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Abstract

A two-step estimator of a nonparametric regression function via KRLS with para-

metric error covariance is proposed. The naive KRLS, not considering any information

in the error covariance, is improved by incorporating a parametric error covariance,

allowing for both heteroskedasticity and autocorrelation, in estimating the regression

function. A two step procedure is used, where in the first step, the parametric error

covariance is estimated from the residuals obtained by a naive regression and in the

second step, a KRLS model based on transformed variables from the error covariance

is estimated. Theoretical results including bias, variance, and asymptotics are derived.

Simulation results show that the proposed estimator outperforms the naive KRLS in

both heteroskedastic errors and autocorrelated errors cases. An empirical example is

illustrated with estimating an airline cost function with heteroskedastic errors. The

derivatives are evaluated, and the average partial effects of the inputs are determined

in the applications.
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1 Introduction

Peter Schmidt has made many seminal contributions in advancing the statistical inference

methods and their applications in time series, cross section, and panel data econometrics in

general (Schmidt, 1976a) and, in particular, in the areas of dynamic econometric models,

estimation and testing of cross-sectional and panel data models, crime and justice models

(Schmidt and Witte, 1984), survival models (Schmidt and Witte, 1988). His fundamental and

innovative contributions on the econometrics of stochastic frontier production/cost models

have made significant impact on the generations of econometricians (e.g., Schmidt (1976b),

Aigner et al. (1977), Amsler et al. (2017), Amsler et al. (2019)). Also, he has contributed

many influential papers on developing efficient procedures involving the generalized least

squares (GLS) method (see Guilkey and Schmidt (1973), Schmidt (1977), Arabmazar and

Schmidt (1981), Ahu and Schmidt (1995)) among others. These were for the parametric

models, whereas here we consider the nonparametric models.

Nonparametric regression function estimators are useful econometric tools. Common

methods to estimate a regression function are kernel based methods, such as Kernel Regular-

ized Least Squares (KRLS), Support Vector Machines (SVM), Local Polynomial Regression,

etc. However, in order to avoid overfitting the data, some type of regularization, lasso or

ridge, is generally used. In this paper, we will focus on KRLS; this method is also known

as Kernel Ridge Regression (KRR) in the machine learning literature and is the kernelized

version of the simple ridge regression to allow for nonlinearities in the model.

In this paper, we establish fitting a nonparametric regression function via KRLS under a

general parametric error covariance. Some theoretical results, including pointwise marginal

effects, unbiasedness, consistency and asymptotic normality, on KRLS are found in Hain-

mueller and Hazlett (2014). However, Hainmueller and Hazlett (2014) only consider errors to

be homoskedastic and that the estimator is ubiased for estimating the postpenalization func-

tion, not for the true underlying function. Confidence interval estimates for Least Squares

Support Vector Machine (LSSVM) are discussed in De Brabanter et al. (2011), allowing
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for heteroskedastic errors. Although not directly stated, the LSSVM model in De Braban-

ter et al. (2011) is equivalent to KRR/KRLS when an intercept term is included in the

model. Following Hainmueller and Hazlett (2014), we will use KRLS without an intercept.

Although De Brabanter et al. (2011) allow for heteroskedastic errors, none of the papers

mentioned thus far discuss incorporating the error covariance in estimating the regression

function itself, making these type of models inefficient. In this paper, we focus on mak-

ing KRLS more efficient by incorporating a parametric error covariance, allowing for both

heteroskedasticity and autocorrelation, in estimating the regression function. We use a two

step procedure where in the first step, we estimate the parametric error covariance from

the residuals obtained by naive KRLS and in the second step, we estimate a KRLS model

based on transformed variables based on the error covariance. We also provide estimating

derivatives based on the two step procedure, allowing us to determine the partial effects of

the regressors on the dependent variable.

The structure of this paper is as follows: Section 2 discusses the model framework and

the GKRLS estimator, Section 3, Section 4, and Section 5 show the finite sample prop-

erties, asymptotic properties, and partial effects and derivatives of the GKRLS estimator,

respectively, Section 6 runs through a simulation example, Section 7 illustrates an empirical

example with heteroskedastic errors, and Section 8 concludes the paper.

2 Generalized KRLS Estimator

Consider the nonparametric regression model:

Yi = m(Xi) + Ui, i = 1, . . . , n, (1)

where Xi is a q×1 vector of exogenous regressors, and Ui is the error term such that E[Ui] = 0

and

E[UiUj] = ωij(θ0) for some θ0 ∈ Rp, i, j = 1, . . . , n. (2)
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In this framework, we allow the error covariance to be parametric, where the errors can be

autocorrelated or non-identically distributed across observations.

2.1 Naive KRLS Estimator

For KRLS, the function m(·) can be approximated by some function in the space of functions

constituted by

m(x0) =
n∑
i=1

ciKσ(xi,x0), (3)

for some test observation x0 and where ci, i = 1, . . . , n are the parameters of interest, which

can be thought of as the weights of the kernel functions Kσ(·). The subscript of the kernel

function, Kσ(·), indicates that the kernel depends on the bandwidth parameter, σ.

We will use the Radial Basis Function (RBF) kernel,

Kσ(xi,x0) = e−
1
σ2
||xi−x0||2 . (4)

Notice that the RBF kernel is very similar to the Gaussian kernel, in that it does not have

the normalizing term out in front and that σ is proportional to the bandwidth h in the

Gaussian kernel often used in nonparametric local polynomial regression. This functional

form is justified by a regularized least squares problem with a feature mapping function that

maps x into a higher dimension (Hainmueller and Hazlett, 2014), where this derivation of

KRLS is also known as Kernel Ridge Regression (KRR). Overall, KRLS uses a quadratic

loss with a weighted L2-regularization. Then, in matrix notation, the minimization problem

is

arg min
c

(y −Kσc)>(y −Kσc) + λc>Kσc, (5)

where y is the vector of training data corresponding to the dependent variable, Kσ is the

kernel matrix, with Kσ,i,j = Kσ(xi,xj) for i, j = 1, . . . , n, and c is the vector of coefficients
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that is optimized over. The solution to this minimization problem is

ĉ1 = (Kσ1 + λ1I)−1y. (6)

The kernel function and its parameters are user specified but can be found via cross validation

along with the regularization parameter λ. The subscript of one denotes the naive KRLS

estimator, or the first stage estimation. Finally, predictions for KRLS can be made by

m̂1(x0) =
n∑
i=1

ĉ1,iKσ1(xi,x0). (7)

2.2 An Efficient KRLS Estimator

The naive KRLS estimator, m̂1(·) does not take into consideration any information in the

error covariance structure and therefore is inefficient. As a result, consider the n × n error

covariance matrix, Ω(θ), where ωij(θ) denotes the (i, j)th element. Assume that Ω(θ) =

P (θ)P (θ)′ for some square matrix P (θ) and let pij(θ) and vij(θ) denote the (i, j)th element

of P (θ) and P (θ)−1. Let m ≡ (m(X1), . . . ,m(Xn))′ and U ≡ (U1, . . . , Un)′. Now, premultiply

the model in Eq. (1) by P−1, where P−1 = P−1(θ) and we condense the notation and the

dependence on θ is implied.

P−1y = P−1m + P−1U. (8)

The transformed error term, P−1U has mean 0 and covariance matrix as the identity matrix.

Therefore, we consider a regression of P−1y on P−1m. This simply re-scales the variables

by the inverse of their square root of their variances. Since m = Kσc, the quadratic loss

function with L2 regularization under the transformed variables is

arg min
c

(y −Kσc)>Ω−1(y −Kσc) + λc>Kσc. (9)
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The solution for vector is

ĉ2 = (Ω−1Kσ2 + λ2I)−1Ω−1y (10)

Note that the solution obtained depends on the bandwidth parameter σ2 and ridge parameter

λ2, which can be different than the hyperparameters used in the naive KRLS estimator. In

practice, cross validation can be used for obtaining estimates for both hyperparametrs. Here,

it is assumed that Ω is known if θ is known. However, if θ is unknown, it can be estimated

consistently and Ω can be replaced by Ω̂ = Ω̂(θ̂).

Furthermore, predictions for the generalized KRLS estimator can be made by

m̂2(x0) =
n∑
i=1

ĉ2,iKσ2(xi,x0) (11)

The two step procedure is outlined below

1. Estimate Eq. (1) by naive KRLS from Eq. (7) with bandwidth parameter, σ1 and

ridge parameter, λ1. Obtain the residuals which can then be used to get a consistent

estimate for Ω.

2. Estimate Eq. (8) by KRLS under the transformed variables as in Eq. (9) and Eq. (11).

Denote these estimates as GKRLS.

3 Finite Sample Properties

In this section, finite sample properties of both KRLS and GKRLS estimators, including the

estimation procedures of bias and variance, are discussed in detail.

3.1 Estimation of Bias and Variance

In this subsection, we estimate the bias and variance of the two step estimator. Following,

De Brabanter et al. (2011), notice that the GKRLS estimator is a linear smoother.
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Defintion 1. An estimator m̂ of m is a linear smoother if, for each x0 ∈ Rq, there exists a

vector L(x0) = (l1(x0), . . . , ln(x0))
> ∈ Rn such that

m̂(x0) =
n∑
i=1

li(x0)Yi, (12)

where m̂(·) : Rq → R.

For in sample data, Eq. (12) can be written in matrix form as m̂ = Ly, where m̂ =

(m̂(X1), . . . , m̂(Xn))> ∈ Rn and L = (l(X1)
>, . . . , l(Xn)>)> ∈ Rn×n, where Lij = lj(Xi).

The ith row of L show the weights given to each Yi in estimating m̂(Xi). For the rest of the

paper, we will denote m̂2(·) as the prediction made by GKRLS for a single observation and

m̂2 as the n× 1 vector of predictions made for the training data.

To obtain the bias and variance of the GKRLS estimator, we assume the following:

Assumption 1. The regression function m(·) to be estimated falls in the space of functions

represented by m(x0) =
∑n

i=1 ciKσ(xi,x0) and assume the model in Eq. (1).

Assumption 2. E[Ui] = 0 and E[UiUj] = ωij(θ) for some θ ∈ Rp, i, j = 1, . . . , n

Using Definition 1, Assumption 1, and Assumption 2, the conditional mean and variance

can be obtained by the following theorem.

Theorem 1. The GKRLS estimator in Eq. (11) is

m̂2(x0) =
n∑
i=1

li(x0)Yi

= L(x0)
>y,

(13)

and L(x0) = (l1(x0), . . . , ln(x0))
> is the smoother vector,

L(x0) =
[
K∗>σ2,x0

(Ω−1Kσ2 + λ2I)−1Ω−1
]>
, (14)

with K∗σ2,x0
= (Kσ2(x1,x0), . . . , Kσ2(xn,x0))

> the kernel vector evaluated at point x0.
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Then, the estimator, under model Eq. (1), has conditional mean

E[m̂2(x0)|X = x0] = L(x0)
>m (15)

and conditional variance

Var[m̂2(x0)|X = x0] = L(x0)
>ΩL(x0). (16)

Proof: see Appendix A.

From Theorem 1, the conditional bias can be written as

Bias[m̂2(x0)|X = x0] = E[m̂2(x0)|X = x]−m(x0)

= L(x0)
>m−m(x0)

(17)

Following De Brabanter et al. (2011), we will estimate the conditional bias and variance

by the following:

Theorem 2. Let L(x0) be the smoother vector evaluated at x0 and let m̂2 = (m̂2(x1),

. . . , m̂2(xn))> be the in sample GKRLS predictions. For a consistent estimator of the co-

variance matrix such that Ω̂ → Ω, the estimated conditional bias and variance for GKRLS

are obtained by

B̂ias[m̂2(x2)|X = x0] = L(x0)
>m̂2 − m̂2(x0) (18)

and

V̂ar[m̂2(x0)|X = x0] = L(x0)
>Ω̂L(x0). (19)

Proof: See Appendix B.
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3.2 Bias and Variance of KRLS

First, note that the KRLS estimator is also a linear smoother, so the bias and the variance

take the same form as in Eq. (18) and Eq. (19), except that the linear smoother vector L(x0)

will be different. Let

L1(x0) =
[
K∗>σ1,x0

(Kσ1 + λ1I)−1
]>

(20)

be the smoother vector for KRLS. Then, Eq. (7) can be rewritten as

m̂1(x0) = L1(x0)
>y. (21)

Using Theorem 1 and Theorem 2 and applying them to the KRLS estimator, the estimated

conditional bias and variance of KRLS are

B̂ias[m̂1(x0)|X = x0] = L1(x0)
>m̂1 − m̂1(x0) (22)

V̂ar[m̂1(x0)|X = x0] = L1(x0)
>Ω̂L1(x0), (23)

where m̂1 is the n × 1 vector of fitted values for KRLS. Note that the estimate of the

covariance matrix, Ω, will be the same for both KRLS and GKRLS.

4 Asymptotic Properties

The asymptotic properties of GKRLS, including consistency, asymptotic normality, and

bias corrected confidence intervals are covered in this section. To obtain consistency of the

GKRLS estimator, we also assume:

Assumption 3. Let λ1, λ2, σ1, σ2 > 0 and as n→∞, for singular values of LP given by di,∑n
i=1 d

2
i grows slower than n once n > M for some M <∞.
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Theorem 3. Under Assumptions 1-3, and let the bias corrected fitted values be denoted by

m̂2,c = m̂2 − Bias[m̂2|X], (24)

then

lim
n→∞

Var[m̂2,c|X] = 0 (25)

and the bias corrected GKRLS estimator is consistent with plim
n→∞

m̂c,n(xi) = m(xi) for all i.

Proof: See Appendix C.

The estimated conditional bias from Eq. (18) and conditional variance from Eq. (19) can

be used to construct pointwise confidence intervals. Asymptotic normality of the proposed

estimator is given via the central limit theorem.

Theorem 4. Under Assumptions 1 to 3, m̂2 is asymptotically normal by the central limit

theorem:

m̂2 − Bias[m̂2|X]−m
d→ N(0,Var[m̂2|X]), (26)

where Bias[m̂2|X] = Lm−m and Var[m̂2|X] = LΩL>.

Proof: See Appendix D.

Since GKRLS is a biased estimator for m, we need to adjust the pointwise confidence

intervals to allow for bias. Since the exact conditional bias and variance are unknown, we can

use Eqs. (18) and (19) as estimates and can conduct approximate bias corrected 100(1−α)%

pointwise confidence intervals from Theorem 4 as

m̂2(xi)− B̂ias[m̂2(xi)|X = xi]± z1−α/2
√

V̂ar[m̂2(xi)|X = xi] (27)

for all i. Furthermore, to test the significance of the estimated regression function at an

observation point, we can use the bias corrected confidence interval to see if 0 is in the

interval.
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5 Partial Effects and Derivatives

We also derive an estimator for pointwise partial derivatives with respect to a certain variable

x(r). The partial derivative of the GKRLS estimator, m̂2(x0) with respect to the rth variable

is

m̂
(1)
2,r(x0) =

n∑
i=1

∂Kσ2(xi,x0)

∂x
(r)
0

ĉ2,i

=
2

σ2
2

n∑
i=1

e
− 1

σ22
||xi−x0||2

(x
(r)
i − x

(r)
0 )ĉ2,i,

(28)

using the RBF kernel in Eq. (4) and where m̂
(1)
2,r(x0) ≡ ∂m̂2(x0)

∂x(r) . To find the conditional bias

and variance of the derivative estimator, we use the following:

Theorem 5. The GKRLS derivative estimator in Eq. (28) with the RBF kernel in Eq. (4)

can be rewritten as

m̂
(1)
2,r(x0) = Sr(x0)

>y, (29)

where ∆r ≡ 2
σ2
2

diag(x
(r)
1 − x

(r)
0 , . . . ,x

(r)
n − x

(r)
0 ) is a n× n diagonal matrix, and

Sr(x0) =
[
K∗>σ2,x0

∆r(Ω
−1Kσ2 + λ2I)−1Ω−1

]>
(30)

is the smoother vector for the first partial derivative with respect to the rth variable. Then,

the conditional mean of the GKRLS derivative estimator is

E[m̂
(1)
2,r(x0)|X = x0] = Sr(x0)

>m (31)

and conditional variance is

Var[m̂
(1)
2,r(x0)|X = x0] = Sr(x0)

>ΩSr(x0). (32)

Proof: see Appendix E.
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Using Theorem 5, the conditional bias and variance can be estimated as follows

Theorem 6. Let Sr(x0) be the smoother vector for the partial derivative evaluated at x0

and let m̂2 = (m̂2(x1), . . . , m̂2(xn))> be the in sample GKRLS predictions. For a consistent

estimator of the covariance matrix such that Ω̂ → Ω, the estimated conditional bias and

variance for GKRLS derivative estimator in Eq. (28) are obtained by

B̂ias[m̂
(1)
2,r(x0)|X = x0] = Sr(x0)

>m̂− m̂(1)
2,r(x0) (33)

and

V̂ar[m̂
(1)
2,r(x0)|X = x0] = Sr(x0)

>Ω̂Sr(x0). (34)

Proof: See Appendix F.

The average partial derivative with respect to the rth variable is

m̂(1)
avg,r =

1

n′

n′∑
j=1

m̂
(1)
2,r(x0,j) (35)

The bias and variance of the average partial derivative estimator is given by

Bias[m̂(1)
avg,r|X] =

1

n′
ι>n′S0,rm−

1

n′
ι>n′m

(1)
0,r (36)

and

Var[m̂(1)
avg,r|X] =

1

n′2
ι>n′S0,rΩS>0,rιn′ , (37)

where n′ is the number of observations in the testing set, ιn′ is a n′× 1 vector of ones, S0,r is

the n′×n smoother matrix with the jth row as Sr(x0,j), j = 1, . . . , n′, and m
(1)
0,r is the n′× 1

vector of derivatives evaluated at each x0,j, j = 1, . . . , n′.

12



6 Simulations

We conduct simulations that show the performance with respect to gaining efficiency of the

proposed generalized KRLS estimator. Consider the data generating process from Eq. (1):

Yi = m(Xi) + Ui, i = 1, . . . , n. (1)

We consider the sample size of n = 200 and univariate X that is generated from Unif [−5, 5].

The specification for m is:

m(X) = sin(X) (38)

and the derivative is given by

m(1)(X) = cos(X) (39)

For the error terms, we consider two cases. First, Ui is generated by an AR(2) process, where

Ui = 0.5Ui−1− 0.4Ui−2 + εi and εi are iid N(0, 1). In the second case, Ui are heteroskedastic

but independent of each other, where Ui =
√

0.05X2
i + 0.01εi with εi ∼ N(0, 1), i = 1, . . . , n.

In addition to the proposed estimator, we compare two other models: the naive KRLS

estimator (KRLS) and the LSSVM proposed by De Brabanter et al. (2011). The naive

estimator is used as a comparison to show the magnitude of the efficiency loss from ignoring

the information in the error covariance matrix. De Brabanter et al. (2011) only consider

heteroskedasticity in the LSSVM model, not allowing for autocorrelation in the errors. In

addition, LSSVM does not utilize the covariance matrix in estimating the regression function.

For all models, we implement leave one out cross validation to select the hyperparameters.

The variance function under the heteroskedastic case is estimated by nonlinear least squares

by obtaining the estimated coefficients (a, b, c) in a + log(bX2 + c). Taking the exponential

would give the predicted variance estimates. Under the case of AR(2) errors, the covariance

function is estimated from an AR(2) model. We run 200 simulations for each of the two cases
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and the bias corrected results are reported below in Figure 1, Figure 2, and in Table 1.1

To evaluate the models, mean squared error is used as the main criterion, where we also

investigate the bias and variance of the estimators. To compare results, all models are

evaluated from 500 evenly spaced points from -5 to 5.
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Figure 1: The left (right) plots show the estimated bias corrected predictions under het-
eroskedastic errors (AR(2) errors). The top, middle, and bottom plots refer to the KRLS,
GKRLS, and LSSVM estimators. The grey curves show the bias corrected predicted values
from all simulations evaluated at the 500 evaluation data points spanning from -5 to 5. The
green curves denote the average bias corrected predictions at each evaluation point across all
simulations, and the black curve represents the true regression function in Eq. (38).

1The following R packages were used for conducting simulations: Borchers (2021), Hyndman and Khan-
dakar (2008), and McLeod et al. (2007).
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Figure 2: The left (right) plots show the estimated bias corrected derivatives under het-
eroskedastic errors (AR(2) errors). The top, middle, and bottom plots refer to the KRLS,
GKRLS, and LSSVM estimators. The grey curves show the bias corrected predicted values
from all simulations evaluated at the 500 evaluation data points spanning from -5 to 5. The
green curves denote the average bias corrected predicted derivative estimates at each evalu-
ation point across all simulations, and the black curve represents the true derivative of the
regression function in Eq. (39).

Figure 1 shows simulation results under Eq. (38). All simulation estimates for KRLS

and GKRLS are plotted in grey and the averages across all simulations are plotted as green

curves. For both heteroskedastic and AR(2) errors, the variability, depicted as how far or

spread out the grey curves are from their average in green, is reduced as we move from the

top two plots, where KRLS regressions are estimated, to the middle two plots, where GKRLS
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regressions are estimated. However, under the case of heteroskedastic errors, the GKRLS

estimates appear to be slightly more biased relative to the KRLS model. This may be a

result of the bias and variance tradeoff where an addition of small bias for a larger reduction

in the variance can lead to an overall better fit and estimator, in terms of mean squared

error. On the other hand, under the case of AR(2) errors, estimates based on GKRLS seem

to exhibit the same finite sample bias as KRLS, and there is an obvious reduction in the

variability of the proposed estimator relative to KRLS. LSSVM estimates are also plotted

as a comparison and they show similar results to KRLS.

Figure 2 shows simulation results for the derivative given in Eq. (39). Similar to the re-

gression estimates, for both heteroskedastic and AR(2) errors, the variability from estimating

the derivative is reduced from GKRLS estimation, as seen as the two middle plots, relative to

KRLS estimation, as seen as the top two plots. In addition, the efficiency gain in estimating

both the regression and the derivative seems to be more evident in the AR(2) case compared

to the heteroskedastic case. A possible explanation for this is that the covariance matrix

contains more information in the off-diagonal elements compared to the diagonal covariance

matrix in the heteroskedastic case. Overall, when estimating the regression function and its

derivative for this simulation example, the reduction in variance is clearly evident in Figure 1

and Figure 2.

Table 1 displays the evaluations, including bias, variance, and MSE of the estimators

for both error cases and for both the regression function and the derivative. Note that

all estimates in Table 1 are bias corrected and averaged across all simulations. For both

error covariance structures, GKRLS estimates of the regression function have the smallest

average bias in absolute terms. Furthermore, GKRLS has the lowest variance, and therefore

lowest MSE, making GKRLS the preferred method. Note that GKRLS estimation provides

a 21.9% and 26.3% decrease in the variance for estimating the regression function for the

heteroskedastic errors and autocorrelated errors, relative to KRLS. When estimating the

derivative, the reduction in variance is substantial. GKRLS estimation of the derivative
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Model Simulation Evaluation

Bias Variance MSE

m(·) Heteroskedastic Errors KRLS -0.0019 0.0210 0.0213
GKRLS -0.0017 0.0164 0.0188
LSSVM -0.0019 0.0308 0.0308

Autocorrelated Errors KRLS -0.0033 0.0730 0.0769
GKRLS -0.0030 0.0538 0.0548
LSSVM -0.0030 0.0828 0.0835

m(1)(·) Heteroskedastic Errors KRLS -0.0017 0.0860 0.0881
GKRLS 0.0064 0.0289 0.0328
LSSVM -0.0145 0.3120 0.3150

Autocorrelated Errors KRLS -0.0112 5.4506 5.4848
GKRLS -0.0150 0.2082 0.2111
LSSVM -0.0136 5.8460 5.8783

Table 1: The table reports the bias, variance, and MSE for KRLS, GKRLS, and LSSVM
estimators under Eq. (38), Eq. (39), and the cases of heteroskedastic and AR(2) errors. All
reported estimates are bias corrected and are averaged across all simulations.

Simulation Results for Consistency of GKRLS

Heteroskedastic Errors Autocorrelated Errors

Bias Variance MSE Bias Variance MSE

m(·) n = 100 0.0005 0.0725 0.0730 0.0010 0.1675 0.1685
n = 200 0.0002 0.0369 0.0371 0.0005 0.0867 0.0872
n = 400 0.0001 0.0194 0.0194 0.0002 0.0456 0.0458

m(1)(·) n = 100 0.0060 0.5135 0.5195 0.0082 0.7626 0.7708
n = 200 0.0022 0.3264 0.3286 0.0053 0.4712 0.4766
n = 400 0.0017 0.2082 0.2099 0.0023 0.2815 0.2838

Table 2: The table reports the bias, variance, and MSE for GKRLS estimator under
Eq. (38), Eq. (39), and the cases of heteroskedastic and AR(2) errors for different sam-
ple sizes, n = 100, 200, 400. All reported estimates are biased corrected and are averaged
across all simulations. All hyperparameters are fixed and set to 1.

provides a 66.4% and 96.2% decrease in the variance for heteroskedastic and autocorrelated

errors, relative to KRLS. Note that LSSVM provide similar estimates to KRLS. Moreover,

for both regression and derivative function estimations, GKRLS is the preferred method and

variance reduction is significant.
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Table 2 shows the simulation results for the consistency of GKRLS. The bias, variance,

and MSE are reported for sample sizes of n = 100, 200, 400. In this example, in order to

see the effect of increasing the sample size, all hyperparameters are fixed and set to 1. For

the regression function and the derivative and for both error covariance structures, the bias,

variance, and MSE all decrease as the sample size increases, which implies that the GKRLS

estimator is consistent in this simulation exercise.

7 Application

We implement an empirical application from the U.S. airline industry with heteroskedastic

errors.2 For the data set, we set aside a portion of the data for training and the other for

testing. We estimate four models, GKRLS, KRLS, LSSVM, and OLS, and compare their

results in terms of mean squared error (MSE). To evaluate the out of sample performance

of each model, the predicted out of sample MSEs are computed as follows

MSE =
1

n′

n′∑
j=1

(m̂(x0,j)− yj)2, (40)

where n′ is the number of observations in the testing data set and j = 1, . . . , n′. The in

sample MSEs are also reported for the training data. To assess the estimated derivatives, we

use the bootstrap to calculate the out of sample MSEs. We report the bootstrapped MSEs

for the regression function and its derivative by the following.3

MSEboot =
1

B

1

n′

B∑
b=1

n′∑
j=1

(m̂b(x0,j)− yj)2 (41)

MSEboot,deriv =
1

B

1

n′

B∑
b=1

n′∑
j=1

(m̂
(1)
b (x0,j)− m̂(1)

avg(x0,j))
2, (42)

2The data for the application is from Greene (2018) and can be downloaded at
https://pages.stern.nyu.edu/ wgreene/Text/Edition7/tablelist8new.htm

3The R package by Davison and Hinkley (1997) was used to obtain the bootstrap samples.
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where B is the number of bootstraps with b = 1, . . . , B, m̂b(·) and m̂
(1)
b (·) are the bth

bootstrapped estimated regression function and its first derivative respectively, and m̂
(1)
avg(·)

is the simple average of f = 1, . . . , 4 models (KRLS, GKRLS, LSSVM, and OLS):

m̂(1)
avg(x0,j) =

1

4

4∑
f=1

m̂
(1)
f (x0,j). (43)

7.1 U.S. Airline Industry

We obtain the data on the efficiency in production of airline services from Greene (2018).

To model heteroskedasticity we estimate GKRLS for the following:

logCit = m(logQit, logPit) + Uit, (44)

ωit = exp(γ1 + γ2Loadfactorit), (45)

where Cit is the total cost, Qit is output, and Pit is the price of fuel, and Loadfactor is the

average capacity utilization of the fleet. The data contain 90 observations of 6 firms for 15

years, from 1970-1984. For simplicity, we pool all of the data for estimation and assume that

Loadfactor appears in the variance of the error term. We randomly split the data into two

parts, where 70 observations are used as training data and 20 observations are set as testing

data to evaluate out of sample performance. For the GKRLS, KRLS, and LSSVM models,

all hyperparameters are chosen via cross validation.

We plot the bias corrected results for the estimated regression function and its derivative

for GKRLS and KRLS models in Figure 3. For visual purposes, we train the data on the 70

observations in the training data set and evaluate both models with 200 evenly spaced points

across the support of each regressor while holding the other variables fixed at their medians.

The solid (dashed) curves in red and grey depict the bias corrected point estimates (pointwise

95% confidence interval) for GKRLS and KRLS respectively. Both models seem to display

a positive relationship between cost and each of the regressors, output and price, with their
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Figure 3: The left (right) plots show the estimated bias corrected predictions of the regression
function (derivative) for 200 evenly spaced points across the support for each independent
variable. The predictions are plotted for logQ and logP , holding all else fixed at their
medians. The red (grey) curves correspond to the bias corrected predictions made by GKRLS
(KRLS). The dashed lines are the bias corrected pointwise 95% confidence intervals.

partial derivatives being positive almost everywhere. Accounting for heteroskedasticity in the

estimation of the regression function, GKRLS is somewhat smoother for both the estimation

of the regression function and its partial derivatives. In addition, the confidence intervals are

slightly smaller that that of KRLS, implying that there is an efficiency gain in the GKRLS

estimates. The red (grey) tick marks indicate the significance of the estimated regression

function and its derivative evaluated at each testing observation for GKRLS (KRLS), where

we check to see if zero lies within the interval. Both models are significant almost everywhere

in the support for the regression functions and derivatives.

The bias corrected average partial derivatives and corresponding standard errors are

reported in Table 3. These averages are calculated by training each model on the 70 obser-
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Average Partial Derivative Estimates
for Airline Data

logQ logP

GKRLS 0.8495 0.4756
(0.011) (0.013)

KRLS 0.9786 0.5129
(0.0244) (0.0248)

LSSVM 0.8614 0.6503
(0.0165) (0.0106)

OLS 0.9347 0.4167
(0.0522) (0.0195)

Table 3: Bias corrected average partial derivatives and their standard errors in paranetheses
are reported for GKRLS, KRLS, LSSVM, and OLS models. The columns represent the
estimates of the average partial derivative with respect to each regressor. The White standard
errors are reported for the OLS model.

vations in the training data set and evaluating all model derivatives with 200 evenly spaced

points across the support of each regressor while holding the other variables fixed at their

medians. The estimates are bias corrected and the results from Section 5 are used in our cal-

culations. The reported estimates for GKRLS and KRLS correspond to the derivative plots

in Figure 3. The White heteroskedastic standard errors are reported for the OLS model.4

Comparing GKRLS and KRLS, the estimates of the partial derivative are similar but the

standard errors are significantly reduced for GKRLS, where we see a gain in efficiency, as

we have confirmed from Figure 3. The partial derivative estimates for LSSVM are similar

to those for KRLS but is more efficient. Assuming that GKRLS is the correct model, KRLS

and LSSVM would underestimate the elasticity with respect to output and overestimate the

elasticity with respect to price. For OLS, we estimate the following

logCit = β0 + β1 logQit + β2 log2Qit + β3 logPit + ε.

4The R package by Zeileis (2006) was used to obtain the White heteroskedastic standard erorrs.
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Then, the partial derivatives are

logQ : β1 + 2β2 logQit

logP : β3

Table 3 shows that the OLS model overestimates the elasticity with respect to output and

underestimates the elasticty with respect to price compared to those of GKRLS.

MSEs for Ailrine Data

GKRLS KRLS LSSVM OLS

Out of Sample 0.0064 0.0145 0.0129 0.0193
Boot Out of Sample 0.0150 0.0565 0.0268 0.0203
In Sample 0.0016 0.0027 0.0032 0.0175

Table 4: The MSEs are reported for GKRLS, KRLS, LSSVM, and OLS models. The first
and second rows are the out of sample MSE and the bootstrapped MSE for the 20 observations
in the testing set. The third row is the in sample MSE for the observations in the training
set. All reported estimates are bias corrected.

To assess the models in terms of out of sample performance, we calculate the MSEs using

the 20 observations in the testing data set. Table 4 reports MSEs for the four considered

models. The first and second rows report the out of sample MSEs using the 20 observations

and the bootstrap respectively. The last row reports the in sample MSEs. Considering the

nonparametric models, GKLRS, KRLS, and LSSVM, the GKRLS estimator outperforms the

others in terms of MSE. The bootstrapped MSEs for the partial derivatives are reported in

Table 5. For the partial derivative with respect to output, GKRLS produces the lowest MSE,

outperforming the other models. Considering only the nonparametric models, the smallest

MSE is the one obtained by GKRLS for the derivative with respect to price. However, OLS

has the lowest overall MSE for the derivative with respect to price. Looking at the plots

with respect to price in Figure 3, the GKRLS estimator (red curve) appears to produce a

somewhat linear function in price, holding output fixed. We conducted a test for correct

specification Hsiao et al. (2007) of a linear model of the cost function in terms of price and
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failed to reject the null at the 5% level, indicating that cost may be linear in price for this

particular data set. This reason is one justification as to why OLS performs the best in

terms of the lowest bootstrapped MSE for the derivative with respect to price, since the cost

function may be in fact linear with respect to price but not output.

Bootstrapped Partial Derivative MSEs
for Airline Data

logQ logP

GKRLS 0.1057 0.0488
KRLS 0.4199 0.3130
LSSVM 0.3745 0.2561
OLS 0.1195 0.0259

Table 5: The bootstrapped MSEs for the GKRLS, KRLS, LSSVM, and OLS partial deriva-
tives are reported. The rows represent the MSE estimates of the partial derivative with respect
to each regressor. All reported estimates are bias corrected.

8 Conclusion

Overall, this paper proposes a nonparametric regression function estimator via KRLS under

a general parametric error covariance. The two step procedure allows for heteroskedastic and

serially correlated errors, where in the first step, KRLS is used to estimate the regression func-

tion and the parametric error covariance, and in the second step, KRLS is used to estimate

the regression function using the information in the error covariance. The method improves

efficiency in the regression estimates as well as the partial effects estimates compared to

standard KRLS. The conditional bias and variance, pointwise marginal effects, consistency,

and asymptotic normality of GKRLS are provided. Simulations show that there are im-

provements in variance and MSE reduction when considering GKRLS relative to KRLS. An

empirical example is illustrated with estimating an airline cost function with heteroskedas-

tic errors. The derivatives are evaluated, and the average partial effects of the inputs are

determined in the application. In the empirical exercise, GKRLS shows different regression
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function and derivative function estimates and is more efficient than KRLS.
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Appendices

A Proof of Theorem 1

First, we note that the GKRLS estimator is a linear smoother by substituting Eq. (10) into

Eq. (11)

m̂2(x0) =
n∑
i=1

ĉ2,iKσ2(xi,x0)

= K∗>σ2,x0
ĉ2

= K∗>σ2,x0
(Ω−1Kσ2 + λ2I)−1Ω−1y

= L(x0)
>y,

where L(x0) =
[
K∗>σ2,x0

(Ω−1Kσ2 + λ2I)−1Ω−1
]>

and K∗σ2,x0
= (Kσ2(x1,x0), . . . , Kσ2(xn,x0))

>

the kernel vector evaluated at point x0.
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Then, the conditional mean and variance of GKRLS can be derived as follows

E[m̂2|X = x0] = L(x0)
>E[y|X]

= L(x0)
>m

and

Var[m̂2(x0)|X = x0] = L(x0)
>Var[y|X]L(x0)

= L(x0)
>ΩL(x0).

B Proof of Theorem 2

The exact bias for GKRLS for the training data is given by

E[m̂2|X = x]−m = (L− I)m,

and observe that the residuals are obtained by

û2 = y − m̂2

= y − Ly

= (I− L)y.

And the expectation of the residuals is given by

E[û2|X = x] = m− Lm

= −Bias[m̂2|X].
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De Brabanter et al. (2011) suggests estimating the conditional bias by smoothing the

negative residuals

B̂ias[m̂2|X] = −Lû2

= −L(I− L)y

= (L− I)m̂2.

Therefore, the conditional bias can be estimated at any point x0 by

B̂ias[m̂2(x0)|X = x0] = L(x0)
>m̂− m̂2(x0)

For the conditional variance, we assume that the error covariance matrix Ω = Ω(θ) can

be consistently estimated by Ω̂ = Ω̂(θ̂). Then, using a consistent estimator of the error

covariance matrix, the conditional variance of GKLRS can be estimated by

V̂ar[m̂2(x0)|X = x0] = L(x0)
>Ω̂L(x0).

C Proof of Theorem 3

Since the bias corrected fitted values, m̂c, have zero conditional bias, we can focus on the

conditional variance. From Theorem 1, the conditional variance of the GKRLS estimator is

Var[m̂2|X] = LΩL>

= LPP>L>

= LP (LP )>

= AA>,
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where A ≡ LP . Consider the singular value decomposition of A, where D, U, V are the

singular values, left singular vectors, and right singular vectors respectively.

Var[m̂2|X] = AA>

= UDV(UDV)>

= UD2U>

= U


d21 . . . 0

...
. . .

...

0 . . . d2n

U>,

where di, i = 1, . . . , n denotes the ith diagonal element of D, i.e. the ith singular value of LP .

To examine the sum of the variances of m̂2, the trace of the variance matrix is evaluated.

tr(Var[m̂2|X]) = tr(UD2U>)

= tr(D2U>U)

= tr(D2)

=
n∑
i

d2i .

For large enough n, tr(D2) slows in growth and converges to some constant, M , and the

average variance of m̂(xi) is 1
n

∑n
i=1 d

2
i . Recall that d2i denotes the ith squared singular value

of LP and is proportional to the variance explained by a given singular vector of LP . Given

the construction of LP , the columns of this product matrix can be thought of as weights

of the data, scaled by the standard deviation of the error term. Therefore, the number of

large singular values will grow initially with n but the number of important dimensions or

singular values will start to grow slowly with n. As a result, the average variance of m̂(xi),

which is 1
n

∑n
i=1 d

2
i , shrinks to zero as n → ∞. Since the average variance shrinks to zero,
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then each individual variance must approach zero as n becomes large.

D Proof of Theorem 4

Consider the difference between the bias corrected fitted values and the true values, m̂2 −

Bias[m̂2|X]−m, where Bias[m̂2|X] = Lm−m,

m̂2 − Bias[m̂2|X]−m = Lu

Note that E[Lu|X] = 0 and Var[Lu|X] = LΩL>. The following results will be for the case of

heteroskedastic errors, where observations are independent and heterogenesously distributed.

Consider the individual variances for each observation,

Var[L(xi)ui|X] = L(xi)
>ΩL(xi)

and let s2n be the sum of the variances,

s2n =
n∑
i=1

L(xi)
>ΩL(xi).

As long as the sum is not dominated by any particular term and if L(xi)ui are independent

vectors distributed with mean 0 and variance L(xi)
>ΩL(xi) < ∞ and s2n → ∞ as n → ∞,

then

Lu
d→ N(0,LΩL>),

by Lindeberg-Feller central limit theorem. It then follows that

m̂2 − Bias[m̂2|X]−m
d→ N(0,LΩL>).

The following results will be for the case of autocorrelated errors, where observations are
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dependent and identically distributed.5 Given (i) Yt = m(Xt)+ut, t = 1, 2, . . .; (ii) {(Xt, ut)}

is a stationary ergodic sequence; (iii) (a) {L(Xthi)uth,Ft} is an adapted mixingale of size

-1, h = 1, . . . , p, i = 1, . . . , n; (b) E|L(Xthi)uth|2 < ∞, h = 1, . . . , p, i = 1, . . . , n; (c) Vn ≡

Var(
∑n

t=1 L(Xt)ut) is uniformly positive definite; (iv) E|L(Xthi)|2 < ∞, h = 1, . . . , p, i =

1, . . . , n.

Consider
∑n

t=1 λ
>V−1/2L(Xt)ut, where V is any finite positive definite matrix. By Theo-

rem 3.35 of White (2001), {Zt,Ft} is an adapted stochastic sequence because Zt is measurable

with respect to Ft. To see that E(Z2
t ) <∞, note that we can write

Zt = λ>V−1/2L(Xt)ut

=

p∑
h=1

λ>V−1/2L(Xth)uth

=

p∑
h=1

n∑
i=1

λ̃iL(Xthi)uth,

where λ̃i is the ith element of the n× 1 vector λ̃ ≡ V−1/2λ. By definition of λ and V, there

exists ∆ <∞ such that |λ̃i| < ∆ for all i. It follows from Minkowski’s inequality that

E(Z2
t ) ≤

[
p∑

h=1

n∑
i=1

(
E|λ̃iL(Xthi)uth|2

)1/2]2

≤

[
∆

p∑
h=1

n∑
i=1

(
E|L(Xthi)uth|2

)1/2]2
≤ [∆pn∆1/2]2 ≤ ∞,

since for ∆ sufficiently large, E|L(Xthi)uth|2 < ∆ < ∞ given (iii.b) and the stationarity

assumption. Next, we show {Zt,Ft} is a mixingale of size -1. Using the expression for Zt

5We follow the proof similar to the case of dependent identially distributed observations provided by
White (2001).
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just given, we can write

E([E(Z0|F−m)]2) = E

[E( p∑
h=1

n∑
i=1

λ̃iL(X0hi)u0h|F−m)

)]2
= E

[ p∑
h=1

n∑
i=1

E
(
λ̃iL(X0hi)u0h|F−m

)]2 .

Applying Minkowski’s inequality, it follows that

E([E(Z0|F−m)]2) ≤

[
p∑

h=1

n∑
i=1

(
E
[
E
(
λ̃iL(X0hi)u0h|F−m

)2])1/2
]2

≤

[
∆

p∑
h=1

n∑
i=1

(
E
[
E(L(X0hi)u0h|F−m)2

])1/2]2

≤

[
∆

p∑
h=1

n∑
i=1

c0hiγmhi

]2
≤ [∆pnc̄0γ̄m]2,

where c̄0 = maxh,i c0hi <∞ and γ̄m = maxh,i γmhi is of size -1. Thus, {Zt,Ft} is a mixingale

of size -1. Note that

Var(nZ̄n) = Var

(
n∑
t=1

λ>V −1/2L(Xt)ut

)

= λ>V−1/2VnV
−1/2λ→ σ̄2 <∞.

Hence Vn converges to a finite matrix. Set V = limn→∞Vn = LΩL> which is positive

definitie given (iii.c). Then, σ̄2 = λ>V−1/2VV−1/2λ = 1. Then by the martingale central

limit theorem,
∑n

t=1 λ
>V−1/2L(Xt)ut

d→ N(0, 1). Since this holds for every λ such that

λ>λ = 1, it follows from Cramér-Wold Theorem, that V−1/2
∑n

t=1 L(Xt)ut
d→ N(0, I).

32



Hence, Lu
d→ N(0,LΩL>) and it then follows that

m̂2 − Bias[m̂2|X]−m
d→ N(0,LΩL>).

E Proof of Theorem 5

First, we note that the GKRLS derivative estimator is a linear smoother by substituting

Eq. (10) into Eq. (28),

m̂
(1)
2,r(x0) =

2

σ2
2

n∑
i=1

e
− 1

σ22
||xi−x0||2

(x
(r)
i − x

(r)
0 )ĉ2,i

= K∗>σ2,x0
∆rĉ2

= K∗>σ2,x0
∆r(Ω

−1Kσ2 + λ2I)−1Ω−1y

= Sr(x0)
>y,

where ∆r ≡ 2
σ2
2

diag(x
(r)
1 − x

(r)
0 , . . . ,x

(r)
n − x

(r)
0 ) is a n× n diagonal matrix and

Sr(x0) =
[
K∗>σ2,x0

∆r(Ω
−1Kσ2 + λ2I)−1Ω−1

]>
(46)

is the smoother vector for the first partial derivative with respect to the rth variable. Then,

the conditional mean and variance of the GKRLS derivative can be derived as follows

E[m̂
(1)
2,r(x0)|X = x0] = Sr(x0)

>E[y|X]

= Sr(x0)
>m
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and

Var[m̂
(1)
2,r(x0)|X = x0] = Sr(x0)

>Var[y|X]Sr(x0)

= Sr(x0)
>ΩSr(x0).

F Proof of Theorem 6

The bias of the GKRLS derivative estimator in Eq. (28)

Bias[m̂
(1)
2,r(x0)|X = x0] = Sr(x0)

>E[y|X]−m(1)
r (x0)

= Sr(x0)
>m−m(1)

r (x0),

where m
(1)
r (x0) is the true first partial derivative of m with respect to the rth variable. Since

this quantity as well as m is unknown, we estimate both to calculate the conditional bias.

B̂ias[m̂
(1)
2,r(x0)|X = x0] = Sr(x0)

>m̂2 − m̂(1)
2,r(x0),

where m̂2 is the n × 1 vector of in sample GKRLS predictions of m and m̂
(1)
2,r(x0) is the

estimated GKRLS derivative prediction evaluated at point x0.

For the conditional variance, we assume that the error covariance matrix Ω = Ω(θ)

can be consistently estimated by Ω̂ = Ω̂(θ̂). Then, using a consistent estimator of the

error covariance matrix, the conditional variance of the GKLRS derivative estimator can be

estimated by

V̂ar[m̂
(1)
2,r(x0)|X = x0] = Sr(x0)

>Ω̂Sr(x0) (47)
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