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Abstract Professor A.L. Nagar was a world-renowned econometrician and an in-
ternational authority on finite sample econometrics with many path-breaking pa-
pers on the statistical properties of econometric estimators and test statistics. His
contributions to applied econometrics have been also widely recognized. Nagar’s
1959 Econometrica paper on the so-called k-class estimators, together with a later
one in 1962 on the double-k-class estimators, provided a very general framework
of bias and mean squared error approximations for a large class of estimators and
had motivated researchers to study a wide variety of issues such as many and
weak instruments for many decades to follow. This paper reviews Nagar’s semi-
nal contributions to analytical finite sample econometrics by providing historical
backgrounds, discussing extensions and generalization of Nagar’s approach, and
suggesting future directions of this literature.
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1 Introduction

In the early 20th century, the legendary statisticians Sir R.A. Fisher, Neyman,
Pearson and others set in motion what is known today as the classical paramet-
ric approach to statistics, estimation and testing of a finite number of population
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parameters using sample data. Thus began the practice of statistical inference (es-
timation, testing and confidence intervals, and their sampling properties) and this
laid the foundation of inference procedures in econometrics. Studies on the proper-
ties of finite (small) and large sample properties of statistics based on any sample
data became a hot topic from that time onward. While this statistical revolution
was taking place, in 1930 the international Econometric Society was established
in the USA, with the purpose of advancing the study of econometrics, formally
described as the data analysis (measurement) of mathematical economic models
using statistical-inference methods. Further, under this society the first economet-
ric journal, Econometrica, came into existence in 1933 with a supporting fund by
Alfred Cowles and Nobel Laureate Ragnar Frisch being its first editor. Earlier,
the Statistical Society of London was established in 1834 at England, which began
the publication of the Journal of the Royal Statistical Society (JRSS) in 1838, but
an unrelated London Statistical Society was in existence at least as early as 1824.
During this period, International Statistical Institute was established in 1885 in
the Netherlands, and the American Statistical Association (ASA) was established
in the USA in 1839 with a journal published under it in 1888 (Quarterly Publications
of the American Statistical Association, and later as the Journal of the American Sta-
tistical Association (JASA) in 1922). Later on, Institute of Mathematical Statistics
came in 1935 in the USA, and the Annals of Mathematical Statistics started pub-
lishing from 1930 to 1972 and then split into the Annals of Statistics and the Annals
of Probability since 1973. With all these new excitements and developments in the
area of econometrics (statistical) inference there was a keen interest in studying
the sampling properties of econometric estimators such as unbiasedness, efficiency
(lower mean squared error (MSE)), and distribution.

While the properties of the ordinary least squares (OLS) estimator in a classical
linear regression model were well developed as the best linear unbiased estimator
(the Gauss—Markov Theorem), the small sample bias of the OLS estimator of the
first-order autoregressive (AR(1)) coefficient was developed by Hurwitz (1950).
However, it was quite challenging for econometricians to develop properties of
econometric estimators that are nonlinear functions of random variables. These
include estimators in dynamic time-series models, operational generalized least
squares estimators, estimators in no-linear regression models, and the two-stage
least squares (2SLS), limited information maximum likelihood (LIML), instru-
mental variables (IV), and k-class estimators in the structural models. Essentially,
the challenges appeared because almost all the econometric estimators and test
statistics were either nonlinear functions of stochastic random variables or came as
iterative solutions to some nonlinear optimizations of random functions. Therefore,
deriving the finite sample distributions, bias, and MSE were statistically challeng-
ing. The results for many cases are still unknown in the literature, even at this
stage.

Exact sampling distribution theory is an implicit promise of inference in sta-
tistical sciences. Given its near impossibility in general, even under normally dis-
tributed data, for many relevant estimators and test functions of the data, higher-
order approximations than the first order asymptotics is the next best thing. Given
a common inadequacy of the first order asymptotics, currently called asymptotic
inference, the need and promise of higher order asymptotic approximations natu-
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rally arise.! This is what he anticipated with his higher order approximations to
moments, when Nagar (1959) published his first seminal paper to derive the bias,
up to order O(n™1), where n is the sample size, and MSE, up to O(n~2), of the
k-class estimator of the vector coefficients, say @7 of a structural equation in the
simultaneous equations model. His approach was to simply first write the Taylor
series stochastic expansion of the estimator in a decreasing order in probability
like:

B—Bo=a_1ppta-1+a_zp, (1)

where the p x 1 vector B has true value 8, and a_ja, for 7 = 1,2,3, is a term
of Op(n™7/?). Then the bias, up to O(n~'), and MSE, up to O(n~2), denoted
by b and M, respectively, can be obtained by taking the following term by term
expectations, namely,

b:E(a_l/Q +a—1) (2)

and

M =E(a_yppal )y +a_yppa’ s +a1al, ),

+a_1/2a/_3/2 +a_gpal i, +araly). (3)

Usually E(a_;/;) = 0 and the O(n~1) bias of B8 will be E(a_;). Further, the
asymptotic MSE (of /n(8 — By)) is given by limy,— 00 nE(a_l/QaL1/2). Thus, one
may interpret E(a_1) as the small sample correction in the asymptotic mean of 3,
which is zero, and E(a_ j»a’ 4 —|—a_1a'_1/2 +a_y a5, +a_3/2a’_1/2 +a_1a’ )
is the small sample correction in the MSE. A (feasible) bias adjusted estimator
can be given as:

Bbczﬁfb (4)

where b consistently estimates b, usually available by substituting some consistent
estimator of B, into the expression of b. This bias-corrected estimator 3, is almost
unbiased up to O(n™!). Also, see Mariano and Sawa (1972) for an almost unbiased
estimator by combining the OLS and 2SLS estimators.

On many occasions, the a_; /5’s are in terms of linear and quadratic forms in a
random vector. Bao and Ullah (2010) derived expectations of nonnormal quadratic
forms, up to order 4, and for normal quadratic forms, a recursion algorithm was
proposed. Explicit results for normal quadratic forms, up to order 4, are collected

I There is a subtle connection between resampling techniques and higher order expansions,
see, for example, the classical work of Hall (1992) and the review by Horowitz (2001). We
refrain from discussing the data-driven resampling methods and focus on analytical results in
this paper.
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as follows:

E(e'Are) = p'Arp + tr(Ay),
E(e'A1ee’ Aze) = E(e'A1€)E(e' Aze) + 4/ A1 Ao + 2tr( A1 As),
E(e' A1ee’ Azee’ Ase) = E(e' A1e)E(e’ Azee’ Aze)
+ [4p' A1 Aop + 2tr( A1 A2)|E(e' Ase) + [4p' A1 Azp + 2tr( A1 A3)|E(e' Aze)
+ 8 A1 A2 Az + ' A1 Az Aoy + ' Ay A1 Asp + tr(A1 A2 A3)],
E(e' Ajee’ Asee’ Asee’ Ase) = E(e' A1e)E(e’ Azee’ Azee’ Age)
+ [4p' A1 Aop + 2tr( A1 A2)|E(e' Azee’ Ase)
+ [4p' A1 Azp + 2tr( A1 A3)|E(e' Azee’ Ase)
+ [4p' A1 Agp + 2tr( A1 A4)|E(e' Azee’ Ase)
+ 8 A1 As Az + ' A1 Az Asp + ' As A1 Asp + tr( A1 As As)|E(e' Age)
+ 8 A1 AsAqp + ' AT Ag Ao+ ' As A1 Agp + tr(A1 A Ay)|E(' Ase)
+ 8 A1 Az Agp + ' AT AsAsp + ' A3 A1 Agp + tr(A1 A3 Ay)|E(' Age)
+16[p A1 A2 Az Ayp+ ' A1 Az AsAsp + ' AT A3 As Agp + ' A1 A3 Ay Ao
+ 1 AT AL A Asp + W A1 Ay As Ao p + ' As Ay AsAgp + p/ As Ay As Ay
+p Ay AT A Asp + ' Ay AV Az Asp + W As AL Ay Ao+ Ay A1 Az Ao
+tr(A1AsA3Ay) +tr(A1 A2 AsAz) +tr(A1 Az A2 Ay)), (5)

where € ~ N(u, I) and A; are nonstochastic symmetric matrices.?

2 The k-Class Estimators

For the explicit expressions of bias and MSE of the k-class estimators, consider a
simple triangular structural model

Y1 = Y28 +u, y,=2Zom+u, (6)

where y; and y, are n x 1 vectors of observations on the scalar dependent and
endogenous variables, respectively, the n x K matrix Zs collects observations on
K > 1 instrumental variables, 7 is a K x 1 vector of parameters, and uw and v are
error vectors. It is assumed that the rows of [u,v] are i.i.d normal with covariance
matrix ¥ = ((02,0u)’, (ouv,02)")’, where ouy = pouoy. The k-class estimator is
given by

B(k) = (y5N1ys) '¥oNyyy = Bo + (Yo Nyys) ' yh Ny, (7)

where Ny = P~k Q = I — kQ, in which Q = I — P and P = Z5(2,Z2)"Z).
(This notation of x corresponds to the “k” in the original papers of Nagar (1959)
and Sawa (1972). Obviously, k = k + 1.)

2 Some terms were missing in the formulae given by Bao and Ullah (2010) and Ullah (2004,
page 186). The authors thank Raymond Kan for pointing this out.
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Denote gy = Zom and 6 = Yoy,. Note that yo Ny, = 0 + 2ghv + v/ N v,
where 6 = O(n) and Ghv = Op(n'/?). Further, yoNyu = Fhu + v Nju, where
hu = Op(n'/?). In light of (5),

E(v'Nyv) = 0y [K — k(n — K)),
Var(v' Njv) = 205tr(N3) = 205K + k*(n — K)). (8)

Let € = (u/,v')’. It is obvious that € ~ N(0, ¥ ® I) and v'Nju = €' (J ® Ny)e,
where J = ((0,1/2)’,(1/2,0)"). Then

E(' Nyu) = tr[(J @ Np) (2 @ I)] = pouos[K — k(n — K)],
Var(v' Nyu) = 2tr[(J @ Np)(Z @ I)(J @ Np)(Z @ I)]
= (1+p°)ouos[K + k*(n - K)). (9)

It follows that for any finite k # 0, both ' N v and v’ Npu are Op(max{n, K}).
In light of (7), one needs to have the order of K —k(n— K) to be o(n) for a possible
estimator of By to be consistent. When & = —1, one gets the inconsistent OLS
estimator; when k = 0, one gets the 2SLS estimator, which is consistent as long as
K = o(n). Further, when k = e, where e is the smallest eigenvalue of the matrix
Y'PY(Y'QY) ™!, in which Y = [y;,y,], one gets the LIML estimator; when k =
e—1/(n—K), one gets Fuller’s (1971) estimator; when k = (K—2)/(n—K), one gets
Nagar’s (1959) second-order unbiased estimator; when k = (K —2)/[(n — (K — 2)],
one gets the modified bias-adjusted 2SLS (B2SLS) estimator by Donald and Newey
(2001); when k = B(0/02, K)(0/02)/(n — K), where B(c, K) = exp(c/2)1Fi (K/2 —
1; K/2;¢/2) with 1 F1 denoting the confluent hypergeometric function, one gets the
exact finite sample unbiased estimator of Harding et al. (2015).

2.1 Nagar’s Bias and MSE Results

When K is finite and k = O(n™ 1), it follows that v’ Nyu = Op(1) and v/ Njv =
Op(1). The Nagar (1959)-type expansion follows from
—/ /
N Yyou+ v Niu
k) — =
Blk) = fo 0+ 2yhv + v/ Nyv
_ Yhu+v'Nyu <1 n 2yhv + v/Nk'v> -

0 0
— ’ 00 —/ ’ J
_ Youtv Nyu i [ 2Yov F Vv Ny
= PR Tk 1+ (-1) (79 : (10)

j=1

In light of (8) and (9), for finite K and k = O(n '), in the notation of (1),

a_1/2 =

I

R

4y = v Niu _ 2u/' Gy Thv
- 0 02 ’

agjz = 7@'2uv’Nkv —gQQﬂévv’Nku n 4@’21)1(;'?)@2@'217. (11)
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One can verify the following results by using (5):

E(u'g,750) = pouost,

E[(v'Nyu)?] = p?0202[K — k(n — K)]? + (1 + p*)oaoi[K + k*(n — K)],
E[(w/5,75v)%] = p’onont” + (1+ p*)onon6”

E(w Nju - u'g,g5v) = p ooo20[K — k(n — K)] + (14 pHo2o20,

B(u/Boghu - o/ Nyw) = 02020[K — k(n — K)] + 20%02020. (12)
Therefore, the bias, up to O(n™!), in view of (12), is

poyoy[K —2 —k(n — K)] .

b= E(CL 1) 0

(13)

Setting £k = (K — 2)/(n — K) gives rise to Nagar’s (1959) second-order unbiased
estimator. Given that E(a_;/9a—1) = 0, the MSE result, up to O(n™?), is

M = E(a31/2) +E(ay) + 2E(a_y/2a_3/3)

_ o Blo/'Nyw)?] | 4B[(w'F55v)"]  AE(v'Nyu - u'gygsv)
T 62 04 B 63
_ 2B(u'gyyyu - v Nyv) + 4B Nyu - u'ypgav) | 8E[(u'y,55v)%)
E 64
o2 KX(k+1)%p%0202 K(k+1)o202[k(2n+1)p* + k+ Tp* + 1]
o 62 B 62
o2o2{k*n[(n+ 1)p* + 1] + 2kn(4p® + 1) + 120> + 43
62

+

(14)

2.2 The Double k-Class Estimators

Sawa (1972) showed that, under normality, for k¥ < 0, the k-class estimator has
moments while for k& > 0 the first moment may not even exist.®> Thus, the exact
moments of both 2SLS and OLS estimators exist under certain conditions but the
LIML, Nagar, and the exact finite sample unbiased estimators all have k greater
than 0 and their moments may not exist. This explains, due to lack of existence of
moments, these biased adjusted estimators tend to fail in practice, especially under
weak instruments and/or many instruments. However, Fuller (1977) indicated that
for k > 0 but less than the k assigned by LIML or Nagar, the moments of 3(k) do
exist, resulting in the Fuller-type estimator being a useful solution to the problem
of weak and/or large instruments. In view of these, Harding et al. (2015) looked
into detail of the question as to how useful the k-class estimators are given the
trade-off between bias reduction and existence of moments especially for many
or weak instrument cases. Their findings suggest a failure of good behavior of
the k-class estimators, leading them to consider the double-k-class estimator of
Nagar(1962):
B(ki,k2) = (YoNk,¥2) " Ys Nk, yy - (15)
3 When K = 1, i.e., the just identified case, the 2SLS estimator (corresponding to k = 0),

does not have even the first moment, see Sawa (1969). For a definitive treatment of the issue
of existence of moments, see Kinal (1980).
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Dwivedi and Srivastava (1984) derived the exact bias and MSE results of this
estimator. Based on their results, Harding et al. (2015) provided a choice of ks
under which the double-k-class estimator possesses much smaller MSE than the
2SLS and Fuller estimators when there are many instruments.

In fact, from

, y2)/(J®Nk1) <y2> /
Bk, k2) — Bo = Y2l u _ (u v/ _ada (16)

y,NL. y ! o’Ba’
pomT ('12) (J1®Nk2)(?f)

where J1 = ((1,0),(0,0)), a = (X @ I)"/?(yh,v') ~ N((g5,0'),I), A= (Z®
D'?(JeNy)(Zel)/?=2Je Ny, B= (2o D)*(J1oN,)(Ze D)/ =
XJ1 ® Ny,, one can evaluate the exact moments of B(k1,k2) (as well as those of

the k-class estimators), when existing, using the fast algorithm in Bao and Kan
(2013).*

2.3 Many Instruments and Weak Instruments

When K is allowed to increase with the sample size (but at a slower rate), namely,
the so-called many instruments case, the a_;/,’s in the Nagar-type expansion need
to be modified, depending on how fast K diverges, relative to n. Donald and Newey
(2001) showed that the higher-order MSE results are

2 22 2 2
v K

MQSLS:%JF%, K — oo and K2/n — 0,
2 2 2.1 2
ML]ML:%—F%;M, K—)ooandK/n—)O,
2 K2 21 2
MBQSL:%%LW K — oo and K/n — 0. (17)

Recall that 0 = yhyy, = 7' Z5LZam = O(n). When K is allowed to increase
with the sample size, the above MSEs here are not up to the typical second order,
namely, O(n~2). They are of higher order in the sense that the remainder terms
in the relevant expansions are of smaller order relative to the second terms in the
above expressions. Notably, the first term, when scaled by n, in each case is the
same and it represents the asymptotic variance of v/n[3(k) — Bo]. The finite sample
corrections are given by the second terms. The leading term in the higher-order
bias of the 2SLS estimator, when K — oo, is Kouwv/0 = Kpowoy /60, thus the second
term of Mygy s is the squared bias, arising because of the higher order bias of the
2SLS estimator. The second terms for the LIML and B2SLS estimators represent
the higher-order variances. Further their MSE expressions clearly indicate that
they should be preferred, for any p # 0, to the 2SLS estimators in the lower MSE
sense. However, it is well known that the LIML, B2SLS, and Nagar estimators
may not possess moments, thus have thicker tails, but that is not the case for

4 Notably, Dwivedi and Srivastava (1984) presented the first and second moments in terms
of double infinite series, whereas Bao and Kan (2013) presented, for any finite integer j, the
j-th moment using a single infinite series.
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the 2SLS estimator, see, for example, Mariano and Sawa (1972) and Sawa (1972).
Disappointing behaviors, in terms of the dispersion, of the LIML and B2SLS esti-
mators have been documented in the literature, especially when identification of
the model is weak. However, the 2SLS estimator may have higher MSE due to its
bad bias behavior. In view of this, Hahn et al. (2004) introduced the jackknife IV
estimator (JIVE), aiming to improve the 2SLS estimator by reducing its finite-
sample bias through the jackknife, and they showed that its higher order MSE is
the same as that of the B2SLS estimator.

Noticeably,
Yo | v'Nyu oy
[T B gl Tu_ ouVB | outu Vo
9/0'1)[/8(]6) 50] - ou 1 + 2@'21, Ty + ’lﬂN;(uﬁ’ (]‘8)
o, V0 V0 oy 0

where, under normality, ghu/(0uV0) and Fhv/(oyV6) are two standard normal
random variables, v/ N v /o2 = v'v/02 — kv'Qu /o2 is a linear combination of two
chi-squared random variables, and v' Nju/(0vow) = € (J ® Ny )e/(ovow) follows a
linear combination (with weights related to the eigenvalues of »\2gxt? g Ny)
of chi-squared random variables. These well-defined distributions are independent
of the sample size n. So /02, also termed as the concentration parameter, plays
the role of the sample size in determining the sampling distribution of 3 (k). From
0/02 ~ (n— K)R%?/(1 — R?) ~ KF, where R?and F are the first-stage (regression
of y, on Z3) R-squared and F-statistic, one sees that the sampling distribution of
B(k) crucially depends on the number and strength of instruments used.

Bekker (1994) considered a different type of asymptotics such that as n — oo,
the ratio of the number of instruments to n is of the order no greater than the
observed sample ratio. Specifically, as n — oo, K/n = a + o(n71/2), 0<a=
(Ko —1)/(no — 1) < Ko/no, where Ko and no denote the sample values of K and
n, respectively. (Additionally, it is assumed that n~10 is fixed at the sample value
ng 19.) Under this asymptotic regime,

POuTY
-1
ng 0
Qpoyoy
ng Lo+ ac?

plim(fors) = Bo +

)

plim(Basrs) = Bo + (19)

Under the traditional large-sample asymptotic regime, namely, o« = 0 (K is fixed
at Ko and n — o0), the 2SLS estimator is consistent and the OLS estimator is
inconsistent. Yet, under Bekker’s regime (a # 0), B257,s is inconsistent (recall that
for a possible consistent k-class estimator of Bg, one needs to have the order of
K — k(n — K) to be o(n)) and its asymptotic bias, relative to that of the OLS
estimator, is related to the quality of the instruments:

a?
—>

plim(fas1.5) — fo 2 <

= 20
plim(Gors) — fo | — 4 (20)

where ¢ = plimg, § = minjegn ('’ Pxl/U'z’xl), and § is considered a measure
of the quality of the instruments. For a # 0 (such that K = O(an) + o(n'/?))
and k = O(n™1), one can see that v Nv = Op(an) and v’ Nju = Op(an). Then
it follows from (k) — Bo = (Fhu + v'Npu)/(0 4+ 2ghv + v’ Nv) that no k-class
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estimator can be consistent under Bekker’s (1994) asymptotics. Recognizing this,
Bekker (1994) proposed his method of moments (MM) estimator that is consistent
under both the traditional and his asymptotic regimes. It would be interesting to
investigate the higher-order properties of his MM estimator.

2.4 Results Evolved over the Years

Fisher (1921, 1922, 1928, 1935), about a century ago, laid the foundation of statis-
tical finite sample theory exploring distributions of various sample based statistics.
It was brought into econometrics by the seminal works of Haavelmo (1947), Ander-
son and Rubin (1949), and Hurwicz(1950), among others, who analyzed the finite
sample properties of various econometric statistics. Most of these works were re-
lated to the exact bias or distribution by using different techniques. However, the
pioneering work of Nagar (1959) established the foundation for developing analyti-
cal approximate finite sample econometrics and its future developments. Although
his results were on the approximate bias and MSE of the k-class estimators, the
technique he proposed was easier to implement for a wide variety of economet-
ric statistics which are nonlinear in stochastic variables. Essentially, it involved a
Taylor series expansion in a decreasing order of random terms, and then taking
their expectations one by one, see (1). Soon, Nagar and his students applied this
technique to derive small sample approximate bias and MSE of a large number
of estimators in different econometric models. For example, see Kakwani (1967),
Nagar and Kakwani (1965), Nagar and Gupta (1968), Gupta and Ullah (1970),
Kakwani (1971), and Nagar and Ullah (1973), among others. Since then, a large
number of papers have appeared on the approximate results, see Kadane (1971),
Maasoumi and Phillips (1982), Rothenberg (1984a, 1984b), Srivastava and Giles
(1987), Kiviet and Phillips (1993), Srivastava and Maekawa (1995), Donald and
Newey (2001), Hahn and Newey (2004), and others. However, Srinivasan (1970)
raised some concerns and cautions on using these approximate moments for the
unknown exact moments, which were often difficult to derive. This is because, as he
emphasized, for some estimators the exact moments may not exist or would be infi-
nite, but the Nagar’s approximate moment results would be finite. Thus, he raised
the question of the meaning of Nagar’s approximate results without first checking
the existence of exact moments. This has lead the finite sample econometrics into
two different directions. One is to look into the validity of Nagar’s expansion, see
important contributions on this by Sargan (1975, 1976, 1980) and Phillips (1977,
1978, 1980). In these studies they discussed the conditions of validity for Nagar’s
expansion and its link to the theory and applications of Edgeworth’s expansion
(1896, 1905) to derive the approximate moments and distributions of econometric
statistics. The second direction took place in terms of deriving exact moments and
distributions of econometric statistics and important contributions in this direc-
tion include Basmann (1961), Kabe (1963, 1964), Richardson (1968), Anderson
and Sawa (1973), Ullah and Nagar (1974), Maasoumi (1978), Kinal (1980), Mari-
ano (1982), Phillips (1980, 1983). Rothenberg (1984a, 1984b), Taylor (1983), and
Hillier et al. (1984). A summary of these extensive exact and approximate results
above can be found in the book by Ullah (2004), where it is also shown that some
of these results can be developed by studying the distribution and moments of
quadratic forms as developed in Imhof (1961), Forchini (2002), Bao and Ullah
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(2010), and Bao and Kan (2013). The applications of these theoretical results are
explored in many practical applications such as Bao and Ullah (2007), Bao et al.
(2019), Bao et al. (2021), and Chu et al. (2021).

The major breakthrough in the applications of Nagar’s approximate results for
the 2SLS and OLS estimators came in the context of growing literature on weak
instruments and large number of instruments, see Section 2.3 and Angrist and
Pischke (2009) for references. While many of the Nagar-type approximate results
are derived for the estimators with multivariate stochastic variables, the exact
results have been restricted to estimators in bivariate cases. However, this gap is
likely to be filled in future with the development of the general recent exact results
and tools by Hillier and Kan (this issue, 2021), Hillier et al. (2009, 2014). These
papers will be fundamental for the future growth of exact results for econometric
statistics in multivariate stochastic cases.

3 Generalization of Nagar’s Expansion

The expansion (1) and various results based on it originated in linear simultaneous
models with i.i.d. normal data. For example, the expansion in (10), the correspond-
ing stochastic terms (11), and the bias and MSE results (13) and (14). Rilstone et
al. (1996) generalized it to a class of extremum estimators in linear and nonlinear
models with possibly nonnormally distributed data. The estimator in question is
defined as

R 1
B = argpn(B) =arg~ > ¢:i(8) =0, 21
agg (B) a;gniZIq( ) (21)

where ¢;(8) = q(B,w;) is a known p x 1 vector-valued function of the i.i.d. random
vectors w;, consisting of observations on variables in the system, and the parameter
vector B such that E(¢n(8)) = 0 (conditional on the stochastic regressors, if
any) only at 8 = By. One can think of ¢,(8) as the orthogonality condition
between the regressors and the error terms, or the first-order condition of some
optimization criterion. The class of estimators identified by (21) include many
estimators in linear and nonlinear models, such as the maximum likelihood (ML),
least squares (LS), and generalized method of moments (GMM) estimators. Under
some smoothness conditions on ¥, (3) and its higher-order derivatives, one can
implement a Taylor-series expansion such that

3
UnlB) = 6n(Bo) + 3" ST Un(Bo)[& (B — Bo)] 40, (22)

i=1

where V4, (8) denotes the i-th order derivative of v, (3) with respect to the pa-
rameter vector 3, evaluated at B8 = B, and defined recursively as in Rilstone et al.
(1996), and @*(3—Bg) = (B—Bo)2(B—By) - - -®(B—By) is the Kronecker product of
Q—BO and itself 4 times. Given the expansion (22), by solving for B—BO recursively
and expanding [V (8o)] ™" = (E[Ven(8o)]) I + (E[VYn(8o)])) ™ (Vin(8o) —
E[V¢n(By)])} * in terms of powers of Vi, (8g) — E[Vin(By)], one can write down
B—Bg as in (1). One can see that the expansion (1) used for the k-class estimator is
a special case of the expansion of [V, (8,)] 1. (It is not necessarily E(¢n(8,)) = 0
though for the k-class estimator, except for the special case of 2SLS.)
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Bao and Ullah (2017a, 2017b) recognized that Rilstone et al. (1996) can be
further generalized to models for non-i.i.d. data, including time-series and spatial
data, where the identification condition vy (8) = ¥n (8, W), W = (w1, - ,ws)’.
Though not obvious, on many occasions, one may write ¥n(8) = = Y1 | ¢(8, w;)
such that E(q(8, w;)|o(w;—1,-- ,w1)) = 0, where o(w;_1, - ,w1) is the sigma-
field generated by w;—1,--- ,w1. In other words, {g¢(8, w;)};~; forms a martingale
difference sequence. Based on this, Bao and Ullah (2017a) derived the second-order
bias and MSE of the ML estimator in pure first-order spatial autoregressions under
normality and Bao and Ullah (2017b) presented results for some commonly-used
time-series models under nonnormality. Results for the first-order spatial autore-
gressions with exogenous regressors under nonnormality were given by Bao (2013).
In fact, Bao and Ullah (2009) used the expansion (10) based on the general identi-
fication condition ¥y (3, W) to derive the the approximate standardized measures
of deviation from normality, namely, the skewness and excess kurtosis coefficients,
for a class of econometric estimators. Given the skewness and kurtosis results
above, one may follow the lines of Rothenberg (1984a) to use the two standard-
ized measures to construct an Edgeworth-type approximation to the distribution of
a non-linear estimator, though it is an open question as to whether the Edgeworth
distribution is a valid approximation to the true distribution.

When one tries to evaluate the various terms involved in (2) and (3), the results
on moments of quadratic forms in (5) as well as those under nonnormality in Bao
and Ullah (2010) are useful for one to simplify and derive analytical results.

4 The Exact and Approximate Distribution Results

In addition to the approximate moments, one may be also interested in the exact
and (higher-order) approximate distributions of the estimator in question. This is
relevant since it has long been observed that the celebrated asymptotic normal
distribution, with the help of various version of central limit theorems, depending
on the degree of memory and heterogeneity in the data, may provide poor approx-
imation to the estimator’s finite-sample distribution. It may also happen that the
asymptotic distribution depends on the asymptotic regime used. For example, for
the continuous time Ornstein-Uhlenbeck process, the asymptotic distribution of
the MLE of the mean reversion parameter depends on how the data are sampled,
see Zhou and Yu (2015) for the different asymptotic distribution results under
infill, expanding, and double asymptotic regimes. In practice, the realized sample
data does not manifest itself which asymptotic regime should be used. This calls
for the exact and/or higher-order approximate distributions.

4.1 The Exact Distribution
When the (scalar) estimator can be written as a ratio of quadratic forms, then

under normality, the exact distribution of the estimator can be evaluated using
the technique of Imhof (1960). Consider the following ratio

!
y Ay
r = y’A2y7 (23)
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where y is an n x 1 normal random vector with its mean vector E(y) = p and
variance matrix Var(y) = §2 being positive definite, A; and As are n x n non-
stochastic symmetric matrices, and As is a positive semi-definite. The cumulative
distribution function (CDF) of this ratio is

F(ro) = Pr(r < ro) = Pr(y’ Ay <0), (24)

where A = Ay —rgAs. Rewriting y' Ay = ' 2 V/2BB'2'/2AR'/?BB' 2 /%y =
Yy’ Ay* = Y Nyr?, where y* = B'Q27/2y ~ N(p*, 1), p* = B'27 V%, A
is a diagonal matrix of eigenvalues of 224022 and B is an orthogonal ma-
trix of eigenvectors of 2'/2A02'? such that B'2'/2A02'/?B = A, one can see
that the distribution of the ratio of quadratic forms translates to that of a lin-
ear combination of independent non-central chi-squared random variables. Let \;,
j=1,---,5 <n, denote non-zero distinct elements of A, n; be the corresponding
multiplicities, §; = Ziﬁj ui?, where Ziﬁj denotes summing over i such that the
i-th element of A equals A;. Then y*' Ay* = Z;=1 )\jCJZ, where CJZ ~ X%j (0;) and
they are independent of each other. For a linear combination (with weights ;) of
independent noncentral chi-squared variables ¢; (with noncentrality parameter 4;
and degrees of freedom n;), Imhof (1961) showed that

¢ 11 [ sinp(t)
Y N < :f—f/ S g, 25
r(jzl i <€) 2 7w )y tp2(t) (25)

where

P —**+§

S

p2(t) = H(l + )\j2v152)"j/4 exp
j=1

Ajojt
Y fan Tt () 4 =20
an (% )+2(1+>\§t2) ’

(26)

X226 }
242
2(1+2212)

Setting ¢ = 0 in (25), one has Pr(3_7_, AiG; < 0) = F(ro) = Pr(yAy < 0) =
Pr(y' A1y/y' Azy < ro).

For one to be able to use (25), the essential task is to compute eigenvalues of
an n x n matrix, which may become very cumbersome if n is moderately large. A
somewhat different approach is given by Gurland (1948) and Gil-Pelaez (1951).
Suppose one can work out the joint characteristic function of Y7 and Y2, where
Yi = y/A1y and Y = y’Agy, denoted by Ap(th t2) = E(exp(itﬂﬁ + ithz)), then

Fro)=1-1 /Ooo Im (Wlti:“m)> dts. (27)

s

Bao et al. (2019) used (27) to evaluate the exact distribution of the MLE of the
mean reversion parameter in the Ornstein-Uhlenbeck process with the help of
analytical evaluation of the joint characteristic function involved.

When the estimator is multivariate, the issue of deriving the exact distribu-
tion is more complicated. A classical example is Phillips (1980) when he derived
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the exact probability distribution function (PDF) of the IV estimator of the co-
efficient vector of the endogenous variables in a structural equation under over-
identification. Let the structural equation be

Y1 =Y28+Z1v+u (28)

and the reduced form be

w11 ITq2

Yol=|Z1,2
[y, Y2o] =[Z1, Z>] [7‘_21 I o

} +[v1,Va] = ZIT 4V, (29)

where y; is an n x 1 observational vector on the outcome variable, Y3 is an n x g
observational matrix on g endogenous variables, Z; is an n x K; observational
matrix of included exogenous regressors, and Z is an n x Ko observational matrix
of excluded exogenous regressors. Suppose [Z1, Z3| be an observational matrix of
instruments, where the n x K3 matrix Z3 is a submatrix of Zs. The IV estimator
is

Brv = (YhZ3Z5Y ) 'Y52Z32Z5y, = Hyy hot, (30)
where
o |hha | [ v1Z3Z5y; viZsZ5Y s | 31)
ho1 Hoo Y4LZ3Z5y, YSLZ3Z5Y o

With the normalization n~!Z’Z = I and the covariance matrix of rows of V being
the identity matrix, the matrix H is noncentral Wishart of order g + 1. Phillips
(1980) derived the joint PDF of 3, by the following steps. First, write the PDF of
A in terms of a hypergeometric function with a matrix argument. In the next step,
a variable transformation is carried out so that the PDF is expressed in terms of
H 5 and hga;. In the final step, the PDF of BIV is derived by integrating over the
space of (ha1, Ho2). The final expression of the PDF of ,@IV involves an infinite
sum of hypergeometric functions with a matrix argument. For the 2SLS estimator
in the simple case (6) (with g = 1, K3 = Ko = K, and K1 = 0), the PDF of 5575
can be written as

oy SR B0AR) T (E)
O A (B (14 rg) B0/
= (%54, (082’ K+1 K 61+ fBoro)?
S (7)) () @

4.2 The Approximate Distribution

When g = 1, namely, when there is only one right-hand-side endogenous variable,
the matrix argument hypergeometric function has an explicit representation (in
terms of the univariate 1 F; function and the elementary symmetric functions of
the matrix argument). For the general case of g > 1, its calculation is a challenge
and hence the exact PDF of B}, is not feasible. Phillips (1980) recognized this and
proposed approximating the matrix argument hypergeometric function such that
approximation error is O(nfl). The approximation error of the resulting PDF,
however, is not clear.
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Instead, one may consider developing approximate distribution results using
an Edgeworth-type approximation. A multivariate Edgeworth approximation is
typically complicated, if not impossible. Classical references and recent contribu-
tions include Bhattacharya and Ghosh (1978), Gotze (1987), Kollo and von Rosen
(1998), and Kundhi and Rilstone (2020), among others. Usually, for tractable re-
sults, one needs to employ complicated matrix and tensor notation. Skovgaard
(1986) proposed a directional approach such that the expansion is implemented in
one direction at a time. Kundhi and Rilstone (2013) considered a scalar statistic
of B that is based on (21), also see Kundhi and Rilstone (2012) for the special case
when @ is the generalized empirical likelihood (GEL) estimator.

Suppose one is interested in the distribution of the scalar statistic

Vil (B — Bo) 33
Vi )

where I € RP is a p x 1 vector of constants and V is a consistent estimator of
V =nE(a_; /2a'_ 1 /2). In addition to the smoothness assumptions in Rilstone et

‘E:

al. (1996), if one also assumes that an expansion of VI holds, namely,
UVI=1UVI+b_y)5+b 1, (34)

where b_; /5 = Op(nfj/Q), j=1 21 and b_y /5 = n~' 3" | b;, Kundhi and Rilstone
(2013) showed that the CDFs of £ and # coincide to order o(n~'/2), where

é’— \/ﬁl/a_l/g + \/ﬁl/a,1 . \/ﬁl/a—l/Z b—1/2 (35)
VIVI VIV Vilve 2UvL

Note that the third term in the above expression is due to the correlation of B and
V. (If V is known, then the assumption (34) is not relevant and the third term in
(35) is not needed.) Kundhi and Rilstone (2013) derived the first three (approxi-
mate) cumulants of &, up to 0(n—1/ %), in terms of cumulants of &, defined as the
sum of the first two terms in (35). Suppose one can write a_; /, = -~ di
(For the case of i.i.d. data, d; = [E(Vq1(8o)] 'q1(By).) With E(¢) = n~ Y2k,
Var(€) = 14 0(n™'), and E((¢ — E(€))?) = n~"/?k3 + O(n~*/?), Kundhi and
Rilstone (2013) defined the approximate cumulants of £ as

o E(dib) . 3E(I'd1by)
k1 =K1+ 2(l’Vl)3/27 k3 = K3 + (l’Vl)3/2 : (36)
Then the Edgeworth approximation to the distribution of £, defined as
R1 1 ks 3
P(t) =o(t) — — —=— —
(6)=2() = ZLol) - 5 L0~ 3)0(). (37)

where @(t) and ¢(t) are, respectively, the CDF and PDF of a standard normal
distribution, is shown to approximate the true distribution of ¢ to order o(nil/z)
in the sense that sup,cg |P(t) — Pr(f < t)| = o(n~/?). One can use (35) to handle
straightforwardly the scalar case (p = 1) or non-studentized statistic.

Kundhi and Rilstone (2013) showed that the approximation (35) is valid by
verifying the conditions in Bhattacharya and Ghosh (1978). For the more general
case of nonlinear estimators with non-i.i.d. data, Bao and Ullah (2009) derived the
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approximate cumulants of l;— ,3, where I; is the j-th unit vector in RP. It is expected

that a similar adjustment, taking into account the correlation of ,@ and the esti-
mated asymptotic variance matrix, is needed when a studentized statistic is used.
However, it is still an open question regarding whether the resulting Edgeworth
approximation using the approximate cumulants is a valid distribution function.

For the univariate first-order dynamic model, Phillips (1977) derived the ex-
act cumulants of the LS estimator of the AR(1) coefficient, assuming normal-
ity, and used them to construct the Edgeworth approximation. He also used the
approximate cumulants of the associated t statistic to construct the correspond-
ing Edgeworth approximate distribution. Phillips and Park (1988) developed the
Edgeworth-type expansion of the Wald statistic by first employing Taylor-series
expansions of both the restrictions (evaluated at the sample estimate) and its es-
timated asymptotic covariance matrix. Then they derived the cumulants of the
resulting approximate Wald statistic and used them to construct the Edgeworth
approximate distribution of the Wald statistic, up to o(n™'). Note that Phillips
and Park (1988) assumed either the distribution of the estimator is exactly normal
or has a valid Edgeworth distribution to begin with.

5 Future Directions

Recent advancements in computation, symbolic calculation, data science, and ma-
chine learning, with the presence of big data, may make one wonder about the
future of finite sample econometrics. Even with big data, inference remains an
important and fundamental issue, especially when some covariates are rare-event
type. While big data may make frequent inference (and forecasting) updating pos-
sible, it never dismisses the relevance of inferences, whether they are based on the
asymptotic or finite sample theory. There are occasions where data frequency is
key factor in determining the properties of estimators and statistics of interest
and it can happen that even in the presence of big data, the asymptotic and finite
sample distributions give rise to quite different descriptions of their sampling dis-
tributions. Of course, there are many areas in the social sciences where the data
are limited due to the nature of the variables involved and developing the finite
sample theory is even more needed. Improvements in computational methods have
made it promising for a return to the topics of exact theory and higher-order ap-
proximations. The following are fruitful directions to explore and improvements
in computational technology may yield some useful results in the near future.

1. The expansion as in (1) is in the order of power series of n~1/2 which is a
natural choice given a typical estimator is y/n-consistent. However, under infill
asymptotics, the convergence rate is different. Another example is the role
of the concentration parameter as demonstrated by (18). Related literature
includes the fixed-b asymptotics for nonparametric estimation; large-N /large-
T asymptotics in panel; sparse/dense weight matrices in spatial econometrics.
Suppose the convergence rate is hy, possibly a function of n, then a natural
extension is to expand by power series of hy,.

2. The exact moments/distribution for the multivariate case seems to be a largely
unexplored area. Recent contributions by Hashiguchi et al. (2018) and Hillier
and Kan (this issue) provide some insights into the properties of the Wishart
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matrix, which arise naturally in multivariate analysis, but still there appears
to be no obvious way of deriving the exact moments.

3. The approximate skewness and kurtosis derived in Bao and Ullah (2009) may
be used to construct the Edgeworth distribution of a general class of estimators
and the associated ¢ statistics and maybe Wald statistics. The challenge is to
verify the resulting approximation constitutes a valid approximate distribution.

4. One major area where the Nagar-type approximate moments have not been
developed is the class of estimators derived by solving discrete moment func-
tion, such as the quantile estimators and estimators under asymmetric loss
functions. Only asymptotic theory results have been developed for such cases
but not the analytical finite sample results. This is an open area for future
research, but see recent attempts by Lee et al. (2018) and Franguridi et al.
(2021).

5. Many financial and macro-economic models involve non-stationary/long-memory
variables. The analytical finite sample results in this area are not yet explored
extensively, although see the works by Abadir (1993), Kiviet and Phillips
(2005), Phillips and Lee (2013), and Bao et al. (2014).

6. A number of non-linear applied micro models such as logit/probit models,
censored models, truncated models have not been explored for their analytical
finite sample properties. Rilstone and Ullah (2002) derived the second-order
bias of Heckman’s two-step estimator for sample selection models and one has
yet to extend to other frequently used micro models.

Acknowledgements This paper is dedicated to Professor A.L.Nagar for this special issue.
We thank Essie Maasoumi for his helpful comments.
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