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Abstract:  

Voluntary selection into experimental samples is ubiquitous and leads researchers to question the 

external validity of experimental findings. We introduce tests for sample selection on unobserved 

variables to discern the generalizability of randomized control trials. We estimate the impact of a 

learning community on first-year college retention using an RCT, and employ our tests in this 

setting. We compare observational and experimental estimates, considering the internal and 

external validity of both approaches. Intent-to-treat and local-average-treatment-effect estimates 

reveal no discernable programmatic effects, whereas observational estimates are significantly 

positive. The experimental sample is positively selected on unobserved characteristics suggesting 

limited external validity.    
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Introduction  

The goal of much empirical work in economics is to estimate a credibly causal (i.e., 

internally valid) effect, which also applies to the entire population of interest (i.e., is externally 

valid). In an effort to obtain credibly causal estimates, researchers typically exploit naturally 

occurring exogenous variation or employ randomized control trials (RCTs). However, even 

when the internal validity of estimates is credible, the same estimates often hold only for a 

localized subpopulation and may lack external validity (Imbens and Angrist, 1994). Whether the 

purpose of the research is to test hypotheses derived from theory, explain empirical regularities, 

or inform policy making, it is often desirable to extend the causal estimates beyond the 

population for which the estimates directly apply.1 In RCTs, the experimental sample sometimes 

does, but often does not, directly correspond to the population of interest. As a result, the 

generalizability of the RCT results to the remaining population is pertinent to whether a given 

theory generally holds, the degree to which one mechanism explains a broader phenomenon, or 

whether a particular policy should be expanded or scaled back.  

In this paper, we offer direct, widely applicable, and straightforward tests for selection 

into the experiment on the basis of unobserved characteristics and heterogeneous responsiveness 

to treatment.2 We do so by comparing outcomes for those who do not receive treatment, by 

whether they participate in the experiment. We do the same among the treated populations 

comparing those who receive treatment by randomized assignment to those who received 

treatment without participating in the randomization. While each test may be suggestive by itself, 

we subsequently provide the conditions in which the coefficient magnitude and the rejection of 

the null hypotheses of homogeneous average outcomes within treatment status directly contradict 

claims of external validity. The benefit to researchers is that we illustrate a way to provide 

                                                           
1 While the categorization of purposes of experiments is provided by Roth (1986), this broader point has been 
written about eloquently in Angrist, Imbens, and Rubin (1996), Heckman and Vytlacil (2005), Deaton (2009), 
Heckman and Urzua (2010), Imbens (2010), and Deaton and Cartwright (2017) as well as elsewhere. 
2 Our tests combine those from Hartman et al. (2015) and Sianese (2017) and relate to those from Huber (2013), 
Brinch et al. (2017), Black et al. (2017), Kowalski (2018), and Bertanha and Imbens (2019), many of which come out 
of the marginal treatment effects literature born out of Heckman and Vytlacil (2005).  
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concrete evidence of the external validity of their experimental results. 

We explore these matters in the context of an analysis of the efficacy of a freshmen year 

learning community in increasing first year college retention at a large, four-year public research 

university. First year retention rates vary significantly across higher education institutions and 

institutional types. For full-time students, first year retention rates are close to 80% at four-year 

public and private institutions, and close to 50% at two-year institutions (U.S. Department of 

Education, 2017). At elite four-year institutions, first year retention can be as high as 99%, 

whereas at lesser-known regional institutions that award four-year degrees, first year retention 

rates can be as low as 40% (U.S. News and World Report, 2018).  

In the past decade or so, colleges have responded to the challenge of improving first year 

college retention by creating first year learning communities, which are viewed by higher 

education institutions and researchers as central to enhanced first-year retention and thus to 

graduation (Pitkethly and Prosser, 2001). Learning communities bring together small groups of 

students, typically into thematically-linked courses for at least one term during freshmen year, in 

the hopes that students will better engage with course material, support one another socially and 

academically, and thereby enhance academic success, first year retention, and ultimately 

graduation. An independent study in 2010 by the John N. Gardner Institute for Excellence in 

Undergraduate Education found that 91% of reporting institutions claimed to possess a learning 

community of some form or another at their institution (Barefoot, Griffin, and Koch, 2012).  

We utilize an RCT design to explore the extent to which the First Year Learning 

Community (FYLC) program at a four-year research university increases first year student 

retention. At the outset, and during the period for which our analysis takes place, freshmen 

students voluntarily enrolled in the program. We offer “intent to treat” (ITT) estimates of the 

effect of being randomized into treatment from among the self-selected population. Though there 

is relatively high compliance with the randomization, some students who were randomly 

assigned to the program ended up not taking it, and some students who were not assigned to the 

program made their way into the program nonetheless. Due to this two-sided noncompliance 
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with the randomization we also estimate the “local average treatment effect” (LATE) of the 

program’s impact among those who comply with randomization. The ITT and LATE estimates 

of program impact reveal no statistically significant effect on first year retention. This is the first 

study of which we are aware to generate estimates from an RCT design of the impact of a 

learning community on first year retention at a four-year higher education institution. 

Next, we consider the generalizability of these results. As a pretest, we follow Black et al. 

(2017) to test for selection on unobserved variables into compliance (or noncompliance) with the 

randomization.3 Finding little evidence of nonrandom noncompliance, we then turn to 

implementing our novel tests addressing the question of generalizability of the RCT results to a 

possible broader population of interest – beyond those who self-select into the experiment. Non-

representative experimental samples may originate through selection processes that are either 

researcher generated (as discussed in Allcott, 2015) or participant generated (as in the case at 

hand). In order to address the external validity of their work, many who design and implement 

RCTs attempt to randomly sample from the population or show the degree to which their 

experimental sample is representative of the broader population of interest. Despite researchers’ 

best efforts to achieve a representative experimental sample, participants are often self-selected, 

even if only in granting consent. Many of the most influential experiments within economics rest 

on voluntary selection into the study. For example, in conducting the Perry Preschool 

experiment, researchers recruited and enlisted children from surrounding neighborhoods in 

Ypsilanti, Michigan who had IQ scores which ranged from 75 to 85 (Weikart et al. 1978). 

Individuals randomized in the National Supported Work Demonstration used in LaLonde’s 

(1986) evaluation of observational methods, the Moving to Opportunity housing voucher 

experiment (Goering et al., 1999), and the Oregon health insurance experiment (Finklestein et 

al., 2012) are all self-selected into the experimental sample to some degree.4  

                                                           
3 These tests are closely related to those in Huber (2013), Brinch et al. (2017), and Bertanha and Imbens (2019). 
4 In the National Supported Work Demonstration the majority of participants were drawn from those who had 
signed up, but were not enrolled in other government programs, but remaining slots were filled by “walk-in” 
enrollees (MDRC, 1980). 
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This self-selection can render RCT estimates externally invalid for a broader population. 

Selection may follow the Roy model, where those who benefit most from treatment select into 

the RCT, or a “reverse-Roy” selection process, where those who select into the RCT would do 

well even in the absence of treatment. Regardless of the process, in the presence of 

heterogeneous effects, nonrandom sample selection into an experiment may inhibit the 

generalizability of experimental results to a broader population. Moreover, similarity between 

the experimental sample and the remaining population on observed characteristics does not 

guarantee that their responsiveness to the intervention will be the same. Differences in 

unobserved characteristics may exist and present more persistent problems for estimation. 

In order to consider these differences, we must first define the population of interest. The 

composition of the population of interest depends on the question and audience. Researchers 

often utilize RCTs to answer general or theoretical questions, which typically pertain to a 

broader population than the RCT sample. For instance, does neighbor quality, affect residents’ 

educational, health, or employment outcomes (as in Ludwig et al., 2008)? Does early education 

lead to future educational and economic success (as in Weikart, 1998)? In general, for a pure 

policy evaluation in which policy makers are interested only in the effect of the policy on those 

who currently select into it, those who select into the study constitute the population of interest. 

However, for some policy evaluations the population of interest is much broader. Were the 

program expanded or the selection criterion changed, the program outcomes for these new 

entrants are also of interest.5     

This is true of the FYLC program in several respects. First, a small share of the students 

who received treatment were late arrivals, and so never participated in the randomization 

process. Naturally, we should be interested in the effects of the program on this group of students 

who stand apart from the experimental population.  Second, in later years, following the period 

of our analysis, the institution extended the program to nearly 90% of freshmen in the college in 

which the program originated.  As a result, the population of interest for policy evolved, making 

                                                           
5 This could arguably pertain to LaLonde (1986) and Finklestein et al., (2012) among others.  
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the external validity of our RCT results of some importance.  

We implement our tests for sample selection on unobserved variables and responsiveness 

to treatment to examine the generalizability of our results to this larger student population by 

testing for selection (on unobserved characteristics) into the experiment. As with many 

experiments with human subjects, enrollment in the RCT was voluntary, and so there are 

questions of nonrandom selection on unobserved variables into the self-selected population. 

However, unlike many RCT-designed studies, we possess information on the non-experimental 

population as well as those who selected into the experiment. This enables us to explore the 

extent of otherwise unobserved differences between the experimental sample and the broader 

population of interest. 

Our results reveal that those students who express a desire to enroll in the program are, in 

many observed respects, from more vulnerable segments of the student population – they tend, 

for example, to have lower high-school GPAs, lower SAT scores, and come from less-

advantaged backgrounds. However, further analysis reveals that the experimental population also 

possess unobserved characteristics – presumably, things like grit, determination, focus, and 

commitment – which make them even more likely to succeed in college than their peers who did 

not enroll in the study. This positive selection on unobserved variables holds for both those who 

do and do not receive treatment. The magnitude of the selection into the RCT clearly raises 

concerns regarding the generalizability of the RCT results to these larger populations of interest.  

A final contribution of the paper addresses LaLonde’s (1986) seminal work on “within-

study design.” We begin by using the data to perform a comparison of the experimental results 

with those from standard observational approaches, which have been used both by institutional 

researchers and some academics to estimate the effects of first year learning communities. We 

also consider the internal and external validity of both experimental and standard observational 

approaches in order to reflect on what we learn from such within-study designs in general.  

The paper is organized as follows: First, we describe in greater detail the learning 

community literature, the FLYC at this institution, the nature of the randomized control trial 
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design, and the data to be used in the analysis. Second, we describe the empirical methodology, 

followed by the results. The final section offers a summary discussion and conclusion. 

Background and Data 

While there are many published evaluations of first-year learning experience programs 

broadly defined and still more conducted by in-house researchers, the set of studies focused on 

such first-year learning communities is restricted.6 Of those focused on learning communities 

specifically, some observational studies utilize advanced techniques, such as propensity score 

matching (Clark and Cundiff, 2011), instrumental variables (Pike, Hansen, and Lin, 2011), and 

Heckman’s two-step procedure (Hotchkiss, Moore, and Pitts, 2006). However, in each, the 

exogeneity assumptions necessary for causal interpretation of the results are problematic.  

There are three RCT studies that also estimate the impact of learning communities on 

various programmatic outcomes. Two of these studies estimate the impact of remedial learning 

communities on retention rates in two-year community college settings (Scrivener et al. (2008) 

and Visher et al. (2012). Both find small positive effects on performance in remedial courses, 

though no effects on first year retention. Interestingly, Scrivener et al. (2008) find in a two-year 

follow-up study that program participants were 5 percentage points more likely still to be 

pursuing their degree than control group members. However, causal effects identified in the 

community college setting are likely to differ from those at four-year institutions. Community 

colleges typically draw differentially from the academic and soft-skills distributions. Four-year 

universities also tend to provide more opportunities for a community to develop naturally 

through on-campus housing and additional extra-curricular programs. Consequently, the effects 

of learning communities on retention at four-year institutions warrants further examination.   

The third RCT evaluation of learning communities provides the closest study to the one 

at hand. Russell (2017) examines the effects of experimental study groups at the Massachusetts 

Institute of Technology. While the overall effects on program participants are of mixed sign, 

                                                           
6 See Barefoot, et al. (1998) and Pascarella and Terenzini (2005) for early reviews and Angrist, Lang, and 
Oreopoulis, (2009), Bettinger and Baker, (2014), Paloyo, Rogin, and Siminski, (2016) for more recent examples. 
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small in magnitude, and noisy, subgroups of participants do display large, positive, marginally 

statistically significant program effects on some outcomes such as GPA and majoring within a 

STEM field. First year retention was not an outcome variable that was evaluated in this study 

and effects on male, racial majority, and high income students are not reported. 

The First Year Learning Community (FYLC) we study began on a small scale and 

included approximately 200 students from a population of roughly 4,000 incoming freshmen. 

During its founding there was a growing sense on campus that students – and freshmen in 

particular – were facing larger and more impersonal classes as enrollments had increased 

substantially during the preceding decade. The proposed first year learning community had 

several goals, but one of the most important was to increase first to second year retention rates of 

freshman students by offering them a small learning community experience in what was rapidly 

becoming a large research university setting.  

The basic structure of the program is a year-long, theme-driven sequence of courses, 

structured study sessions, peer mentoring, and extra-curricular activities designed to foster 

academic achievement and socialization, and thereby to increase retention rates for freshmen 

participants.  The FYLC is modeled after coordinated studies learning community programs in 

which two or more courses are linked around a specific theme (Laufgraben, Shapiro and 

Associates, 2004; Kuh, Kinzie, Schuh, Whitt and Associates, 2005; Zhoa and Kuh, 2004). The 

general format may vary across institutions – for example, the courses may all take place in the 

first term of freshman year as opposed to being spread out over the entire year, as is the case with 

the FYLC – but the basic idea is similar and the intention is the same: that students will better 

engage with course material, support one another socially and academically, and thereby enhance 

academic success, first year retention, and ultimately graduation. 

With the help of a Fund for the Improvement of Post-Secondary Education (FIPSE) grant 

from the Department of Education, student capacity in the FYLC was doubled over two years. 

The random assignment feature was institutionalized in the following way: Program staff 

solicited intent to participate commitments from incoming freshmen, following communications 
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about the program to both parents and students prior to freshman orientation. Every entering 

freshman student received the same information about the program and was encouraged to enroll 

in the lottery to be in the program. The goal was to receive expressions of interest by 1000 

incoming freshmen each year, 450 of whom would then be randomly assigned to the available 

program seats and the others would be assigned to the control condition. This would allow us to 

detect an effect of about 0.05 change in first year college retention at a power of 0.9, similar to 

that detected in Scrivener et al. (2008).7  

The new random assignment regime roughly approximates the old program 

implementation procedure, but with several differences that could have conceivably affected 

program participation and program outcomes pre- and post-random assignment. Under the 

former regime, program participants were essentially drawn from among the self-selected student 

population (i.e., those who would have expressed an intent to enroll had they been asked) on a 

“first-come, first-served basis” during consecutive summer enrollment sessions. Under the new 

regime, participants are randomly assigned from the self-selected population.  Non-participants 

among the self-selected population under the old regime were simply unaware of the program or 

found that the FYLC classes were filled if they tried to enroll. Under the new regime, the control 

group was notified that they had not been chosen to participate in the program, perhaps giving 

them further encouragement to seek out alternative first-year experiences or disappointing them 

and thereby leading to behaviors that would not have occurred under the previous regime. 

Additionally, students and parents were given greater opportunity to discuss the program before 

expressing an interest in the program under random assignment.  

Data for this analysis come from student records on the two freshman cohorts during the 

years for which the program capacity was increased by virtue of the federal grant. A unique 

                                                           
7 Some may worry about the lack of power due to a binary outcome. As a result, we also perform similar analysis 
with GPA as the outcome variable. With regard to the analysis of 1st year GPA, at a power of 0.9 our desired 
sample size would allow us to detect an effect of 0.07 grade points. Our data contains 2nd year cumulative GPA for 
just the first cohort. For analysis on 2nd year GPA at a power of 0.9 our desired sample size would allow us to 
detect an effect of 0.10 grade points. We include the RCT results of the FYLC program on GPA in Table A2 in the 
appendix. The results for GPA are similar to those for first year retention. We find no statistically significant effects 
of the FYLC despite the increased power.  
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feature of our analysis is that in addition to retention and demographic information for the self-

selected population who applied to be part of the program, we also gather information on the 

remainder of the freshman class who at the outset expressed no interest in program participation. 

Having information on the non-experimental population is unfortunately rare in RCT designs. 

We use this additional information to shed light on the nature of various selection issues which 

are impossible to explore without it.  
 
Table 1: Student Background Characteristics 

 Assigned 
Control 

Assigned 
Treatment 

Difference  Lottery 
Sample 

Non-lottery 
Sample 

Difference 

High-school 3.46 3.46 0.01  3.46 3.53 -0.07*** 
GPA   (0.02)    (0.01) 
SAT math 494.25 498.65 4.40  496.57 544.40 -47.83*** 
   (6.15)    (3.63) 
SAT writing 491.42 496.40 4.98  494.04 508.33 -14.29*** 
   (5.77)    (3.29) 
SAT verbal 488.00 491.14 3.14  489.65 502.39 -12.73*** 
   (5.88)    (3.31) 
Female 0.68 0.69 0.01  0.69 0.50 0.19*** 
   (0.02)    (0.01) 
1st generation 0.63 0.62 -0.01  0.62 0.56 0.07*** 
   (0.02)    (0.01) 
Low income 0.60 0.62 0.01  0.61 0.56 0.05*** 
   (0.02)    (0.01) 
Lives on  0.74 0.75 0.01  0.75 0.71 0.04*** 
Campus   (0.02)    (0.01) 
N 741 824 1565  1565 6566 8131 

 Low income is defined as family income below $30,000. Robust standard errors are in 
parentheses.   

We begin by aggregating the two cohorts into a single sample for the purpose of analysis.  

This yielded a sample of 8131 students, 1565 of whom applied to be part of the FYLC, and 824 

of which were chosen through the lottery system to be part of the program. In addition to first 

year retention (where, 1=returned for a second year at this institution, and 0=did not return), we 

have a host of student background characteristics from student records that are used as control 

variables in the analyses to follow. Table 1 lists these characteristics variables and shows their 

means for three primary populations of interest.  



                                                     11 
 

None of the background variables is meaningfully or statistically significantly different 

across those assigned to the treatment or control. However, this is decidedly not the case when 

we compare students who self-selected into the lottery with those who self-selected out of the 

lottery. The Table 1 results reveal that these two groups are statistically different with regard to 

every observed background characteristic. Moreover, with the exception of being proportionately 

substantially more female and slightly more likely to live on campus, the ways in which the 

lottery students differ would suggest they possess greater vulnerability to attrition between the 

first and second year of college. They possess lower SAT scores (nearly 10 percent below 

average for math), slightly lower high-school GPAs, and they are substantially more likely to be 

a first-generation college student and from a low-income family.8 

As mentioned above, there are three important instances of migration between assigned 

groups in the data.9 Of the 824 students initially assigned to the treatment group, 170 (or 21%) 

did not attend any of the program courses or services. There is also contamination in the control 

sample in this randomized control trial, as 108 students (15%) assigned to the control group 

enrolled in FYLC courses (presumably as a partial replacement for those no-shows from the 

assigned treated group). Finally, 117 of 6,566 students (2%) who did not initially express interest 

in enlisting in the program and did not enter into the lottery eventually entered the program. 

None of these groups is a random draw from the assigned treatment group. As shown in 

Table A1 in the Appendix, those who ultimately receive treatment are in some instances 

statistically significantly different from those in their original assignment category on almost 

every observable dimension. However, none of these violations of initial assignment bias the 

“intent to treat” estimates of program impact, though they do present complications in estimating 

the effects of treatment itself. However, their presence also provides opportunities for exploring 

the extent to which our estimated LATE can be generalized to the estimation sample or the entire 

population of interest.  

                                                           
8 We discuss this matter further below and show that each of these traits is correlated with lower retention in 
Table A3 in the appendix. 
9 We present a figure depicting these various subpopulations in Figure A1 of the appendix.  
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Empirical Methodology  

 We divide our empirical analysis into three sections. First, we utilize the RCT design to 

identify the intent to treat effect of the FYLC on 1st year retention, as well as the average 

treatment effect on the treated. Second, we test for selection on unobserved characteristics 

between compliers and always-takers, between compliers and never-takers (non-random 

attrition), and (most importantly) for non-random selection into the experiment. Third, we 

compare the results from our RCT to estimates that would be obtained using standard 

observational methods, with a focus on the external and internal validity of each. More detail 

about each set of analyses is given below.   

Analysis 1: Estimating treatment effects using the RCT 

Randomization among the experimental group provides two groups of similar size; those 

assigned to treatment and those assigned to the control group. These two groups should be in 

expectation identical with respect to both observed and unobserved pre-determined 

characteristics. Accordingly, we may estimate the causal “intent to treat” effects of the program 

using standard approaches. 

Due to the ease of interpretation, we begin by estimating a linear probability model using 

OLS among the population who selected into the lottery according to the following specification: 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑛𝑛𝑖𝑖 = 𝛼𝛼 + 𝑤𝑤𝑤𝑤𝑛𝑛𝑖𝑖𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 + 𝑿𝑿𝒊𝒊𝜸𝜸 + 𝜖𝜖𝑖𝑖, (1) 

where Retentioni indicates whether student i remained in school the following year, woni 

indicates whether individual i entered and won the lottery, and Xi is a rich vector of student 

background characteristics discussed in the “Data” section above. As causal identification does 

not hinge on the covariates we conduct the analysis both with and without conditioning on X.10  

We repeat the exercise using logit to respect the binary nature of the dependent variable under a 

quasi-maximum likelihood estimation (QMLE) framework to obtain heteroscedasticity robust 

standard errors (Gourieroux, Monfort, and Trognon, 1984).   

                                                           
10 The inclusion of covariates may provide efficiency, but introduce finite sample bias. For summary of discussion 
see Lin (2013). 
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Due to the two-way non-compliance, estimates of the intent to treat may be misleading 

regarding the efficacy of treatment, because they ignore contamination of the treatment and 

control groups. We attempt to uncover the average effect of the treatment on the compliers using 

2SLS with the lottery as an instrumental variable for enrollment in the FYLC. In the non-linear 

specification, we use a control function approach in which we treat the endogeneity in FYLC by 

adding the first-stage residuals in the logit estimation of equation (1) following Vytlacil, 2002 

and Wooldridge, 2014.11 While this procedure provides us with internally-valid, causal estimates 

of the effect of treatment, without further assumptions these estimates hold only for the 

compliers who received treatment because they won the lottery. We may wonder whether there 

is nonrandom selection into these compliers and whether the estimated LATE generalizes to the 

average treatment effect among the whole experimental sample and, perhaps even more 

importantly, among the larger population of interest. We take up these issues in Analysis 2. 

Analysis 2: Testing for selection on unobserved characteristics and external validity 

In this set of analyses, we examine the extent to which our RCT results may generalize. 

In so doing, we first apply the tests as described in Black et al. (2017) to judge whether we can 

detect nonrandom selected noncompliance with the randomization within the experimental 

sample. We then introduce tests for whether there is nonrandom selection into the experimental 

sample on unobserved characteristics, and provide minimal conditions under which we may 

interpret the selection as directly contradicting the external validity of the RCT.   

Existing tests for selection on unobserved variables and external validity within sample 

To formalize these tests, let D indicate treatment (FYLC participation), Y be the outcome 

(first-year retention), and Z denote the binary randomized assignment (whether or not the lottery 

assigned an individual to participate in the FYLC). We add to this familiar framework, L, as an 

indicator for participation in the experiment. Much of the earlier treatment effects literature as well 

as Huber (2013), Brinch et al. (2017), Black et al. (2017), Kowalski (2018), and Bertanha and 

                                                           
11 Since the included residuals are estimated, the standard errors we use for inference must account for possible 
estimation error. Consequently, we bootstrap both stages of our estimation to estimate the standard errors. 
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Imbens (2019) considers only the population for which L=1. However, we are often interested in 

generalizability to a population broader than the sample, particularly in experimental settings. As 

a result, we must add two additional groups to the typical division of the sample among compliers, 

always-takers, and never-takers. Namely, we add the “late-takers” who take-up the treatment 

despite not entering the lottery, and the “never-ever-takers” who do not enter the lottery and do 

not take the treatment. Again, we maintain the monotonicity assumption that there are no defiers.12  

Following Black et al. (2017), we model the conditional expectation of Y as a function of 

the treatment conditional on X=x. We will later use the unconditional outcome when addressing 

the external validity interpretation of the results. We write the model in familiar linear form with 

unobserved heterogeneous intercepts as well as heterogeneous effects of treatment: 

 𝑌𝑌𝑖𝑖 = 𝑿𝑿𝒊𝒊𝜸𝜸 + 𝐷𝐷𝑖𝑖𝑏𝑏𝑖𝑖 + 𝜀𝜀𝑖𝑖,   (2) 

where Xi denotes a vector of observed characteristics. Here, 𝜀𝜀𝑖𝑖 represents the unobserved 

heterogeneous intercept, while bi = β + ei represents the heterogeneous responsiveness to 

treatment, which are centered on the ATE, β. Note that the model implicitly assumes that neither 

Z nor L directly affects the outcome variable, though selection into treatment may depend on both. 

Accordingly, we summarize the groups that comprise our sample, and write the expected outcome 

for each subsample conditional on X=x in Table 2.  

                                                           
12 We must also assume the “stable unit treatment value assumption (SUTVA)” from Rubin (1980) which holds that 
individuals’ responsiveness to treatment is unaffected by the number of others who also receive treatment. This 
assumption may be restrictive as increases in scale may affect the quality of instructors and mentors providing 
services. However, we consider these concerns secondary to the selection effects present in our context. 

In order to test for nonrandom selection into compliance on the basis of unobserved heterogeneity 

we test whether the mean heterogeneous fixed errors and heterogeneous effects differ across populations 

using side-by-side comparisons. For instance, the difference between complacent controls and no-shows 

may be expressed as 𝐸𝐸(𝑌𝑌𝑖𝑖|𝒙𝒙,𝐷𝐷 = 0, 𝐿𝐿 = 1,𝑍𝑍 = 0) − 𝐸𝐸(𝑌𝑌𝑖𝑖|𝒙𝒙,𝐷𝐷 = 0, 𝐿𝐿 = 1,𝑍𝑍 = 1) = 𝜀𝜀𝑐̅𝑐 − 𝜀𝜀𝑛̅𝑛𝑛𝑛. 

Accordingly, we test whether this difference is zero in the following conditional mean function for the 

sample that enters the lottery but does not take up treatment: 

 𝐸𝐸(𝑌𝑌𝑖𝑖|𝐷𝐷𝑖𝑖 = 0, 𝐿𝐿𝑖𝑖 = 1,𝑍𝑍,𝑿𝑿) = 𝑍𝑍𝑖𝑖𝜋𝜋01 + 𝑿𝑿𝒊𝒊𝜸𝜸𝟎𝟎𝟎𝟎.   (3) 
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Kowalski (2016), summarizes the test proposed by Brinch et al. (2017) remarking that 

these tests reject the null of external validity if the sign of the selection into compliance for the 

untreated is opposite the sign of selection into compliance among the treated. Kowlaski (2016) 

demonstrates that either ancillary assumption from Brinch et al. (2017) “weak monotonicity of 

the untreated outcomes in the fraction treated, [or] weak monotonicity of the treated outcomes in 

the fraction treated” is sufficient for directly testing the external validity of compliers for whom 

the estimates hold to the remainder of the experimental sample. Under this assumption, if the 

compliers are significantly and monotonically selected from both the never-takers and always-

takers, she rejects the external validity of the LATE.    

Proposed tests for selection on unobserved variables into experimental samples 

Here, we build off of the previously mentioned literature focused on selection into the local 

population within an estimation sample, by providing to our knowledge the first tests for external 

Because the no-shows are composed only of never-takers and the control group of never-takers and 

compliers, this test ultimately assesses whether the compliers differ systematically on the basis of 

unobserved characteristics from never-takers. Thus, if we reject the null hypothesis that 𝜋𝜋01 = 0, then 

selection on unobserved characteristics may be problematic. We repeat the exercise among those in the 

experimental sample who receive treatment. Performing a standard t-test on the coefficient on the 

instrument tests whether 𝑒̅𝑒𝑡𝑡 + 𝜀𝜀𝑡̅𝑡 − (𝑒̅𝑒𝑐𝑐𝑐𝑐 − 𝜀𝜀𝑐̅𝑐𝑐𝑐) is nonzero. Whereas the former test examines whether 

there is selection into attrition, the latter tests for selection into the crossovers and also factors in possible 

heterogeneous treatment effects. 
 
Table 2 Sample composition 
Name Conditional outcomes Type composition 
Complacent 
Treatment 

𝐸𝐸(𝑌𝑌𝑖𝑖|𝒙𝒙,𝐷𝐷 = 1, 𝐿𝐿 = 1,𝑍𝑍 = 1) = 𝒙𝒙𝒙𝒙 + 𝛽𝛽 + 𝑒̅𝑒𝑡𝑡 + 𝜀𝜀𝑡̅𝑡 Compliers and always-takers 

Complacent 
Control 

𝐸𝐸(𝑌𝑌𝑖𝑖|𝒙𝒙,𝐷𝐷 = 0, 𝐿𝐿 = 1,𝑍𝑍 = 0) = 𝒙𝒙𝒙𝒙 + 𝜀𝜀𝑐̅𝑐 Compliers and never-takers 

No-shows  𝐸𝐸(𝑌𝑌𝑖𝑖|𝒙𝒙,𝐷𝐷 = 0, 𝐿𝐿 = 1,𝑍𝑍 = 1) = 𝒙𝒙𝒙𝒙 + 𝜀𝜀𝑛̅𝑛𝑛𝑛 Never-takers 
Crossovers 𝐸𝐸(𝑌𝑌𝑖𝑖|𝒙𝒙,𝐷𝐷 = 1, 𝐿𝐿 = 1,𝑍𝑍 = 0)

= 𝒙𝒙𝒙𝒙 + 𝛽𝛽 + 𝑒̅𝑒𝑐𝑐𝑐𝑐 + 𝜀𝜀𝑐̅𝑐𝑐𝑐 
Always-takers 

Never-ever-takers 𝐸𝐸(𝑌𝑌𝑖𝑖|𝒙𝒙,𝐷𝐷 = 0, 𝐿𝐿 = 0,𝑍𝑍 = 0) = 𝒙𝒙𝒙𝒙 + 𝜀𝜀𝑛̅𝑛 Never-ever-takers 
Late-takers 𝐸𝐸(𝑌𝑌𝑖𝑖|𝒙𝒙,𝐷𝐷 = 1, 𝐿𝐿 = 0,𝑍𝑍 = 0) = 𝒙𝒙𝒙𝒙 + 𝛽𝛽 + 𝑒̅𝑒𝑙𝑙 + 𝜀𝜀𝑙̅𝑙 Late-takers 
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validity of experimental results to a broader population from which the experimental sample 

originates. The possibility of non-random sample selection of RCTs has received earlier 

attention.13 Andrews and Oster (2018) model the decision to participate in a study based only on 

observed characteristics and approximate weights based on these approximations to provide 

bounds on the population average treatment effect. However, we worry that observed data will not 

fully capture the non-random selection. We test for selection into the estimation sample on the 

basis of unobserved variables by comparing outcomes by whether they participate in the 

experiment conditional on treatment status. 

Comparison of outcomes between the experimental control and the untreated population 

has been conducted in Hartman et al. (2015), Lise, Seitz, and Smith (2015), Sianesi (2017), 

Galliani, McEwan, and Quistorff (2017), and Walters (2018). Of these Hartman et al. (2015) and 

Sianesi (2017) are closest to the work at hand. Sianesi (2017) develops nonparametric tests for 

randomization bias that compare the outcomes of the control group to those who opt out or were 

directed away from the study, similar to some of the tests we propose. Sianesi finds substantial 

selection on unobserved variables into the Employment Retention and Advancement experiment 

in the United Kingdom. Under the assumption of homogeneous average responsiveness to 

treatment across those who select into or out of the study (CIA-β), Sianesi attributes any 

differences in unobserved characteristics as being the result of the randomization itself.  It seems 

difficult to maintain that responsiveness to treatment would be the same (CIA-β) across 

populations that differ significantly on unobserved characteristics. Indeed Galliani, McEwan, and 

Quistorff (2017) use a similar test as a placebo test for external validity. 

Hartman et al. (2015) proposes a test comparing the outcomes of those who receive 

treatment within the randomized sample to those who receive treatment otherwise, thus 

incorporating heterogeneous responsiveness to treatment into the tests. When such “essential 

heterogeneity” (Heckman et al., 2006) is integrated into the tests, maintaining homogenous slopes 

                                                           
13 For an early example see Hausman and Wise (1979) and for a recent example see Ghanem, Hirshleifer, and Ortiz-
Becerra (2018). 
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despite significant differences on total unobserved heterogeneity seems unreasonable.  

While each test may be suggestive on its own, we gain more information over existing tests 

by combining tests among both the treated and untreated. It is only through combining tests on the 

treated that we can directly assess external validity. We subsequently provide the conditions in 

which the coefficient magnitudes and the rejection of the null hypotheses directly contradict claims 

of external validity. 

To introduce our tests for selection into the experimental sample on the basis of unobserved 

heterogeneity, we first provide a parametric framing to provide the intuition behind our 

straightforward tests. We then adopt a potential outcomes framework over simple and more 

complicated settings to demonstrate what our tests for selection reveal concerning the external 

validity of the estimates, and what assumptions would justify such an interpretation. 

Such an examination is demanding on the data. In our application we benefit from access 

to the contemporaneous universe from the institution. However, only a representative sample of 

outcome data is necessary. While such data is large absent from existing work, we highlight the 

use for such data and remark that analysis samples are endogenous to experimental research 

designs. We begin by splitting the population into just four groups: those who entered the lottery 

and received treatment; those who entered the lottery and did not receive treatment; those who did 

not enter the lottery and did not receive treatment; and those who did not enter the lottery but did 

receive treatment. This last group – the late-takers – may not be present in all settings, but they are 

certainly not unique to our experiment.14 They may be present in any randomized evaluation of an 

existing program, and may be absent from many experimental design because the usefulness to 

experimental design of a representative sample of treated individuals is not generally understood. 

The late-takers are not necessary in order to test for selection on unobserved variables, but are 

necessary for directly testing external validity.  

                                                           
14 The compliers who were moved by housing demolitions in Jacobs (2004) and Chyn (2018) are essentially late-
takers to the Moving-to-Opportunity compliers from Goering et al. (1999) and Chetty et al. (2016). Late-takers are 
also present in the data underlying the evaluation of the efficacy of Teach for America in Glazerman, Mayer, and 
Decker (2006) and in the large-scale class-size experiment of Tennessee STAR analyzed in Folger and Breda (1989), 
Krueger and Whitmore (2001), and Chetty et al. (2013) among many others. 
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Let 𝐸𝐸(𝜀𝜀𝑖𝑖|𝐷𝐷 = 0, 𝐿𝐿 = 0) = 𝜀𝜀0̅0, 𝐸𝐸(𝜀𝜀𝑖𝑖|𝐷𝐷 = 0, 𝐿𝐿 = 1) = 𝜀𝜀0̅1, 𝐸𝐸(𝜀𝜀𝑖𝑖|𝐷𝐷 = 1, 𝐿𝐿 = 0) = 𝜀𝜀1̅0, and 

𝐸𝐸(𝜀𝜀𝑖𝑖|𝐷𝐷 = 1, 𝐿𝐿 = 1) = 𝜀𝜀1̅1. Likewise, let 𝐸𝐸(𝑒𝑒𝑖𝑖|𝐷𝐷 = 1, 𝐿𝐿 = 0) = 𝑒̅𝑒10 and 𝐸𝐸(𝑒𝑒𝑖𝑖|𝐷𝐷 = 1, 𝐿𝐿 = 1) =

𝑒̅𝑒11. Accordingly, the difference in outcomes conditional on X = x within treatment status is given 

by the following:  

 𝐸𝐸(𝑌𝑌𝑖𝑖|𝒙𝒙,𝐷𝐷 = 1, 𝐿𝐿 = 1) − 𝐸𝐸(𝑌𝑌𝑖𝑖|𝒙𝒙,𝐷𝐷 = 1, 𝐿𝐿 = 0) = 𝑒̅𝑒11 + 𝜀𝜀1̅1 − 𝑒̅𝑒10 − 𝜀𝜀1̅0   (4) 

 𝐸𝐸(𝑌𝑌𝑖𝑖|𝒙𝒙,𝐷𝐷 = 0, 𝐿𝐿 = 1) − 𝐸𝐸(𝑌𝑌𝑖𝑖|𝒙𝒙,𝐷𝐷 = 0, 𝐿𝐿 = 0) = 𝜀𝜀0̅1 − 𝜀𝜀0̅0   (5) 

If we restrict the sample to those who do not receive treatment, an indicator for participation in the 

experiment would absorb any mean differences in unobserved characteristics between those who 

do and do not participate in the experiment. Thus, we can test for selection into the experiment on 

the basis of such unobserved characteristics by conducting a simple t-test on the estimated 

coefficient on L in the regression of Y on X and L with this restricted sample:  

 𝐸𝐸(𝑌𝑌𝑖𝑖|𝐷𝐷𝑖𝑖 = 0, 𝐿𝐿,𝑿𝑿) = 𝐿𝐿𝑖𝑖𝜋𝜋0 + 𝑿𝑿𝒊𝒊𝜸𝜸𝟎𝟎.   (6) 

So long as the treatment and non-treatment do not differ by participation in the lottery and for any 

setting of covariates there is a chance to see each state of treatment, a substantially or significantly 

non-zero 𝜋𝜋0� provides evidence of selection on unobserved characteristics into the experiment, 

making the claim of external validity of the experimental results to the non-experimental 

population difficult to accept. The intuition is simple, since neither received treatment, any 

differences in outcomes must be due to differences in selection. Further the sign and magnitude of 

𝜋𝜋0� demonstrates the extent and direction of the selection bias. Granted that some who did not enter 

the lottery made their way into treatment, we may conduct an additional test on the remaining 

sample, restricted to those who do receive treatment. A simple t-test on the coefficient of lottery 

participation among the treated provides a summative test of whether 𝑒̅𝑒11 + 𝜀𝜀1̅1 − 𝑒̅𝑒10 − 𝜀𝜀1̅0 equals 

zero. Thus, we test whether those who do not enter the experiment differ from those who do on 

the basis of unobserved characteristics and heterogeneous effects.  

Another way to approach the issue of selection on unobserved variables into the experiment 

is to compare the populations who select into treatment after enrolling in the experiment against 

those who select into the treatment without enrolling in the experiment, as well as doing the same 
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for those who choose not to take treatment at all. The idea here is that if in the natural world 

participation in treatment is voluntary, and the selection processes into (or out of) treatment are 

similar within and outside of the experimental setting, we can reveal whether participation in the 

experiment alters the findings. These comparisons will lack the power of the earlier tests, but with 

sufficient sample size may allow us more insight into the comparability of each population.  

Nonparametric testing for selection and external validity beyond the experimental sample 

In order to show what these tests reveal and the assumptions upon which our 

interpretation of the results rely, we revisit the potential outcomes framework where Y is the 

observed outcome, Y1 is the outcome that would be manifested under treatment, and Y0 is the 

outcome that would be manifested without treatment. As before, L=1 denotes participation in the 

lottery, Z=1 denotes being selected for treatment by the lottery, and D=1 indicates receipt of 

treatment. Let P (P= E(D|L=0)) stand for the share of those who do not participate in the lottery, 

but do receive treatment. Here we relax the assumption that X linearly enters the model and work 

with nonparametric unconditional means, to provide additional robustness and because we are 

focusing on responsiveness to treatment rather than selection on unobserved covariates.  

We maintain throughout, that the randomization was carried out properly. That is 

E(Y1|L=1,Z=1) = E(Y1|L=1,Z=0) and E(Y0|L=1,Z=1) = E(Y0|L=1,Z=0).  Second, we maintain 

that being selected for the control (or treatment) has no effect on the outcome independent of 

treatment status. Both of these assumptions are standard to interpreting experimental results. 

We would like to test whether E(Y1|L=1) = E(Y1|L=0) and E(Y0|L=1) = E(Y0|L=0), but 

our data only contains realizations of the outcome (Y) in conjunction with realizations of lottery 

participation (L), treatment assignment (Z), and treatment status (D).  

We begin with the simple case in which compliance with the randomization is perfect. It 

is clear that if the treatment status is homogeneous among the non-experimental population, then 

in performing a standard t-test comparing E(Y|L=1,D=0) to E(Y|L=0,D=0), we directly test 

whether there is selection into the experiment on the potential level of the outcome under no 

treatment with no further assumptions. Likewise, when the entire non-experimental population 
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receives treatment, comparing E(Y|L=1,D=1) to E(Y|L=0,D=1) provides a direct test of selection 

into the experiment on the potential level of outcome and responsiveness to treatment. However, 

rejecting the null hypothesis of no selection into the randomized sample on either potential 

outcome does not directly show a lack of external validity.  

Testing of the external validity of RCT results requires data from the non-randomized 

population to contain both treated and untreated observations. The self-selection into or out of 

treatment among those who do not participate in the experiment requires us to make an 

additional assumption in order to interpret whether selection into the experiment is problematic 

for its generalizability. One reasonable candidate may be that of weakly monotonic selection by 

potential outcome:  

Additional Assumption 1: If E(Y0|L=0,D=1) >> E(Y0|L=0,D=0), then E(Y1|L=0,D=1) ≥ 

E(Y1|L=0,D=0) and if E(Y0|L=0,D=1) << E(Y0|L=0,D=0), then E(Y1|L=0,D=1) ≤ 

E(Y1|L=0,D=0).15 

If it were not for differences in potential outcomes between the ‘if’ and ‘then’ clauses, it 

would necessarily be true, as there cannot simultaneously be positive and negative selection into 

treatment among the non-experimental populations. However, whereas Y0 only refers to 

selection on the unobserved outcome at baseline, Y1 builds in both selection on the unobserved 

outcome at baseline and responsiveness to treatment. We do not believe this assumption is very 

restrictive, as it permits all cases where selection into treatment among the non-experimental 

population on unobserved variables is positively correlated responsiveness to treatment, and even 

permits cases where the two selection processes are opposed, so long as in those cases the 

selection on responsiveness to treatment is not so large as to reverse the overall direction of the 

nonrandom selection.16 It does rule out instances where among the non-experimental population, 

differences in responsiveness to treatment among the treated and untreated are larger in 

                                                           
15 We believe that the magnitude of the difference matters in this case as well as the precision with which it is 
estimated.  
16 Though applied to a different margin (participation in an experiment rather than assignment to treatment), it is 
similar to the least restrictive assumption applied in Kowalski (2016) to test the external validity of LATE to the 
remaining population with the estimation sample. 
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magnitude and opposite signed as the differences in unobserved levels of the outcome.   

Assuming weakly monotonic selection into treatment in the nonexperimental population 

allows us to focus on differential treatment effects. We stratify by realized treatment status and 

write the expected differences in realized outcomes across the experimental and non-

experimental populations as the following: 

 𝐸𝐸(𝑌𝑌|𝐿𝐿 = 1,𝐷𝐷 = 0) − 𝐸𝐸(𝑌𝑌|𝐿𝐿 = 0,𝐷𝐷 = 0) = 

𝐸𝐸(𝑌𝑌0|𝐿𝐿 = 1) − 𝐸𝐸(𝑌𝑌0|𝐿𝐿 = 0) + 𝑃𝑃[𝐸𝐸(𝑌𝑌0|𝐿𝐿 = 0,𝐷𝐷 = 1) − 𝐸𝐸(𝑌𝑌0|𝐿𝐿 = 1)], 

  (7)   

 𝐸𝐸(𝑌𝑌|𝐿𝐿 = 1,𝐷𝐷 = 1) − 𝐸𝐸(𝑌𝑌|𝐿𝐿 = 0,𝐷𝐷 = 1) = 

𝐸𝐸(𝑌𝑌1|𝐿𝐿 = 1) − 𝐸𝐸(𝑌𝑌1|𝐿𝐿 = 0) + (1 − 𝑃𝑃)[𝐸𝐸(𝑌𝑌1|𝐿𝐿 = 0,𝐷𝐷 = 0) − 𝐸𝐸(𝑌𝑌1|𝐿𝐿 = 1)]. 

  (8) 

Equation (7) compares the expected outcomes among those who did not receive treatment by 

whether they participated in the lottery. The first difference on the right-hand side of equation (7) 

directly examines whether there is selection into the lottery on the basis of potential outcome in 

the absence of treatment. The latter difference could be nonzero either from selection into the 

lottery or selection into treatment in the non-randomized population.  

Equation (8) compares the expected outcomes among those who did receive treatment by 

whether they participated in the lottery. Here, the first difference directly examines whether there 

is selection into the lottery on the basis of potential outcome in the event that both populations 

were to receive treatment. Again, the latter difference could be nonzero either from selection into 

the lottery or selection into treatment in the non-randomized population. Taken together, the two 

tests may demonstrate how problematic selection into the experiment is. 

Figure 1 illustrates two possible scenarios of selection into the experimental sample on 

outcomes in order to describe what each might mean for the external validity of these 

hypothetical results. Selection into the experimental sample could be in the same direction 

among both the treated and untreated populations (as in Panel B) or in opposite directions (as in 

Panel A). In both panels it appears that treatment effects are of differing magnitudes and sign 
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among experimental nonparticipants than among experimental participants. However, these 

differences in the gaps between the treated and untreated could be driven by selection into 

treatment among the experimental nonparticipants. Consequently, while intuitively troubling, we 

cannot conclude from these results that the RCT findings are externally invalid.  

Figure 1: Selection into experimental sample and external validity 

 

In contrast, Panel B depicts a case where selection into the experiment is of common sign 

among the treated and untreated. Referring back to equation (7), the inequality among the 

untreated could be due to those who select into the lottery having higher potential outcomes on 

average than those who do not participate, or to those who select into treatment, but not the 

lottery, having higher than average potential outcomes than the remaining non-lottery population 

(thus pushing down the average among the untreated non-participants). Similarly, referring back 

to equation (8) the inequality of outcomes among the treated could be due to those who select 

into the lottery having on average higher potential outcomes than those who do not, or due to 

those who do not select into treatment nor the lottery having on average higher potential 

outcomes under treatment than those who do select into treatment but did not enter the lottery. 

However, under weakly monotonic selection on potential outcomes among those who do not 

enter the lottery, we cannot simultaneously maintain that those who chose to receive treatment 

are both positively and negatively selected on their propensity to persist in college. Thus, in 

order to reject random selection on unobserved variables into the experiment, our tests require: 
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1) significant differences between the experimental and nonexperimental populations in the 

outcome, and 2) differences that are consistent in sign between the treated and untreated groups.  

Turning to external validity, leaning on Kowalski’s (2016, 2018) examination of external 

validity within experimental samples, under the assumption that either potential outcome is 

monotonically related to probability of treatment, we can interpret these same results as 

indicative of external invalidity. However, this assumption is strong and leads us to reject 

external validity even when the differences in treated and untreated average outcomes is identical 

between experimental participants and nonparticipants. We gain further evidence of external 

invalidity if selection into the experiment is the same sign among both the treated and untreated, 

and the difference between equations (8) and (7) is large in magnitude, applying no additional 

assumptions. The most reassuring case for generalizing experimental results occurs with very 

small differences in outcomes of opposed sign between experimental participants within each 

treatment status, particularly if they are precisely estimated. If the sign of selection into 

randomization differs by treatment status, such differences may well be caused by selection into 

treatment among nonparticipants of the experiment.  

In the case at hand, the presence of both no-shows and crossovers indicates that 

compliance with the randomization is not perfect. We accordingly maintain the standard 

monotonicity assumption from Imbens and Angrist (1994). In order to examine external validity 

in the presence of such noncompliance we adopt a second additional assumption, namely 

ignorability of noncompliance: 

Additional Assumption 2: E(Y|L=1,D=0) = E(Y0|L=1,Z=1,D) = E(Y0|L=1,Z=0,D) and 

E(Y|L=1,D=1) = E(Y1|L=1,Z=1,D) = E(Y1|L=1,Z=0,D).   

On its face, this assumption is nontrivial and likely does not hold in many instances. However, 

though we cannot exactly observe whether it holds, we may gain insight into its plausibility by 

conducting the tests previously described at the beginning of this section.  It would be 

unreasonable to expect generalizability out of experimental sample in the presence of significant 

selection into compliance within the experimental sample. Accordingly, we only apply the 

formal tests for external validity if the differences in outcomes between the complacent controls 

and no-shows and between the complacently treated and crossovers near zero.      
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Analysis 3: Within study design    

In this section, we conduct a conventional observational analysis of program impact on 

the treated population. We conduct this analysis with two purposes in mind. First, we compare 

the observational results with the experimental estimates to explore issues of bias in conventional 

observational designs where the population of interest may be only those students who 

voluntarily enroll in the experiment. The observational designs we consider are still commonly 

used by in-house institutional researchers and appear in much of the earlier-published program 

evaluation studies of first-year learning communities, in the context of both voluntary and 

mandated enrolment.   

Secondly, we conduct this within-study design to reflect on within-study designs 

themselves in the context of our tests for external validity, where the population of interest 

extends beyond those who self-selected into the experiment. Differences in results between the 

two approaches may originate from a lack of internal validity or a lack of external validity of 

either observational or RCT approaches. We perform a decomposition of the observational 

results to provide evidence for the cause of any divergence in results from these two approaches.   

We first estimate the effect of enrollment in the FYLC on first year retention using 

unconditional OLS regressions, covariate adjusted OLS regressions, and logit QMLE analysis. 

This analysis is similar to the analysis used to identify our average intent to treat estimates except 

that these analyses use the full sample of freshman entrants and treatment is measured by an 

indicator for enrollment in the FYLC instead of by an indicator for winning the lottery.  

We supplement this analysis by adding propensity score matching techniques, which are 

used by Clark and Cundiff (2011), for example, to evaluate the efficacy of a FYLC without 

random assignment. We estimate the average treatment effect on the treated by averaging over 

the difference between the retention of each treated student and the retention of the student in the 

remaining population who is most similar to the treated student, but did not receive treatment. 

We also report estimates of the average treatment effect for comparability.  

We use the same vector of observed covariates as we use as controls as first described in 
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Analysis 1. Appendix Table A3 shows that in particular high-school GPA, math SAT score, 

living on campus, and (negatively) being a first generation college student each predict persisting 

in college, while Appendix Table A1 shows that students are inversely selected for retention into 

the treatment on these same dimensions. We adopt the standard practice of using logit to estimate 

the propensity scores. We bootstrap the standard errors to account for estimation error.  

Validity of this and similar techniques require two assumptions; overlap and ignorability. 

The overlap assumption requires that, for any setting of observed characteristics, there is a 

chance the individual could be in either the treatment or control group. We can examine the 

overlap assumption through the estimated propensity scores. Figure A2 presents histograms of 

these estimated propensity scores split by treatment status. Crump, et al. (2009) provide a rule of 

thumb that observations with propensity scores above 0.9 and below 0.1 should be discarded. We 

accordingly perform all analyses both on the full sample as well as this trimmed subsample.  

The ignorability assumption requires sufficient information in the control variables such that 

there would be no expected difference in retention between those who receive treatment and 

those who do not in the absence of treatment (𝐸𝐸(𝑌𝑌𝑖𝑖|𝒙𝒙,𝐷𝐷 = 1) − 𝐸𝐸(𝑌𝑌𝑖𝑖|𝒙𝒙,𝐷𝐷 = 0) = 0).  

We consider what we learn from comparing the two approaches in light of the tests for 

selection and external validity. For ease of explanation let us compare the estimates from OLS to 

those from the RCT. Note that 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝛽𝛽𝑂𝑂𝑂𝑂𝑂𝑂� = 𝐴𝐴𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠𝑂𝑂𝑂𝑂𝑂𝑂 and 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅� = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, assuming 

proper randomization. That is if we assume overlap (or only consider the population on which 

the overlap is thick) and ignorability the two estimators would converge to different parameters. 

We can relate the two parameter according to the following: 

𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 × 𝑃𝑃(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) + 𝐸𝐸(𝑒𝑒𝑖𝑖|𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 0) × �1 − 𝑃𝑃(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)�.   (9) 

We typically cannot observe whether the ignorability assumption holds, and suspect the OLS 

estimate may be biased. Thus, in comparing the two estimates, we observe the following: 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝛽𝛽𝑂𝑂𝑂𝑂𝑂𝑂�−  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅� = 𝐸𝐸(𝑒𝑒𝑖𝑖|𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 0) − 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 + 𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠𝑂𝑂𝑂𝑂𝑂𝑂
1−𝑃𝑃(𝑐𝑐𝑐𝑐𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)

   (10) 

Equation (10) nicely demonstrates the comparison in results provides a mixture of the possible 

external invalidity of the RCT (𝐸𝐸(𝑒𝑒𝑖𝑖|𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 0) − 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) and a scaled measure of the 
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possible bias in the OLS estimate. Thus, differences in estimates alone do not imply that the RCT 

estimate is to be preferred.  

Finally, we conduct a decomposition of the full-sample OLS estimate by regressing first-

year retention on participation in the experiment, assignment to treatment, treatment, the 

interaction of participation and treatment assignment, and the triple interaction between 

participation assignment to treatment, and receipt of treatment. This exercise illustrates which 

selection processes drive the results and from where the deviations from the ATE originate. 

Empirical Results 

Analysis 1 

Table 3: RCT estimates 
 (1) (2) (3) 
 Retention Retention Retention 

Panel A: ITT effects of winning lottery on first year retention (reduced form estimates) 
Won lottery 0.019 0.018 0.018 
 (0.015) (0.015) (0.014) 
    
Panel B: Estimated LATEs of FYLC on 1st year retention (2nd Stage estimates) 
FYLC 0.029 0.027 0.027 
 (0.022) (0.022) (0.022) 
Residuals   -0.004 
   (0.029) 
    
Panel C: Effect of lottery assignment of treatment status (1st stage estimates) 
Won lottery 0.648*** 0.648*** 0.648*** 
 (0.019) (0.019) (0.019) 
    
Observations 1565 1565 1565 
Retention Mean 0.910 0.910 0.910 
Controls No Yes Yes 
Model LPM LPM QML 

The first two column report results from linear models whereas column (3) reports estimates 
from nonlinear estimation. Logit was used in QML estimation. The control function residuals 
used with QML in panel B were estimated using OLS. Column (1) is an unconditional estimate 
whereas columns (2) and (3) include baseline covariates. Robust standard errors in parentheses. 
Bootstrap standard errors with 500 replications were used for inference in QML control function 
estimation. *** p<0.01, **p<0.05, * p<0.1 

 The ITT and the LATE estimates of program effect from the RCT design appear in 

Panels A and B, respectively, of Table 3. The ITT estimates are not altered in any meaningful 
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way by the introduction of controls, and are the same whether estimated by OLS or logit QML. 

The quantitative magnitude of the ITT – a roughly two percentage point increase in the retention 

probability – is not insubstantial, but the estimates have large standard errors and none are close 

to being statistically different from zero at any conventional threshold. 

Panel B gives the LATE estimates, while Panel C provides the first stage estimates, 

which reveal that the randomization provides a strong instrumental variable in explaining 

variation in FYLC participation. The estimated impacts of the program in the second-stage 

regression analysis increase in quantitative magnitude – by roughly one percentage point – 

compared to the intent to treat estimates, but once again these estimates are imprecisely 

estimated and thus statistically insignificantly different from zero.  

The control function residuals in column 3 of Panel B preview some of the analysis 

presented in Analysis 2 below. The coefficient estimate is small and far from statistically 

significant. Thus, we fail to reject the null hypothesis of ignorable noncompliance. This provides 

the first piece of reassurance that the compliers do not appear to be systematically selected.  

Analysis 2: Table 4 presents the results of an analysis examining selection into both the 

experimental sample and the complier subset within that sample. We will use these results to 

examine the external validity of the RCT LATE. Panel A applies tests from the existing literature 

to explore whether the compliers systematically differ from the always-takers and never-takers. 

Panels B and C apply our proposed tests for selection into the experimental sample among the 

untreated and treated populations respectively.  

Columns (1) and (2) of Panel A compare the retention probabilities of no-shows and the 

untreated population. Comparing the estimated coefficient on being randomly selected for 

participation in the FYLC program (i.e., having “won” the lottery) across the two columns, there 

is no statistically significant change in the magnitude of the estimate and thus no detectable 

substantive difference in the impact of controlling for observed characteristics across the two 

populations as regards their retention prospects. Moreover, the estimated coefficient on “won” in 

the column (2) results with controls is statistically insignificantly different from zero, implying 
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no detectable substantive difference across the two populations regarding the impact of 

unobserved characteristics on retention.  
 
Table 4: Testing for selection into and within the lottery 
 (1) (2) (3) (4) 
Panel A: Test for nonrandom attrition and noncompliance within the lottery 
Won 0.009 0.000 0.005 0.005 
 (0.025) (0.026) (0.029) (0.029) 
Observations 803 803 762 762 
Controls No Yes No Yes 
Sample Control + No-

shows  
Control + No-

shows  
Treated + 

Crossovers 
Treated + 

Crossovers 
Treatment status Untreated Untreated Treated Treated 
     
Panel B: Test for selection into the experiment among the untreated 
Lottery 0.028** 0.039*** 0.035 0.040* 
 (0.011) (0.011) (0.023) (0.023) 
Observations 7252 7252 6619 6619 
Controls No Yes No Yes 
Sample Control + No-

shows + Never-
ever-takers 

Control + No-
shows + Never-

ever-takers 

No-shows + 
Never-ever-

takers 

No-shows + 
Never-ever-

takers 
Treatment status Untreated Untreated Untreated Untreated 
     
Panel C: Test for selection into the experiment among the treated 
Lottery 0.067* 0.063* 0.062 0.062 
 (0.034) (0.033) (0.042) (0.045) 
Observations 879 879 225 225 
Controls No Yes No Yes 
Sample Treated + 

Crossovers + 
Late-takers  

Treated + 
Crossovers + 
Late-takers 

Crossovers + 
Late-takers 

Crossovers + 
Late-takers 

Treatment status Treated Treated Treated Treated 
All results are from OLS regressions. Robust Huber-White standard errors in parentheses. *** 
p<0.01, **p<0.05, * p<0.1. 
 

Columns (3) and (4) do the same, but exploring selection issues regarding the retention 

probabilities of the treated and crossovers populations – crossovers, being those who migrated 

from the control population to become treated despite losing the lottery. The results are similar; 

we see little difference in retention propensities across the crossovers and treated populations 

based on differences in either observed or unobserved background characteristics. As the 
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coefficient estimates are in the same direction, and more importantly qualitatively small, 

following Kowalski (2016), Brinch et al. (2017), and Kowalski (2018), we fail to reject the 

hypothesis of homogeneous treatment effects within the experimental sample. Thus, the Panel A 

results find little reason to worry about the two migrations within the experiment (despite the 

differences on observed variable among migrants), and provide some reassurance that the RCT 

LATE may generalize to the entire sample who selected into the experiment. 

Columns (1) and (2) of Panel B explore the extent to which those who selected into the 

lottery, but were untreated, differ regarding the probability of retention from the “never-ever 

takers” (i.e., those who did not select into the lottery and did not later become treated as late-

takers). Column (1) provides the unconditional estimates, such that the reported coefficient 

provides the nonparametric difference in the mean outcomes of the untreated by whether or not 

they participated in the lottery. Column (2) conditions on predetermined observed student 

characteristics. While this approach may introduce finite sample bias, it is also generally more 

efficient (though not noticeably in this case) and focuses attention on the differences on 

unobserved variables. The fact that the coefficient on Lottery is statistically and economically 

significantly positive in both specifications indicates that those who enter the lottery are more 

likely to persist in college regardless of the program, as neither population in these regressions 

took part in the FYLC. The fact that the magnitude of the coefficient grows from 0.028 (p-value 

= 0.013) to 0.039 (p-value = 0.001) with the addition of covariates indicates that lottery 

participants are negatively selected on observed characteristics – something we indicated in the 

comparison of background characteristics across these two populations in the “Background and 

Data” section above. However, the positive selection into the lottery based on unobserved 

characteristics is more pronounced than the negative selection on observed variables.  
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Columns (3) and (4) of Panel B test for differences across the never-takers and the never-

ever-takers in retention probabilities. The former expressed an interest in the lottery but, having 

won, decided not to participate in the program, whereas the latter also did not participate in the 

program but never expressed a desire to do so. Neither group was treated; the difference is in 

selection into the lottery.  Once again, we find evidence of positive selection on unobserved 

characteristics among those who entered the lottery. With the smaller sample size, these 

estimates are less precise, but the magnitudes are roughly comparable to those of columns (1) 

and (2). From column (4), we estimate that the never-takers are 4 percentage points more likely 

to persist beyond the first year (p-value = 0.077) than are the never-ever-takers. The Panel B 

results indicate that there is positive selection into the lottery based on unobserved characteristics 

for the untreated population, and thus that the RCT findings of program impact cannot be 

generalized to the students who elect not to participate in the lottery and who maintain that 

commitment.  

In Panel C we turn to selection into the lottery among the treated populations. Columns 

(1) and (2) compare retention probabilities for the treated population that selected into the lottery 

and those late-takers who expressed no interest in the program initially, but later changed their 

minds and were admitted into the FYLC. We find that, among the treated, those who entered the 

lottery are roughly 6 percentage points (p-value = 0.062) more likely to persist than those who 

came into the program as late-takers.17  

In columns (3) and (4), we compare two final treated groups – the crossovers and late-

takers – both of whom were treated and migrated from initially assigned or chosen positions in 

order to receive treatment. Once again, the central distinguishing feature of these two groups is 

                                                           
17 Confidence intervals are even tighter using randomization inference as shown in Appendix B. 
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the initial decision to participate in the lottery. While the results reveal no statistically significant 

difference in retention probabilities across these two groups at conventional thresholds, the 

magnitude of the difference owing to unobserved characteristics is very large (equivalent to the 

estimate in the first two columns). This is likely due to the much-reduced sample size.  

  What do these results mean for the external validity of the RCT? To summarize, the 

results from Panel A reveal no discernable selection into the compliers. The estimates are very 

small and far from statistically significant. This analysis accordingly provides reassurance that 

the additional assumption of ignorable noncompliance may hold. Secondly, the analysis from 

Panels B and C reveal substantial positive selection into the experimental sample among both the 

treated and untreated. Under the assumption that potential outcomes are monotonic with respect 

to the probability of treatment, as in Kowalski (2016, 2018), we would reject the external validity 

of the RCT estimates, as the assumption implies that E[Y0|D=1,L=0] ≥ E[Y0| L=1] or 

E[Y1|D=0,L=0] ≥ E[Y1| L=1].  

Imposing only our earlier assumptions (most critically monotonicity of selection on 

potential outcomes), we attempt to reconcile the difference in outcomes between treated and non-

treated students within and outside of the experiment. We begin by taking the difference between 

equation 7 and 8 from section 3, providing the following: 

𝐸𝐸(𝑌𝑌|𝐿𝐿 = 1,𝐷𝐷 = 1) − 𝐸𝐸(𝑌𝑌|𝐿𝐿 = 0,𝐷𝐷 = 1) − [𝐸𝐸(𝑌𝑌|𝐿𝐿 = 1,𝐷𝐷 = 0) − 𝐸𝐸(𝑌𝑌|𝐿𝐿 = 0,𝐷𝐷 = 0)] =  

𝐸𝐸(𝑌𝑌1|𝐿𝐿 = 1) − 𝐸𝐸(𝑌𝑌0|𝐿𝐿 = 1) − [𝐸𝐸(𝑌𝑌1|𝐿𝐿 = 1) − 𝐸𝐸(𝑌𝑌0|𝐿𝐿 = 0)] (11) 

+(1− 𝑃𝑃)[𝐸𝐸(𝑌𝑌1|𝐿𝐿 = 0,𝐷𝐷 = 0) − 𝐸𝐸(𝑌𝑌1|𝐿𝐿 = 1)] − 𝑃𝑃[𝐸𝐸(𝑌𝑌0|𝐿𝐿 = 0,𝐷𝐷 = 1) − 𝐸𝐸(𝑌𝑌0|𝐿𝐿 = 1)].  

If the RCT is externally valid, then 𝐸𝐸(𝑌𝑌1|𝐿𝐿 = 1) − 𝐸𝐸(𝑌𝑌0|𝐿𝐿 = 1) − [𝐸𝐸(𝑌𝑌1|𝐿𝐿 = 1) −

𝐸𝐸(𝑌𝑌0|𝐿𝐿 = 0)] = 0. Yet, from table 4 we estimate that 𝐸𝐸(𝑌𝑌|𝐿𝐿 = 1,𝐷𝐷 = 1) − 𝐸𝐸(𝑌𝑌|𝐿𝐿 = 0,𝐷𝐷 =

1) = 0.067, and that 𝐸𝐸(𝑌𝑌|𝐿𝐿 = 1,𝐷𝐷 = 0) − 𝐸𝐸(𝑌𝑌|𝐿𝐿 = 0,𝐷𝐷 = 0) = 0.028, making the estimated 
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differences in differences depicted in equation 11 and shown directly in column 3 of Table A4 

equal to 0.038. Further, in our data the share of the nonexperimental population that receives 

treatment (P) is approximately 0.018. Under the standard experimental assumptions of proper 

randomization and no independent effects of assignment the data reveals estimates of 𝐸𝐸(𝑌𝑌1|𝐿𝐿 =

1) = 0.921 and 𝐸𝐸(𝑌𝑌0|𝐿𝐿 = 1) = 0.899. 

We achieve the maximum value of equation 11 under external validity by using the 

maximum possible value of 𝐸𝐸(𝑌𝑌1|𝐿𝐿 = 0,𝐷𝐷 = 0)  and minimum possible value of 𝐸𝐸(𝑌𝑌0|𝐿𝐿 =

0,𝐷𝐷 = 1). Under monotonic selection on potential outcome, 𝐸𝐸(𝑌𝑌1|𝐿𝐿 = 0,𝐷𝐷 = 0) cannot exceed 

𝐸𝐸(𝑌𝑌1|𝐿𝐿 = 1) or 0.921, as we observe positive selection into the experiment among both the 

treated and untreated individuals.18 The minimum possible retention rate in the absence of 

treatment in the nonexperimental sample may be as extreme as zero following Lee (2009). 

Substituting these values into equation 11 provides the following:  

 0+0.982(0.921−0.921)−0.018(0−0.899)=0.016. (12) 

Note that the maximum difference we can generate in the absence of differential 

treatment effects between the experimental and nonexperimental populations under external 

validity is less than half the difference we actually observe in the data.19 Though this difference 

is not statistically distinguishable from zero, with selection into treatment explaining at most so 

little of the difference in outcomes, it seems extremely unlikely that we would realize as positive 

treatment effects were we to substitute a random sample from the nonexperimental population 

into the experiment in place of those who volunteered to participate.  

                                                           
18 A violation of this assumption seems unlikely and would run counter to economic intuition, as a violation would 
imply the ATE for the never-ever-takers is so much larger than the ATE among the compliers, that it reverses the 
positive selection into the experiment on outcome levels. 
19 Without the monotonicity in potential outcomes assumption, in order to explain the total difference, we would 
need to assume extreme adverse selection into treatment among the nonexperimental sample. The never-ever-
takers have over 270 percent higher treatment effects than the compliers within the RCT. 
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Analysis 3: If the evaluation of program impact had not relied on random assignment, but 

rather had utilized an observational research design, how would the estimated program impact 

have differed? Further, what can we learn about competing research designs by such a 

comparison, when the parameter of interest pertains to a larger population than that on which we 

have strong exogenous variation? We present the results from observational approaches to 

estimate the program impact where the treated, including crossovers and late-takers, are 

compared to non-participants that include both the control, no-shows, and never-ever-takers in 

Table 5.  

Table 5: Observational analysis estimates of program effects.  
 (1) (2) (3) (4) (5) 
Panel A: Full sample 
FYLC 0.038*** 0.049*** 0.052*** 0.044** 0.027* 
 (0.010) (0.011) (0.013) (0.020) (0.016) 
Observations 8131 8131 8131 8131 8131 
Mean 0.91 0.91 0.91 0.91 0.91 
Controls No Yes Yes Yes Yes 
Estimation OLS OLS Logit PSM ATT PSM ATE 
  
Panel B: Sample restricted on propensity score 
FYLC 0.050*** 0.052*** 0.058*** 0 .050*** 0.054*** 
 (0.013) (0.013) (0.017) (0.023) (0.015) 
Observations 3816 3816 3816 3816 3816 
Mean 0.88 0.88 0.88 0.88 0.88 
Controls No Yes Yes Yes Yes 
Estimation OLS OLS Logit PSM ATT PSM ATE 

Robust standard errors in parentheses. Bootstrap standard errors with 500 replications were used for 
inference on propensity score matched estimates of the treatment on the treated. The restricted sample 
uses only observation for which there is overlap with propensity scores greater than 0.1 and less than 
0.9. For PSM we present the estimated average treatment on the treated as well as estimates of the ATE. 
*** p<0.01, ** p<0.05, * p<0.1. 

Contrary to the findings from the RCT design, the Table 5 results reveal an estimated 

coefficient on the treatment variable in the observational analysis that is positive and statistically 

significant regardless of specification or procedure invoked. Moreover, the estimated quantitative 

impact is large – ranging from a 2.7 to 5.2 percentage point gain in retention probability by 

virtue of participation in the FYLC. Furthermore, in Panel B we restrict attention to the 
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observations in which the overlap is thick (with propensity scores ranging from 0.1 to 0.9). Here 

the estimated effects are even larger with coefficient estimates all over 5 percentage points with 

similar p-values ranging from 0.03 to less than 0.001. However, because selection into treatment 

largely transpires through selection into the RCT, we know from the results in Panel C of Table 4 

that this estimate is biased due to self-selection on unobserved characteristics.  

Curiously, based on the observed differences among the treated and control populations 

and the way in which retention probabilities are negatively correlated with those differences, 

analysts employing such observational analyses might be tempted to hypothesize that the 

observational results are underestimates of true program impact. However, as we restrict the 

sample to that for which there is more overlap on observed covariates, the observational 

estimates universally grow. While students who select into the experiment may be vulnerable 

with regard to observed correlates regarding first-year retention, this vulnerability is combined 

with unobserved characteristics that more than make up for their observational vulnerabilities.  

We emphasize what is driving the differences between observational and RCT estimates 

by decomposing the findings from Table 5 into selection into each of the six populations. As the 

exercise is an extension of the tests for nonrandom noncompliance outlined in Huber (2013) and 

is similar to Analysis 2 we report the estimates in Table A5 in the Appendix. The analysis shows 

that the only statistically meaningful difference in retention prospects is between those who do 

and do not enter the lottery (p-values of 0.038 and 0.003 respectively).  

How do we accordingly assess the experimental and observational approaches? Here, the 

RCT seems to provide a credible estimate of the average causal effect of the first-year learning 

community on those who choose to participate in the experiment, while the observational 

approaches provide only inconsistent results. However, in this context the observational 

estimates fail to provide a plausibly causal estimate due to selection into the experiment itself. 

The majority of our treated population received treatment by selecting into the study. As a result, 

the nonrandom selection that may compromise the external validity of the experimental results 

directly undermines the internal validity of the observational estimates. Considering this strong 
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selection into the experiment and consequently into treatment, it is difficult to claim that either 

estimate – the experimental or the observational – captures the population average effect of the 

FYLC on first-year college retention. Thus, the take-away from the difference in observational 

and experimental results is not the universal superiority of experimental approaches, but rather 

that differences in results from different approaches are symptomatic of persistent problems in 

uncovering the population parameter. By applying tests for external validity, we can determine 

whether the RCT delivers a valid estimate of this elusive parameter in each specific context. 

Conclusions 

We began our analysis with an RCT design to estimate the impact of a learning 

community on first-year college retention for those who select into the study. The results are the 

first of their kind to employ an RCT to address this question at a large, four-year research 

university. We find that both the “intent to treat” and the “local average treatment effect” 

estimates of program impact are small and statistically insignificantly different from zero. The 

first-year learning community program at this institution had no measureable causal effect on 

student retention into the second year of college for the treated population.  

Next, we turn to issues related to external validity of the RCT results. There were 

significant migrations from the assigned populations in the experimental sample. In conducting 

existing tests for whether the assignment of compliers differs substantially from the never-takers 

or always-takers on the basis of unobserved propensities to persist, we find little difference. As a 

result, it seems reasonable to generalize the “local average treatment effect” estimate of program 

impact to the remaining experimental population.  

However, when we add tests for whether the experimental sample is representative of a 

broader population of interest – for example, the entire freshman class – we find that those who 

enter the lottery, and thereby express initial interest in the first-year learning community 

program, are quite different from those who elect not to enter the lottery. In particular, we find 

that lottery participants (whether or not they receive treatment) possess unobserved 

characteristics that lead them to be far more likely, statistically and quantitatively, to return for a 
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second year of college compared to those who decline to participate in the lottery. Thus, while 

the RCT findings may serve as a causal and unbiased estimate of program impact for the students 

who self-selected into the study, we caution against generalizing these results to the population 

who did not enroll in the experiment. Further, it appears from the differences-in-differences 

between experimental and nonexperimental and treated and non-treated populations that the 

experimental results reflect a relatively optimistic view of the program. These results suggest 

smaller or possibly even negative programmatic effects for those who do not select into the 

experiment. Taken overall, we believe the results introduce warranted pessimism on the efficacy 

of the learning community program in its current form.  

This study also serves to highlight a few important broader lessons, all of which emanate 

from the central insight that selection on unobserved characteristics matters. The analysis reveals 

that students who selected into the study disproportionately possess observed background 

characteristics that are negatively associated with first-year retention. To many, it might appear 

reasonable to expect that unobserved differences across the self-selected experimental and non-

experimental populations are likely to follow the same pattern as do observed differences, and 

therefore that observational analyses of program impact would underestimate the true effect of 

the program. Such is not the case here. Our results reveal that the unobserved characteristics of 

the self-selected control population have a strongly positive and statistically significant effect on 

first-year college retention. This implies that balance tests based on observed variables are 

insufficient evidence of the representativeness of the sample or external validity of the study. 

Empirical researchers generally do not test for selection on unobserved variables into the 

estimation sample, either because the data on nonparticipants do not exist or because researchers 

have not made use of it. Yet selection issues may emerge in many of these contexts and matter 

greatly for the external validity of results. Information on non-participants in the experiment is 

critical in testing for such non-random selection. Thus, we suggest, as something of a “platinum 

standard,” that researchers connect RCTs to more comprehensive data on the larger population of 

interest, and show concretely whether the results of their study generalize beyond the 



                                                     37 
 

experimental sample. This could take the form of within the RCT using exact questions from 

existing surveys on a random sample of the population of interest, or reserving resources to 

survey a random sample on the outcome, or ideally linking the RCT to administrative data 

encompassing the population of interest. 

Regarding differences between RCT and observational analyses, absent further testing 

researchers ought not to conclude that observational approaches are obviously inferior when 

observational estimators yield different results from those of an RCT design. The context matters 

greatly. Assuming the observational analysis and RCT rely upon samples with different selection 

processes (e.g., the population from administrative data, a random sample from the population, a 

researcher non-randomly selected sample, or a participant self-selected sample), the two 

approaches estimate different parameters. In which case, the representativeness of the samples 

determines which estimate provides a closer approximation to the effect for a broader population. 

The tests that we have introduced provide concrete evidence of where these biases lie and should 

be incorporated into any similar within-study design. 

Finally, researchers should reflect more on what constitutes the population or parameter 

of interest. Economists and many other social scientists are often interested in parameters 

pertaining to broad populations. What is the elasticity of labor? What is the effect of health 

insurance on health or financial stability? Does the neighborhood in which an individual lives 

affect the course of their lives? Does a learning community help freshmen to persist in college? 

Each of these regard populations that are broader than those who may be selected for and may 

select into an experiment. Which parameter is of most interest is context dependent and may be 

determined by whether we are in the phrasing of Roth (1986) “speaking to theorists” or 

“whispering in the ear of princes.”   
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Appendix for online publication: 

Figure A1: Map of the populations within the data 
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Figure A2: Overlap in the propensity scores by treatment status 

 

Figure notes: Propensity scores estimated using logit. 
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Table A1: Observable differences between treatment sample in different populations 
 (1) (2) (3) 
 FYLC FYLC FYLC 
High-school 0.010 -0.007 -0.007** 
GPA (0.041) (0.036) (0.003) 
SAT math -0.059*** -0.053*** -0.010*** 
 (0.021) (0.017) (0.002) 
SAT writing -0.023 -0.022 0.001 
 (0.028) (0.025) (0.003) 
SAT verbal 0.066** 0.050** 0.006** 
 (0.027) (0.023) (0.003) 
Female 0.053 0.051* 0.013*** 
 (0.033) (0.027) (0.003) 
1st generation 0.013 -0.001 0.009** 
 (0.035) (0.033) (0.004) 
Low income 0.072** 0.014 -0.006* 
 (0.035) (0.033) (0.004) 
Lives on  0.017 0.059** 0.003 
campus (0.034) (0.028) (0.004) 
N 824 741 6572 

SAT scores are divided by 100 for presentation. Robust standard errors are in parentheses. All 
regressions use OLS and also include cohort indicators and indicators for missing covariates. 
*** p<0.01, ** p<0.05, * p<0.1  
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Table A2: RCT estimates of the effects on GPA  
Panel A: Intent to treat effects of winning lottery on first and second year GPA (reduced form 
estimates) 
 (1) (2) (3) (4) 
 1st Year GPA 1st Year GPA 2nd Year GPA 2nd Year GPA 
Won lottery 0.016 0.018 0.015 -0.016 
 
 

(0.030) (0.027) (0.038) (0.036) 

 
Panel B: Estimated LATEs of FYLC on 1st and 2nd year GPA (2nd Stage estimates)  
FYLC 0.024 0.027 0.022 -0.018 
 (0.045) (0.042) (0.053) (0.053) 
     
     
Panel C: OLS 1st stage estimates of the effect of winning the lottery on FYLC participation 
Won lottery 0.649*** 0.649*** 0.706*** 0.709*** 
 (0.020) (0.019) (0.028) (0.027) 
     
Observations 1489 1489 662 662 
GPA Mean 2.812 2.812 2.901 2.901 
Controls No Yes No Yes 
     

All estimates are from linear regressions. Columns (1) and (3) are unconditional estimates 
whereas columns (2) and (4) include baseline covariates. 1st GPA includes FYLC course grade. 
2nd year GPA only exists in our data for the earlier cohort. Robust standard errors in 
parentheses.  *** p<0.01, ** p<0.05, * p<0.1 
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Table A3: Observed predictors of 1st year college retention 
 (1) (2) (3) 
 Retention  Retention  Retention  
    
High-school GPA 0.06*** 0.07*** 0.07*** 
 (0.010) (0.011) (0.012) 
SAT Math 0.01* 0.01** 0.01** 
 (0.005) (0.005) (0.006) 
SAT Writing 0.00 0.00 0.00 
 (0.007) (0.007) (0.007) 
SAT Verbal 0.01 0.01 0.01 
 (0.006) (0.007) (0.007) 
On Campus 0.04*** 0.04*** 0.04*** 
 (0.009) (0.009) (0.010) 
Female 0.01 0.01 0.01 
 (0.008) (0.008) (0.009) 
First Generation -0.02** -0.02** -0.02** 
 (0.008) (0.009) (0.009) 
Low Income -0.00 -0.01 -0.00 
 (0.008) (0.009) (0.009) 
Cohort 0.00 0.00 0.00 
 (0.007) (0.008) (0.008) 
    
N 8131 7252 6449 

SAT scores are divided by 100 for presentation. Robust standard errors are in parentheses. All 
regressions use OLS and also include cohort indicators and indicators for missing covariates.   
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Table A4: Testing for selection into the lottery, of compliers, and into attrition with interactions  

 (1) (2) (3) (4) (5) (6) 
Won lottery 0.009 0.003   0.009 0.002 
 (0.025) (0.025)   (0.025) (0.025) 
Entered lottery 0.019 0.025 0.038 0.026 0.035 0.026 
x FYLC (0.029) (0.030) (0.036) (0.035) (0.044) (0.044) 
Won lottery  -0.003 -0.002   -0.003 -0.001 
x FYLC (0.038) (0.038)   (0.038) (0.038) 
Entered    0.028** 0.038*** 0.027** 0.038*** 
Lottery   (0.011) (0.011) (0.013) (0.013) 
FYLC   -0.016 -0.002 -0.016 -0.002 
(no lottery)   (0.033) (0.032) (0.033) (0.032) 
       
Observations 1565 1565 8131 8131 8131 8131 
Controls No Yes No Yes No Yes 
Sample Lottery Lottery Full Full Full Full 

All results are from OLS regressions. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * 
p<0.1 Column (1) presents the results from a simple regression of retention on indicators for 
winning the lottery, entering the FYLC after entering the lottery, and winning the lottery and 
entering the FLYC. In column (2), we add controls. Columns (3) - (6) present the decomposition 
of the results from Table 5. The omitted category for these regressions is composed of those 
never-ever-takers who do not enter the lottery and do not enter the FYLC. 

 

As a robustness exercise, we couple this nonparametric analysis of selection into the 

experiment with nonparametric randomization inference. In the spirit of Fisher (1935), we test 

the sharp hypothesis that there are no differences in outcomes between those who enter and those 

do not enter the experiment within each treatment status. We do this using two different 

approaches following Young (2018). In each of 10,000 repetitions, we randomly assign each 

individual with the treated and non-treated populations to the “lottery” according to the binomial 

distribution, keeping the shares of the treated and untreated populations who enter the lottery 

constant at 87 percent and 11 percent respectively. In the first approach, we find the average 

differences (𝜋𝜋0𝑝𝑝�  being the average difference in retention by lottery participation for those who 

do not receive treatment and 𝜋𝜋1𝑝𝑝�  serving as the same for the treated) between the placebo lottery 

assigned groups. We then compare the differences in retention observed under the actual lottery 
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participation decisions to the distribution of placebo differences we observe under random 

assignment of “lottery participation.” The share of placebo differences whose magnitudes are 

more extreme than the magnitude of the difference using actual lottery assignment may sensibly 

be interpreted as the p-values of the differences using actual lottery participation. Secondly, we 

do the same using the t-statistics on the difference rather than the difference itself. These 

approaches avoid possible finite sample bias and apply minimal assumptions or structure to the 

data, while providing valid and transparent inference.  

Figure B1 presents the distribution of estimated differences in retention among the 

untreated (on the left) and among the treated (on the right) when “lottery participation” is 

randomly assigned in each of 10,000 repetitions. We show the estimated difference in retention 

using the actual lottery participation using a red vertical line. Following Young (2018), we repeat 

the exercise using the t-statistics presented in Figure B23.  

In each case the red line lies on the far-right side, indicating that the realized differences 

in retention between those who actually do and do not participate in the experiment are unlikely 

to result from pure chance. As described above, the p-values from our randomization tests 

correspond closely to the share of squared differences (or F-statistics) from the placebo 

assignment that are larger than the squared differences (or F-statistics) that arrived at using the 

actual realization of lottery assignment. Among the untreated, the corresponding p-values using 

squared raw differences and F-statistics are 0.021 and 0.024.  Among the treated, the 

corresponding p-values are 0.018 and 0.027. In both cases we find strong positive selection into 

the experimental sample and reject the null of no selection. The distribution of squared 

differences and F-statistics are shown in Figures B3 and B4 and Table B1 provides the 

nonparametric unconditional differences in retention rates between the experimental and non-

experimental populations stratified by treatment status with the accompanying p-values as well 

as the mean and the first, fifth, tenth , fiftieth, nintieth, ninty-fifth, and ninty-ninth percentile of 

the placebo differences when lottery participation is randomly assigned. In each case, 

randomization inference provides similar or smaller p-values than those constructed from the 

Huber-White robust standard errors. 
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Figure B1: Distribution of placebo 𝜋𝜋� where “lottery participation” is randomly assigned 

 

Notes: Binomial random assignment to lottery participation with probabilities of 
inclusion in the lottery by treatment status set at 0.11 for the untreated and 0.87 for the treated 
reflecting the shares observed in the data. Distributions constructed from 10,000 repetitions. The 
red verticle lines denote the differences in the mean retention between experimental and non-
experimental populations within treatment status. 

 
Figure B2: Distribution of placebo t-statistics where “lottery participation” is randomly assigned 



                                                     51 
 

 

Notes: Binomial random assignment to lottery participation with probabilities of inclusion in the 
lottery by treatment status set at 0.11 for the untreated and 0.87 for the treated reflecting the 
shares observed in the data. Distributions constructed from 10,000 repetitions. The red verticle 
lines denote the differences in the mean retention between experimental and non-experimental 
populations within treatment status.  
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Figure B3: Distribution of squared placebo coefficients 
 

 
Notes: Binomial random assignment to lottery participation with probabilities of inclusion in the 
lottery by treatment status set at 0.11 for the untreated and 0.87 for the treated reflecting the 
shares observed in the data. Distributions constructed from 10,000 repetitions. The red verticle 
lines denote the squared differences in the mean retention between experimental and non-
experimental populations within treatment status. 
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Figure B4: Distribution of F-statistics 

 
Notes: Binomial random assignment to lottery participation with probabilities of inclusion in the 
lottery by treatment status set at 0.11 for the untreated and 0.87 for the treated reflecting the 
shares observed in the data. Distributions constructed from 10,000 repetitions. The red verticle 
lines denote the differences in the mean retention between experimental and non-experimental 
populations within treatment status. 
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Table B1: Nonparametric randomization testing results 
 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
Statistics estimate p-value mean p1 p5 p10 p50 p90 p95 p99 
Coefficients           
Untreated           
Actual 𝜋𝜋0� 0.028 0.021         
Placebo 𝜋𝜋0�   0.000 -0.028 -0.020 -0.016 0.000 0.016 0.021 0.029 
Treated           
Actual 𝜋𝜋1� 0.067  0.018         
Placebo 𝜋𝜋1�   0.000 -0.061 -0.044 -0.035 -0.000 0.037 0.048 0.069 
           
t-statistics           
Untreated           
Actual t0 2.27 0.024         
Placebo t0   0.047 -2.120 -1.536 -1.212 0.025 1.333 1.745 2.516 
Treated           
Actual t1 2.38 0.027         
Placebo t1   -0.100 -2.984 -1.950 -1.489 -0.008 1.164 1.472 2.032 

Notes: Binomial random assignment to lottery participation with probabilities of inclusion in the 
lottery by treatment status set at 0.11 for the untreated and 0.87 for the treated reflecting the 
shares observed in the data. Distributions constructed from 10,000 repetitions. P-values 
constructed from the share of squared placebo estimated coefficients (t-statistics) greater than the 
squared actual estimated coefficients (t-statistics). The distribution of these squared statistics are 
shown in figures B3 and B4. 

 


