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Abstract

We propose a per-cluster instrumental variables estimator (PCIV) for estimating

population average effects under correlated random coefficient models in the presence

of endogeneity. We demonstrate consistency, showing robustness over standard esti-

mators, and provide analytic standard errors for robust inference. We compare PCIV,

fixed-effects instrumental variables, and pooled 2-stage least squares estimators using

Monte Carlo simulation verifying that PCIV performs relatively well. We also apply the

approaches, examining the monthly responsiveness of gasoline consumption to prices

as instrumented by state fuel taxes. We find that US consumers are on average more

elastic in their demand for gasoline than previous estimates imply.
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1 Introduction
The goal of empirical work is often to identify the population average effect (PAE)—the

true causal effect of one variable on another that represents the average effect over the entire

population of interest. Inherent in these efforts is the idea that these effects may differ across

individuals in the population. While the idea of heterogeneous random slopes far predates

Heckman and Vytlacil (1998), in allowing the heterogeneous effects to be correlated with

explanatory variables, Heckman and Vytlacil (1998) provide the useful term of correlated

random coefficient (CRC) models.1

The discussion of heterogeneous effects garnered further attention with Imbens and An-

grist (1994) introducing the notion of local average treatment effects (LATEs) when using

instrumental variables to identify causal effects in cross-sectional settings. They show that

with minimal assumptions using instrumental variables, researchers can identify average

treatment effects among the population whose “treatment status is influenced by the instru-

ment.” Heckman and Vytlacil (2005) and Deaton (2010) comment on the limitations of such

LATEs, with Heckman and Vytlacil (2005) demonstrating the use of additional structure to

estimate parameters of arguably more interest.

Growing access to large data sets that carry a structure by which observations are re-

lated to one another through shared membership in a common cluster may provide hope

for estimating PAEs with fewer assumptions. These clusters can take the form of multi-

ple time observations following the same individual as in standard panel data settings, or

grouped cross-sectional data where individuals are clustered, for instance into classrooms or

establishments or states.

In either setting, knowledge of these groupings of data may be useful to uncover PAEs

in CRC models, when the heterogeneous effects enter at the cluster level. The panel data

setting is particularly intuitive as we typically think of types of individuals having differences

in their responsiveness. Indeed, Wooldridge (2005) provides the conditions under which a

1See for instance, Rubin (1950); Klein (1953); Kuh (1959); Swamy (1971); Mundlak (1978); Raj et al.
(1980), and Chamberlain (1992), for early examinations of the random coefficients model.
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general class of fixed effects estimators is consistent in estimating PAEs in CRC models

when the explanatory variables are otherwise exogenous. Bates et al. (2014) notes that the

additional assumption necessary for fixed effects to consistently estimate PAEs may not be

benign, and proposes a per-cluster estimator, which is unbiased in estimating PAEs even

when fixed effects estimation may be inconsistent.

However, applied economic researchers often work in settings where strict exogeneity of

the explanatory variables likely does not hold. Murtazashvili and Wooldridge (2008) provides

the conditions under which a general class of fixed effects instrumental variables estimators

(FEIV) consistently estimate PAEs with endogenous regressors. Specifically, Murtazashvili

and Wooldridge (2008) finds that the presence of heterogeneous slopes, requires us to assume

that the heterogeneous slopes are uncorrelated with the covariance between the detrended

instruments and endogenous regressors.

Unfortunately, this restriction may not hold in important cases. First, consider the case

where a LATE exists and is different from the ATE. That is, the instrument is not relevant

for some portion of the population, and the effects differ on average between those who are

and are not moved by the instrument. Such a setting would prevent FEIV from consistently

estimating the ATE. Secondly, consider the application of FEIV on the population who were

all influenced by a valid instrument (whom Imbens and Angrist (1994) term "compliers"). If

there are cluster-specific heterogeneous effects, and if that heterogeneity is correlated with the

strength of the instrument within-cluster, fixed effects would continue to fail to estimate the

ATE among the compliers (the LATE). Thus, in some respects, this assumption is stronger

than simply assuming that the LATE is no different from the ATE.

Given these limitations of fixed effects instrumental variables, we look to another esti-

mator to identify PAEs. As larger data sets (both in numbers of clusters and numbers of

observations per cluster) become available, a natural inclination may be to estimate cluster

specific slopes and average over them.2 We provide the conditions under which such an

2For instance, adopting such an approach is alluded to in Solon et al. (2015).
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approach is consistent in estimating PAEs. We term this approach per-cluster instrumental

variables (PCIV). We compare the finite sample performance of this PCIV approach against

standard FEIV and pooled two stage least squares (P2SLS) estimators using Monte Carlo

simulation. The PCIV approach performs relatively well even with somewhat small num-

bers of observations per-cluster. Further, we provide three extensions to address settings

common in applied empirical work: additional exogenous covariates, weighting to address

heterogeneous cluster sizes, and the exploration of mechanisms using cluster-level covariates.

Finally, we demonstrate the use of per-cluster instrumental variables examining the price

elasticity of gasoline demand in the United States. We follow Davis and Kilian (2011), and

Coglianese et al. (2017) in instrumenting prices with state fuel taxes. We view this empirical

exercise as important in its own right. The average responsiveness of consumers to price

increases in gasoline is of particular importance to both economists and policymakers. This

population-level parameter is important for gauging macroeconomic effects of gasoline price

fluctuations, for speculation in oil markets, for modeling the market for automobiles, urban

planning, optimal taxation, and national security (Dahl and Sterner, 1991; Davis and Kilian,

2011; Espey, 1998; Hughes et al., 2008; Coglianese et al., 2017). Perhaps most importantly, in

the midst of a growing literature quantifying the costs of global climate change many leading

economists are calling for policy intervention to address these externalities.3 Most notable

among these, 27 Nobel Laureate economists, 4 former Chairs of the Federal Reserve, and 15

former Chairs of the Council of Economic Advisers serving under presidents from both major

political parties in the United States co-signed a letter calling for immediate national action

on climate change (Climate Leadership Council, 2019). In their letter published in the Wall

Street Journal, they recommend the adoption of a carbon tax as "the most cost-effective

lever to reduce carbon emissions at the scale and speed that is necessary." Recommending

that it should be increased each year until emissions reduction goals are met, be coupled

with a broader carbon adjustment system, and return tax revenue directly to U.S. citizens

3For examples, see Tol (2002); Deschênes et al. (2009); Fisher et al. (2012), and Burke et al. (2015).
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through equal lump-sum dividends. The efficacy of such a policy relies on consumers’ price

sensitivity in their demand for carbon-rich products. Petroleum is one such product, the

burning of which accounts for 34 percent of the total U.S. anthropogenic green house gas

emissions and about 42 percent of total U.S. anthropogenic carbon dioxide emissions (US

Energy Information Administration, 2018).

We are concerned that the most convincing existing estimates of this important parameter

still seem to rely upon assumptions which may be problematic, most notably homogeneous

elasticities of demand for gasoline across states. Accordingly, we estimate the price elasticity

of demand for gasoline using the more robust PCIV approach. Both for comparability to

Coglianese et al. (2017) and Li et al. (2014) and to demonstrate the performance of this

proposed estimator, we also use P2SLS applied to first-differences and FEIV. Furthermore,

earlier work rely on aging and discontinued data series, which we update in our analysis

with novel data collection.4 Using data on state-level monthly gasoline sales and prices as

instrumented by state taxes from 1989-2018, we find that both the magnitude and significance

of the results are sensitive to the methods used. We estimate a larger elasticity of the demand

for gasoline (-0.6 to -0.7) than the estimates of monthly responsiveness to prices reported

in Coglianese et al. (2017) (-0.3 to -0.4). These larger estimates suggest that carbon tax

increases may provide a quicker lever for reaching climate goals than previously thought.

This application allows us to demonstrate additional reasons researchers may find a per-

cluster instrumental variables approach useful even when not the primary specification. The

procedure provides sample analogues to many of the assumptions made when estimating av-

erage or local average effects with fixed effects instrumental variables approaches. First, the

state-specific estimates give evidence to the existence of "essential heterogeneity" in elastic-

ities across space. Secondly, analysis of the cluster specific first-stage slopes reveals whether

4We along with Davis and Kilian (2011); Li et al. (2014), and Coglianese et al. (2017) rely on US
Department of Energy, Energy Information Administration, ‘PetroleumMarketing Monthly Report: Gasoline
Prices by Formulation, Grade, Sales Type’ for gasoline prices by state for the period 1989-2008. However,
this series was discontinued in 2011. As a result, we add to this data state-by-month averages of at-the-pump
gasoline prices collected from Gasbuddy.com.
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the monotonicity assumption necessary for estimating LATEs holds within sample. Third,

once cluster specific slopes are estimated, it is simple to find the correlation between the es-

timated heterogeneous slopes and the within-cluster relevance of the instrument in order to

assess the key condition for the consistency of FEIV. Lastly, we compare the natural market

share weights we employ with PCIV to the relative strength of the instrument implicitly

used by FEIV and P2SLS as weights of state-specific elasticities.

The remainder of the paper is organized as follows. In Section 2, we introduce the

econometric model and briefly summarize existing estimators with exogenous and endogenous

regressors. In Section 3, we introduce the proposed estimator providing the main consistency

results with Section 5 providing possible extensions of the estimator. Section 4 contains a

Monte Carlo study that shows that the PCIV estimator outperforms P2SLS and FEIV

when the key condition is violated, confirming the results from Section 2. We provide a

reexamination of Coglianese et al. (2017) in Section 6 using the approaches laid out in

Sections 3 and 5. Section 7 offers concluding remarks.

2 Model specification and previous results
We initially take a standard correlated random effects model for a randomly selected i

from the population. The model shown below is similar to those examined in Wooldridge

(2005); Arellano and Bonhomme (2011); Graham and Powell (2012) and Laage (2019).

yij = xijbi + eij, i = 1, ..., N, j = 1, ..., T (1)

where yij is a dependent variable and eij is an idiosyncratic error. The 1 × K vector, xij,

includes 1 as well as covariates that may be endogenous and are allowed to vary both between

and within clusters. A key feature of the model is the K × 1 vector of cluster-specific slopes,

bi = β + di, where E(di) = 0 by definition. This vector indicates the heterogeneous effects
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that vary by cluster and may be correlated with xij.5

2.1 Exogenous regressors

Even if xij is otherwise strictly exogenous, ignoring the heterogeneous intercepts and

coefficients may be problematic for uncovering consistent estimates of parameters of interest.

Wooldridge (2005) shows the conditions under which standard fixed effects estimators are

consistent in estimating average treatment effects (ATEs). To summarize in this simple case

with exogenous regressors and fixed T, the assumptions for consistency, are the following:

E(eij|xi1, ...,xij,bi) = 0, i = 1, ..., N, j = 1, ..., T, (2)

rank E

(
T∑

j=1

ẍ′ijẍij

)
= K, (3)

E[ẍ′ijẍijdi] = 0, (4)

where ẍij = xij − T−1
∑T

j=1 xij. Equation 4 shows that in addition to standard rank

and strict exogeneity assumptions, the presence of cluster-specific coefficients necessitates an

additional assumption for fixed effects estimators to be consistent.

Though this additional condition is seemingly benign, there are several situations in

which equation 4 may not hold. Bates et al. (2014) explores one. As a motivating example,

they consider estimation of the effect of socio-economic status (SES) on students academic

performance on a standardized mathematics exam. Were the effect of SES to differ across

schools in a way that is related to the diversity within schools, fixed effects estimation would

be inconsistent, as this setting violates the key condition shown in equation 4.

Bates et al. (2014) proposes using a per-cluster estimator similar to that discussed in Kuh

(1959) and Swamy (1971), though the recent work avoids restrictive assumptions made in

the earlier work. The per-cluster estimator is unbiased in estimating ATEs without further

5In principal xij may also include aggregate time variables such that the bi allows for cluster-specific
flexible time trends as in Wooldridge (2005) and Murtazashvili and Wooldridge (2008).
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assumptions, and relaxes the assumption in equation 4 from Wooldridge (2005).6 To adapt

per-cluster estimation to this simple model, we need only two steps. First, estimate b̂i for

each cluster using OLS on only the within-cluster observations, such that;

b̂i = β + di +

(
T∑

j=1

x′ijxij

)−1( T∑
j=1

x′ijeij

)
. (5)

Second, average b̂i over clusters. Thus,

β̂PC = β +
1

N

N∑
i=1

di +
1

N

N∑
i=1

[
(

T∑
j=1

x′ijxij)
−1(

T∑
j=1

x′ijeij)

]
. (6)

In this simple setting, unbiasedness follows from the rank conditions, the fact that E(di) = 0

by definition, and the strict exogeneity assumption in equation 2.

2.2 Endogenous regressors

We now turn to settings where assumption 2 may not hold, whether the violation origi-

nates from measurement error, time-varying omitted variables, or simultaneity. Continuing

with a simple model, we introduce zij, a 1× L (L ≥ K) vector of instrumental variables.

Murtazashvili and Wooldridge (2008) shows the conditions under which a general class of

fixed effects instrumental variables estimators is consistent in identifying PAEs. To summa-

rize their findings, consider the following representation of the estimate of β from two stage

least squares applied to the demeaned covariates and instruments:

β̂FEIV = β +

(
N∑
i=1

T∑
j=1

ẍ′ijHzẍij

)−1 [ N∑
i=1

T∑
j=1

ẍ′ijHzẍijdi +
N∑
i=1

T∑
j=1

ẍ′ijHzëij

]
, (7)

where Hz = z̈ij

(∑N
i=1

∑T
j=1 z̈′ijz̈ij

)−1
z̈′ij.

6The model considered above is a special case of the framework in Bates et al. (2014), which focuses on
estimating the effect of a conditionally exogenous covariate that varies only at the cluster level.
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Thus, in addition to the standard rank assumptions and the strict exogeneity assump-

tion on the instruments, Murtazashvili and Wooldridge (2008) observe that they also “need

assumptions such that z̈ij is uncorrelated with ẍijdi.” Accordingly, they show that requiring

1) the mean of bi to be independent of z̈ij and 2) the covariance of ẍij and bi to not depend

on z̈ij is sufficient for consistency of FEIV estimators.7

However, a violation of these assumptions occurs if the strength of the instrument is

related to the heterogeneous effects. In which case, E[(z̈′ijẍij)
−1z̈′ijẍijdi] 6= 0. Such a violation

of this condition occurs if for those for whom the instrument is relevant (whom we think

of as compliers from Imbens and Angrist (1994)) have systematically different responses to

the treatment, than does the rest of the population. In other words, in order for FEIV to

provide the ATE, we must assume that the LATE does not differ from the ATE. A further

implication of this violation is that correlation between the strength of the instrument and

the heterogeneous effects at the intensive margin, may cause FEIV to fail to consistently

estimate even the LATE.

This or similar restrictions have been questioned by earlier work. Murtazashvili and

Wooldridge (2016) propose an estimation method for estimating switching regression models

with endogenous variables and switching. In the panel setting with fixed T, in order to allow

heterogeneity to be correlated with time-varying explanatory variables, they must linearly

model the unobserved heterogeneity using a linear Mundlak (1978) device from the time-

averages of the instruments. Laage (2019) investigates the identification of APEs in CRC

models also with fixed T panel data. She proposes using a two-step nonparametric estimator

in which the first-stages are cross-sectionally estimated by time-period. Both approaches rely

on homogeneous first-stage coefficients across individuals, thus ruling out the possibility of

compliers, always-takers, and never-takers, usually associated with think about the LATE.

7In the simulation and application we will also consider pooled two-stage least squares and pooled two-
stage least squares applied to first differenced data. Clearly, neither estimator avoids making a similar
assumption for consistency in estimating the PAE. Given the structure of the data, it is difficult to think of
a setting where either would be preferable to FEIV.
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3 Proposed estimator
What we term the Per-Cluster Instrumental Variables approach takes much of the same

form as the per-cluster approach in Bates et al. (2014), except we utilize the instrument zij

to estimate the cluster-specific slopes, bi. Thus,

b̂i,PCIV = β + di +

(
T∑

j=1

x′ijHzi,jxij

)−1 T∑
j=1

x′ijHzi,jeij, (8)

where Hzi = z̈ij

(∑T
j=1 z̈′ijz̈ij

)−1
z̈′ij.

The key intuition here is that because di does not vary within the cluster, it must be mean

independent of within-cluster deviations of zij and xij used in the per-cluster regressions, even

if it is correlated with both zij and xij. Maintaining random sampling and homogeneous

cluster size, we then average over the estimated cluster-specific slopes to provide our PCIV

estimate of β.8 Thus, our proposed PCIV estimator of β can be written as the following:

β̂PCIV =
1

N

N∑
i=1

b̂i,PCIV = β+
1

N

N∑
i=1

di+
1

N

N∑
i=1

( T∑
j=1

x′ijHzi,jxij

)−1 T∑
j=1

x′ijHzi,jeij

 . (9)

3.1 Consistency
To find the conditions under which β̂PCIV is a consistent estimate of β, we first consider

the ideal setting for this estimator; where both N and T are large. Such settings may have

been previously thought to be prohibitive. However, such data is becoming more common

from the rise of panels of the human genome to the monotonization of individuals’ internet

search histories. We take the probability limit of equation 9, as T and N → ∞, providing

the following:

plim
T, N→∞

(β̂PCIV − β) = E(di) + E[[Ei(x
′
ijHzixij)]

−1Ei(x
′
ijHzieij)]. (10)

8In an extension in section 5.1, we discuss the use of weights to uncover the population average effects
in the presence of unequal cluster sizes or nonrandom sampling.
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Thus, consistency of β̂PCIV follows from the assumptions enumerated below:

1. E(di) = 0 by definition,

2. rank[Ei(z
′
ijxij)] = K,

3. rank[Ei(z
′
ijzij)] = L,

4. Ei(zij
′eij) = 0 (The validity of the instrument within each cluster).9

The condition that rank[Ei(z
′
ijxij)] = K is meaningful, as it requires, 1) variation in the

instrument and endogenous regressor within cluster, and 2) all clusters to be influenced by the

instrument. However, whether the sample analogue of this condition is met for each cluster

will be apparent when performing per-cluster estimation. Additional assumptions would be

required to project out of the sample for which the instrument is relevant. Additionally,

unlike FEIV, the PCIV estimator may provide a consistent estimate of β for those who

comply with the instrument, even when the strength of the instrument is related to the

heterogeneous effects.

3.2 Inference

In this section, we derive asymptotic variance of PCIV estimator for inference and de-

scribe its estimation. Since we first estimate cluster-level coefficients in order to obtain an

estimate of the global-level estimate, β̂PCIV , we need to get correct standard errors for pos-

sible early-stage estimation error. Thus, we need to show the asymptotic variance at each

cluster level.

Note that we may write the asymptotic variance of each cluster-level coefficient according

9With aggregate time variables included in xij and zij this is no more restrictive than the exogeneity
assumption maintained in Murtazashvili and Wooldridge (2008).
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to the following as T →∞:

T · V(b̂i,PCIV − bi,PCIV )

=T ·

(
T∑

j=1

x′ijHzixij

)−1( T∑
j=1

x′ijH
2
zi

xije
2
ij

)(
T∑

j=1

x′ijHzixij

)−1

=

(
1

T

T∑
j=1

x′ijHzixij

)−1(
1

T

T∑
j=1

x′ijH
2
zi

xije
2
ij

)(
1

T

T∑
j=1

x′ijHzixij

)−1 (11)

We use the cluster-level asymptotic variance to obtain the asymptotic variance of the esti-

mated population-level parameter, β̂PCIV , as follows.

NT · V(β̂PCIV − β)

=NT · V

(
1

N

N∑
i=1

(bi − β) +
1

N

N∑
i=1

(b̂i − bi)

)

=NT · V

(
1

N

N∑
i=1

di +
1

N

N∑
i=1

(b̂i − bi)

)

=T · dd′ + 1

N
·

N∑
i=1

( 1

T

T∑
j=1

x′ijHzixij

)−1(
1

T

T∑
j=1

x′ijH
2
zi

xije
2
ij

)(
1

T

T∑
j=1

x′ijHzixij

)−1
+

2T

N
·

N∑
i=1

( 1

T

T∑
j=1

x′ijHzixij

)−1(
1

T

T∑
j=1

dix
′
ijHzieij

)
−→ T · σ2

d +Q−11 ΩQ−11 + 2T ·Q−11 Q3 as N, T →∞,

where Q1 = E[x′ijHzixij],Ω = E[x′ijH
2
zi

xije
2
ij], and Q3 = E[dix

′
ijHzieij]. Using the obtained

asymptotic variance, we can construct a t-statistic within the sample. As the asymptotic

variance depends upon b̂i − bi =
(∑T

j=1 x′ijHzixij

)−1 (∑T
j=1 x′ijHzieij

)
, in the estimated

variance we replace eij with the sample analogue êij. Thus, the sample variance is constructed
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as follows in equation 12.

V̂(β̂PCIV − β)

=V

(
1

N

N∑
i=1

[
d̂i +

(
T∑

j=1

x′ijHzieij

)])

=
1

N

N∑
i=1

(d̂i − ¯̂di)
2 +

1

NT
·

 N∑
i=1

(
x′ijHzixij

)−1( 1

T

T∑
j=1

x′ijH
2
zi

xijê
2
ij

)(
1

T

T∑
j=1

x′ijHzixij

)−1
+

2

N
·

N∑
i=1

( 1

T

T∑
j=1

x′ijHzixij

)−1(
1

T

T∑
j=1

d̂ix
′
ijHzi êij

),
(12)

where d̂i = b̂i − β̂PCIV and êij = yij − xij b̂i. Throughout this paper, we will apply this

estimated variance in the simulation as well as application studies. The consistency of the

estimated variance is shown in Appendix A.

For comparison, we use a bootstrap procedure as an alternative to obtain the standard

errors for PCIV estimator. Let Ci = {yij,xij, zij}Tj=1, which is a set of observations for each

cluster, and C = {Ci}Ni=1. First, we resample N number of Cis from C with replacement,

then having a new set of C∗i = {y∗ij,x∗ij, z∗ij}Tj=1. Note that we do not resample the data

within the cluster. By running the regression of y∗ij = x∗ijbi + eij, we can obtain the set

of {β̂∗PCIV,b}Bb=1, where B is the number of bootstrap repetitions. The bootstrap standard

errors are given as follows.

s.e.(β̂∗PCIV ) =

√√√√ 1

B − 1

B∑
b=1

(β̂∗PCIV,b −
¯̂
β∗PCIV,b)

2,where ¯̂
β∗ =

1

B

B∑
b=1

β̂∗PCIV,b. (13)

3.3 Finite samples in one dimension

While very large data sets are becoming more common place, in many applications,

researchers may not wish to rely on asymptotic arguments with respect to both dimensions

of their data. Consequently, we also consider the properties of our estimator with fixed N
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and T → ∞, before considering the probability limit more comparable to FEIV with fixed

T and N → ∞.

We start with the number of clusters being fixed while the number of observations per

cluster can be very large. While in principal this could be true with panel data, this setting

is perhaps more commonplace for clustered cross-sectional data. In such applications, the

asymptotic argument makes more sense through the number of observations per-cluster.

Accordingly, we take the probability limit of equation 9 as T → ∞, providing the following:

plim
T→∞

(β̂PCIV − β) =
1

N

N∑
i=1

di +
1

N

N∑
i=1

[
[Ei(x

′
ijHzixij)]

−1Ei[x
′
ijHzieij]

]
. (14)

The previously stated rank and validity assumptions applied to each cluster ensure that

1
N

∑N
i=1[Ei(x

′
ijHzixij)]

−1Ei[x
′
ijHzieij] = 0. If researchers observe all clusters or a random

sample of clusters in the data, in expectation, E( 1
N

∑N
i=1 di) = 0.10 Thus, the PCIV approach

is asymptotically unbiased in estimating the PAE, though consistency requires N → ∞.

Next, we consider the robustness of the PCIV approach with fixed T as N →∞. Taking

the probability limit of equation 9 with N → ∞ provides the following:

plim
N→∞

(β̂PCIV − β) = E[di] + E

( T∑
j=1

x′ijHzixij

)−1 T∑
j=1

x′ijHzieij

 . (15)

By definition, E(di) = 0. Thus, we must assume E[(
∑T

j=1 x′ijHzixij)
−1∑T

j=1 x′ijHzieij] = 0 in

order for β̂PCIV to consistently estimate the PAE, β. With a fixed number of observations

per cluster, additional complications arise. First, T must be large enough (T > K) to

estimate bri, where r = 1, ..., K. Second, in order for this estimator to provide a consistent

estimate of β without further assumptions, as with the large T case, there must be vari-

ation in the instrument, and non-zero covariance between the instrument and endogenous

regressors.

Lastly, unlike in the exogenous case presented in Bates et al. (2014), each estimated bri is

10The same holds if researchers observe a random sample of the population, which is nested into clusters.
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bound to manifest some degree of finite sample bias. The question is whether we may expect

the biases to be mean zero in expectation as only the number of clusters approaches infinity.

Bound et al. (1995) summarizes some instances in which we may expect that not to be the

case. First, the finite sample bias falls as the ratio of observations per cluster to regressors

(and instruments) grows. Second, with weak instruments the the finite sample bias is in the

direction of the OLS estimates, violating the mean zero bias condition.11

As a result, one of the functions of the Monte Carlo study will be to show how the per-

cluster instrumental variables estimator performs against P2SLS and standard FEIV as we

vary the number of observations per cluster in Section 4.

4 Simulation Study
We now describe the simulation we use to examine the performance of the P2SLS, FEIV,

and PCIV estimators in finite samples. In conducting this simulation study, we consider two

types of conditions: where uncorrelated covariance assumption holds, or is violated. We are

interested in the bias, efficiency, and asymptotic risk of the the three estimators. We also

examine the performance of the analytic standard errors relative to the standard deviation of

the bootstrapped estimates. We consider each performance measure under both conditions

for a range of cluster sizes and number of clusters.12

4.1 Data Generating Process

We generate the data based on our model of interest in Equation 1. Our random intercept

d0i and random slopes d1i are drawn from a multivariate normal distribution with zero means

and variance-covariance matrix defined by variances ψ0 = 0.42, ψ1 = 0.252, a correlation of

ρ = 0.5 giving a covariance of ψ01 = 0.05.

We generate two types of yij based on Equation 1 with β1 = 1. In the first case, we gen-

erate y1ij under uncorrelated covariance assumption holding, and in the second we generate
11Bound et al. (1995) results may not directly translate as their discussion focuses on cases where L−K >

1.
12We use Stata 15 (Stata Corp, 2015) throughout.
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y2ij under the violation of the uncorrelated covariance assumption.

y1ij =d0i + (β1 + d1i)x1ij + oij + vij, v1ij ∼ N(0, σ2
v). (16)

y2ij =d0i + (β1 + d2i)x2ij + oij + v2ij, v2ij ∼ N(0, σ2
v), (17)

where v1ij and v2ij are cluster and time varying errors with mean zero and variances of σ2
v .

We generate two types of the individual-level covariate x1ij and x2ij in the following way:

x1ij =b0d0i + b1d1i + b2wj + zij + aε1ij, ε1ij ∼ N(0, σ2
Xi), (18)

x2ij =b0d0i + b1d2i + b2wj + zij + aε2ij, ε2ij ∼ N(0, σ2
Xi), (19)

where wi is an exogenous cluster level error, εij is a cluster and time varying error, and

a =
√

1− ψ2
0b

2
0 − ψ2

1b
2
1 − σ2

wb
2
2 − 2b0b1ψ01. (20)

In this set up, coefficients take arbitrary values b0 = 1.33, b1 = 2.13, and b2 = 0.20, which

makes both x1ij and x2ij correlated with the random intercept, random slope, and cluster-

level covariate. We draw zij from a normal distribution with mean of zero and variance of

σ2
Zi. Transitory endogeneity of our key variables of interest, x1ij and x2ij, enters through the

presence of oij in the generation of y1ij and y2ij, but we imagine is unobserved in the data.

We hold that oij is independent of zij, but correlated with both x1ij and x2ij.

The key assumption for the consistency of FEIV is that the within-cluster covariance

between xij and zij is uncorrelated with the random slopes di. Accordingly, for uncorrelated

covariance, there is no correlation between the heterogeneous slopes d1i and the variances of

x1ij and zij. In contrast, we generate a violation of this condition by having the variances of

x2ij and zij related to d2i with σZi = σXi = exp(d2j).
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Table 1: Simulated correlations with and without correlated covariance between d and ẍz̈

Panel A: Uncorrelated Covariance
d0 d1 x1 o1 z ẍ1z̈

d0 1
d1 0.0103 1
x1 0.3906 0.3633 1
o1 0.4012 0.3744 0.3848 1
z 0.0006 0.0004 0.7886 0.0064 1
ẍ1z̈ 0.1269 0.0061 0.0532 0.0508 0.0044 1

Panel B: Correlated Covariance
d0 d2 x2 o2 z ẍ2z̈

d0 1
d2 0.477 1
x2 0.5379 0.5458 1
o2 0.5516 0.5603 0.4814 1
z 0.0006 0.0021 0.7258 0.0073 1
ẍ2z̈ 0.1269 0.2776 0.1543 0.1573 0.0044 1

Note: ẍ1z̈ and ẍ2z̈ stands for the product of the time-demeaned variables of interest and the
instrument when the key condition holds and is violated respectively.

The resulting correlations with N = 250 and T = 250 are shown in Table 1. Under both

conditions x is correlated with unobserved heterogeneity d0, d1, and d2 as well as the omitted

variable o producing endogeneity. Our variable of interest, x, is also strongly correlated with

the instrument z, and z is otherwise orthogonal to the other terms, such that our instrument

is both relevant and valid. The key condition hinges on whether the heterogeneous slopes,

d1 or d2, are correlated with the strength of the instrument within cluster. The fact that the

correlations between d1 and ẍ1z̈ and between d2 and ẍ2z̈ are 0.0061 and 0.2776 respectively

reflect two possible states of the key condition.

Each simulation is repeated 500 times. Because the asymptotic properties depend on

whether T, N, or both go to infinity, we vary both the number of clusters from 6 to 250 and

the number of observations per cluster from 6 to 250.
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4.2 Results

We evaluate the performance of each method—P2SLS, FEIV, and PCIV—with respect

to the bias, asymptotic risk as measured by root mean square error (RMSE), the ratio of

mean standard errors by the standard deviations of simulated estimates, and the coverage

rate from each approach.

4.2.1 Bias

Figure 1: Kernel Density Plots of Estimation Errors, β̂1 − β1

Note: β̂1 is the coefficient of xij across replications for all methods. Left panels are when the
uncorrelated covariance assumption holds and right panels are when it is violated. P2SLS =
Two-Stage Least Squares; FEIV= Fixed Effects Instrumental Variable; PCIV=Per-Cluster
Instrumental Variable.
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As the primary potential benefit of PCIV is robustness, we first consider the estimated

bias for the coefficient β̂1 to assess each estimator’s performance. Figure 1 shows the kernel

density plot of the bias over each simulation, maintaining the uncorrelated covariance as-

sumption on the left and violating it on the right. Further, we show these density plots first

with 250 clusters and 250 observations per cluster at the top, then with only the number of

clusters reduced to 10, and finally with 250 clusters and 10 observations per cluster at the

bottom.

Figure 1 shows that the distribution of estimation bias with each method tightly centers

around zero, when the heterogeneous slopes are uncorrelated with the strength of the in-

strument and both N and T are large. Naturally, the distribution of estimates spreads with

smaller N or T. PCIV is less precise than FEIV or P2SLS in these smaller samples.

Figure 2: Estimated Bias for Coefficient β1of xij Versus number of clusters

Note: Left panels are when the uncorrelated covariance assumption holds and right panels are
when it is violated. P2SLS = Two-Stage Least Squares; FEIV= Fixed Effects Instrumental
Variable; PCIV=Per-Cluster Instrumental Variable. Each point represents results from 500
repetitions.
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More substantial differences become apparent with a violation of the uncorrelated co-

variance assumption. With correlation between the strength of the instrument and the

heterogeneous slopes, the precision of each of the three estimators falls. However, with large

N and T, the distribution of bias in the PCIV estimator remains centered tightly around

zero, whereas the the entire distribution of estimates from P2SLS and FEIV lies strictly to

the right of zero. With smaller N or T the distributions of estimates overlap (substantially

when N = 10 and T = 250), however only the distribution of PCIV remains centered near

zero bias. In contrast, both FEIV and P2SLS are biased when the uncorrelated covariance

assumption is violated. From Table 6 in the appendix, the magnitude of bias in both FEIV

and P2SLS is almost identical at approximately 12%.

Figure 2 shows the average bias in the three estimators with T fixed at 250 as N increases,

again both maintaining and violating the key assumption. With T=250 and the uncorrelated

covariance assumption holding, all three estimators show very little mean bias across all

numbers of clusters. However, once the uncorrelated covariance assumption is violated, both

FEIV and P2SLS demonstrate consistent and significant bias, whereas the PCIV shows little

mean bias in its estimates.

Figure 3 repeats the same exercise with N fixed at 250 as T varies. Again, when the un-

correlated covariance assumption holds, FEIV and P2SLS estimators perform consistently

well, but demonstrate consistent and significant bias once the uncorrelated covariance as-

sumption is violated. In contrast, the PCIV estimator manifests finite sample bias under

both conditions with very small (sized 10 or fewer) clusters. However, across cluster sizes

PCIV outperforms the other estimators when the uncorrelated covariance assumption is

violated. Furthermore, while estimated bias of FEIV and P2SLS estimators do not show

any improvement even with the increasing size of cluster, the estimated bias of the PCIV

approach gets closer to zero as cluster sizes increase.
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Figure 3: Estimated Bias for Coefficient β1of xij Versus Cluster Size

Note: Left panels are when the uncorrelated covariance assumption holds and right panels are
when it is violated. P2SLS = Two-Stage Least Squares; FEIV= Fixed Effects Instrumental
Variable; PCIV=Per-Cluster Instrumental Variable. Each point represents results from 500
repetitions.

4.2.2 Root mean squared error

Naturally, researchers are not only interested in the bias of estimators, but are also inter-

ested in the estimators’ precision. As is typical, we use root mean squared errors (RMSEs)

which comprise bias and imprecision as a summative measure of performance on both di-

mensions. As the scale of RMSEs depends on both cluster size and the number of clusters

present, we show the RMSE of the estimated coefficient from the three estimators, first, with

T=250 and the number of clusters varying between 6 and 250 in Figure 4, and then, with

N=250 and cluster sizes varyingin Figure 5. In both figures we repeat the exercise both with

and without the uncorrelated covariance assumption holding.
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Figure 4: Estimated Root Mean Square Error for Coefficient β̂1 of xij Versus Number of

Clusters

Note: Left panels are when the uncorrelated covariance assumption holds and right panels are
when it is violated. P2SLS = Two-Stage Least Squares; FEIV=Fixed Effects Instrumental
Variable; PCIV=Per-Cluster Instrumental Variable. Each point represents results from 500
repetitions.

Figure 4 shows that with a large T, all three estimators have similar RSMEs across

number of clusters when the uncorrelated covariance assumption holds. In which case, PCIV

exhibits only slightly smaller RMSE than FEIV or P2SLS. In the presence of correlation

between the strength of the instrument and the heterogeneous effects exists PCIV exhibits

smaller RMSE than does either P2SLS or FEIV across all number of clusters considered,

indicating that with large number of observations per cluster, PCIV may dominate more

standard approaches.

Turning to Figure 5, the first striking pattern is that with very small clusters and N =

250, the PCIV approach is prone to large RMSE. However, in this simulation by a cluster

size of only 8, the PCIV approach has comparable or lower RMSE than FEIV or P2SLS. We
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were somewhat surprised by the relative performance of the PCIV estimator at such small

cluster sizes as Staiger and Stock (1997) state that the asymptotic distributions provide good

approximations on sampling distributions with 10 - 20 observations per instrument.

Figure 5: Estimated Root Mean Square Error for Coefficient β̂1 of xij Versus Cluster Size

Note: Left panels are when the uncorrelated covariance assumption holds and right panels are
when it is violated. P2SLS = Two-Stage Least Squares; FEIV=Fixed Effects Instrumental
Variable; PCIV=Per-Cluster Instrumental Variable. Each point represents results from 500
repetitions.

4.2.3 Ratio of Mean SE by SD and Overage Rates

We evaluate of the performance of our analytic standard errors over both numbers of

clusters used and size of each cluster. We do so first by depicting the ratio of the mean of

the estimated SEs divided by sampling SDs. Figure 6 presents how this ratio changes with

the number of clusters and Figure 7 presents the same measure over changes in cluster size.

Again the case in which the strength of the instrument is uncorrelated with the heterogeneous

effects appears on the left, whereas the case of correlated covariance appears on the right.
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In all cases, the analytic standard errors do reasonably well with large sample sizes along

both dimension. The ratio is consistently close to 1 with N and T both above 20 both with

the the uncorrelated covariance assumption holding and when it is violated violated.

Figure 6: Ratio of Mean SEs Divided by SDs of Estimates Versus Number of Clusters

Note: Ratio of mean standard errors (SEs) divided by standard deviations (SDs) of the
estimates. Left panels are when the uncorrelated covariance assumption holds and right
panels are when it is violated. P2SLS = Two-Stage Least Squares; FEIV = Fixed Effects
Instrumental Variable; PCIV=Per-Cluster Instrumental Variable. Each point represents
results from 500 repetitions.
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Figure 7: Ratio of Mean SEs Divided by SDs of Estimates Versus Cluster Size

Note: Ratio of mean standard errors (SEs) divided by standard deviations (SDs) of the
estimates. Left panels are when the uncorrelated covariance assumption holds and right
panels are when it is violated. P2SLS = Two-Stage Least Squares; FEIV= Fixed Effects
Instrumental Variable; PCIV=Per-Cluster Instrumental Variable. Each point represents
results from 500 repetitions.

Secondly, we show the rate at which the 95 percent confidence interval constructed from

our estimated standard errors include the true value of the parameter. Naturally, this should

occur 95 percent of the time. In figure 8, we show the evolution of coverage rates for each

estimator in the uncorrelated covariance case with 250 clusters as T grows on the left hand

side, and with cluster sizes of 250 as N grows on the right hand side. With 250 clusters, the

coverage rates for all three estimators range from 0.89 to 0.98 for all cluster sizes, though

they converge to 0.95 as the cluster size grows. With 250 observations per cluster, all three

estimators reject the true value at a higher rate, but quickly converge to a 95 percent coverage

rate as the number of clusters grow.
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Figure 8: Coverage Rate for the Uncorrelated Case

Note: The horizontal line is to denote the exact 95% coverage rate. Left panels are when the
uncorrelated covariance assumption holds and right panels are when it is violated. P2SLS =
Two-Stage Least Squares; FEIV= Fixed Effects Instrumental Variable; PCIV=Per-Cluster
Instrumental Variable. Each point represents results from 500 repetitions.

In figure 9, we show the evolution of coverage rates for each estimator in the case where

the strength of the instrument may be correlated with the heterogeneous coefficients, again

with 250 clusters as cluster size grows on the left hand side, and with cluster sizes of 250

as the number of clusters growing on the right hand side. Figure 9 shows that the bias in

FEIV and P2SLS is meaningful as each of two estimators reject the true value more than

20 percent of the time. Moreover, the rejection rate of the true parameter grows as the

number of clusters and the cluster sizes grow. In contrast, the PCIV rejection rate at the 95

percent confidence level is never more than 6 percentage points from 95 percent and again, it

converges to 95 percent as the number of clusters or cluster sizes grow. The relatively poorer

performance when either N or T is very small may give reason to researchers to adopt a

bootstrap approach to standard error estimation. In the application of these methods to

26



real data we initially show the estimated standard errors with both approaches.

Figure 9: Coverage Rate for the Correlated Case

Note: The horizontal line is to denote the exact 95% coverage rate. Left panels are when the
uncorrelated covariance assumption holds and right panels are when it is violated. P2SLS =
Two-Stage Least Squares; FEIV = Fixed Effects Instrumental Variable; PCIV=Per-Cluster
Instrumental Variable. Each point represents results from 500 repetitions.

5 Extensions
5.1 Defining the population and weighting

In the discussion of uncovering the population average effects we have so far neglected to

define the population of interest. In the panel data setting, clusters represent individuals from

the population of interest about whom we have multiple observations. Random sampling

of these individuals is an important assumption underpinning the above results. However,

many popular panel data sets are not random samples of the population. For instance,

the Panel Survey of Income Dynamics oversamples low-income families and the National

Longitudinal Survey of Youth oversamples African American, Hispanic or Latino, military,

and economically disadvantaged youth.

Such nonrandom sampling schemes would in turn lead averaged effects to overweight
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the populations which are overrepresented, obscuring the true PAE. Solon et al. (2015)

discusses overcoming such nonrandom sampling as one possible rationale for when empirical

researchers should use weights. Fortunately, researchers may still uncover PAEs using per-

cluster approaches with relative ease. In this case the PAE can be identified using the inverse

of the probability of selection as a cluster-level weight. By finding the weighted average of

the estimated cluster-specific effects in the final step using these weights, researchers can

still uncover a consistent estimate of the PAE.

A second issue related to sample-weighting arises in applications where clusters vary in

size. This may be the case in settings where we have grouped cross-sectional data or where

we have state-level panels as in our application below. In these settings, the population of

interest may be either the clusters or the individuals nested within clusters. When clusters

form the population of interest, we have a similar situation to the panel data setting. How-

ever, if we are instead interested in the populations of individuals, then we must consider

the size of each cluster in the population.

Efficiency may provide a third rationale for weighting. With a burdensome set of as-

sumptions including that the variables of interest and the random coefficients are exogenous,

Swamy (1971) proposes a consistent and asymptotically efficient estimator of the PAE given

below.

β̂s =
N∑
i=1

w̃ib̂i, (21)

where, w̃i =

(∑N
j=1

[
∆̂ + sjj(x

′
jxj)

−1
]−1)[

∆̂ + sii(x
′
ixi)

−1
]−1

, sii = (T − K)−1ê′iêi, and

∆̂ = (N − 1)−1
[∑N

i=1 b̂ib̂
′
i −N−1

∑N
i=1 b̂i

∑N
i=1 b̂′i

]
− N−1

∑N
i=1 sii(x

′
ixi)

−1. Here, êi is the

vector of least squared residuals from the linear projection of yi on xi. Note that with

this estimator, the cluster-specific estimated slopes are weighted according to the relative

estimated variance in xi and the inverse of the relative estimated variance of the cluster-level

residuals.

The advantage of the PCIV estimator is its robustness to violations of many of the as-
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sumptions on which Swamy’s efficient estimator relies. Were we to adopt a similar weighting

approach, in which our PCIV estimates of bi are weighted by the relative covariance between

zi and xi and the inverse of the relative estimated variance of the cluster-level residuals, we

would need to impose the same uncorrelated covariance assumption underpinning FEIV esti-

mation. Consequently, we only pursue weighting schemes that do not impose such restrictive

assumptions.

5.2 Additional exogenous covariates

The model used in the simulation is parsimonious. Researchers often include other as-

sumed to be exogenous regressor in instrumental variables regression to improve the efficiency

of their estimated coefficients. Year effects provide one such example, though covariates that

vary over cluster and time may also be of issue. However, in the PCIV approach increas-

ing the dimension of xij also entails reducing the degrees of freedom in each cluster-level

regression.

However, by using the residuals from a pooled regression, we can hope to obtain these

efficiency gains without cutting into the degrees of freedom on the per-cluster regressions.

Murtazashvili and Wooldridge (2016) and Laage (2019) each use similar strategies to handle

exogenous additional covariates in their respective approaches. Consider the slightly richer

model presented below:

yij = x1ijbi + x2ijδ + eij, j = 1, ..., T, (22)

where x1ij is a 1 × K vector of potentially endogenous regressors, and bi = β + di is again

a K × 1 vector of cluster-specific slopes, where E(di) = 0 by definition. We further allow

for a 1 × H vector of exogenous covariates, x2ij, with δ an H × 1 vector of homogeneous

slopes. Again, we do not assume x1ij to be exogenous, and thus require a 1 × L vector of

instruments, zij, to identify β.

Distinguishing between x1ij and x2ij requires researchers to impose structure on the data–
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ideally motivated by contextual knowledge of the environment. While some may be reluctant

to make these assumptions, the efficiency gains from doing so may be large, particularly with

small T . Each element of bi which must estimated per-cluster provides one less degree of

freedom for estimation within cluster. By maintaining that x2ij has homogeneous slopes

we can account for correlations between x2ij and x1ij by applying the Frisch-Waugh-Lowell

Theorem. We accordingly can run pooled regressions of yij, zij, and x1ij on x2ij keeping the

residuals of these regressions ...
yij,

...
zij, and

...
x1ij respectively.

Accordingly, researchers may subsequently perform the same analysis that is presented

in section 3 with the residualized data. In which case the PCIV estimator may be written

as the following:

β̂PCIV =β +
1

N

N∑
i=1

di +
1

N

N∑
i=1

[(
(

T∑
j=1

...
zij
′ ...x1ij)(

T∑
j=1

...
zij
′ ...z1ij)

−1(
T∑

j=1

...
zij
′ ...x1ij)

)−1

×

(
(

T∑
j=1

...
zij
′ ...x1ij)(

T∑
j=1

...
zij
′ ...z1ij)

−1(
T∑

j=1

...
zij
′ ...eij)

)]
.

(23)

Equation 23 displays the conditions necessary for β̂PCIV to consistently estimate β. Again

with N and T going to infinity, we require no other assumptions for consistency as shown in

equation 24.

plim
N,T →∞

(β̂PCIV − β) =E(di) + E[[Ei(
...
zij
′ ...x1ij)(Ei(

...
zij
′ ...z1ij))

−1Ei(
...
zij
′ ...x1ij)]

−1

× Ei(
...
zij
′ ...x1ij)(Ei(

...
zij
′ ...z1ij))

−1Ei(
...
zij
′ ...eij)].

(24)

Equation 24 makes transparent that we require sufficient all-else-equal variation in the in-

strument and endogenous regressor within each cluster in addition to requiring E(di) = 0

and Ei(
...
zij
′ ...eij) = 0).13

13As in section 2, we get asymptotic unbiasedness with fixed N as T → ∞. With Fixed T and N → ∞ we
also require within each cluster, we must first have large enough T to estimate b1i, .., bKi, and with additional
excluded instruments we must now have T > L ≥ K. Further, we must again assume that the finite sample
bias in estimating each bi is zero in expectation. As is shown in Bound et al. (1995) and Staiger and Stock
(1997) finite sample bias in P2SLS with more than two excluded instruments is a function of the number of
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5.3 Estimation of cluster-level parameters and sources of hetero-

geneity

As a final extension, we wish to discuss one last possible benefit of the PCIV approach.

As Bates et al. (2014) shows in the exogenous case, with a small change in the last stage of

estimation, the PCIV approach allows researchers to uncover effects of exogenous variables

that vary only between clusters including possible mechanisms for the differences between

the cluster-level slopes. Here, we extend the approach to cases where xij may be endogenous.

Consider the original model in equation 1, where again bi = β+ di. We can model di as

a function of a 1 × J vector of cluster-level covariates wi = (w1i, ..., wJi). We present this

often called multi-level model below:

yij = xijbi + eij,

bi = β + wiγ + ui,

(25)

where ui is a K × 1 vector of cluster-level error terms.

In this environment, rather than averaging over the estimates b̂i,PCIV, we regress each

element of b̂i,PCIV on one and the vector, wi, using OLS in the final stage of PCIV.14 We

obtain the estimates of the PAEs, β, from the estimated intercepts in these regressions. For

ease of exposition, I add the subscript r = 1, ..., K to denote specific coefficients, and let the

first element of bri, b1i, be the cluster-specific intercept (the coefficient on 1 in xij). The

estimated coefficients on wi from the regression of b̂1i on one and the vector, wi, provides the

estimates of the effects of wi on yij. Finally, the coefficients on wi from the the regressions

of the cluster-specific slopes, b̂ri, r = 1, ..., K, on one and wi provide estimates of the effects

of the interaction terms, which may be interpreted as the sources of heterogeneous effects of

xij.

Defining Wi ≡ (1, w1i, , , wJi) and δr ≡ (βr,γr1, , ,γrJ), we can follow Bates et al. (2014)

excluded instruments and the strength of those instruments.
14If weighting is necessary in order to obtain the PAE as discussed in section 5.1, researchers should use

weighted least squares instead of OLS in this final stage of estimation.
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in writing the corresponding estimator of δr as the following:

δ̂r,PCIV = δr +

(
N∑
i=1

W′
iWi

)−1 N∑
i=1

W′
i(ui + b̂ri,PCIV − bri). (26)

Note that maintaining the consistency of b̂ri,PCIV is insufficient for the consistency of esti-

mating δr. To consistently estimate δr, we must impose three additional conditions. First,

that rank[E(W′
iWi)] = J . Second, we must assume that Wi is exogenous (E(W′

iui) = 0).

Third, we must assume that the estimation error in b̂ri,PCIV is unrelated to Wi.

It is also worth noting that in undertaking this analysis, these additional assumptions

are necessary to consistently estimate all parameters, including β which may be consistently

estimated under fewer assumptions. However, there may be significant benefits to under-

standing why the same intervention has large effects for some entity and small effects in

others. As is often the case, revelation of these deeper mechanisms come at a cost of less

robust estimates.

6 Estimating the price elasticity of demand for gasoline
The use of P2SLS, FEIV, and related estimators is widespread. Even though in may of the

applications of these estimators researchers would likely not maintain homogeneous effects

across the population, correlation between this “essential heterogeneity” and the strength of

the instrument is not usually discussed.15 The estimation of the price elasticity of demand

for gasoline provides a nice illustration of the PCIV approach applied to a question where the

population parameter is of primary interest. As described above, the average responsiveness

of consumers to price increases in gasoline is of particular importance to both economists

and policymakers with uses ranging from market prediction and urban planning to climate

change and national security. Consequently, the accuracy of our best estimates may be

important.

15Phrasing from Heckman et al. (2006).
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Estimating this important parameter is not straightforward. Gasoline prices and the

volume purchased likely depend upon each other through the interaction of supply and

demand forces. This simultaneity issue requires a source of exogenous variation to establish

a uni-directional causal link. We follow Davis and Kilian (2011) in estimating this parameter

using state gasoline sales taxes as an instrumental variable for changes in prices. In many

ways, the empirical setting and design are ideal, especially considering that the efficacy of

carbon taxes in lowering fuel consumption is a primary reason why the price elasticity of

demand for gasoline is of particular interest.

However, it is not immediately obvious that P2SLS applied to first differenced data as

done in Davis and Kilian (2011) and Coglianese et al. (2017) or FEIV estimate the population

average parameter, which is of most interest. The existing literature econometrically models

the relationship between gasoline prices and the quantity sold as though responsiveness to

prices is homogeneous. However, heterogeneous slopes seem likely in this context. Regulation

of this market varies across states, as does the industry composition, population density,

transportation substitutes, and the macroeconomic climate. Accordingly, we build such

“essential heterogeneity” into the econometric model, allowing each state to differ in the

price elasticity of gasoline demand. Our PCIV approach provides a natural way to investigate

whether these state-specific slopes are homogeneous or vary across states. Below we describe

the process by which we estimate each state-specific price elasticity by PCIV.

The data we use carries a fittingly large scope, containing monthly observations of gaso-

line prices, taxes, and volume sold from January, 1989 through December, 2018 throughout

the United States. This provides us with 360 time observations over all 50 states in addition

to the District of Columbia. The data covering January, 1989 through March, 2008 largely

reflect that used by Davis and Kilian (2011) and Coglianese et al. (2017), however discon-

tinuation of data series and updating subsequent tax changes required significant additional

data collection.16

16We wish to express gratitude to Lucas Davis for publicly releasing the data and code used for both
papers on his website. We provide a direct replication of many of the results from Coglianese et al. (2017)
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The data on monthly, statewide, gasoline price averages for 1989 through 2011 comes

from om US Department of Energy, Energy Information Administration (EIA), ‘Petroleum

Marketing Monthly Report: Gasoline Prices by Formulation, Grade, Sales Type.’ It measures

tax-exclusive prices to end users. To this series, we build in additional taxes to approximate

at the pump prices. However, this series and the survey on which it relies was discontinued

in 2011 by the EIA. As a result, we supplement this pricing data with average at-the-pump

price data from Gasbuddy.com.17

We use the annual ‘Highway Statistics Series’ for exact effective dates of state gasoline

taxes and as the base levels of the taxes and checked these dates against state governmental

documentation when possible. Since 30 states have changed their state gasoline taxes in the

last decade (some multiple times), the recent data provides useful identifying variation. As

noted in Davis and Kilian (2011) and Coglianese et al. (2017), some gasoline taxes fail the

exclusion restriction to serve as an instrumental variable for prices. Taxes (such as sales

tax) which are a function of gasoline prices cannot be used, as they suffer from the same

simultaneity problem as do the raw prices. As a result, we net out any portion of the state

gasoline tax rate, which is due to changes in gasoline prices.18 The data on gasoline sales

volume used throughout is taken from the EIA, ‘Petroleum Marketing Monthly Report:

Prime Supplier Sales Volumes by Product and Area.’

In order to address any seasonality and time-trends within the data, we first regress the

log of sales volume, the log of prices, the log of state gasoline tax rates, and the unemployment

in Appendix C.
17This data was retrieved as the maximum 10-year (January, 2009 - January, 2019) charts for each state

plus the District of Columbia from https://www.gasbuddy.com/Charts on March 22, 2019 and digitized
into four or five daily price averages using https://automeris.io/WebPlotDigitizer/. We then averaged
over these prices to form a monthly average. There is a level shift between the at-the-pump prices from
Gasbuddy.com and the series from EIA. However, for the three years in which the data is overlapping, the
trends and fluctuations in prices move in concert. As a result, we believe the constant gap will be absorbed
by the month-by-year fixed effects.

18Davis and Kilian (2011) did the same for taxes during the period from 1989 through 2008. We largely
use their data for this time period though discovered a few instances in which the taxes they used either
failed to fully capture per-unit taxes or had price changes built into them. We document these tax changes
in the Stata do-file (titled newtaxes.do) and provide within that file links to the documentation for each tax
change.
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rate on time indicators, keeping the residuals, as described in Section 5.2. We then use these

detrended data (denoted by tilde) to estimate the following using 2SLS state by state:

˜logsalesij = α1i + bi ̂logpriceij + δix̃ij + ε̃ij. (27)

The state-specific constant terms absorb any unobserved time-invariant differences between

states. We control for state-and-time-varying macroeconomic conditions using x̃ij, the

monthly unemployment rate in the state. Here, ̂logpriceij is the fitted values from the

OLS regressions of equation 28.

˜logpriceij = α2i + γ1i ˜logtaxij + γ2ix̃ij + ε̃ij. (28)

We include both the just-identified specification, where the contemporaneous price is instru-

mented by the contemporaneous gasoline log tax, and in order to better predict the first

stage, we also include an additional lead and lag of the log of taxes as excluded instruments.

The inclusion of heterogeneous slopes in the econometric model also leads us to pay

particular attention to the differences in state sizes and volume of gasoline purchased, in

contrast to the earlier literature. Were the responsiveness to prices homogeneous across

states, such differences in size may only influence the efficiency of the estimates. However,

if the price-elasticities of gasoline demand do differ by state, failing to account for such

differences in states’ relevance to the market may lead to inconsistent estimates of the price

elasticity of gasoline over the population. In our preferred specifications, we weight the

state-specific estimates by the time-average of volume purchased in the state. Specifically,

after estimating the state-specific elasticities, we estimate the population average effect as

the following:

β̂ =
N∑
i=1

wib̂i2SLS, (29)

where b̂i2SLS are the state-specific elasticity estimates from equation 27 and wi are the state-
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specific weights equalling the share of gasoline sold in state i over the panel. We also provide

the raw (unweighted) average for comparison.

We compare these PCIV estimates to estimates of the same parameter using P2SLS

applied to first differences as used by Davis and Kilian (2011) and Coglianese et al. (2017)

and the benchmark FEIV estimator. We present the results from these estimators in Table 2

both equally weighting state by month observations and incorporating the state-specific

gasoline-volume weights. Panel A presents estimates from the just-identified model without

weights, Panel B the just-identified model with weights, and Panels C and D present the

unweighted and weighted estimates from the over-identified model with contemporaneous

log prices instrumented by contemporaneous, lead, and lagged log taxes. For PCIV, the

analytic standard errors are estimated as described in section 3.2. We present the Cragg and

Donald (1993) F-statistics for the excluded instruments for each estimator in the final row

of each panel with the average of state-specific F-statistics listed for PCIV.19

Across estimators, the first-stage predictive power of taxes on prices are generally strong

with only the unweighted, over-identified P2SLS estimation revealing a concerningly small

F-statistic of 5.8, though in other specification P2SLS has persistently smaller first-stage

F-statistics. FEIV has particularly strong first-stages with F-statistics ranging from 206.9

to 956.9. PCIV also has a high average of state-specific F-statistics, which range from 40.2

to 190.7.

Turning to the coefficient estimates, the results are generally consistent, though the

magnitude and statistical significance of the estimated elasticities range meaningfully. A

priori, our preferred approaches are weighted PCIV in the final column as they weight state-

specific slopes by volume and are robust to correlation between the strength of the instrument

and heterogeneity in demand elasticities. However, whether or not additional leads and lags

of taxes are used to instrument for prices seems to matter greatly in this context. Whereas

in the over-identified specification in Panel D, the point estimate implies that a 10 percent

19We present the first-stage coefficient estimates in Table 7 in the online appendix.
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increase in prices decreases gasoline consumption by 9 percent (p-value = 0.015), in the

just identified model the point estimate implies that the same 10 percent increase in prices

leads to less than a three percent reduction in consumption, which cannot statistically be

distinguished from zero (p-value = 0.780).

Table 2: Summary of Results Using Three Estimation Methods

Just-Identified Contemporaneous Price Specification
Panel A (Unweighted) Panel B (Weighted)

P2SLS FEIV PCIV P2SLS FEIV PCIV

Log price -0.724 -0.925 -0.575 -0.462 -0.848 -0.283
(contemporaneous) (0.193)*** (0.414)** (1.728) (0.153)*** (0.399)** (1.010)

[0.195]*** [0.395]*** [1.792] [0.163]*** [0.465]* [1.017]

F-statistic 17.43 635.5 119.3 40.85 956.9 190.7

Over-Identified Contemporaneous Price Specification
Panel C (Unweighted) Panel D (Weighted)

Log price -0.712 -0.922 -0.839 -0.432 -0.854 -0.920
(contemporaneous) (0.192)*** (0.415)** (0.401)** (0.139)*** (0.403)** (0.410)**

[0.200]*** [0.395]*** [0.464]* [0.158]*** [0.467]* [0.437]**

F-statistic 5.79 206.9 40.17 17.30 321.3 63.26

Note: The sample consists of 18,360 state-by-month observations. Just-identified specifi-
cations use contemporaneous values of log taxes to instrument for contemporaneous prices.
Over-identified specifications use a lead, a lag, and contemporaneous values of log taxes to in-
strument for contemporaneous prices. Weights are constructed from state shares of gasoline
volume purchased over the sample period. Analytic standard errors appear in parentheses
and state-level cluster-bootstrap standard errors appear in brackets below. Asterisks denote
statistical significance at the ***1%, **5%, and *10% level.

There are a few important patterns to note in these results. First, the PCIV analytic

clustered standard errors and clustered bootstrap standard errors are close approximations

of each other. The ratio of the analytic to bootstrap standard errors range from 0.86 (Panel

C) to 0.99 (Panel B). For comparison, the same ratio of the standard FEIV analytic state-
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clustered standard errors to the state-clustered bootstrap standard errors is from 0.84 (Panels

B and D) to 1.05 (Panels A and C). Secondly, the just-identified model illustrates the po-

tential cost in efficiency that may accompany using the more robust PCIV estimator. In the

just-identified model the PCIV point estimates both are more sensitive to weighting and are

accompanied by standard errors that are two to four times larger than those using FEIV.

However, in the over-identified specification the PCIV standard errors are comparable to and

occasionally smaller than those from FEIV. As a result, we mostly focus on over-identified

specifications throughout the remainder of the paper.

Third, P2SLS applied to first differences is the most efficient estimator, however this

efficiency gain may also come at a cost. The divergence between FEIV and P2SLS on first-

differences implies a violation of the strict exogeneity assumption of the instrument. However,

as long as the dependence between lag or lead values of the instrument are only weakly related

to the error term, in a homogeneous coefficient model the inconsistency in FEIV from this

dependence converges to zero as T grows large (Wooldridge, 2010). In contrast, P2SLS

on first-differences, does not enjoy this same result. Given that we are flexibly detrending

the data, strong dependence seems unlikely. However, we further investigate this possible

dependence by estimating the following equation using FEIV:

˜logsalesij = α1i + β1 ̂logpriceij + β2x̃ij + γ1 ̂logpriceij+1 + γ2x̃ij+1 + ε̃ij. (30)

We then test the hypothesis that γ1 = 0 and γ2 = 0. We fall far short of rejecting this null

hypothesis (p-value=0.995). Such is not the case with P2SLS.

Indeed in revisiting the analysis of Davis and Kilian (2011), Coglianese et al. (2017) notes

evidence of the aforementioned violation of strict exogeneity of taxes as an instrument for

prices. Coglianese et al. (2017) shows that anticipatory behavior may be problematic for

estimating monthly price elasticities. This is particularly important when using first differ-

ences in taxes, prices, and quantities, as in Davis and Kilian (2011). Coglianese et al. (2017)
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accordingly uses leads and lags of prices and taxes to address this anticipatory behavior of

large consumers on their estimated price elasticity of demand for gasoline.

Table 3: Accounting for anticipatory behavior

Panel A: One lag of log prices as additional endogenous regressor
(Unweighted) (Weighted)

P2SLS FEIV PCIV P2SLS FEIV PCIV

Cumulative effect -0.544 -0.918 -0.764 -0.313 -0.855 -0.793
of log prices (0.136)*** (0.422)** (0.590) (0.114)*** (0.404)** (0.421)*

Panel B: One lead of log prices as additional endogenous regressor

Cumulative effect -0.365 -0.923 -0.793 -0.189 -0.856 -0.819
of log prices (0.167)** (0.423)** (0.610) (0.112) (0.406)** (0.414)**

Panel C: One lag and one lead of log prices as additional endogenous regressors

Cumulative effect -0.178 -0.918 -0.639 0.001 -0.855 -0.693
of log prices (0.144) (0.420)** (0.515) (0.113) (0.406)** (0.473)

Note: Cumulative effects are the sum of contemporaneous, lead, and/or lag values of prices,
instrumented by taxes. All results from over-identified models with an additional lead and lag
of log taxes used as excluded instruments. Analytic state-clustered standard errors appear
in parentheses. Asterisks denote statistical significance at the ***1%, **5%, and *10% level.

We perform similar analysis, reporting the results from all three estimators in Table 3.

For brevity, we list the sum of the price coefficients to summarize the effect of prices as

instrumented by state taxes on gasoline purchasing again with and without weighting for

volume sold in the state.20 In Panel A, we first introduce a lag of log prices in addition to

contemporaneous log prices. In Panel B we include contemporaneous values and lead of log

prices. Finally in Panel C, we include contemporaneous, lead, and lag values of log prices as

endogenous regressors. In each case, we use over-identified specifications with an additional

lead and lag of log taxes serving as excluded instruments, such that in the final specification
20We include the individual coefficient estimates of contemporaneous, lead, and lag prices in Table 9 in

the online appendix.
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we use the contemporaneous value as well as two leads and two lags of the log of taxes to

instrument for the three endogenous variables.

Table 3 reveals further divergence in the estimates when accounting for anticipatory con-

sumer behavior. The estimated cumulative effects are varied with the estimated elasticities

ranging from zero (weighted P2SLS) to -0.92 (unweighted FEIV under multiple specifica-

tions). P2SLS applied to first differenced data is particularly sensitive to the inclusion of

leads and lags. Moving from Table 2 to Table 3, the P2SLS estimates of the cumulative effect

fall dramatically and even switch sign from around -0.724 to 0.001. In contrast, the FEIV

estimates seem impervious to the inclusion of leads and lags with point estimates changing

by a mere 0.002 across specifications. The PCIV estimates serve as a middle ground, as the

cumulative effect fall slightly with additional leads and lags, but not dramatically. When

including either one additional lead or one additional lag of prices we estimate an approxi-

mate -0.8 price elasticity of the demand for gasoline (p-values ranging from 0.048 to 0.060).

When both are employed we estimate a cumulative effect about -0.7 (p-value of 0.143).

What do we make of this conglomeration of evidence? The volatility of P2SLS and relative

robustness of FEIV suggest that we should privilege FEIV in this context over P2SLS. In

order to examine FEIV against PCIV, we explore 1) the presence of heterogeneous elasticities,

2) heterogeneity in the strength of the instruments, 3) correlation between the strength of

the instruments and state-specific elasticity estimates, and 4) whether the weighting used in

FEIV mimics the weights by sales volume.

The PCIV estimates of bi provide a natural way to examine heterogeneous elasticities. We

present these estimates from the just-identified, contemporaneous specification along the y-

axis in the top row of Figure 10, and from the over-identified, contemporaneous specification

along the bottom row.21 The t-statistics on the ˜logtaxij provide a useful measure of the

strength and sign of the instrument on the endogenous regressor, ˜logpriceij. Conveniently,

these statistics also shed light on whether there is sufficient variation in the instrument,

21With more endogenous regressors the figures become more complicated. We present these in Figure 12
in the online appendix.
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and whether the time series is sufficiently long, or whether the PCIV estimates may be

encumbered by finite sample bias. Each circle represents a state with the size scaled by the

the state’s relevance to the gasoline market.

Figure 10 reveals several features of the data that are important for interpreting the

estimates presented above, as well as in earlier work. We first consider the just-identified

model. Indeed, there is significant heterogeneity in the estimated slopes which range from

-56.4 to 44.1. Further, there is also significant heterogeneity in the strength of the instrument

as the t-statistics on the first stage range from -2.54 to 33.9. It seems that the extreme outliers

are connected to weak instruments as Nevada ( ˆbNV = 42.2), Minnesota ( ˆbMN = 44.1), and

New Hampshire ( ˆbNH = −56.4) have first stage t-statistics on the log of gas taxes of -0.25,

-0.41, and 0.23 respectively. 22

Overall, we assess the relationship between the strength of the instrument and heteroge-

neous slopes by regressing b̂i on the first-stage t-statistics and find a regression coefficient of

-0.16 though it is not statistically significant. Turning to the three graphs along the bottom

row from the over identified model, we see a few patterns. First, the heterogeneity in b̂i

remains significant though less dramatic than above, as the stat-specific elasticity estimates

range from -12.2 to 4.5. Similarly, the ranges on the t-statistics for each instrument are simi-

larly more compact from -3.1 to 3.1. The three graphs along the bottom row of Figure 10 also

reveal steeper slopes in the relationship between the estimated elasticities and strength of the

instrument within each state. Indeed the coefficient estimates on the first-stage t-statistics

range from -0.58 to 0.85. The relationship between b̂i and the t-statistic on a 1-month lag

in log taxes is statistically significant (p-value = 0.022).23

22The heterogeneity in elasticity estimates is not purely due to weak instruments. We conduct regional
analysis employing PCIV at the EIA’s Petroleum Administration for Defense District level and uncover
estimates that range from 0.6 to -2.0 with first-stage F-statistics ranging from 24.0 to 630.7. We report the
results in Table 8 in Appendix B.

23We show the relationships between the state-specific slopes and first stage t-statistics in Tables 11 and
12 in the online appendix.
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Figure 10: Heterogeneous Elasticities and Instrument Strength

Note: X2 refers to the contemporaneous Log price. Z1, Z2, and Z3 are one-month lead,
contemporaneous, and one-month lag Log tax, respectively.

Finally, we consider the issue of weighting (both implicitly and explicitly) and its role in

uncovering a population estimate of the average price elasticity of gasoline demand. As shown

in Murtazashvili and Wooldridge (2008) and discussed in Section 2 above, P2SLS and FEIV

each implicitly apply additional weight to state-specific coefficients when the instrument is

strong. This may, but does not necessarily reflect the natural weighting scheme we employ

with PCIV in which we explicitly weight elasticity estimates by the fraction of the market

represented in the state. We examine the agreement between the two weighting schemes in

Figure 11. One the left we report the relative first-stage F-statistics of each state and on the

right we report the share of total gasoline sales that occur in the state over the panel.

Figure 11 shows vast disagreement between the two weighting schemes. The explicit

weights we employ are intuitive with larger gasoline consuming states receiving influence on

the estimate commensurate with their relevance in the market. California has the highest

sales volume, consuming 11.3 percent of the gasoline in the country. The District of Columbia
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has the lowest sales volume, composed of just 0.1 percent of the national market.

To depict the variation is the strength of the instrument across states we sum the

state-specific F-statistics and report the negative of each state’s share of the cumulative

F-statistics. Pennsylvania leads all states with 18.9 percent of the cumulative F-statistics

whereas the bottom 50 percent of states cumulatively comprise under 5 percent of the cumu-

lative F-statistics. Accordingly, Connecticut with only 1.1 percent of gasoline sales (though

a state-specific first-stage F-statistic of 439.6) has a larger influence on the standard P2SLS

and FEIV estimates than does Ohio, in which 3.8 percent of the nation’s gasoline is sold, as

its first-stage F-statistic is only 8.7.

Figure 11: Weighting under standard and PCIV approaches

Might the use of weighted least squares with FEIV rectify this issue? In short, not
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generally or in this context. First, conditional on the appropriate weight, FEIV will continue

to overweight states for which the instrument is strong. Secondly, as shown in Solon et al.

(2015) weighted least squares in the presence of heterogeneous effects generally does not

consistently estimate the population average effect, nor does it always dominate unweighted

least squares. In fact, after remarking on the shortcomings of weighted and unweighted least

squares, Solon et al. (2015) alludes to a PC estimating approach as a potential way one could

estimate a population average effect.

Accordingly, the evidence seems to contradict the assumptions necessary for P2SLS or

FEIV to consistently estimate the population average elasticity of gasoline demand. Though

PCIV is robust to violations of these assumptions, it seems that in this case we lack a long

enough time series on each state (or sufficient variation in taxes within each state) to maintain

that each state-specific estimate closely approximates the true state-specific parameter.

As a result, we redo the analysis on the sub-sample of states for which the instrument

is strong. Naturally, we will no longer be able to claim that we are estimating the PAE for

the United States, however, we will be able to find a consistent estimate of the average price

elasticity of gasoline demand on a specified and well-defined group of compliers, namely,

states that we can identify in which the instrument is strong. Recall that in the presence

of heterogeneous slopes, a violation of the key condition prohibits P2SLS and FEIV from

consistently estimating even a LATE, whereas PCIV is robust to correlated random slopes.

Consequently, we use use the rule of thumb proposed by Staiger and Stock (1997) and

formally justified in Stock and Yogo (2005) and keep only the 37 states in which the first

stage F-statistic is above ten.24 We then apply all three estimators to this data and report

the results in Table 4. We perform the analysis both on the contemporaneous specification

and using a lead, a lag, and both of log prices as endogenous variables.

24We use F-statistics from the just-identified contemporaneous specification for ease. The results are
similar, if we use F-statistics from the over-identified contemporaneous specification to compose the sample.
The state-specific minimum eigenvalues from Cragg and Donald (1993) are generally much smaller with
multiple endogenous regressors.
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Table 4: Estimated elasticities among states in which the instrument is strong (LATEs)

Panel A: Just-identified contemporaneous specification
(Unweighted) (Weighted)

P2SLS FEIV PCIV P2SLS FEIV PCIV

Log price -0.575 -0.762 -0.791 -0.425 -0.757 -0.681
(contemporaneous) (0.186)*** (0.418)* (0.526) (0.150)*** (0.379)** (0.430)

Panel B: Over-identified contemporaneous specification

Log price -0.554 -0.762 -0.697 -0.394 -0.762 -0.649
(contemporaneous) (0.184)*** (0.423)* (0.446) (0.133)*** (0.383)** (0.433)

Panel C: Over-Identified with additional lag of log prices

Log price -0.488 -0.762 -0.669 -0.272 -0.762 -0.636
(cumulative) (0.139)*** (0.384)** (0.550) (0.110)*** (0.426)* (0.417)

Panel D: Over-Identified with additional lead of log prices

Log price -0.212 -0.762 -0.662 -0.146 -0.762 -0.636
(cumulative) (0.154) (0.385)** (0.518) (0.104) (0.428)* (0.368)*

Panel E: Over-Identified with additional lag and lead of log prices

Log price -0.146 -0.762 -0.647 0.041 -0.762 -0.623
(cumulative) (0.140) (0.386)** (0.368)* (0.108) (0.431)* (0.316)**

Note: Sample composed of 37 states with first-stage F-statistics from the just-identified
specification above 10. Cumulative effects are the sum of contemporaneous, lead, and/or lag
values of prices, instrumented by taxes. Analytic state-clustered standard errors appear in
parentheses. Asterisks denote statistical significance at the ***1%, **5%, and *10% level.

Among states for which the instrument is strong, the PCIV estimates are much more

stable, though they frequently fall on the margin of conventional thresholds of statistical

significance. Regardless of whether lag or lead values of log price are included in the model,

the weighted PCIV estimates all fall between -0.62 and -0.65 with p-values ranging from 0.048

to 0.134. Even in the just-identified model the weighted estimate is -0.68 with a standard
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error in line with that from over-identified specifications. As before, the P2SLS estimates

applied to first differences are volatile ranging from -0.55 to 0.04, while the FEIV estimates

are remarkably stable at -0.76. The stability of the FEIV estimates should not be confused

for reliability. Even estimated on this sample of compliers, FEIV does not consistently

estimate the LATE; it continues to over-weight states for which the first-stage is particularly

strong. As an illustration, if we exclude Pennsylvania, the magnitudes of the FEIV point

estimates fall to -0.38 (unweighted) and -0.44 (weighted).

Considering the totality of evidence our best estimates of the price elasticity of demand

for gasoline would place the parameter between -0.6 and -0.7, though the confidence intervals

for these estimates are wide. These estimates imply that consumers are more sensitive to

price hikes than would be implied by Coglianese et al. (2017), Hughes et al. (2008), and Levin

et al. (2017). As discussed the small estimates in Coglianese et al. (2017) are due to the use of

P2SLS applied to first differences, which is particularly afflicted by anticipatory behavior and

improperly weights state-specific elasticities. Hughes et al. (2008) uses crude oil disruptions

to instrument for prices in regressions using nationwide monthly data to estimate an elasticity

of around -0.03 to -0.22. Levin et al. (2017) uses high-frequency gasoline transaction data to

estimate daily monthly demand elasticities at the city, state and national level, employing

time and cross-sectional fixed effects in an effort to eliminate the endogeneity of prices. They

estimate an elasticity of -0.21 to -0.30 at the state-month level. However, neither of these

approaches addresses the endogeneity issue that arises if some price increases are caused by

increases in the quantity of gasoline demanded. Consequently, it is unsurprising that the

elasticity estimates from these approaches would be smaller.

These high elasticity estimates also reflect that price increases due to taxes increases are

more permanent and salient to consumers than are most other gasoline price increases. In-

deed Davis and Kilian (2011); Scott (2012); Baranzini and Weber (2013); Li et al. (2014) and

Coglianese et al. (2017) each make this argument. Li et al. (2014) in particular demonstrates

both points. Regarding permanence, Li et al. (2014) shows that state gasoline taxes have
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higher AR(1) coefficients than tax exclusive prices. Secondly, Li et al. (2014) also demon-

strates that tax changes receive more print and television news coverage than do other price

changes of similar magnitude. As a result, these estimates of the price elasticity of demand

for gasoline must be viewed as pertaining to permanent changes in prices for relatively in-

formed consumers. However, the responsiveness to permanent and salient price changes is

often the parameter of interest in modeling gasoline dependent industries and many policy

discussions.

Regarding the efficacy of gasoline taxes in reducing carbon emissions, we may be inter-

ested in consumers’ responsiveness to the taxes themselves, because the pass-through rate

of the tax to consumers may be less than complete.25 Accordingly, we provide reduced-form

estimates of the monthly elasticity of gasoline consumption to gasoline taxes using pooled

OLS applied to first differences (POLS), fixed effects (FE), and a per-cluster estimator sim-

ilar to that used in Bates et al. (2014) (PC). We think of the reduced-form estimation as

a correlated random coefficient model with exogenous regressors. Wooldridge (2005) shows

that consistency of FE relies on the assumption that the within-state variation in taxes is

uncorrelated with state-specific responsiveness to taxes. The same result can be easily ex-

tended to POLS. In contrast, Bates et al. (2014) shows that without further assumptions the

PC approach is unbiased even under a violation of this assumption. Furthermore, POLS and

FE implicitly assign higher weight to the coefficients for states in which there is relatively

more within-state variation in taxes and as shown by Solon et al. (2015), appplying WLS

does not properly correct for heterogeneous state sizes. We show the relative within-state

variance in taxes compared against the relative sales volume of each state in Figure 13 in

the appendix, which show extensive disagreement between the two weighting schemes.

25Li et al. (2014) also estimates the elasticity of gasoline demand to taxes, but under the assumption of
complete pass-through of gasoline taxes to consumers. Our first-stage coefficients in Table 7 contradict that
assumption.
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Table 5: Reduced-Form Estimation Results Using Three Estimation Methods

Panel A: Just-Identified
(Unweighted) (Weighted)

POLS FE PC POLS FE PC

Log tax -0.148 -0.228 -0.259 -0.094 -0.263 -0.336
(Contemporaneous) (0.053)*** (0.109)** (0.129)** (0.038)** (0.112)** (0.176)*

Panel B: Over-Identified

Log tax -0.045 -0.228 -0.253 -0.011 -0.264 -0.337
(Cumulative Effect) (0.030) (0.112)** (0.132)* (0.022) (0.114)** (0.179)*

Note: Reduced form effect of log state taxes on gasoline sales volume. State-clustered
standard errors appear in parentheses. Cumulative effect in Panel B is the sum of the
coefficient from the lead, lag, and contemporaneous values of the log of the state gasoline
tax. Individual coefficient estimates appear in Table 14 in the appendix. Asterisks denote
statistical significance at the ***1%, **5%, and *10% level.

We provide reduced form estimates from all three estimators with and without weighting,

both contemporaneous and inclusive of leads and lags in Table 5. Once we account for

weighting the PC approach provide a stable estimate -0.34 for the monthly gasoline tax

elasticity. We find the same result for the cumulative effect when we also add a lead and

lag of gas taxes. Taking this point value literally, a $0.05 per gallon increase in the gas tax,

which corresponds to a 9 percent increase in average taxes, leads to a 3.0 percent decrease

in the monthly volume of gasoline consumed. For comparison Li et al. (2014) finds that

the same $0.05 per gallon increase in taxes leads to a 0.9 to 2.3 percent decrease in annual

gasoline sales. Though the 90 percent confidence interval includes the entire range reported

in Li et al. (2014), this estimate suggests that consumers are more responsive at least in the

short term to gasoline taxes.

48



7 Concluding Remarks
Whether the purpose of empirical work is to inform and evaluate theory, uncover and

explain phenomena, or inform practitioners of best practices, population average effects are

generally of high interest.26 We present the conditions under which per-cluster instrumen-

tal variables is consistent in estimating such generally representative parameters and show

that it has robustness properties beyond more standard approaches such as pooled two-stage

least squares and fixed effects instrumental variables, specifically in the presence of hetero-

geneous responsiveness to treatment. We develop the theory behind this and demonstrate

the performance of per-cluster instrumental variables in simulation.

We then take all three methods to data providing an important, novel examination of

the price elasticity of the demand for gasoline in the United States. In this examination,

we highlight whether the assumptions necessary for consistent estimation using existing

methods are likely to hold in this context, and also the data limitations that persist with

per-cluster estimation; both are made possible through the implementation of per-cluster

estimation. Though we present consistent estimates of the price elasticity of the demand for

gasoline in the United States, we worry the even these estimates may be subject to finite

sample bias that originates from weak instruments in some states. As a result, through per-

cluster instrumental variables we provide a local average of the price elasticity of demand

for gasoline for the states for which the instrument is “strong enough.” This is something

existing estimators cannot achieve in the presence of heterogeneous state-size and state-

specific elasticities. We arrive at an estimate of approximately -0.6, suggesting consumers

are more responsive than the previous literature implies. Noting similar issues may afflict

reduced form estimates of the average tax elasticity of demand for gasoline in the United

States (and elsewhere), we apply per-cluster estimation to this policy-relevant parameter.

We find an elasticity of approximately -0.34, which is larger in magnitude than less-robust

FE estimates and earlier estimates also using FE.

26These useful classifications come from Roth (1986).
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Finally, we wish to highlight that use of per-cluster estimation not only adds robustness,

but also provides more clarity regarding what parameter is being estimated using Pooled

2-Stage Least Squares or Fixed Effects Instrumental Variables. Even in settings where the

panel may lack sufficient length to rely on the consistency of PCIV, we suggest that re-

searchers should employ it to investigate whether key assumptions hold such as monotonic-

ity, effect homogeneity, size homogeneity, and zero correlation between the strength of the

instrument and heterogeneous effects, which may inhibit estimation of population average

effects with standard estimators.

50



References
Arellano, M. and S. Bonhomme (2011). Identifying distributional characteristics in random
coefficients panel data models. The Review of Economic Studies 79 (3), 987–1020.

Baranzini, A. and S. Weber (2013). Elasticities of gasoline demand in switzerland. Energy
policy 63, 674–680.

Bates, M. D., K. E. Castellano, S. Rabe-Hesketh, and A. Skrondal (2014). Handling correla-
tions between covariates and random slopes in multilevel models. Journal of Educational
and Behavioral Statistics 39 (6), 524–549.

Bound, J., D. A. Jaeger, and R. M. Baker (1995). Problems with instrumental variables
estimation when the correlation between the instruments and the endogenous explanatory
variable is weak. Journal of the American statistical association 90 (430), 443–450.

Burke, M., S. M. Hsiang, and E. Miguel (2015). Global non-linear effect of temperature on
economic production. Nature 527 (7577), 235.

Chamberlain, G. (1992). Efficiency bounds for semiparametric regression. Econometrica:
Journal of the Econometric Society , 567–596.

Climate Leadership Council (2019, January). Economists’ statement on carbon dividends.
The Wall Street Journal . Accessed: February, 2019.

Coglianese, J., L. W. Davis, L. Kilian, and J. H. Stock (2017). Anticipation, tax avoidance,
and the price elasticity of gasoline demand. Journal of Applied Econometrics 32 (1), 1–15.

Cragg, J. G. and S. G. Donald (1993). Testing identifiability and specification in instrumental
variable models. Econometric Theory 9 (2), 222–240.

Dahl, C. and T. Sterner (1991). Analysing gasoline demand elasticities: a survey. Energy
economics 13 (3), 203–210.

Davis, L. W. and L. Kilian (2011). Estimating the effect of a gasoline tax on carbon emissions.
Journal of Applied Econometrics 26 (7), 1187–1214.

Deaton, A. (2010). Instruments, randomization, and learning about development. Journal
of Economic Literature 48 (2), 424–55.

Deschênes, O., M. Greenstone, and J. Guryan (2009). Climate change and birth weight.
American Economic Review 99 (2), 211–17.

Espey, M. (1998). Gasoline demand revisited: an international meta-analysis of elasticities.
Energy Economics 20 (3), 273–295.

Fisher, A. C., W. M. Hanemann, M. J. Roberts, and W. Schlenker (2012). The economic
impacts of climate change: evidence from agricultural output and random fluctuations in
weather: comment. American Economic Review 102 (7), 3749–60.

51



Graham, B. S. and J. L. Powell (2012). Identification and estimation of average partial effects
in âirregularâ correlated random coefficient panel data models. Econometrica 80 (5), 2105–
2152.

Heckman, J. and E. Vytlacil (1998). Instrumental variables methods for the correlated
random coefficient model: Estimating the average rate of return to schooling when the
return is correlated with schooling. Journal of Human Resources , 974–987.

Heckman, J. J., S. Urzua, and E. Vytlacil (2006). Understanding instrumental variables
in models with essential heterogeneity. The Review of Economics and Statistics 88 (3),
389–432.

Heckman, J. J. and E. Vytlacil (2005). Structural equations, treatment effects, and econo-
metric policy evaluation. Econometrica 73 (3), 669–738.

Hughes, J., C. Knittel, and D. Sperling (2008). Evidence of a shift in the short-run price
elasticity of gasoline demand. The Energy Journal 29 (1).

Imbens, G. W. and J. D. Angrist (1994). Identification and estimation of local average
treatment effects. Econometrica 62 (2), 467–475.

Klein, L. R. (1953). A Textbook of Econometrics. Evanston: Row, Peterson.

Kuh, E. (1959). The validity of cross-sectionally estimated behavior equations in time series
applications. Econometrica: Journal of the Econometric Society , 197–214.

Laage, L. (2019). A correlated random coefficient panel model with time-varying endogeneity.

Levin, L., M. S. Lewis, and F. A. Wolak (2017). High frequency evidence on the demand for
gasoline. American Economic Journal: Economic Policy 9 (3), 314–47.

Li, S., J. Linn, and E. Muehlegger (2014). Gasoline taxes and consumer behavior. American
Economic Journal: Economic Policy 6 (4), 302–42.

Mundlak, Y. (1978). Models with variable coefficients: integration and extension. In Annales
de l’INSEE, pp. 483–509. JSTOR.

Murtazashvili, I. and J. M. Wooldridge (2008). Fixed effects instrumental variables estima-
tion in correlated random coefficient panel data models. Journal of Econometrics 142 (1),
539–552.

Murtazashvili, I. and J. M. Wooldridge (2016). A control function approach to estimat-
ing switching regression models with endogenous explanatory variables and endogenous
switching. Journal of econometrics 190 (2), 252–266.

Raj, B., V. Srivastava, and A. Ullah (1980). Generalized two stage least squares estimators
for a structural equation with both fixed and random coefficients. International Economic
Review , 171–183.

52



Roth, A. E. (1986). Laboratory experimentation in economics. Economics & Philoso-
phy 2 (2), 245–273.

Rubin, H. (1950). Note on random coefficients. Statistical inference in dynamic economic
models , 419–421.

Scott, K. R. (2012). Rational habits in gasoline demand. Energy Economics 34 (5), 1713–
1723.

Solon, G., S. J. Haider, and J. M. Wooldridge (2015). What are we weighting for? Journal
of Human resources 50 (2), 301–316.

Staiger, D. and J. H. Stock (1997). Instrumental variables regression with weak instruments.
Econometrica 65 (3), 557–586.

Stock, J. H. and M. Yogo (2005). Testing for weak instruments in linear iv regression. Iden-
tification and Inference for Econometric Models: Essays in Honor of Thomas Rothenberg ,
80.

Swamy, P. (1971). A vb [1971], statistical inference in random coefficient regres-sion models.
Lecture Notes in Operations Research and Mathematical Systems 55.

Tol, R. S. (2002). Estimates of the damage costs of climate change. part 1: Benchmark
estimates. Environmental and resource Economics 21 (1), 47–73.

US Energy Information Administration (2018, July). Energy and the environment explained:
where green house gases come from. Technical report. Accessed February, 2019.

Wooldridge, J. M. (2005). Fixed-effects and related estimators for correlated random-
coefficient and treatment-effect panel data models. Review of Economics and Statis-
tics 87 (2), 385–390.

Wooldridge, J. M. (2010). Econometric analysis of cross section and panel data. MIT press.

53



A Consistency of the Estimated Variance for PCIV Es-
timator

For the consistency of the estimated variance of our PCIV estimator, additional assumptions
are required. Also, we set L = K for simplicity.

1. E‖xij‖2 <∞

2. E‖zij‖2 <∞

3. E[zijz
′
ij] is positive definite

4. E‖zij‖4 <∞

V̂(β̂PCIV − β) = V

 1

N

N∑
i=1

d̂i +

(
T∑

j=1

xij
′zij

)−1( T∑
j=1

z′ijêij

)
=

1

N
V

d̂i +

(
T∑

j=1

xij
′zij

)−1( T∑
j=1

z′ijêij

) ,

=
1

N
V(d̂i) +

1

NT
V̂(b̂i − bi) +

2

N
ĈOV(d̂i, b̂i − bi)

We will show

a) V(d̂i)
p→ V(di)

b) V̂(b̂i − bi)
p→ V(b̂i − bi)

c) ĈOV(d̂i, b̂i − bi)
p→ COV(di, b̂i − bi) ≡ Q−1xzQzed

Then, as n→∞,

V̂(β̂PCIV − β)→ V(β̂PCIV − β)

a) Note that E[d̂i] = E[b̂i − β̂] = E[b̂i − ¯̂
bi] = 0.

V(d̂i) =
1

N

N∑
i=1

d̂i
2

=
1

N

N∑
i=1

(
di + d̂i − di

)2
=

1

N

N∑
i=1

di
2 +

1

N

N∑
i=1

(
d̂i − di

)2
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By WLLN,
1

N

N∑
i=1

di
2 p→ σ2

d

Likewise,
1

N

N∑
i=1

(d̂i − di)
2 p→ E

[
(d̂i − di)

2
]

Since d̂i is a consistent estimator of di, as n→∞,

E
[
(d̂i − di)

2
]

p→ 0

b) First, by WLLN,

Q̂xz =
1

N

N∑
i=1

T∑
j=1

x′ijzij
p→ E

[
x′ijzij

]
≡ Qxz

Note that êij ≡ yij − xijb̂i = yij − xijbi + xijbi − xijb̂i = eij − xij(b̂i − bi).

Then, ê2ij = e2ij − 2(b̂i − bi)′xijeij + (b̂i − bi)′xijxij
′(b̂i − bi).

Ω̂zze =
1

NT

N∑
i=1

T∑
j=1

zijzij
′ê2ij

=
1

NT

N∑
i=1

T∑
j=1

zijzij
′
(
e2ij − 2(b̂i − bi)′xijeij + (b̂i − bi)′xijxij

′(b̂i − bi)
)

=
1

NT

N∑
i=1

T∑
j=1

zijzij
′e2ij −

2

NT

N∑
i=1

T∑
j=1

(b̂i − bi)′xijeijzijzij
′

+
1

NT

N∑
i=1

T∑
j=1

(
(b̂i − bi)′xij

)2
zijzij

′

≡ 1

NT

N∑
i=1

T∑
j=1

zijzij
′e2ij − 2R1n +R2n

By WLLN,
1

NT

N∑
i=1

T∑
j=1

zijzij
′e2ij

p→ E
[
zijzij

′e2ij
]
≡ Ωzze

Also,

R1n =
1

NT

N∑
i=1

T∑
j=1

(b̂i − bi)′xijeij
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∥∥∥∥∥ 1

NT
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By Cauchy-Schwartz inequality,
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As ‖b̂i − bi‖
p→ 0, we have

R1n
p→ 0.
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Following additional assumptions and ‖b̂i − bi‖
p→ 0, we have

R2n
p→ 0.
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c)
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B Supplementary tables and figures

Table 6: Comparison of Estimates for β̂1[xij] with Simulated Data
Uncorrelated Covariance Correlated Covariance

Method Bias SD RMSE MeanSE
SD

CR Bias SD RMSE MeanSE
SD

CR
N=250, T=250
P2SLS -0.001 0.020 0.028 0.981 0.952 0.126 0.021 0.129 1.017 0.000
FEIV 0.000 0.020 0.028 0.954 0.946 0.126 0.021 0.130 0.991 0.000
PCIV -0.001 0.017 0.024 0.985 0.960 0.001 0.017 0.023 1.033 0.956
N=10, T=250
P2SLS 0.000 0.089 0.126 0.920 0.912 0.111 0.102 0.182 0.786 0.672
FEIV 0.000 0.090 0.127 0.899 0.890 0.111 0.101 0.180 0.784 0.678
PCIV 0.000 0.083 0.118 0.939 0.912 0.005 0.083 0.117 0.932 0.924
N=250, T=10
P2SLS -0.001 0.035 0.049 1.179 0.968 0.125 0.039 0.137 1.167 0.178
FEIV -0.002 0.038 0.054 0.950 0.930 0.125 0.041 0.137 0.917 0.108
PCIV -0.017 0.048 0.070 0.902 0.904 -0.016 0.049 0.071 0.878 0.908

Note: Both bias and RMSE are multiplied by 100. P2SLS=Pooled Two-Stage Least
Squares; FEIV=Fixed Effects Instrumental Variable; PCIV=Per-Cluster Instrumental Vari-
able; RMSE= Root Mean Squared Error; MeanSE

SD
=Ratio of mean standard errors divided

by standard deviations; CR=Coverage Rate.
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Table 7: First Stage Estimation Results Using Three Estimation Methods

Just-Identified
Panel A (Unweighted) Panel B (Weighted)

P2SLS FEIV PCIV P2SLS FEIV PCIV

Log tax 0.204 0.246 0.277 0.204 0.310 0.327
(Contemporaneous) (0.033)*** (0.027)*** (0.035)*** (0.029)*** (0.044)*** (0.036)***

[0.033]*** [0.026]*** [0.006]*** [0.031]*** [0.044]*** [0.001]***

F-statistic 17.43 635.5 119.3 40.85 956.9 190.7

Over-Identified
Panel C (Unweighted) Panel D (Weighted)

P2SLS FEIV PCIV P2SLS FEIV PCIV

Log tax 0.008 -0.014 -0.003 0.047 0.040 0.115
(1-month lead) (0.012) (0.040) (0.078) (0.023)** (0.024) (0.043)***

[0.024] [0.042] [0.076] [0.024]** [0.090] [0.033]***
Log tax 0.204 0.204 0.273 0.204 0.202 0.233

(Contemporaneous) (0.033)*** (0.033)*** (0.032)*** (0.030)*** (0.029)*** (0.030)***
[0.031]*** [0.033]*** [0.031]*** [0.031]*** [0.041]*** [0.029]***

Log tax -0.004 0.056 0.010 -0.040 0.066 -0.022
(1-month lag) (0.011) (0.041) (0.101) (0.025) (0.046) (0.038)

[0.025] [0.044] [0.096] [0.025] [0.044] [0.041]

F-statistic 5.79 206.9 40.17 17.30 321.3 63.26

Note: Panels A is the estimation without using the weight while Panel B is estimated using
the weight. All control for local unemployment rates and de-trend the data by directly (or
akin to) including year-by-month fixed effects. Analytic standard errors appear in paren-
theses and state-level cluster-bootstrap standard errors appear in brackets below. Asterisks
denote statistical significance at the ***1%, **5%, and *10% level.
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Table 8: Analysis by Petroleum Administration For Defense District (PADD)

PADD New Central Lower Gulf Rocky West
Log price England Atlantic Atlantic Midwest Coast Mountain Coast

-2.025 -1.880* 0.285 -0.469 -1.146*** 0.642 -0.976*
(1.657) (1.121) (0.503) (0.593) (0.439) (1.609) (0.593)

Observations 2,160 2,160 2,160 5,400 2,160 1,800 2,520
First-stage F-stat 380.5 24 630.7 92.7 143.8 41.2 150.6
Number of states 6 6 6 15 6 5 7

Note: All control for local unemployment rates and de-trend the data by directly (or akin to)
including year-by-month fixed effects. State-clustered standard errors appear in parentheses.
Asterisks denote statistical significance at the ***1%, **5%, and *10% level.
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Table 9: Accounting for anticipatory behavior

One lag of log prices as additional endogenous regressor
Panel A (Unweighted) Panel B (Weighted)

P2SLS FEIV PCIV P2SLS FEIV PCIV

Log price -0.713 -0.879 -0.367 -0.447 -0.778 -0.624
(Contemporaneous) (0.189)*** (0.438)** (0.589) (0.124)*** (0.434)* (0.421)
Log price 0.169 -0.038 -0.396 0.135 -0.077 -0.168
(1-month lag) (0.118) (0.268) (0.670) (0.077)* (0.129) (0.432)
Cumulative effect -0.544 -0.918 -0.764 -0.313 -0.855 -0.793
of log price (0.136)*** (0.422)** (0.590) (0.114)*** (0.404)** (0.421)*

One lead of log prices as additional endogenous regressor
Panel C (Unweighted) Panel D (Weighted)

P2SLS FEIV PCIV P2SLS FEIV PCIV

Log price 0.352 -0.174 0.460 0.261 -0.350 -0.081
(1-month lead) (0.110)*** (0.431) (0.609) (0.114)** (0.394) (0.414)
Log price -0.717 -0.749 -1.253 -0.449 -0.506 -0.736
(Contemporaneous) (0.194)*** (0.266)*** (0.737)* (0.167)*** (0.186)*** (0.461)
Cumulative effect -0.365 -0.923 -0.793 -0.189 -0.856 -0.819
of log price (0.167)** (0.423)** (0.610) (0.112) (0.406)** (0.414)**

One lag and one lead of log prices as additional endogenous regressors
Panel E (Unweighted) Panel F (Weighted)

P2SLS FEIV PCIV P2SLS FEIV PCIV

Log price 0.371 -0.189 0.784 0.290 -0.387 0.240
(1-month lead) (0.117)*** (0.426) (0.514) (0.119)** (0.385) (0.473)
Log price -0.721 -0.709*** -1.254 -0.469 -0.371 -0.566
(Contemporaneous) (0.190)*** (0.202) (0.453)*** (0.148)*** (0.109)*** (0.353)
Log price 0.171 -0.020 -0.169 0.180 -0.097 -0.367
(1-month lag) (0.111) (0.272) (0.603) (0.061)*** (0.126) (0.370)
Cumulative effect -0.178 -0.918 -0.639 0.001 -0.855 -0.693
of log price (0.144) (0.420)** (0.515) (0.113) (0.406)** (0.473)

Note: All results from over-identified models with an additional lead and lag of log taxes used
as excluded instruments. Panels A is the estimation without using the weight while Panel
B estimated using the weight. Analytic standard errors appear in parentheses and state-
level cluster-bootstrap standard errors appear in brackets below. Asterisks denote statistical
significance at the ***1%, **5%, and *10% level.
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Table 10: Accounting for anticipatory behavior

One lag of log prices as additional endogenous regressor
Panel A (Unweighted) Panel B (Weighted)

P2SLS FEIV PCIV P2SLS FEIV PCIV

Cumulative -0.544 -0.918 -0.764 -0.313 -0.855 -0.793
effect of log (0.136)*** (0.422)** (0.590) (0.114)*** (0.404)** (0.421)*
prices [0.141]*** [0.399]** [0.501] [0.138]** [0.493]* [0.462]*

One lead of log prices as additional endogenous regressor
Panel C (Unweighted) Panel D (Weighted)

Cumulative -0.365 -0.923 -0.793 -0.189 -0.856 -0.819
effect of log (0.167)** (0.423)** (0.610) (0.112) (0.406)** (0.414)**
prices [0.187]* [0.4]** [0.491] [0.126] [0.495]* [0.46]*

One lag and one lead of log prices as additional endogenous regressors
Panel E (Unweighted) Panel F (Weighted)

Cumulative -0.178 -0.918 -0.639 0.001 -0.855 -0.693
effect of log (0.144) (0.420)** (0.515) (0.113) (0.406)** (0.473)
prices [0.149] [0.399]** [0.509] [0.139] [0.473]* [0.488]

Note: Cumulative effects are the sum of contemporaneous, lead, and/or lag values of prices,
instrumented by taxes. All results from over-identified models with an additional lead and
lag of log taxes used as excluded instruments. Analytic standard errors appear in parentheses
and state-level cluster-bootstrap standard errors appear in brackets below. Asterisks denote
statistical significance at the ***1%, **5%, and *10% level.
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Table 11: Regression coefficients of b̂i on cluster-level first-stage t-statistics from Figure 10

T-statistic on Panel A Panel C
Log tax

Contemporaneous -0.078 -0.156
(0.245) (0.193)

Constant 0.069 1.519
(2.672) (3.178)

Observations 51 51
Volume weighted No Yes
R-squared 0.002 0.020

Note: Panels A and C correspond to the panels from Table 2. Robust standard errors appear
in parentheses. Asterisks denote statistical significance at the ***1%, **5%, and *10% level.

Table 12: Regression coefficients of b̂i on cluster-level first-stage t-statistics from Figure 10

Panel B Panel D
Log Tax

1-month lead -0.429 -0.582
(0.518) (0.441)

Contemporaneous -0.401 -0.517
(0.473) (0.367)

1-month lag 0.851 0.748
(0.427)* (0.327)**

Constant -0.407 -0.748 -0.775 -0.334 -0.617 0.999
(0.703) (0.483) (0.457)* (0.753) (0.486) (0.443)**

Observations 51 51 51 51 51 51
R-squared 0.014 0.014 0.075 0.030 0.033 0.080

Note: Panels B and D correspond to the panels from Table 2. Robust standard errors appear
in parentheses. Asterisks denote statistical significance at the ***1%, **5%, and *10% level.
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Table 13: Estimated elasticities among states in which the instrument is strong (LATEs)

Panel A: Just-identified contemporaneous specification
(Unweighted) (Weighted)

P2SLS FEIV PCIV P2SLS FEIV PCIV

Log price -0.575 -0.762 -0.791 -0.425 -0.757 -0.681
(contemporaneous) (0.186)*** (0.418)* (0.526) (0.150)*** (0.379)** (0.430)

[0.185]*** [0.409]* [0.517] [0.156]** [0.472] [0.422]

Panel B: Over-identified contemporaneous specification

Log price -0.554 -0.762 -0.697 -0.394 -0.762 -0.649
(contemporaneous) (0.184)*** (0.423)* (0.446) (0.133)*** (0.383)** (0.433)

[0.189]*** [0.413]* [0.439] [0.148]*** [0.475] [0.424]

Panel C: Over-Identified with additional lag of log prices

Log price -0.488 -0.762 -0.669 -0.272 -0.762 -0.636
(cumulative) (0.139)*** (0.384)** (0.550) (0.110)*** (0.426)* (0.417)

[0.145]*** [0.416]* [0.431] [0.129]** [0.477] [0.426]

Panel D: Over-Identified with additional lead of log prices

Log price -0.212 -0.762 -0.662 -0.146 -0.762 -0.636
(cumulative) (0.154) (0.385)** (0.518) (0.104) (0.428)* (0.368)*

[0.157] [0.418]* [0.429] [0.110] [0.480] [0.430]

Panel E: Over-Identified with additional lag and lead of log prices

Log price -0.146 -0.762 -0.647 0.041 -0.762 -0.623
(cumulative) (0.140) (0.386)** (0.368)* (0.108) (0.431)* (0.316)**

[0.147] [0.421]* [0.451] [0.130] [0.482] [0.429]

Note: Cumulative effects are the sum of contemporaneous, lead, and/or lag values of prices,
instrumented by taxes. Analytic standard errors appear in parentheses and state-level
cluster-bootstrap standard errors appear in brackets below. Asterisks denote statistical
significance at the ***1%, **5%, and *10% level.
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Table 14: Reduced-Form Estimation Results Using Three Estimation Methods

Just-Identified
Panel A (Unweighted) Panel B (Weighted)

P2SLS FEIV PCIV P2SLS FEIV PCIV

Log tax -0.148 -0.228 -0.259 -0.094 -0.263 -0.336
(Contemporaneous) (0.053)*** (0.109)** (0.129)** (0.038)** (0.112)** (0.176)*

[0.055]*** [0.101]** [0.121]** [0.040]** [0.001]*** [0.162]**

Over-Identified
Panel C (Unweighted) Panel D (Weighted)

P2SLS FEIV PCIV P2SLS FEIV PCIV

Log tax 0.067 -0.017 -0.040 0.033 -0.077 -0.057
(1-month lead) (0.026)** (0.080) (0.120) (0.027) (0.083) (0.150)

[0.030]** [0.076] [0.111] [0.030] [0.090] [0.141]
Log tax -0.147 -0.147 -0.221 -0.095 -0.091 -0.072

(Contemporaneous) (0.053)*** (0.053)*** (0.064)*** (0.037)** (0.039)** (0.079)
[0.039]*** [0.055]*** [0.061]*** [0.039]** [0.041]** [0.068]

Log tax 0.035 -0.063 0.008 0.050 -0.096 -0.206
(1-month lag) (0.028) (0.052) (0.099) (0.013)*** (0.037)** (0.102)**

[0.016] [0.053] [0.095] [0.016]*** [0.044]** [0.087]**
Cumulative Effect -0.045 -0.228 -0.253 -0.011 -0.264 -0.337

(0.030) (0.112)** (0.132)* (0.022) (0.114)** (0.179)*
[0.043] [0.105]** [0.128]** [0.041] [0.125]** [0.167]**

Note: Panels A is the estimation without using the weight while Panel B is estimated using
the weight. Analytic standard errors appear in parentheses and state-level cluster-bootstrap
standard errors appear in brackets below. Asterisks denote statistical significance at the
***1%, **5%, and *10% level.
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Figure 12: Relationship between state-specific elasticities and first-stage t-statistics in the
over-identified specification with leads and lags of prices

Note: X1, X2, and X3 respectively refer to the lag, contemporaneous, and lead values of log
prices. Z1, Z2, Z3, Z4, and Z5 refer to the 2nd lag, 1st lag, contemporaneous, 1st lead, and
2nd lead of Log tax, respectively.
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Figure 13: Reduced form weighting under standard and PC approaches

Figure 14: Reduced form weighting under standard and PC approaches
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C Replication of Coglianese et al. (2017) adding only new
methods

Panel A presents the estimates of contemporaneous deviations in log gasoline prices on

log gasoline sales, where log prices are just identified by the contemporaneous deviation in

log gasoline taxes. Panel B is similar except that in this case lag and lead taxes are used to

instrument for the contemporaneous log prices. Panels C and D repeat the same exercises,

except that we weight observations by the time average of the volume of sales in each state.

We present both the analytic state-clustered standard errors as well as state-cluster bootstrap

standard errors below. For PCIV, the analytic standard errors are estimated as described in

section 3.2.

Across specifications, the sign of the estimates is generally consistent. However, the

magnitude of the effects and precision with which they are estimated vary substantially with

estimated elasticities ranging from -0.69 to -2.97. There are some note worthy patterns. First,

the robustness of the PCIV estimator is not free. The additional robustness comes at the

cost of efficiency. However, better prediction in the first stage can help substantially. Moving

from the just identified specifications in Panels A and C to the overidentified specifications

in Panels B and D, the standard errors fall by 23 to 54 percent.

Secondly, weighting brings the estimates from the three approaches much closer together.

Whereas in the unweighted regressions shown in Panels A and B, the estimates range from

-0.78 to -2.97 and -0.75 to -1.135 respectively, when we weight the point estimate ranges

are much tighter from -0.71 to -1.47 in Panel C and -0.69 to -0.79 in Panel D. Finally, the

analytic and bootstrap standard errors are close with neither universally smaller or larger

than the other, providing reassurance that with a relatively long panel, either estimation

approach may be suitable.
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Table 15: Summary of Results Using Three Estimation Methods

just Identified
Panel A (Unweighted) Panel B (Weighted)

P2SLS FEIV PCIV P2SLS FEIV PCIV

Log price -1.135 -0.776 -2.970 -0.714 -0.801 -1.472
(contemporaneous) (0.250)*** (0.39)** (1.692)* (0.209)*** (0.326)** (1.008)

[0.244]*** [0.410]* [1.639]* [0.210]*** [0.380]** [1.019]

Over-Identified
Panel A (Unweighted) Panel B (Weighted)

P2SLS FEIV PCIV P2SLS FEIV PCIV

Log price -1.135 -0.745 -0.935 -0.743 -0.794 -0.686
(contemporaneous) (0.243)*** (0.383)* (0.810) (0.213)*** (0.327)** (0.776)

[0.249]*** [0.403]* [0.740] [0.192]*** [0.374]** [0.746]

Note: These regression results are selected from Coglianese et al. (2017). Panels A is the
estimation without using the weight while Panel B is estimated using the weight. Analytic
standard errors appear in parentheses and state-level cluster-bootstrap standard errors ap-
pear in brackets below. Asterisks denote statistical significance at the ***1%, **5%, and
*10% level.
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Table 16: Summary of Results Using Three Estimation Methods

with Lead and Lag
Panel A (Unweighted) Panel B (Weighted)

P2SLS FEIV PCIV P2SLS FEIV PCIV

Log price 0.540 0.627 -0.135 0.693 0.391 0.678
(1-month lead) (0.171)*** (0.284)** (2.124) (0.203)*** (0.349) (1.313)

[0.175]*** [0.330]* [2.143] [0.199]*** [0.352] [1.334]
Log price -1.152 -1.167 -3.067 -0.693 -0.687 -1.058
(contemporaneous) (0.250)*** (0.401)*** (2.277) (0.265)*** (0.247)*** (1.797)

[0.247]*** [0.259]*** [2.179] [0.259]*** [0.252]*** [1.667]
Log price 0.244 -0.187 -0.235 0.350 -0.486 -1.004
(1-month lag) (0.197) (0.282) (1.294) (0.232) (0.353) (1.232)

[0.206] [0.365] [1.250] [0.238] [0.389] [1.167]
Cumulative Effect -0.368 -0.728 -3.437 0.349 -0.781 -1.384

(0.239) (0.398)* (2.153) (0.529) (0.334)*** (1.039)
[0.238] [0.421] [2.086] [0.522] [0.389]** [1.045]

with Additional Leads and Lags
Panel A (Unweighted) Panel B (Weighted)

P2SLS FEIV PCIV P2SLS FEIV PCIV

Log price 0.553 0.655 -0.333 0.643 0.284 -0.543
(1-month lead) (0.183)*** (0.319)** (0.563) (0.205)*** (0.326) (0.507)

[0.184]*** [0.335]* [0.515] [0.189]*** [0.317] [0.515]
Log price -1.152 -1.155 -1.121 -0.736 -0.643 -0.328
(contemporaneous) (0.251)*** (0.399)*** (0.548)** (0.255)*** (0.252)** (0.438)

[0.242]*** [0.266]*** [0.536]** [0.214]*** [0.257]** [0.419]
Log price 0.239 -0.192 0.377 0.311 -0.420 0.007
(1-month lag) (0.195) (0.281) (0.527) (0.224) (0.318) 0.671

[0.205] [0.364] [0.526] [0.191] [0.296] [0.637]
Cumulative Effect -0.360 -0.691 -1.077 0.219 -0.779 -0.865

(0.241) (0.393)* (0.689) (0.509) (0.334)** (0.719)
[0.233] [0.415] [0.918] [0.373] [0.381]** [0.685]

Note: These regression results are selected from Coglianese et al. (2017). Panels A is the
estimation without using the weight while Panel B is estimated using the weight. Analytic
standard errors appear in parentheses and state-level cluster-bootstrap standard errors ap-
pear in brackets below. Asterisks denote statistical significance at the ***1%, **5%, and
*10% level.
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