1: Suppose that there exist 〈αh, α1, . . . , αm〉 > 0m+1 and β ≥ 0 such that

(4.5) and (4.6) hold at the status quo. Let 〈δ1 . . . , δn+3〉 be Pareto-improving and

equilibrium-preserving. Then

n+3∑

a=1

[
αhΓh

a +
∑

i

αiΓ
i
a − βΦa

]
δa > 0; (4.10)

(i.e., the sum of changes in marginal net benefits is strictly positive.)
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Proof: Recall that δ is Pareto-improving and equilibrium-preserving if and only if

(2.31) and (2.33) hold, which, under the above parameter restrictions, is equivalent to

−β

n+3∑

a=1

Φaδa ≥ 0,

αh

n+3∑

a=1

Γh
aδa ≥ 0,

αi

n+3∑

a=1

Γi
aδa ≥ 0, i = 1, . . . , m,

αh

n+3∑

a=1

Γh
aδa +

n+3∑

a=1

αi Γi
aδa > 0.

(4.11)

Summation and rearrangement yields (4.10).

Result 2: Assume that (4.5) and (4.6) hold at the status quo and that δ is a Pareto-

improving and equilibrium-preserving direction of change. Then there exists a c ∈ C

such that δc �= 0; i.e., a Pareto-improving and equilibrium-preserving direction of change

involves a non-zero direction of change in some instrument for which marginal net

benefits are not equal to zero at the status quo.

Proof: Suppose δc = 0 for all c ∈ C. Since δ is Pareto-improving and equilibrium-

preserving, (2.31) and (2.33) imply that δB �= 0B and δB is Pareto-improving and

equilibrium-preserving. But this contradicts the fact that there does not exist a Pareto-

improving and equilibrium-preserving direction of change in δB.

Result 3: Assume that (4.5) and (4.6) hold at the status quo and that δ is a Pareto-

improving and equilibrium-preserving direction of change. Then there exists a c ∈ C

such that
[
αhΓh

c +
∑

i αiΓ
i
c−βΦc

]
δc > 0; i.e., there exists a direction of change in some

instrument in C that leads to an increase in net benefits.

Proof: Result 1 and the fact that δ is a Pareto-improving and equilibrium-preserving

direction of change imply that

[
αhΓh

B +
∑

i

αiΓ
i
B − βΦB

]
δB +

[
αhΓh

C +
∑

i

αiΓ
i
C − βΦC

]
δC > 0, (4.12)
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which, from (4.5) and (4.6), implies that

[
αhΓh

C +
∑

i

αiΓ
i
C − βΦC

]
δC > 0, (4.13)

yielding the result.

Cases (ii) and (iii)(a) of Theorem 1 correspond to status quos where (assuming

A = I) B = {1, . . . , n, n + 1, n + 2} and C = {ν}. In particular, in case (ii), (4.6) holds

as

α0 = αhΓh
ν +

∑

i

αiΓ
i
ν − βΦν > 0, (4.14)

and in case (iii)(a), (4.6) holds as

−α0 = αhΓh
ν +

∑

i

αiΓ
i
ν − βΦν < 0. (4.15)

Thus, the strong counterintuitive case (ii) corresponds to a status quo where the

marginal net benefits of changing any instrument other than ν̄ is zero, while the marginal

net benefits of changing ν̄ is positive. Given that Γh
ν = 0, Γi

ν = λ̄iπi < 0 for all i,

α > 0(m+1), and β ≥ 0, (4.14) holds if and only if Φν < 0 and |βΦν | > |
∑

i αiΓ
i
ν |;

i.e., the marginal net gains from a change in ν̄ accrue entirely from the reduction in

production costs that it entails at the status quo.24 Since ˙̄ν > 0 itself directly increases

production cost, this reduction must be generated by secondary effects of the change

in ν̄ on the demands for other commodities of all agents. Hence both weak and strict

Pareto-improving and equilibrium-preserving directions of change involve ˙̄ν > 0. The

latter follows from result 3 above and the fact that ν is the only instrument in C.

We show next why the direct and secondary effects of ˙̄ν > 0 can result in a reduction

of production costs starting at a tight TEQC while this is not true in a first-best world.

24 Note that this explication makes it clear that the strong counterintuitive case does not arise
trivially from the possibility of the Pigouvian tax on the externality-generating commodity being set
too high at the status quo, so that the obvious prescription for the introductory quantity control is
to mandate an increase in ν̄. Clearly, this result and its explication would go through even if no
Pigouvian taxation were implemented at the status quo (i.e., even if π = ρ at the status quo. Note the
contrast to the well-known case of overproduction of the negative externality-generating commodity in
a competitive equilibrium with no Pigouvian tax.
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4.2. Other Policy Regimes.

To understand the role played by the other distortions in our system in generating the

counterintuitive results of Theorem 3, we now consider a policy regime in which the

government can implement all of the first-best instruments: a common set of prices

〈p, ρ〉 faced by consumers and producers alike, a set of personalized lump-sum transfers

〈Rh, R1, . . . , Rm〉, and a direct quantity control ν̄ on the consumption of the externality-

generating commodity. We refer to the feasible states in this policy regime as the set

of competitive equilibria with a quantity control (CEQC).

We first show that, starting at a status quo that is a tight CEQC, there ex-

ists no Pareto-improving and equilibrium-preserving direction of change with respect

to the policy instruments 〈p, ρ, Rh, R1, . . . , Rm〉. Let B be the set of coordinates of

Rn+m+2 reserved for these instruments and denote a direction of change as δB =

〈ṗ, ρ̇, Ṙh, Ṙ1, . . . , Ṙm〉. Let

V h
(
p, ρ, Rh, ν̄

)
= Uh

(
d̄h

(
p, ρ, Rh, ν̄

)
, ν̄

)
(4.16)

and

V i
(
p, Ri, ν̄

)
= U i

(
d̄i

(
p, Ri, ν̄

)
, ν̄

)
, i = 1, . . . , m. (4.17)

Analogously to the modeling in Section 2, take the initial situation (the status quo) as

given and denote the derivatives of these indirect utility functions with respect to all

n + m + 2 of the instruments in B by

Γh
B =








λ̄hp ∇pd̄
h

λ̄hp ∇ρd̄
h

λ̄hp ∇Rh d̄h

0(m)








Γi
B =
















λ̄ip ∇pd̄
i

0
...
0

λ̄ip ∇Ri d̄i

0
...
0
















, i = 1, . . . , m,

(4.18)
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where we have exploited the first-order conditions for the consumers’ utility maximiza-

tion exercises. Similarly, denote the (n+1)× (n+m+2) matrix of derivatives of excess

demands with respect to the n + m + 2 instruments by EB = DB − SB, where

DB =









∇〈p,ρ〉
(
d̄h
1 +

∑
i d̄

i
1

)
∇Rh d̄h

1 ∇R1 d̄1
1 · · · ∇Rm d̄m

1

...
...

... · · ·
∇〈p,ρ〉

(
d̄h

n +
∑

i d̄
i
n

)
∇Rh d̄h

n ∇R1 d̄1
n · · · ∇Rm d̄m

n

0(n+1) 0 0 0









(4.19)

and

SB =
[
∇〈p,ρ〉η(p, ρ) 0

]
(4.20)

(where 0 is an (n + 1) × (m + 1) matrix of zeros).

By Motzkin’s Theorem, there does not exist a δB such that

Γh
B · δB > 0 ∧ Γi

B · δB > 0, i = 1, . . . , m ∧ EB · δB ≤ 0(n+1) (4.21)

if and only if there exists α = 〈αh, α1, . . . , αm〉 > 0(m+1) and β := 〈β1 · · · , βn, βν〉 ≥
0(n+1) such that

αhΓh
B +

∑

i

αiΓ
i
B − β · EB = 0(n+m+2). (4.22)

Exploiting the homogeneity of η, we find that the following specifications of α and β

satisfy (4.22):

αh = µ/λ̄h,

αi = µ/λ̄i, i = 1, . . . , m,

βk = µpk, k = 1, . . . , n,

βν = µρ,

(4.23)

where µ > 0.

Next we show that the status quo offers a solution to the following Kuhn-Tucker

problem:

Û(u, ν̄) := max
p,ρ,R

V h(p, ρ, Rh, ν̄) s.t.,

V i(p, Ri, ν̄) ≥ ui, i = 1, . . . , m,

d̄h(p, ρ, Rh, ν̄) +
∑

i

d̄i(p, Ri, ν̄) ≤ η(p, ρ),

ν̄ ≤ ην(p, ρ),

(KT3)
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where R = 〈Rh, R1, . . . , Rm〉. The first-order conditions include the following:

Γh
B +

∑

i

γi · Γi
B − ψ EB = 0(n+m+2). (4.24)

where γi, i = 1, . . . , m, ψl, l = 1, . . . , n, and ψν are the appropriate multipliers. A

comparison of (4.22) and (4.24) makes it clear that the status quo is a solution to (KT3)

where ν̄ is set equal to its status quo value; ui = U i(xi, ν̄), i = 1, . . . , m, h; and xi, i =

1, . . . , m, are set equal to their status quo values. Note that in this characterization,

ψl = βl/αh = µpl/αh, l = 1, . . . , n, and ψν = βν/αh = µρν/αh at the status quo,

indicating that the status quo is a production-efficient solution to (KT3).

Using (4.23), (4.22) can be re-written as

αhΓh
B +

∑

i

αiΓ
i
B − µ〈p, ρ〉 ·

[
DB − SB

]
= 0(n+m+2), (4.25)

or, using the fact that 〈p, ρ〉SB = 0(n+m+2) and recalling that 〈p, ρ〉DB = ΦB (the

production cost of changing the instruments in B),

αhΓh
B +

∑

i

αiΓ
i
B − µΦB = 0(n+m+2). (4.26)

Thus, at the status quo, the marginal net benefits of changing the instruments in B are

all zero. Consider, however, the marginal net benefit of changing ν̄, MNBν . Applying

the envelope theorem, this is obtained by differentiating the Lagrangian of (KT3),

L(p, ρ,R, ν̄), with respect to ν̄ and evaluating the Lagrangian multipliers at the status

quo using (4.23):

∂L(p, ρ,R, ν̄)

∂ν̄
=

∂V h(p, ρ, Rh, ν̄)

∂ν̄
+

∑

i

λh

λi

∂V i(p, ρ, Ri, ν̄)

∂ν̄
− µΦν . (4.27)

Employing the same arguments that led to (2.11) and (2.20) in Section 2, we can re-write

(4.27) as
∂L(p, ρ,R, ν̄)

∂ν̄
= λ̄h(πh − ρ) +

∑

i

λhπi − λ̄hΦν . (4.28)

A competitive equilibrium (CE) is a special CEQC where the quantity control on the

externality has been fixed at its unconstrained Marshallian demand evaluated at the
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prevailing prices, in which case πh = ρ. Thus, in a CE, the marginal net benefit of

changing ν̄ is

MNBν =
∑

i

λhπi − λ̄hΦν . (4.29)

We can now contrast a CE with a tax equilibrium (TE), which is a special TEQC

where the quantity control on the externality has been fixed at its unconstrained de-

mand). We saw in section 4.1 above that, at a TE corresponding to the strong coun-

terintuitive case identified by Theorem 3, condition (4.14) holds. This condition means

that, at the status quo, the marginal net benefit from changing ν̄ is positive. The

marginal net gains from changing ν̄ come from the fact that such a change brings about

(via the changes in the consumer demands that it induces) a reduction in marginal

production cost that more than offsets the induced loss in welfare of the victims. In

contrast, at a CE in the absence of a wedge between producer and consumer prices and

in which personalized lump-sum transfers are feasible, the marginal production cost of

changing ν̄ is

Φν = 〈p, ρ〉




∂
(
d̄h +

∑
i d̄

i
)
/∂ν̄

1



 = 0, (4.30)

the last identity following from differentiation of the consumer budget constraints and

aggregation across all consumers. (Given the absence of a wedge between producer and

consumer prices and the possibility of personalized lump-sum transfers, the marginal

production cost of a change in ν̄ is also the marginal aggregate consumer expenditure

attributable to a change in ν̄. A change in ν̄, holding prices and income fixed, just

moves each consumer along his or her budget hyperplane.) Hence, the last term in

(4.29) vanishes, and

MNBν = λ̄h
∑

i

πi. (4.31)

Since we are dealing with a negative externality, in a CE we have

MNBν = λ̄h
∑

i

πi < 0. (4.32)

In other words, we obtain, using these methods the well-known prescription that, at

a CE, all Pareto-improving and equilibrium-preserving directions of change require a
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decrease in the externality-generating commodity. The strong counterintuitive case in

Theorem 1 thus has to be attributed to the wedge that exists between producer and

consumer prices in our second-best model, which prevents the marginal production cost

of changing ν̄ from being equal to zero (and, of course, the wedge itself is attributable

to the infeasibility of personalized lump-sum transfers).

4.3. Temporary Production Inefficiency.

The tax reform literature (see, especially, Guesnerie [1977, 1995], Smith [1983], and

Myles [1995]) has focused on the possibility of temporary production inefficiency: when

Pareto-improving and equilibrium-preserving reforms exist but all such reforms are

necessarily non-strict equilibrium preserving. Assuming that Pareto-improving reforms

exist and ΦA �= 0, this phenomenon occurs if and only if ΦA ∈ −ΓA (Guesnerie [1977,

1995]). If, however, the lump-sum transfer is an available instrument and the demand

system satisfies “positivity of marginal (production) cost of (uniform) income transfer”

(Guesnerie’s [1995, p. 95] assumption LR2), ΦR = 〈p̂, ρ̂〉 ∇R

(
d̄h +

∑
i d̄

i
)

> 0, tempo-

rary production inefficiency cannot occur (Smith [1983] and Guesnerie [1995]). Thus,

temporary inefficiency cannot occur if normality of demands dominates inferiority in

the precise sense of assumption LR2. A sufficient condition, of course, is normality of

demand for all commodities.

Guesnerie’s [1995, p.150] proof of this proposition goes straight through when an

externality quantity control is an available instrument. In each case the intuition is

obvious: if any reform leads to production inefficiency and hence to a surplus in the

government budget, the policymaker can use the surplus to increase the uniform transfer

so that the resulting change in demands moves the economy (differentially) back to the

frontier. If, however, an externality exists but the quantity control on the externality-

generating commodity is not an available instrument, the Smith/Guesnerie proof does

not go through. Intuitively, this is because the increase in R changes the demand for

the externality-generating commodity by consumer h, which in turn has undetermined

effects on the demands for all other commodities by the victims, possibly undermining

the effects of the increase in R.
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It turns out that temporary production inefficiency is ruled out in the strong

counterintuitive case, even though the increase in ν̄ itself generates a surplus. To see

this, note that temporary inefficiency,

ΦA = α̃h

(
− Γh

A

)
+

∑

i

α̃i

(
− Γi

A

)
, 〈α̃h, α̃1, . . . , α̃m〉 > 0(m+1), (4.33)

implies that

Φν = −
∑

i

α̃iλ̄
iπi > 0. (4.34)

But recall from the discussion of equation (4.14) that the counterintuitive case requires

that Φν < 0. The intuition for this result can also be found in the discussion of

equation (4.14). The strong counterintuitive case requires that the mandated increase

in ν̄ generate a government surplus (Φν < 0), which can then be used to increase the

welfare of the externality victims, so long as an appropriate instrument exists to effect

this increase. The types of instruments that would suffice are indicated in Theorem 3.

The necessity of temporary inefficiency, on the other hand, requires that the increase

in ν̄ generate a government deficit (Φν > 0), which is incompatible with the strong

counterintuitive case.

5. Conclusion.

In this paper, we have imbedded a consumption-externality quantity control in a stan-

dard tax-reform framework. In the spirit of Guesnerie’s [1977, 1995] analysis of the

relationship between Pareto-improving and equilibrium-preserving directions of change

of available policy instruments, we have analyzed the introduction of externality quan-

tity controls in a second-best economy. An apparently counterintuitive result emerges:

starting at an initial tight equilibrium with no quantity controls, it is possible that the

Pareto-improving and equilibrium-preserving directions of change, if they exist, entail

a government-mandated increase in the quantity consumed of a commodity that gen-

erates a negative externality. Indeed, it is the case that, under some preference profiles

and cost structures, all Pareto-improving and equilibrium-preserving reforms require

such an increase.
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In the specific context of our model, the reason for our counterintuitive results,

as explained in the intuitive interpretations in Section 4, is the existence of distor-

tions elsewhere in the economy, reflected in the wedge between consumer and producer

prices, which is in turn necessitated by the infeasibility of personalized lump-sum trans-

fers. This second-best aspect of our model makes possible the existence of status quos

in which marginal net gains can be achieved only by changing the level of the exter-

nality. This explains the strong counterintuitive case, where all Pareto-improving and

equilibrium-preserving directions of change require an increase in the level of the neg-

ative externality (the marginal net gains from increasing the level of the externality

being positive at such status quos). In some status quos, however, the welfare effects

of changes in other (available) policy instruments can offset (can be offset by) the

welfare losses (gains) from changing the quantity control on the negative externality.

This explains the weaker counterintuitive case in which there exist Pareto-improving

and equilibrium-preserving policies involving an increase in the level of the negative

externality.
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