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Abstract

We present simple procedures for estimating nonlinear panel data models in the presence of

unobserved heterogeneity and possible endogeneity with respect to time-varying unobervables.

We combine a correlated random effects approach with a control function approach while ac-

counting for missing time periods for some units. We examine the performance of the approach

in comparisons with standard estimators using Monte Carlo simulation. We apply the methods

to estimating the effects of school spending on student pass rates on a standardized math exam.

We find that a 10 percent increase in spending leads to an approximately two percentage point

increase in math pass rates.
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1 Introduction
Unbalanced panel data – where some units do not have a complete set of observations in some

time periods, are prevalent in empirical work. Researchers have documented unbalancedness stem-

ming from both intermittent non-response and early attrition in panel surveys used in research

in labor, public, and development economics. Aughinbaugh (2004) and Falaris and Peters (1998)

note yearly non-response rates of three to four percent in the 1979 National Longitudinal Survey

of Youth. Fitzgerald (2011) notes that only one-third of the children from the 1968 round of the

Michigan Panel Survey of Income Dynamics remain in the data by 2007. Alderman et al. (1999)

find significant annual attrition rates in household surveys from seven different developing countries

that range from two to 20 percent.

As is well known, unbalanced panel data in a linear model context can be handled by fixed ef-

fects estimation provided the selection is based on observed variables or unobserved, time-constant

heterogeneity; see, for example, Wooldridge (2019). When explanatory variables are endogenous

with respect to time-varying unobservables, Joshi and Wooldridge (2019) show how linear fixed

effects and control function methods can be applied to unbalanced panels for estimation and spec-

ification testing. But as pointed out in Wooldridge (2019), unbalanced panels cause significantly

more difficulties in nonlinear panel data models. Wooldridge (2019) proposes a correlated random

effects (CRE) approach to allow the heterogeneity to be correlated with time-constant functions of

selection indicators for general nonlinear panel data models.

The CRE approach allows explanatory variables also to be correlated with time-constant un-

observables – so-called “unobserved heterogeneity.” In some cases, one might be concerned that a

key explanatory variable is correlated with unobserved time-varying variables. In the panel data

literature, this is called a failure of the “strict exogeneity” assumption. Failure of strict exogeneity

is often due to omitted time-varying variables, or feedback from shocks to future outcomes of the

explanatory variables. Simultaneity and (time-varying) measurement error can also cause failure of

strict exogeneity.

In this paper we extend Wooldridge (2019) to nonlinear estimation of unbalanced panel data

where the covariates may be endogenous with respect to time-constant heterogeneity as well as time-

varying unobservables. Our work can also be viewed as extending Joshi and Wooldridge (2019), who

consider linear models with unbalanced panels, to a nonlinear context. Our key assumption is that
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the missingness of data is not correlated with idiosyncratic shocks. When explanatory variables are

allowed to be endogenous with respect to idiosyncratic shocks, we require time-varying instrumental

variables that are exogenous with respect to those shocks.

The approach we take is to combine the CRE approach for unbalanced panels – which we refer to

as “CREU” for shorthand – with the control function approach when strict exogeneity fails. We con-

sider different strategies for allowing correlation between unobserved heterogeneity and the selection

indicators. We are specifically interested in comparing the CREU approach for nonlinear fractional

response models, implemented using pooled quasi-maximum likelihood estimation (QMLE), with

standard fixed effects estimation strategies for linear unobserved effects models. We find that the

CREU approaches perform comparably to the CRE approach that ignores the unbalanced nature

of the panel and linear fixed effects estimation in uncovering average partial effects (APEs). The

CREU approach provides efficiency gains in estimating APEs and, because the fractional response

model is nonlinear, allows us to study partial effects at different values of the key explanatory

variables.

We illustrate our approach with an empirical application in the economics of education literature:

estimating the effects of school spending on school pass rates of fourth graders on the Michigan

state mathematics standardized exam. Papke (2005) used unbalanced school-level data and linear

models estimated by fixed effects and instrumental variables. Given the bounded nature of the

pass rate, a linear model may not be the best way to estimate average effects or effects at different

points in the spending distribution. Papke and Wooldridge (2008) showed how to adapt fractional

response models to a panel data setting, but they assumed a balanced panel and applied a combined

correlated random effects/control function approach to balanced district-level data. We reexamine

the results from Papke (2005) while accounting for the unbalancedness of the school-level data

and the bounded nature of pass-rates. While we find some evidence of correlation between school

spending and unbalancedness, our results largely uphold the evidence presented in Papke (2005):

a 10% increase in spending leads to an approximately two percentage point increase in math pass

rates, though our inference is sensitive to specification and level of clustering. These results are also

similar to those in Papke (2008) using the balanced district-level data.

We organize the remainder of the paper as follows. In Section 2 we present the model and

estimation methods, considering first the case where all explanatory variables are exogenous with
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respect to the time-varying unobservables. We then derive a method that combines an extended

version of the Mundlak (1978) device and a control function method to allow some explanatory

variables to be correlated with time-varying unobservables. We present our simulation evidence in

Section 3. In our application in Section 4, we demonstrate estimation with and without requiring

school spending to be strictly exogenous with respect to idiosyncratic shocks in determining the

effects of spending on fourth grade math pass rates. Section 5 concludes.

2 Model and Estimation
We begin with a population from which we draw a random sample of N cross-sectional units.

For each random draw i from the cross section, there are potentially T time observations, t =

1, ..., T , containing an outcome, yit, and a vector of observed covariates, xit. Except for specific

functional form and distributional assumptions, the approach proposed here applies to nonlinear

models in general, but we focus on the case where yit is a fractional response that may take values

at the endpoints in [0, 1]. Along with the xit, we expect unobserved heterogeneity, ci, to play a

role in determining yit. In nonexperimental settings, it is likely that ci is correlated with at least

some components of xit. We use a correlated random effects strategy to allow all elements of xit

that vary somewhat across i and t to be correlated with ci. When one or more elements of xit is

correlated with underlying idiosyncratic shocks to yit – to be made precise shortly – we will assume

the availability of some time-varying instrumental variables. Then, zit will denote the vector of all

variables strictly exogenous with respect to shocks. We still allow all elements of zit to be correlated

with ci.

To account for the unbalanced nature of the panel data, we introduce a selection indicator –

also known as a “complete cases” indicator, sit. This indicator is one if we observe the outcome, all

covariates, and any instrumental variables for unit i in time t. It is important in what follows that

only the complete cases are used, as using incomplete cases generally requires more assumptions and

more complications. The default of estimation methods in econometrics packages is to use a data

point only if all necessary variables are observed, and that is what the definition of sit captures.

Therefore, sit = 1 means we use observation (i, t) in the estimation and sit = 0 means we do not.

The series of selection indicators for unit i is {si1, ..., siT }.
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2.1 Strict Exogeneity

We begin with the case where the explanatory variables are strictly exogenous conditional on

the heterogeneity. The population model, written for a random draw i, is

E(yit|xi, ci) = E(yit|xit, ci) = Φ(xitβ + ci), t = 1, ..., T, (1)

where xi = (xi1, ...,xiT ) is the entire history of the covariates and Φ(·) is the standard normal

cumulative distribution function. Our use of Φ rather than some other cumulative distribution

function leads to simple procedures in the presence of unobserved heterogeneity and easy calculation

of average partial effects. It is also convenient when we have endogenous explanatory variables.

To account for sample selection, let si = (si1, ..., siT ) be the entire history of selection. We

assume that, conditional on xi and the unobserved heterogeneity, selection is strictly exogenous in

the following sense:

E(yit|xi, si, ci) = E(yit|xi, ci), t = 1, ..., T (2)

This assumption allows selection to be arbitrarily correlated with both the explanatory variables

and unobserved heterogeneity – because we are conditioning on them – but rules out correlation

between selection and unobserved idiosyncratic fluctuations in the outcome.

Following Wooldridge (2019), we use a correlated random effects approach to specify a model

for the following conditional distribution:

D(ci|{(sitxit, sit) : t = 1, ..., T}), (3)

where multiplying the covariates by the selection indicator reflects our usage of complete cases only.

Generally, Wooldridge (2019) suggests modeling (3) as fairly simple time-constant functions, say wi,

of {(sitxit, sit) : t = 1, ..., T} that effectively act as sufficient statistics in the relationship between

the covariates and selection. It is natural to extend the Mundlak (1978) device to the unbalanced

case by using the time averages

x̄i = T−1i

Ti∑
t=1

xit,
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where Ti =
∑T

t=1 sit is the number of complete cases for unit i. (If Ti = 0, then there are no complete

time periods for unit i, and such units are not used in the estimation). To handle correlation between

ci and selection, we use a flexible mean specification where the intercept and slopes can depend on

the number of complete cases, as given by the indicators 1 [Ti = r], which are one if and only if unit

i has r complete cases. Then,

E(ci|wi) =
T∑

r=1

ψr1[Ti = r] +
T∑

r=1

(1[Ti = r] · x̄i) ξr. (4)

If we also assume D(ci|wi) is a normal distribution, then we have

E(yit|xit,wi, sit = 1) = Φ

(
xitβ +

∑T
r=1 ψr1[Ti = r] +

∑T
r=1 1[Ti = r] · x̄iξr

+V ar(ci|wi)}
1
2

)
, (5)

because a mixture of independent normal distributions is normal. Equation (5) extends Papke and

Wooldridge (2008), who assumed V ar(ci|wi) is constant, to the case of unbalanced panels. Rather

than assume V ar(ci|wi) is constant, it is natural to allow, at a minimum, the variance of ci to vary

with the number of complete cases. A simple way to do this is

V ar(ci|wi) = exp

(
τ +

T−1∑
r=1

1[Ti = r]ωr

)
, (6)

where exp (τ) is the variance for the complete-cases base group (Ti = T ) and each ωr captures the

deviation from the base group.

Combining (5) and (6), we have

E(yit|xit,wi, sit = 1) = Φ

xitβ +
∑T

r=1 ψr1[Ti = r] +
∑T

r=1 1[Ti = r] · x̄iξr{
1 + exp

(
τ +

∑T−1
r=1 1[Ti = r]ωr

)} 1
2

 . (7)

For all r ≥ 2 these scaled coefficients are identified as long as there is some time variation in all

elements of xit and no perfect collinearity among the elements of xit.

Given the expression (7) for the conditional mean, we can follow Papke and Wooldridge (2008)

in estimating the parameters using a pooled quasi-maximum likelihood approach with the log-

likelihood being chosen to be that for the Bernoulli distribution. Given the functional form in (7),

the pooled quasi-log-likelihood function is equivalent to that from a particular heteroskedastic probit
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model, where the heteroskedasticity function is 1 + exp
(
τ +

∑T−1
r=1 1[Ti = r]ωr

)
. As a practical

matter, we can drop the “1+” term because we allow an intercept τ inside the exponential function.

The resulting parameters in the “mean” function, xitβ +
∑T

r=1 ψr1[Ti = r] +
∑T

r=1 1[Ti = r] ·

x̄iξr, get rescaled, but this does not affect estimating the magnitudes of the effects. It is easy to

use software, such as Stata, that has a command for estimating fractional response models with

heteroskedasticity. In obtaining proper standard errors and inference, we obtain a cluster-robust

variance-covariance matrix estimator that accounts for both serial correlation and the fact that the

variance V ar(yit|xit,wi, sit = 1) does not have the same form as when yit is a binary variable.

Estimating the average partial effects – the quantities typically of interest – requires some care

if data are missing on the xit. At a minimum, we can plug in reasonable values of the covariates

and average across the functions of (xi, si) that act as proxies for the heterogeneity. This leads to

ÂPEj (xt) = β̂j

N−1 N∑
i=1

φ

xtβ̂ +
∑T

r=1 ψr1[Ti = r] +
∑T

r=1 (1[Ti = r] · x̄i) ξ̂r

1 + exp
(
τ̂ +

∑T−1
r=1 1[Ti = r]ω̂r

)
 .

It is harder to obtain an effect averaged across the distribution of xit because data may be missing

as a systematic function of xit. The simplest approach is to average the APEs across the selected

observations:

ÂPEj = β̂j

N−1 N∑
i=1

T−1i

T∑
t=1

sitφ

xitβ̂ +
∑T

r=1 ψr1[Ti = r] +
∑T

r=1 (1[Ti = r] · x̄i) ξ̂r

1 + exp
(
τ̂ +

∑T−1
r=1 1[Ti = r]ω̂r

)
 .

As an extension, x̄i can be added to the variance function along with interactions between the

dummies 1[Ti = r] and x̄i.

2.2 Endogenous Explanatory Variables

In many applications, researchers are hesitant to assume strict exogeneity of covariates. In our

application, we worry that deviations in school spending may be linked with unobserved fluctuations

in student performance. This may come from unobserved demands of cohorts or accountability

pressure, as depicted in Chiang (2009).
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Here we present a straightforward approach to handle endogeneity of an explanatory variable yit2

in nonlinear panel data models in the presence of unobserved heterogeneity and panel imbalance. We

first assume the presence of instrumental variables zit2 that are both relevant to yit2 and otherwise

exogenous. We more precisely state these assumptions below. We allow there to be additional

exogenous covariates denoted as zit2 with zit = (zit1, zit2) denoting the complete vector of pertinent

exogenous variables. We follow Papke and Wooldridge (2008) in modeling the conditional mean as

E (yit1|yit2, zi, si, ci1, vit1) =E (yit1|yit2, zi, ci1, vit1) = E (yit1|yit2, zit2, ci1, vit1)

=Φ (β1yit2 + zit1δ1 + ci1 + vit1) ,

(8)

where ci1 is time-invariant unobserved heterogeneity across units and vit1 is an omitted factor that

varies over both units and time. Once we have already conditioned on the explanatory variables

and the source of endogeneity, the conditional mean is unaffected by conditioning on zit2. Thus,

zit2 is excluded from equation (8). Additionally, note that we continue to assume that selection is

ignorable conditional on the observed variables and the unobservables, ci1 and vit1.

In equation (8) the variable yit2 may now be endogenous with respect to vit1 as well as with

respect to ci1. We handle the latter endogeneity similarly to the strict exogeneity case by using

a correlated random effects approach to specify a model for ci1, following the unbalanced case in

Wooldridge (2019). In particular, to account for the unbalanced panel, we allow the coefficients on

the time averages to change with the number of time periods observed for each i, in addition to

allowing separate intercepts for each Ti:

ci1 =
T∑

r=1

ψr11[Ti = r] +

T∑
r=1

(1[Ti = r] · z̄i) ξr1 + ai1, ai1|zi ∼ Normal(0, σ2a1), (9)

where z̄i = T−1i

∑Ti
r=1 sitzit is the time average over the complete cases and ai1 is an error term

that we assume to be independent of (zi, si). As before, conditional normality leads to a relatively

straightforward analysis.
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Substituting equation (9) into equation (8) gives

E(yit1|yit2,zi, rit1, sit = 1) =

Φ

(
β1yit2 + zit1δ1 +

T∑
r=1

ψr11[Ti = r] +
T∑

r=1

(1[Ti = r] · z̄i) ξr1 + rit1

)
,

(10)

where rit1 = ai1 + vit1 is a composite error term. Researchers may also wish to follow Lin and

Wooldridge (2019) by including ȳ2i = T−1
∑T

r=1 y2ir to clearly separate the endogeneity due to ci1

from the endogeneity due to vit1. We omit it here to coincide with previous approaches in our

application.

Secondly, we must deal with the endogeneity of yit2. Following Mundlak (1978), we linearly

model yit2 as a function of the exogenous explanatory variables, excluded instruments, and their

time averages. As selection may be correlated with yit2, we generally include indicators for the

number of time observations and interactions with time averages here as well. We present this

first-stage equation below:

yit2 = zitπ2 +
T∑

r=1

ψr21[Ti = r] +
T∑

r=1

1[Ti = r] · z̄iξr2 + vit2, (11)

where vit2 represents time-varying unobserved elements of yit2 and we have included a full set of

dummies and omitted an intercept. In equation (11) the endogeneity in yit2 is due to the correlation

between rit1 and vit2. Following Rivers and Vuong (1988) and Papke and Wooldridge (2008), we

model rit1 as linear in vit2 and conditionally normal:

rit1 = η1vit2 + eit1, eit1| (zi, si, vit2) ∼ Normal(0, σ2e).

Note that eit1 is also independent of yit2. As in the balanced case in Papke and Wooldridge (2008),

given the assumptions, we can replace rit1 = η1vit2 + eit1 and then integrate out eit1 using the

properties of the normal distribution. The resulting coefficients are scaled by (1 + σ2e)−
1
2 :

E(yit1|yit2,zi, vit2, sit = 1) =

Φ

(
β1eyit2 + zit1δ1 +

T∑
r=1

ψr1e1[Ti = r] +

T∑
r=1

(1[Ti = r] · z̄i) ξr1e+η1evit2

)
,

(12)
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where subscript e denotes the scaling of the coefficients. The average partial effects – where we

necessarily average over the selected sample – depend on the scaled coefficients, as discussed in

Papke and Wooldridge (2008) in the balanced panel case. Therefore, in what follows, we drop the

e subscript from the parameters.

We follow a two-step procedure to estimate equation (12). In the first step, we estimate (11) by

regressing our endogenous explanatory variable, yit2, on the exogenous variables, zit, that include

the instruments and time indicators, indicators for the number of time observations per unit, and

interactions between those indicators and time averages of the exogenous variables. We save the

residuals from that regression, v̂it2, for the complete cases. In step two, we substitute these residuals

for vit2 and estimate equation (12) using the complete cases and pooled probit QMLE of yiy1 on

zit1; the indicators, 1[Ti = r]; all interactions, 1[Ti = r] · z̄i; and the first-stage residuals, v̂it2.

Due to the estimation of v̂it2 in the first step, the standard errors in the second stage should be

adjusted. Bootstrapping the entire procedure by resampling individual units with replacement is one

way to account for the first stage estimation. We adopt this approach in our empirical application.

We are mainly interested in the APE of the endogenous explanatory variable, yit2. To obtain

it, we first follow Blundell and Powell (2003) in defining an average structural function (ASF) for

yit1, such that

ASF (y2t, z1t) = Φ (βeyt2 + zt1δe) (13)

is the conditional mean with zi averaged out to account for the heterogeneity and vit2 averaged out

to account for the contemporaneous endogeneity.

In practice, we uncover the APE by averaging out yit2, zit1,
∑T

r=1 1[Ti = r],
∑T

r=1 1[Ti = r] · z̄i,

and v̂it2 across the sample for a given t, and difference or differentiate. For instance, in the sample,

we estimate the APE of yit2 as

β̂e ·

(
N−1

N∑
i=1

φ[β̂eyit2 + zit2δ̂e +

T∑
r=1

ψ̂re11[Ti = r] +

T∑
r=1

1[Ti = r] · ziξ̂re1 + η̂evit2

)
, (14)

where the "ˆ" denotes that the coefficients have been estimated by pooled probit QMLE. Again,

applying a clustered bootstrap is a convenient way to obtain valid standard errors.

10



3 Simulation Evidence
We conduct a simulation study to investigate the performance of approaches that handle the

panel unbalancedness against standard estimators that do not. In particular, we are interested in

the bias that correlated unbalancedness may produce in estimated APEs and the relative efficiency

of the estimators. For comparison, we first use POLS and FE as approximations of the APE

from linear models. We then consider standard nonlinear approaches; namely, pooled fractional

response probit QMLE (PFR), and PFR where we model the correlated random effects using the

time averages of covariates (CRE).

In using CRE in the linear case, once x̄i has been included, interacting the indicators, 1 [Ti = r],

with x̄i does not change the estimates; they are the usual fixed effects estimates. This follows

from Wooldridge (2019). To handle the imbalance of the panel in the linear model, we mimic fixed

effects estimation using time averages of all explanatory variables and add time-observation indica-

tors interacted with time averages of the explanatory variables (FEU). In nonlinear formulations,

we add to CRE time-observations indicators (CREU). We next add to CREU interactions between

time-observation indicators and covariate time averages (CREU1). We then add to CREU1 inter-

actions between time-observation indicators and the covariates themselves (CREU2). Finally, we

also include triple interactions between time-observation indicators, the covariates, and their time

averages (CREU3).

3.1 Data Generating Process

We generate the data using a slight generalization of our single-stage model of interest. We

consider two cases (g = 0, 1) and generate the outcome, y, according to the following:

yit = Φ[α+ (β1 + uig)xit1 + β2xit2 + ci + vit], vit ∼ Normal(0, 0.2), (15)

where Φ is the standard normal CDF and β1 = β2 = 1. We first draw school-year variables xit1 ∼

Normal(0, 0.2) and xit2 ∼ Binomial(1, 0.3) over 500 “schools” across 5 “years,” and generate time

averages of these variables by school building. The standard deviation of xit1 is set to approximate

the standard deviation of our spending variable in the empirical application. The generalization

in this simulation is that unobserved school heterogeneity takes the form of fixed effects, ci, and
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random coefficients, uig.

The two cases differ depending on the construction of the unobserved heterogeneity and which

form of heterogeneity is correlated with selection. In both cases we generate the unobserved fixed

effects according to the following equation:

ci =
√
T x̄i1γ1 + ηi, ηi ∼ Normal(0, 0.14). (16)

However, in the first case, g = 0, the school-level, random slope of x1, ui0, is defined as the time

average of an independently distributed normal random variable, and thus, is not correlated with

x1 and selection into the panel. Consequently, it is not a far departure from the standard model

introduced above. In the second case, g = 1, we extend the data generating process to include a

correlated random coefficient on x1. This random slope, ui1, is correlated with x1 and selection into

the panel. Specifically, the random slopes take the following form:

uig =


ui0 = T−1

T∑
t=1

eit0, eit0 ∼ Normal(0, 0.14) in simulation one,

ui1 =
√
T × x̄i1γ2 + γ3ci + ei1, ei1 ∼ Normal(0, 0.14) in simulation two,

(17)

where T represents the five possible time-observations, γ1 and γ2 are each set to 0.7, and γ3 is set

to 0.2, and ηi , ei0, and ei1 are each drawn from independent, mean-zero, normal distributions.

We model selection depending on the unobserved effect, c, in simulation one and on the un-

observed correlated random slope, u1, in simulation two. In both cases, the selection of each

time-observation is drawn from a binomial distribution with probability pig defined below.

pig =


Φ(ait + ci) in simulation one,

Φ(ait + ui1)in simulation 2,
(18)

where ait is an independent normal distributed random variable with a mean of 0.75 and a standard

deviation of 0.2.
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3.2 Simulation Results

We present the resulting correlations from simulation one on the left and simulation two on

the right of Table 1. In the first case, only the unobserved fixed heterogeneity is correlated with

time-observation selection and with x1. The resulting average number of time-observations across

the 500 replications is 3.83, with a correlation of 0.299 between the number of time-observations and

the unobserved fixed effect. In contrast, the correlation between the number of time-observations

and the random slope is 0.001. The correlation between x1 and c is 0.315, while the correlation

between x1 and u is 0.0006.

Due to the positive correlation between x1 and c, we may expect POLS and PFR to exhibit an

upward bias for β1. Indeed, we see exactly this in Table 2. The first row of Table 2 provides the

“true” APEs of x1 when averaged over the population (as if the panel were balanced), the sample

(where the number of time-observations is non-randomly unbalanced), and then disaggregated by

each number of time-observations that the schools are present in the data. Over the population, the

APE of x1 is 0.2979, and averaged over the sample, the APE of x1 is 0.2953. Both POLS and PFR

overstate this effect by 0.087. The bias is easily statistically significant, as the standard deviations

of the POLS and PFR estimates over the 500 replications are 0.0111 and 0.0102 respectively, .

Beyond POLS and PFR, all estimated APEs are quite close to the true APE, and none are

more than a third of a standard deviation of the estimated APEs away from the true APE over the

population. Still, the FE estimated APE is the furthest from the truth, with an estimated APE of

0.2939, 1.3 percent lower than the true effect. Adding time-observation indicators to the time-means

in FE estimation in FEU increases the estimated APE to 0.2947, 1.1 percent lower than the true

APE.

Even without accounting for the unbalancedness of the panel, with an estimated APE of 0.2947,

the CRE estimates are remarkably close to those estimated by FEU. Neither adding indicators

for the number of time-observations in CREU nor including time-observation indicators interacted

with time averages in CREU1 alter the estimated APEs to the fourth decimal place. Further, the

standard deviations of the APE estimates remain remarkably similar among CRE (0.0097), CREU

(0.0098), and CREU1 (0.0098).

We examine additional specifications by adding interactions between covariates and time aver-
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ages of covariates to the covariates used in CREU1 estimation (labeled CREU2), and second, by

including the triple interactions between the covariates, their time averages, and the number of time-

observations (labeled CREU3). Including these additional interactions makes sense for a model that

includes correlated random slopes, as shown in equation (15). Here, we model the heterogeneous

school-level slopes by interacting the time averages of covariates with each covariate just as we

model the fixed unobserved heterogeneity by inserting the time averages additively. Incorporating

the triple interaction between the covariates, the time averages, and indicators for the number of

time-observations in CREU3 addresses the potential that selection of time-observations is related

to random slopes.

Both estimators provide very similar APE estimates to those from CRE. The CREU2 approach

yields an estimated APE of 0.2949, while CREU3 estimates the APE of x1 at 0.2951. The estimates

become slightly less precise as we add covariates—the standard deviation of the CREU3 APEs

increases to 0.0092.

We provide both the average standard error as well as the standard deviation of estimates across

repetitions to show how well the estimated standard errors reflect the precision of each estimator.

The standard errors of most estimators perform well, with the ratio of average standard errors to

Monte Carlo standard deviations ranging from 0.93 to 1.02.

We turn next to the case where the selection of time-observations depends on the random

coefficient of x1, which is u1. The average number of time-observation across the 500 replications is

3.82. The resulting correlation between the number of time-observations and the unobserved fixed

effect is 0.2065, and the correlation between the number of time-observations and the random slopes

is 0.3300. The correlation between x1 and c0 is 0.3152, while the correlation between x1 and u1 is

0.3404.

The results of the simulation with selection based upon correlated random slopes appear in Table

3. The “true” APE of x1, when averaged over the population (with the panel balanced) is 0.2902.

The correlation between selection and the heterogeneous slopes is apparent looking at the top row

across the true APEs averaged across schools with one, two, three, four, or five time-observations

appearing in the data. The relationship is monotonically positive with the APE among those with

only one time-observation being 0.2523, whereas the APE among those with five time-observations

is 0.3034. The true APE over the unbalanced sample is about 1 percent higher than the true APE
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over the population. This positive correlation may be expected in many contexts where those with

favorable numbers may be more likely to report their data. In our application, schools that report

their data more frequently tend to be higher-performing.

In the presence of correlation between the heterogeneous slopes and selection of time-observations,

all estimators overstate the average effect of the endogenous regressor. All estimates are greater

than the true APE among the unbalanced sample. POLS and PFR overstate this effect most. POLS

estimates the APE to be 0.3823 (standard deviation 0.0101). PFR probit estimates the APE to

be 0.3827 (standard deviation 0.0094). Again, the true value lies far outside the 95% confidence

interval of both estimators.

FE and CRE estimates lie significantly closer to the true estimates at 0.2954 and 0.2945, re-

spectively. The CRE estimates (with a standard deviation of 0.0083) are more precise than the

FE estimates (with a standard deviation of 0.0094). Adding indicators for the number of time-

observations moves the FE estimates closer to the true APEs, though not statistically significantly

so. The FEU estimate of the APE of x1 is 0.2941 (standard deviation 0.0104).

Regarding the nonlinear estimators, adding indicators for the number of time-observations in

CREU only marginally affects the estimates of the APE (0.2946) nor its precision (standard de-

viation of 0.0083). Adding interactions between time averages and time-observation indicators

marginally increases the estimate of the APE to 0.2947 (standard deviation of 0.0095), though

again not statistically significant. Only adding the triple interactions between the covariates, their

time averages, and time-observation indicators in CREU3 makes a somewhat larger impact. With

an estimated APE of 0.2937, CREU3 again provides the estimates closest to the true APE, though

it is less precise with a standard deviation across simulations of 0.0096. Still, all CREU estimates

fall within 0.3 percent of the estimated APE using the standard CRE approach.

Across specifications, the standard errors perform similarly to the standard deviations across

repetitions. The ratio of mean standard errors to the standard deviation of the APEs across replica-

tions is 0.89 to 1.1 in this second simulation. CREU provides the most conservative standard errors

relative to the standard deviation of estimates, and the ratio for CREU3 indicates that the standard

errors perhaps overstate the estimator’s precision. The nonlinear approaches mostly appear to be

more efficient than the approaches using a linear specification. The mean standard errors are ap-

proximately 10 percent smaller using one of the fractional response probit specifications as opposed
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to an analogous linear specification. The relative precision of the nonlinear estimators makes sense

given the nonlinearity of the estimated effects. Panel C of Table 3 shows the estimated partial effects

at the tenth, thirtieth, fiftieth, seventieth, and ninetieth decile of x1 using the CREU1 approach.

The estimated partial effect at the tenth percentile is 11 percent larger than the partial effect at

the median and 31 percent larger than the estimated partial effect at the ninetieth percentile.

To summarize, under both formulations of selection of time-observations into the sample, all

estimators that account for unobserved heterogeneity do comparably well in avoiding bias. Nonlinear

estimators have the additional advantage of greater efficiency and the ability to detect nonlinear

effects, particularly at the tails of the support. In the next section, we apply the methods to study

the effect of school spending on student achievement.

4 Empirical Application
In revisiting Papke (2005), we initially treat spending as strictly exogenous and apply single-stage

estimation of both linear and nonlinear models. Then, following Papke (2005), Chaudhary (2009),

and Roy (2011), we use the 1994 centralization of school financing that occurred in Michigan under

Proposal A to provide plausibly exogenous variation in school expenditures.1 We use this policy

to apply instrumental variables to spending and demonstrate these methods with an endogenous

regressor. As in Papke (2005), we conduct our analysis at the school-building level over the time

period of 1993-1998.

For building-level expenditure data, we use the average per pupil expenditures taken from the

Michigan School Reports indexed for inflation using the Consumer Price Index normalized to 1997

dollars. As Papke (2005) notes, spending in previous years may impact students’ fourth-grade math

scores as might contemporaneous spending. Thus, we measure spending as the log of average real

expenditures over the current and previous year. Our data contain 7,242 building-year observations

from the 1,771 elementary schools in the state over the five year period when funding equalization

was most dramatic. We focus on the effects of spending on math4, which measures the fraction

of 4th grade students who pass the mathematics section of the Michigan Education Assessment

Program (MEAP). During this time period, the mathematics and reading MEAP tests were only

offered in grades 4 and 7. We focus on mathematics, as the reading MEAP exams changed format
1Papke (2005), Chaudhary (2009), and Roy (2011) provide fuller discussion of this school finance reform.
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in the 1994/1995 school year and coincides with the policy change.

We note significant imbalance in the school-building-by-year panels, making this an appropriate

application of the methods discussed in Wooldridge (2019). Table 4 demonstrates this unbalanced-

ness. As the bottom row of Table 4 shows, 37 percent of schools are missing at least one of the

five possible observations, and 23 percent are missing at least two observations. Further, there is

significant variation in fourth-grade math pass rates, size, student composition, and spending across

schools that appear in the data for each number of years, suggesting that the unbalancedness may

be consequential for estimating the APE of spending. In addressing this unbalancedness, we move

beyond Papke and Wooldridge (2008), who conduct analysis at the district level due to this issue.

4.1 Treating spending as strictly exogenous

The population linear model estimated in Papke (2005) can be written as the following:

math4it =θt + β1log(avgrexpit) + β2lunchit + β3lunch
2
it

+ β4log(enrollit) + β5log(enrollit)
2 + ci + eit

(19)

We control for year indicators and quadratics of both the percent of free and reduced price lunch

students and the log of student enrollment. This model may be estimated using pooled ordinary

least squares (POLS). However, the estimated coefficients would be inconsistent if the unobserved

heterogeneity is correlated with any of the explanatory variables. Consequently, researchers may opt

to use fixed effects (FE) estimation or equivalently include time averages of all explanatory variables.

The estimated coefficients may provide good approximations to the APEs when the actual model

is nonlinear, but there is no general result that says so.

As noted previously, we do not observe each time-observation for each school building. Let

sit represent an indicator for whether school i appears in the data in year t. Thus, we can char-

acterize the linear unobserved effects model with unbalanced data by multiplying equation (19)

through by the selection indicator, sit. Equation (20) represents this linear model in the presence

of unbalancedness.

sitmath4it = sitθt + sitxitβa + sitci + siteit, (20)

where xit includes log(avgrexpit), lunchit, lunch
2
it, log(enrollit), and log(enrollit)

2. In order for
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fixed effects estimation to be consistent in the presence of such unbalancedness, we must assume

strict exogeneity of the covariates and selection, conditional on the unobserved heterogeneity. Put

more formally,

E(uit|xi, si, ci) = 0, (21)

where xi = (xi1,xi2, ...,xiT ) and si = (si1, si2, ..., siT ). As an example, an idiosycratic low pass rate

in year t− 1 affecting selection in year t would violate this condition.

In this setting our dependent variable, math4, is bounded between zero and one. While linear

estimation may do well to approximate the average effect of spending on pass rates, researchers may

opt to estimate a nonlinear model with a more plausible functional form to reduce bias in the APEs

and possibly improve precision of the estimates. Using a nonlinear functional form has the added

benefit of allowing estimation of partial effects at different points along the distribution of xit. Papke

and Wooldridge (2008) estimate a fractional response probit unobserved effects model, where the

unobserved heterogeneity is modeled using time averages of each covariate as in Chamberlain (1980)

and Mundlak (1978). Accordingly, their correlated random effects (CRE) estimation equation is

shown below:

E[math4it|xi1, xi2, ..., xiT ] = Φ(ψt + xitβ + xiξ) (22)

where xi includes the time averages of each covariate, Φ represents the normal CDF, and ψt allows

for year-specific intercepts.2

We use indicators for each number of times a particular school appears in the data, Ti =

T1i, T2i, ...., T5i, as sufficient statistics for the dependence between the unobserved, school-level het-

erogeneity and the selection of time-observations into our data. Thus, in accounting for the unbal-

ancedness of the school-level data, we initially estimate the following:

E[math4it|xit,xi,Ti] = Φ(ψt + xitβ + Tiγ + xiξ) (23)

We term the above approach Correlated Random Effects for Unbalancedness (CREU).

We also include a specification in which we interact time averages with indicators for the number

of time-observations in an approach we label CREU1. The corresponding estimating equation
2As discussed above, the coefficients remain scaled by the variance of the unobserved heterogeneity.
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appears below:

E[math4it|xit,xi,Ti] = Φ(ψt + xitβ + Tiγ + xiξ + (Ti ⊗ xiδ)). (24)

Table 5 provides estimates of both the linear and nonlinear models above using each methodol-

ogy. Moving from left to right across the table, the first two columns report estimates from POLS

and FE linear regressions. The third and fourth columns report estimates from the analogous

pooled fractional response (PFR) and CRE estimation. Columns five and six report the estimates

from correlated random effects estimation accounting for unbalancedness without (CREU) and with

(CREU1) interactions between time averages and time-observation indicators.

It is unclear how we should compute standard errors in this application. The observations are

structured as school buildings appearing (or sometimes not appearing) over time, making school-level

clustering an obvious choice. However, the policy variation used to instrument for spending in the

next section occurs at the district level, a situation similar to the simple situation studied in Abadie

et al. (2022), where a policy intervention is correlated within clusters. The Abadie et al. (2022) paper

does not cover the panel data setting or instrumental variables, but it seems reasonable to conclude

here that clustering at the district level is either correct or somewhat conservative. Consequently,

we present school-building-clustered standard errors in parentheses and district-clustered standard

errors in brackets. Unless stated otherwise, we use the generally more conservative, district-clustered

standard errors for inference in our discussion.

Across all estimators, the estimated effect of expenditures on fourth-graders’ achievement in

math is positive. However, accounting for unobserved heterogeneity leads to a decrease in the esti-

mated effect of expenditures on achievement. From the first row of column one using POLS, a 10%

increase in average spending leads to an 0.84 percentage point (p-value < 0.001) increase in fourth-

grade math pass rates. From column 2, the fixed-effects estimated effect of the same increase in

spending is 0.72 percentage points (p-value = 0.034). Using fully-robust, district-clustered standard

errors, the estimated effect is statistically significantly positive using either linear approach.

PFR probit estimation yields very similar results to those from POLS. Using this nonlinear

approach, a 10% increase in average spending leads to an 0.87 percentage point (p-value < 0.001)

increase in fourth-grade math pass rates. However, including time averages in the PFR probit causes
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the estimated average effect of spending to fall to 0.49 percentage points (p-value = 0.136) under

the CRE approach.

As shown in the fifth and sixth columns, accounting for panel imbalance does little to change the

CRE estimates. The estimated average effect of spending remains between 0.48 and 0.5 percentage

points with p-values between 0.13 and 0.15. The similarity of these CREU estimated coefficients to

those estimated ignoring the selection of time-observations suggests that the unbalancedness of the

panel is not driving the estimates.

Table 6 provides the results from Wald tests between nested models. We cluster the data at

the school-building level for inference in the top two rows, while we cluster the data at the district

level to construct the chi-squared test statistics in the bottom two rows. We test the constraints

that the nine time averages have zero effect on 4th-grade math pass rates in the linear model in the

first column and the nonlinear model in the second column. In both cases with either clustering,

we reject the hypothesis that the coefficient estimates on the time averages are zero.

In the third column, we test the coefficient estimates on the four indicators for the number

of time-observations. We reject the null hypothesis that all four coefficients are zero at the 5%

confidence level when we cluster the data at the school-level. However, clustering at the district-

level, we fail to reject the null with a chi-squared test statistic of only 6.2 corresponding to a

p-value of 0.18. However, when testing the 30 interactions between indicators for the number

of time-observations and the time averages, we reject the null hypothesis that the coefficient on

each is zero.3 In summary, there is significant evidence of unobserved heterogeneity across schools.

Further, while the bulk of the evidence points to significant relationships between panel imbalance

and fourth-grade math pass rates, the estimated effects of spending on those pass rates remains

robust to controlling for panel imbalance.

4.2 Allowing spending to be endogenous

The FE and CRE results are robust to unobserved heterogeneity that may be correlated with

spending and math pass rates. However, these results are susceptible to the criticism that idiosyn-

cratic unobserved shocks may impact spending and math pass rates. We use instrumental variables
3Note that due to collinearity, interactions between the indicator for 5 time-observations and time averages for

indicators for years 1995, 1996, 1997, and 1998 are omitted as is the interaction between the indicator for four
time-observations and the time average of the indicator for year 1997 and 1998.
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to address the possible endogeneity of spending and violations of the strict exogeneity assumption.

Michigan’s Proposal A equalized revenue to districts according to a non-smooth function deter-

mined by district spending in 1994. Consequently, we use the log of the foundation grants set forth

by Proposal A (lfoundit) to instrument for spending (lrexpppit). Further, we control for the log

of real per-pupil expenditures in 1994 (lrexpppi94) to capture this initial heterogeneity in spending.

Thus we model cumulative spending according to equation (25) below.

log(avgrexpit) =ηt + π1lfoundit + π2lrexpppi94 + π3lunchit + π4lunch
2
it

+ π5log(enrollit) + π6log(enrollit)
2 + ci + v1it

(25)

As a benchmark, we estimate equation (19) using pooled two-stage least squares (P2SLS) with

the fitted values coming from POLS estimation of equation (25). We add the residuals from POLS

estimation of equation (25), v̂1it, to the pooled fractional probit model to accommodate the nonlinear

functional form of fourth-grade math pass rates. This fractional response probit control function

approach appears as PFR CF in Table 7.

In order for P2SLS or PFR CF to produces consistent estimates of the causal effect of spending on

math pass rates, the instruments must be predictive of log(avgrexpit), and the excluded instrument

must be uncorrelated with both the unobserved heterogeneity, ci, and the idiosyncratic error term,

eit, from equation (19). The F-statistic on lfoundit from the first stage POLS regression is 180.95

demonstrating that the state foundation grants are indeed predictive of spending.

The second condition is untestable. However, we make a less restrictive exclusion restriction

by directly addressing the unobserved heterogeneity, ci. We treat this unobserved heterogeneity by

modeling it as a function of the building-level time averages, and including them as regressors as in

Chamberlain (1980) and Mundlak (1978). Equation (26) reflects the first stage of this approach.

log(avgrexpit) = ηt + π1lfoundit + π2lrexpppi94 + π3lunchit + π4lunch
2
it

+ π5log(enrollit) + π6log(enrollit)
2 + π7lunchi + π8lunch2i + π9log(enrolli)

+ π10log(enrolli)2 + π11y96i + π12y97i + π13y98i + v1it.

(26)

Note that due to the unbalancedness of the data, we also include time averages of the year indicators

– y96i, y97i, and y98i.
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In linear specifications, the fitted values of log(avgrexpit) from POLS estimation of equation (26)

are used for estimating the second stage. This procedure is akin to fixed effects instrumental

variables (FEIV) except that we use the base expenditures (lrexpppi94) to proxy for time-invariant

spending as opposed to the time average of spending.

In nonlinear specifications, we incorporate the estimated residuals, v̂1it, from the same first-stage

regression into our CRE fractional response probit. This correlated random effects control function

(CRE CF) approach allows us to handle the endogeneity of spending while accommodating the

nonlinear functional form.

As with the single equation model, we handle the possibly endogenous unbalancedness of the

panel by incorporating the number of time-observations into estimation of the model. We do this

by first including indicators for the number of time-observations to the CRE CF in both estimation

stages in what we term a correlated random effects unbalancedness control function (CREU CF)

approach. Secondly, we incorporate interactions between time averages (and lrexpppi94) and the

number of time-observations to more fully account for the unbalancedness of the panel in what we

term CREU1 CF.

We also perform several robustness checks. First, we incorporate the interactions between time

averages of each covariate and indicators for the number of time-observations of each school in the

linear fixed effects model. We term this approach FEIVU, which serves as the linear analogous

methodology to the CREU1 CF approach. Second, we treat the time-constant heterogeneity in

schools by demeaning each covariate in the first stage to generate the residuals used in each of the

three control function approaches. Naturally, the differencing eliminates time-constant covariates,

such as the number of time-observations and the level of expenditures in 1994, from the first stage

estimation. These three approaches (CRE FECF, CREU FECF, CREU1 FECF) appear in the last

three columns of Table 7.

Across all instrumental variables approaches the point estimates range from 0.169 to 0.25. These

findings all lie within the P2SLS confidence interval reported in Papke (2005). From the first column

of Table 7, the P2SLS estimated average partial effect (APE) of a 10% increase in log(avgrexpit)

is a 2.07 percentage point increase in fourth-grade math pass-rates (p-value = 0.013). Once we

instrument for spending, modeling the unobserved heterogeneity does little to change the point

estimates in the linear model. FEIV estimates of the effect of the same spending increase math pass
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rates by 1.94 percentage points (p-value = 0.021). Accounting for the unbalancedness of the panel

drops the point estimate of a 10% increase in spending to 1.69 percentage points (p-value = 0.069),

though it remains economically significant.

The nonlinear estimators find slightly larger effects of spending than do the linear instrumental

variables approaches. The instrumental variables linear approaches provide estimates of the APE of

spending that range from 0.169 to 0.207. Still, the nonlinear estimated APEs lie well within the 95%

confidence intervals of the linear estimates. The standard fractional response probit estimates a 10%

increase in spending leads to a 2.4 percentage point increase in math pass rates on average. Including

time averages using CRE CF decreases the estimated APE of spending to a 2.23 percentage point

increase in fourth-grade math pass rates (p-value < 0.001). Adjusting for panel imbalance leads to

smaller effects though these differences are far from statistically significant. The estimated APE of

log(avgrexpit) on pass rates is 0.5% (or 1% of a CREU CF standard error) smaller when including

time-observation indicators in the CREU CF approach than when using the more standard CRE CF

approach. Including interactions between indicators for the number of time-observations and the

time averages of covariates makes a somewhat bigger difference, though the economic and statistical

interpretation of the effects remains similar. The estimated APE of spending using CREU1 CF is

9.5% (or 19.6% of a CREU1 CF standard error) smaller than the CRE CF estimate.

Furthermore, there is little loss of efficiency when accounting for panel imbalance. Due to

the estimation of the residuals in the first stage, we cluster-bootstrap the standard errors over

500 repetitions to account for the estimation error. When clustering at the building level, the

standard errors are identical to three decimal places between CRE CF and CREU CF.4 There is

a larger difference when incorporating interactions between time averages and the number of time-

observations. The building-clustered standard errors are approximately 16% larger when applying

CREU1 CF as opposed to CREU CF or CRE CF.

The APEs from approaches using fixed effects estimation in the first stage range from 0.212 to

0.25, making them only slightly larger in magnitude than those previously discussed. The primary

difference in these estimates is in their precision. Demeaning the foundation grants in the first-

stage fixed-effects estimation rather than incorporating base-period expenditures in the first-stage
4When clustering at the district level the standard errors in columns 4 through 7 are about 30% larger than those

from CRE CF.
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increases the magnitude of the district-cluster-bootstrapped standard errors by roughly a 20 to 30%.

Beyond directly addressing the potential endogeneity of spending, the test statistic on v̂1it from

these control function approaches conveniently provides evidence regarding the prevalence of endo-

geneity of log(avgrexpit). The coefficient estimate on v̂1it is -0.194 using CREU CF with a standard

error of 0.097 from 500 district-level-cluster-bootstrap replications. Across the primary specifica-

tions, using district-level clustering, the p-values range from 0.023 (using the PFR CF approach)

to 0.096 (using the CREU1 CF approach).5 These results provide some evidence against the hy-

pothesis that spending is strictly exogenous.6 The estimated APEs from the instrumental variables

approaches in Table 7 are much larger than the estimated APEs in Table 5 assuming strict exo-

geneity of spending. For instance, the 95% confidence interval from the CREU CF approach ranges

from 0.102 to 0.342, excluding the 0.049 APE of spending estimated using CREU.

Table 8 provides the results from Wald tests between nested two-stage models. Again, we cluster

the data at the school-building level for inference in the top two rows, while we cluster the data at

the district level to construct the chi-squared test statistics in the bottom two rows. We test the

constraints that the seven time averages have zero effect on 4th-grade math pass rates in the linear

model in the first column, in the standard nonlinear model in the third column, and in the nonlinear

model with first-stage demeaning in the sixth column. Despite the closeness of the estimated APEs,

in all three cases with either clustering, we reject the hypothesis that the coefficient estimates on

the time averages are zero with p-values less than 0.001 in each case.

In the fourth and seventh columns of Table 8, we test the coefficient estimates on the four

indicators for number of time-observations. Column 4 depicts test statistics from our primary

CREU CF specification while column 7 depicts test statistics from CREU CF when we demean

covariates in the first-stage estimation. With either approach to the first stage, and either level of

clustering, we are unable to reject the hypothesis that the coefficient on the four time-observation

indicators are zero at the 95% level. The relevant Chi-squared statistics range from just 2.4 to 8.2.

When testing the 27 interactions between indicators for the number of time-observations and
5Using building-level-clustered standard errors across all specifications, the t-statistics on the residuals range from

-2.289 (using the CREU1 FECF approach) to -3.174 (using the FR CF approach).
6The district-level t-statistics are much smaller when using fixed effects estimation in the first stage. Comparing

CRE CF to CRE FECF the standard errors on the estimated coefficients on both log(avgrexpit) and v̂1it increase
when using the fixed effects residuals. The pattern continues when treating the unbalancedness.
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the time averages (and lrexpppi94), however, the results reject the null hypothesis.7 Both in linear

and nonlinear approaches, regardless of the level of clustering, we reject the null hypothesis of zero

coefficients on the interactions between indicators for the number of time-observations and the time

averages with p-values consistently smaller than 0.001. While these Wald tests inform whether or

not the unobserved heterogeneity and unbalancedness affect test scores conditional on the covariates

and foundation grants, the stability of the estimated APEs of spending is reassuring. The effects of

spending on fourth-grade math pass rates are not driven by the unbalancedness of the panel.

5 Discussion
This paper considers estimation of nonlinear panel data models when the panel is unbalanced

in the presence of endogeneity. We allow the selection of time observations to be correlated with

both unobserved heterogeneity as well as the explanatory variables. We take a correlated random

effects approach and model the unobserved heterogeneity while controlling for selection of time

observations. We incorporate a control function approach to handle endogeneity of explanatory

variables. In estimating average partial effects we adopt quasi-maximum likelihood estimation

such that consistency does not require knowledge of the specific distribution. Our approach is

straightforward to implement with standard statistical software and may be used when the outcome

is binary, fractional response, or otherwise bounded with known upper and lower bounds. As cases

of unbalanced panels are common in many applied fields of economics as well as in other disciplines

such as quantitative sociology and political science, there is wide potential for application across

the social sciences. The approach is easily extended to other nonlinear panel data models, such as

ordered probit and Tobit. Pooled (quasi-) MLE can be applied by combining the CRE and control

function approach we propose here.

In estimating the effect of school spending on fourth-grade pass rates on state mathematics

exams, we see significant unbalancedness in the underlying data. Estimation is additionally com-

plicated by likely unobserved heterogeneity across schools and the potential of contemporaneous

endogeneity of school spending. Indeed, we find evidence supporting the existence of both. Using

instrumental variables to identify the effect of spending off of plausibly exogenous changes in the
7Note that due to collinearity, interactions between the indicator for five time-observations and time averages

for indicators for years 1996, 1997, and 1998 are omitted as are the interactions between the indicator for four
time-observations and the time averages of the indicators for years 1996 and 1997.
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funding structure is consequential. Whereas we estimate that a 10 percent increase in spending

leads to a 0.5 percentage point increase in pass rates when we ignore the potential of endogeneity in

school spending decisions, we estimate the same spending change to increase pass rates by around

2 percentage points with a variety of instrumental variables approaches.

Once we address the contemporaneous endogeneity of school spending, we find our results to be

quite robust. Despite our Wald tests rejecting the null of no unobserved fixed heterogeneity, our

estimates remain relatively stable whether or not we include time averages of covariates. Further,

though the fact that buildings with missing time observations on average have lower spending and

lower pass rates than those with data present for each time period, our estimated effects remain

stable regardless of our approach to address the unbalancedness of our panel. The robustness of

these estimates provide further evidence of the positive effects of school spending on the students’

academic achievement. This result has found additional support in recent work, such as Jackson

et al. (2016); Hyman (2017); and Lafortune et al. (2018). Each find substantial positive effects of

school spending on students’ academic achievement – perhaps finally turning the prevailing narrative

to more positively depicting the efficacy of expenditures on public schooling.

Disclosures
Michael Bates, Leslie Papke, and Jeffrey Wooldridge declare no potential conflicts of interest with

respect to the research, authorship, and/or publication of this article. The authors disclose receipt
of the following financial support for the research, authorship, and/or publication of this article:
The research reported here was supported by the Institute of Education Sciences, U.S. Department
of Education, through R305B090011 to Michigan State University. The opinions expressed are those
of the authors and do not represent the views of the Institute or the U.S. Department of Education.
The data used for this project lie outside the scope of IRB approval and no IRB approval was
sought.

References
Abadie, A., S. Athey, G. W. Imbens, and J. Wooldridge (2022). When should you adjust standard
errors for clustering? Technical report. https://arxiv.org/abs/1710.02926.

Alderman, H., J. R. Behrman, H.-P. Kohler, J. A. Maluccio, and C. S. Watkins (1999). Attrition in
longitudinal household survey data: some tests for three developing-country samples. The World
Bank.

Aughinbaugh, A. (2004). The impact of attrition on the children of the nlsy79. Journal of human
resources 39 (2), 536–563.

Blundell, R. and J. L. Powell (2003). Endogeneity in nonparametric and semiparametric regression
models.

26



Chamberlain, G. (1980). Analysis of covariance with qualitative data. Review of Economic Stud-
ies 47, 225–238.

Chaudhary, L. (2009, February). Education inputs, student performance and school finance reform
in Michigan. Economics of Education Review 28 (1), 90–98.

Chiang, H. (2009). How accountability pressure on failing schools affects student achievement.
Journal of Public Economics 93 (9-10), 1045–1057.

Falaris, E. M. and H. E. Peters (1998). Survey attrition and schooling choices. Journal of Human
Resources, 531–554.

Fitzgerald, J. M. (2011). Attrition in models of intergenerational links using the psid with extensions
to health and to sibling models. The BE journal of economic analysis & policy 11 (3).

Hyman, J. (2017). Does money matter in the long run? effects of school spending on educational
attainment. American Economic Journal: Economic Policy 9 (4), 256–80.

Jackson, C. K., R. C. Johnson, and C. Persico (2016). The effects of school spending on educa-
tional and economic outcomes: Evidence from school finance reforms. The Quarterly Journal of
Economics 131 (1), 157–218.

Joshi, R. and J. M. Wooldridge (2019). Correlated random effects models with endogenous explana-
tory variables and unbalanced panels. Annals of Economics and Statistics (134), 243–268.

Lafortune, J., J. Rothstein, and D. W. Schanzenbach (2018). School finance reform and the distri-
bution of student achievement. American Economic Journal: Applied Economics 10 (2), 1–26.

Lin, W. and J. M.Wooldridge (2019). Testing and correcting for endogeneity in nonlinear unobserved
effects models. In Panel data econometrics, pp. 21–43. Elsevier.

Mundlak, Y. (1978). On the pooling of time series and cross-sectional data. Econometrica 46,
69–86.

Papke, L. E. (2005, June). The effects of spending on test pass rates: evidence from Michigan.
Journal of Public Economics 89 (5–6), 821–839.

Papke, L. E. (2008, July). The Effects of Changes in Michigan’s School Finance System. Public
Finance Review 36 (4), 456–474.

Papke, L. E. and J. M. Wooldridge (2008, July). Panel data methods for fractional response variables
with an application to test pass rates. Journal of Econometrics 145 (1–2), 121–133.

Rivers, D. and Q. H. Vuong (1988). Limited information estimators and exogeneity tests for simul-
taneous probit models. Journal of econometrics 39 (3), 347–366.

Roy, J. (2011, February). Impact of School Finance Reform on Resource Equalization and Academic
Performance: Evidence from Michigan. Education Finance and Policy 6 (2), 137–167.

Wooldridge, J. M. (2019). Correlated random effects models with unbalanced panels. Journal of
Econometrics 211 (1), 137–150.

27



Table 1: Average correlations across simulation repetitions for both correlated fixed effects and
correlated random-coefficient data generating processes (DPGs)

Correlated Fixed Effect DGP Correlated Random Coefficient DGP
x1 c u0 T x1 c u1 T

x1 1 x1 1
c 0.3152 1 c 0.3152 1
u0 0.0006 0.0009 1 u1 0.3404 0.6294 1
T 0.0941 0.2986 0.0013 1 T 0.1119 0.2065 0.3300 1

Notes: Average correlations over 500 simulation repetitions. x1 is the primary variable of interest. c represents the
unobserved fixed effects, and u0 and u1 are random slopes. T represents the number of time-observations for a given
"school." Correlated fixed effect DGP used in simulations appearing in Table 2. Correlated random-coefficient DGP
used in simulations appearing in Table 3.

Table 2: Simulation evidence with selection based on unobserved fixed effects

True mean APEs of x1 over: Population Sample T =1 T =2 T =3 T =4 T =5

Mean APE 0.2979 0.2953 0.3252 0.3163 0.3068 0.2965 0.2851

Estimates POLS FE FEU PFR CRE CREU CREU1 CREU2 CREU3

Mean APE 0.3850 0.2939 0.2947 0.3850 0.2947 0.2947 0.2947 0.2949 0.2951
Mean SE 0.0112 0.0099 0.0099 0.0101 0.0086 0.0086 0.0086 0.0086 0.0086
SD 0.0111 0.0098 0.0098 0.0102 0.0087 0.0087 0.0086 0.0089 0.0092
Mean SE/SD 1.0096 1.0108 1.0055 0.9915 0.9950 0.9924 0.9919 0.9611 0.9298

Partial effects (PEs) from CREU1 at selected deciles 10 30 50 70 90

PE at decile 0.3314 0.3145 0.3001 0.2837 0.2576
SD of PE at decile 0.0104 0.0097 0.0091 0.0082 0.0069

Notes: Simulated over 500 repetition with 500 individual "buildings" and a mean of 3.83 out of 5 possible time-
observations (T). All standard errors (SE) clustered at the building level. FE regressions are estimated as POLS
including time averages. PFR includes the same covariates as POLS with a nonlinear functional form (normal GLM).
CRE incorporates individual time averages into PFR. CREU incorporates indicators for the number of individual
Tobs into CRE. CREU1 adds interactions between Tobs indicators and covariate time averages to CREU. CREU2
incorporates interactions between covariates and the time averages into CREU1. CREU3 adds triple interactions
between covariates, their time averages, and indicators for Tobs.
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Table 3: Simulation evidence with selection based on correlated heterogeneous slopes

True mean APEs of x1 over: Population Sample T =1 T =2 T =3 T =4 T =5

Mean APE 0.2902 0.2933 0.2523 0.2670 0.2812 0.2931 0.3034

Estimates POLS FE FEU PFR CRE CREU CREU1 CREU2 CREU3

Mean APE 0.3823 0.2954 0.2941 0.3827 0.2945 0.2946 0.2947 0.2945 0.2937
Mean SE 0.0109 0.0099 0.0099 0.0099 0.0090 0.0090 0.0090 0.0089 0.0086
SD 0.0101 0.0094 0.0091 0.0094 0.0083 0.0083 0.0083 0.0085 0.0096
Mean SE/SD 1.0756 1.0494 1.0840 1.0584 1.0795 1.0798 1.0794 1.0458 0.8941

Partial effects (PEs) from CREU1 at selected deciles 10 30 50 70 90

PE at decile 0.3321 0.3147 0.3000 0.2833 0.2568
SD of PE at decile 0.0103 0.0095 0.0087 0.0078 0.0064

Notes: Simulated over 500 repetition with 500 individual "buildings" and a mean of 3.82 out of 5 possible time-
observations (T). All standard errors (SE) clustered at the building level. FE regressions are estimated as POLS
including time averages. PFR includes the same covariates as POLS with a nonlinear functional form (normal GLM).
CRE incorporates individual time averages into PFR. CREU incorporates indicators for the number of individual
Tobs into CRE. CREU1 adds interactions between Tobs indicators and covariate time averages to CREU. CREU2
incorporates interactions between covariates and the time averages into CREU1. CREU3 adds triple interactions
between covariates, their time averages, and indicators for Tobs.

Table 4: Summary statistics by number of time-observations per school

Number of time-observations per school 1 2 3 4 5 Total

Pass rate on fourth-grade math test 0.72 (0.23) 0.60 (0.21) 0.64 (0.20) 0.57 (0.23) 0.65 (0.19) 0.64 (0.20)
Average real expenditure per-pupil ($) 3949 (1181) 4082 (1051) 3968 (663) 3875 (520) 3875 (614) 3897 (626)
Percent FRL eligible 0.19 (0.2) 0.49 (0.25) 0.4 (0.26) 0.57 (0.26) 0.31 (0.22) 0.37 (0.25)
Number of enrolled students 282 (173) 366 (223) 411 (153) 540 (226) 398 (137) 420 (165)

Number of schools 54 42 506 259 910 1771
Notes: Sample means with standard deviations appearing in parentheses.
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Table 5: APE estimates assuming spending to be strictly exogenous

Linear Fractional Probit
VARIABLES POLS FE PFR CRE CREU CREU1

lavgrexpp 0.084 0.072 0.087 0.049 0.049 0.048
(0.017) (0.026) (0.018) (0.025) (0.025) (0.025)
[0.023] [0.034] [0.025] [0.033] [0.033] [0.033]

lunch -0.447 -0.067 -0.439 -0.071 -0.070 -0.070
(0.012) (0.044) (0.012) (0.043) (0.043) (0.042)
[0.026] [0.047] [0.026] [0.046] [0.046] [0.045]

lenrol -0.015 -0.022 -0.014 -0.019 -0.019 -0.019
(0.009) (0.021) (0.008) (0.021) (0.021) (0.021)
[0.010] [0.023] [0.010] [0.022] [0.022] [0.022]

Observations 7,242 7,242 7,242 7,242 7,242 7,242
Notes: School-clustered standard errors appear in parentheses. District-clustered standard errors are in brackets.
CREU estimation includes indicators for each number of time-observations. CREU1 includes indicators for time-
observations as well as interactions between time-observations and time averages of covariates. All regressions include
year indicators. Regressions including time averages also include time averages of year indicators.

Table 6: Wald testing between nested single-stage models

Model Comparison POLS vs FE PFR vs CRE CRE vs CREU CREU vs CREU1

Panel A: School-level clustered standard errors
χ2 (constraints) 13.7 (9) 114.7 (9) 9.7 (4) 93.7 (30)
Prob > χ2 <0.001 <0.001 0.046 <0.001

Panel B: District-level clustered standard errors
χ2 (constraints) 13.2 (9) 107.2 (9) 6.2 (4) 145.1 (30)
Prob > χ2 <0.001 <0.001 0.184 <0.001

Variables tested
time averages X X
time-observation X
time-observation interactions X
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Table 7: APEs allowing spending to be contemporaneously endogenous

Two-stage linear model Fractional resonse probit control functions
VARIABLES P2SLS FEIV FEIVU PFR CRE CREU CREU1 CRE CREU CREU1

CF CF CF CF FECF FECF FECF

lavgrexpp 0.207 0.191 0.168 0.240 0.223 0.222 0.201 0.250 0.248 0.212
(0.055) (0.056) (0.063) (0.061) (0.064) (0.064) (0.074) (0.073) (0.073) (0.076)
[0.083] [0.083] [0.092] [0.093] [0.093] [0.095] [0.107] [0.127] [0.126] [0.129]

residuals -0.219 -0.197 -0.194 -0.178 -0.223 -0.220 -0.190
(0.069) (0.073) (0.074) (0.082) (0.081) (0.081) (0.083)
[0.096] [0.095] [0.097] [0.107] [0.126] [0.126] [0.127]

lunch -0.454 -0.022 -0.014 -0.655 -0.037 -0.043 -0.053 -0.039 -0.044 -0.056
(0.015) (0.062) (0.061) (0.014) (0.062) (0.062) (0.060) (0.065) (0.065) (0.063)
[0.030] [0.066] [0.064] [0.048] [0.065] [0.066] [0.064] [0.070] [0.070] [0.068]

lenrol -0.005 -0.037 0.025 -0.197 0.018 0.035 -0.009 0.010 0.023 -0.032
(0.012) (0.033) (0.034) (0.011) (0.033) (0.033) (0.034) (0.030) (0.030) (0.030)
[0.015] [0.042] [0.042] [0.015] [0.042] [0.045] [0.046] [0.036] [0.036] [0.035]

Observations 4,853 4,853 4,853 4,853 4,853 4,853 4,853 4,853 4,853 4,853
Notes: School-clustered standard errors appear in parentheses. District-clustered standard errors are in brackets.
Control function standard errors are from 500 cluster-bootstrap repetitions to handle residuals’ estimation error.
CREU estimation includes indicators for each number of time-observations. CREU1 includes indicators for time-
observations as well as interactions between time-observations and time averages of covariates. All regressions include
year indicators. Regressions including time averages also include time average of year indicators.

Table 8: Wald testing between nested two-stage models

Model Comparison IV vs FEIV vs PFR CF vs CRE CF vs CREU CF vs PFR CF vs CRE FECF vs CREU CF vs
FEIV FEIVU CRE CF CREU CF CREU1 CF CRE FECF CREU FECF CREU1 FECF

Panel A: School level clustered standard errors
χ2 (constraints) 78.7 (7) 524.4 (27) 85.9 (7) 8.2 (4) 80.1 (27) 69.4 (7) 6.6 (4) 80.1 (27)
Prob > χ2 >0.001 >0.001 >0.001 0.083 >0.001 >0.001 0.159 >0.001

Panel B: District level clustered standard errors
χ2 (constraints) 73.1 (7) 220.2 (27) 55.7 (7) 2.5 (4) 59.4 (27) 50.5 (7) 2.4 (4) 58.7 (27)
Prob > χ2 >0.001 >0.001 >0.001 0.644 >0.001 >0.001 0.668 >0.001

Variables tested
time averages X X X
time-observation indicators X X
time-observation interactions X X X
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