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1 Introduction

Randomized control trials (RCTs) are an increasingly important tool of applied economics

since, when properly designed and implemented, they can produce internally valid estimates

of causal impact.1 Non-response on outcome measures at endline, however, is an unavoidable

threat to the internal validity of many carefully implemented trials. Long-distance migration

can make it prohibitively expensive to follow members of an experimental sample. Conflict,

intimidation or natural disasters sometimes make it unsafe to collect complete response data.

The recent, increased focus on the long-term impacts of interventions has also made non-

response especially relevant. Thus, researchers often face the question: How much of a threat

is attrition to the internal validity of a given study?

In this paper, we approach attrition in field experiments with baseline outcome data as

an identification problem in a nonseparable panel model. We focus on two identification

questions generated by attrition in field experiments. First, does the difference in mean

outcomes between treatment and control respondents identify the average treatment effect

for the respondent subpopulation (ATE-R)? Second, is this estimand equal to the average

treatment effect for the study population (ATE)?2 To answer these questions, we examine

the testable implications of the relevant identifying assumptions and propose procedures to

test them. Our results provide insights that are relevant to current empirical practice.

We first conduct a systematic review of 91 recent field experiments with baseline data

in order to document attrition rates and understand how authors test for attrition bias.

Attrition is common in published field experiments: the majority of such experiments have

at least one attrition rate relevant to a main result that is higher than 10%, and a minority

have attrition rates that are substantially higher. We identify two main types of tests: (i) a

differential attrition rate test that determines if attrition rates are different across treatment

and control groups, and (ii) a selective attrition test that determines if the mean of base-

line observable characteristics differs across the treatment and control groups conditional on

response status. Our review indicates that attrition tests are widely used, and their imple-

mentation varies substantially across papers. While authors report a differential attrition

rate test for 81% of field experiments, they report a selective attrition test only 60% of the

time. In addition, for a substantial minority of field experiments (34%), authors conduct a

determinants of attrition test for differences in the distributions of respondents and attritors.

Next, we present a formal treatment of attrition in field experiments with baseline out-

1Since in the economics literature the term “field experiment” generally refers to a randomized controlled
trial, we use the two terms interchangeably in this paper. We do not consider “artefactual” field experiments,
also known as “lab experiments in the field,” since attrition is often not relevant to such experiments.

2We refer to the population selected for the evaluation as the study population.
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come data. Specifically, we establish the identifying assumptions in the presence of attrition

for two cases that are likely to be of interest to the researcher. First, if the researcher’s

objective is internal validity for the respondent subpopulation (IV-R), then the identifying

assumption is random assignment conditional on response status. This implies that the

difference in the mean outcome across the treatment and control respondents identifies the

ATE-R, a local average treatment effect for the respondents. Second, if internal validity

for the study population (IV-P) is of interest, then the identifying assumption is that the

unobservables that affect the outcome are independent of response conditional on treatment

assignment. This assumption implies the identification of the ATE for the study population.

This second case is especially relevant in settings where the study population is representative

of a larger population.

We then derive testable restrictions for each of the above identifying assumptions. The

assumption required for IV-R implies a joint hypothesis of two equalities on the baseline out-

come distribution; specifically, for treatment and control respondents as well as treatment

and control attritors. Meanwhile, the assumption required for IV-P implies a joint hy-

pothesis of equality on the baseline outcome distribution across all four treatment/response

subgroups. The approach presented in this paper highlights that a test of attrition bias is

a test of an identifying assumption, which (like other identifying assumptions) can only be

tested by implication in general. Hence, we show that the aforementioned testable restric-

tions are sharp, meaning that they are the strongest implications that we can test given our

data.3 We apply our two proposed tests to data from a large-scale RCT of the Progresa pro-

gram in Mexico, in which the study population is representative of a broader population of

interest. This example demonstrates that across two outcomes collected in the same survey

it is possible to reject the IV-P identifying assumption for one outcome, while not rejecting

it for the other.

Since the assumptions required for identification are random-assignment-type restrictions,

randomization tests are a natural choice in this context.4 We therefore propose “subgroup”-

randomization procedures (Lehmann and Romano, 2005, Chapter 5.11) to approximate exact

p-values for Kolmogorov-Smirnov (KS) and Cramer-von-Mises (CM) statistics of the sharp

testable restrictions mentioned above. We further extend this approach to testing for attri-

tion bias given stratified randomization and to identify heterogeneous treatment effects.

3Sharp testable restrictions are the restrictions for which there are the smallest possible set of cases such
that the testable restriction holds even though the identifying assumption does not. The concept of sharpness
of testable restrictions was previously developed and applied in Kitagawa (2015), Hsu, Liu and Shi (2019),
and Mourifié and Wan (2017).

4The mean versions of our sharp testable restrictions for both the IV-R and IV-P identifying assumptions
can be implemented using simple regression tests which we outline in Section B.
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We also provide a formal treatment of the differential attrition rate test, since it is the

most frequently used attrition test in the field experiment literature. In order to do so, we

apply the framework of partial compliance from the local average treatment effect (LATE)

literature to potential response.5 We demonstrate that even though equal attrition rates

are sufficient for IV-R under additional assumptions, they are not a necessary condition for

internal validity in general. An analytical example illustrates that it is possible to have

differences in attrition rates across treatment and control groups while IV-P holds.

A simulation experiment illustrates our analytical results. In our design, the mean and

distributional tests of the IV-R (IV-P) assumption only reject at a higher-than-nominal level

when IV-R (IV-P) is violated. In contrast, the differential attrition rate test: (i) does not

control size in some cases when internal validity holds, (ii) can have trivial power in some

cases when internal validity is violated.

To examine the empirical relevance of our results, we apply the differential attrition rate

test as well as our tests of the IV-R and IV-P assumptions to 33 outcomes from five published

field experiments with high overall attrition rates. For all outcomes in this exercise, the p-

values for the IV-R test are larger than 5%. More surprisingly, the p-values of the IV-P

test are also larger than 5% for a large proportion of the outcomes. This is promising for

field experiments where IV-P is of interest. Finally, we find multiple cases with large and

statistically significant differential attrition rates. In the overwhelming majority of those

cases, the p-value of the IV-P test is larger than 5%. These results are consistent with the

theoretical conditions under which the differential attrition rate test does not control size,

thereby providing evidence of their empirical relevance.

This paper has several implications for empirical practice. Our theoretical and empirical

results provide evidence that the differential attrition rate test may lead to a false rejection

of internal validity in practice. In addition, most of the approaches in the literature to

testing for selective attrition focus on IV-R, and only use respondents. Our theoretical

results indicate, however, that the implication of the relevant identifying assumption is a

joint test that uses all of the available information in the baseline data (i.e. respondents

and attritors). A substantial minority of researchers also examine differences in the baseline

distributions between respondents and attritors. This suggests that some researchers may be

interested in implications of the estimated treatment effects for the study population (IV-P).

More generally, this paper highlights the importance of understanding the implications of

attrition to a broader population when interpreting field experiment results for policy.6

5See the foundational work in the LATE literature (Imbens and Angrist, 1994; Angrist, Imbens and
Rubin, 1996).

6External validity can be assessed in number of ways (see, for example, Andrews and Oster (2019) and
Azzam, Bates and Fairris (2018)). In our setting, we note that even if the IV-P assumption is rejected, if
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This paper contributes to a growing literature that considers methodological questions

relevant to field experiments.7 Given the wide use of attrition tests, we formally examine

the testing problem here. There is a thread in this literature however that outlines various

approaches to correcting attrition bias in field experiments (e.g. Behagel et al., 2015; Millán

and Macours, 2017). Our paper also relates to recent work that examines the potential use

of randomization tests in analyzing field experiment data (Young, 2018; Athey and Imbens,

2017; Athey, Eckles and Imbens, 2018; Bugni, Canay and Shaikh, 2018).

The attrition corrections in the field experiments literature build on the larger sample

selection literature in econometrics going back to Heckman (1976, 1979). Nonparametric

Heckman-style corrections have been proposed for linear and nonparametric outcome mod-

els (e.g. Ahn and Powell, 1993; Das, Newey and Vella, 2003).8 Inverse probability weighting

is another important category of corrections for sample selection bias (e.g. Angrist, 1997;

Wooldridge, 2007).9 In addition, a strand in this literature examines attrition corrections

for panel data (e.g. Hausman and Wise, 1979; Wooldridge, 1995; Hirano et al., 2001). Non-

parametric bounds is an alternative approach which requires weaker assumptions. Horowitz

and Manski (2000), Manski (2005) and Kline and Santos (2013) propose bounds on the con-

ditional outcome distribution and related objects of interest. The sample selection literature

is broadly concerned with objects that pertain to the population. Lee (2009) bounds the

average treatment effect for a subpopulation assuming monotonicity of selection. Our paper

provides tests of identifying assumptions emphasizing the distinction between the (study)

population and the respondent subpopulation.

This paper also builds on other strands of the econometrics literature. Recent work

on nonparametric identification in nonseparable panel data models informs our approach

(Altonji and Matzkin, 2005; Bester and Hansen, 2009; Chernozhukov et al., 2013; Hoderlein

and White, 2012; Ghanem, 2017). Specifically, the identifying assumptions in this paper fall

under the nonparametric correlated random effects category (Altonji and Matzkin, 2005).

Furthermore, we build on the literature on randomization tests for distributional statistics

we do not reject IV-R we may still be able to draw inferences from the local average treatment effect for
respondents to a broader population.

7Bruhn and McKenzie (2009) compare the performance of different randomization methods; McKenzie
(2012) discusses the power trade-offs of the number of follow-up samples in the experimental design; Baird
et al. (2018) propose an optimal method to design field experiments in the presence of interference; de Chaise-
martin and Behaghel (2018) present how to estimate treatment effects in the context of randomized wait
lists; Abadie, Chingos and West (2018) propose alternative estimators that reduce the bias resulting from
endogenous stratification in field experiments.

8Vella (1998) provides a detailed review of this category of sample selection models. See Brownstone
(1998) for some interesting discussions on several sample selection corrections and the trade-offs between
them.

9Angrist (1997) examines the connection between Heckman-style corrections and the inverse probability
weighting approach.
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(Dufour, 2006; Dufour et al., 1998).

The paper proceeds as follows. Section 2 presents the review of the field experiments

literature. Section 3 formally presents the identifying assumptions and their sharp testable

restrictions. In Section 4, we propose a subgroup-randomization procedure to obtain p-values

for the distributional test statistics. Section 5 presents simulation experiments to illustrate

the theoretical results. Section 6 presents the results of the empirical applications. Section

7 concludes.

2 Attrition in the Field Experiment Literature

We systematically reviewed 88 recent articles published in economics journals that report

the results of 91 field experiments. The objective of this review is to understand both the

extent to which attrition is observed and the implementation of tests for attrition bias in

the literature.10 In keeping with our panel approach, we focus on field experiments in which

the authors had baseline data on at least one main outcome variable. We identify two

main types of tests that aim to determine the impact of attrition on internal validity: (i) a

differential attrition rate test, and (ii) a selective attrition test. A differential attrition rate

test determines whether the rates of attrition are statistically significantly different across

treatment and control groups. In contrast, a selective attrition test determines whether,

conditional on being a respondent and/or attritor, the mean of observable characteristics is

the same across treatment and control groups. We also consider whether selective attrition

tests include both respondents and attritors as well as whether authors test for differences

in the baseline distributions of attritors and respondents. Our categorization imposes some

structure on the variety of different estimation strategies used to test for attrition bias in

the literature.11

We review reported overall and differential attrition rates in field experiment papers and

find that attrition is common. As depicted in Panel A in Figure 1, even though 22% of field

experiments have less than 2% attrition overall, the distribution of attrition rates has a long

right tail. Specifically, 43% of reviewed field experiments have an attrition rate higher than

10We included articles from 2009 to 2015 that were published in the top five journals in economics as
well as four highly regarded applied economics journals that commonly publish field experiments: Ameri-
can Economic Review, American Economic Journal: Applied Economics, Econometrica, Economic Journal,
Journal of Development Economics, Journal of Political Economy, Review of Economics and Statistics, Re-
view of Economic Studies, and Quarterly Journal of Economics. Section A.1 in the online appendix includes
additional details on the selection of papers and relevant attrition rates. Section E in the online appendix
contains a list of all the papers included in the review.

11We identify fifteen estimation strategies used to conduct attrition tests. See Section A.2 in the online
appendix.
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Figure 1: Attrition Rates Relevant to Main Outcomes in Field Experiments

Panel A. Overall Attrition Rate Panel B. Differential Attrition Rate

Notes: We report one observation per field experiment. Specifically, the highest attrition rate
relevant to a result reported in the abstract of the article. The Overall rate is the attrition rate
for both the treatment and control groups. The Differential rate is the absolute value of the
difference in attrition rates across treatment and control groups. The blue (orange) line depicts
the average overall (differential) attrition rate in our sample of field experiments. Panel A includes
90 experiments and Panel B includes 74 experiments since the relevant attrition rates are not
reported in some articles.

the average of 15%.12 Of the experiments that report a differential attrition rate, Panel B in

Figure 1 illustrates that a majority have little differential attrition for the abstract results:

66% have a differential rate that is less than 2 percentage points, and only 12% have a

differential attrition rate that is greater than 5 percentage points.13 These distributions of

overall and differential attrition rates inform our simulations in Section 5.

We then study how authors test for attrition bias. Notably, attrition tests are widely used

in the literature: 90% of field experiments with an attrition rate of at least 1% for an outcome

with baseline data conduct at least one attrition test. We find that there is no consensus

on whether to conduct a differential attrition rate test or a selective attrition test, however

(Panel A in Table 1). In the field experiments that we reviewed, the differential attrition

12We focus on attrition rates that are relevant to outcomes reported in the abstract (i.e. “abstract results”).
Although attrition rates may differ at the level of the outcome (given varying response rates across questions
in the same survey), most papers report attrition rates at the level of the data source or subsample. For some
experiments, all the abstract results are drawn from one data source/subsample, but in other experiments
they are not. We include one attrition rate per field experiment for consistency. We report the data source
relevant to an abstract result with the highest attrition rate to understand the extent of attrition that is
relevant to the main outcomes in the paper. Authors do not in general report attrition rates conditional on
baseline response.

13It is possible, however, that these numbers reflect authors’ exclusion of results with higher differential
attrition rates than those that were reported or published.
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rate test is substantially more common (81%) than the selective attrition test (60%). In fact,

30% of the articles that conducted a differential attrition rate test do not conduct a selective

attrition test.14

Table 1: Distribution of Field Experiments by Attrition Test

Panel A: Differential and Selective Attrition Tests

Proportion of field experiments that conduct:
Selective attrition test

No Yes Total

Differential attrition rate test
No 10% 10% 19%
Yes 30% 51% 81%

Total 40% 60% 100%

Panel B: Types of Selective Attrition Test

Conditional on conducting a selective attrition test:

Joint test: report at least one test using both samples 20%
Simple test: only using sample of respondents 68%
Simple test: only using sample of attritors 5%
Simple test: one using respondents & one using attritors 7%

Total† 100%

Panel C: Determinants of Attrition Tests

Proportion of field experiments that conduct:
Determinants of attrition test

Yes No Total

Differential attrition rate test only 11% 19% 30%
Selective attrition test only 1% 8% 10%
Differential & selective attrition tests 22% 29% 51%
No differential & no selective attrition test 0% 10% 10%

Total 34% 66% 100%

Notes: Panel A and C include 73 field experiments that have an attrition rate
of at least 1% for an outcome with baseline data. Panel B includes 43 of those
experiments that conducted a selective attrition test (†).

We further categorize selective attrition tests as simple or joint tests. A simple test

determines whether treatment and control respondents or treatment and control attritors

are the same in terms of mean baseline characteristics, while a joint test determines whether

treatment and control groups are the same within respondents and attritors jointly. Panel

B in Table 1 illustrates the proportion of papers that conduct the simple and joint selective

attrition tests. Conditional on having conducted any type of selective attrition test, authors

14We also consider some potential determinants of the use of selective attrition tests: overall attrition
rates, differential rates, year of publication, journal of publication. We do not any strong correlations given
the available data.
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attempt a joint test on only 20% of those field experiments. Instead, authors conduct a

simple test of selective attrition on the sample of respondents in most cases (68%).

Another important aspect of testing for attrition bias is testing for differences in the dis-

tributions of respondents and attritors. Such tests can illustrate the implications of the main

results for the full population selected for the study. First, we define a determinants of attri-

tion test as a test of whether baseline outcomes and covariates correlate with response status.

In approximately one-third of field experiments (34%), the authors conduct a determinants

of attrition test (Panel C of Table 1). Table 1 illustrates that conducting such a test does

not have a one-to-one relationship with either conducting a differential attrition rate test

or conducting a selective attrition test.15 In addition, most of the articles that implement

joint selective attrition tests use an estimation strategy that could test both for differences

across treatment and control groups of the baseline means of the observables conditional on

response status as well as for differences across the respondents and attritors. We do not

find clear evidence, however, that the authors are typically using a null hypothesis that is

designed to test for both of these differences jointly.

3 Identifying Treatment Effects in the Presence of Attrition

This section presents a formal treatment of attrition in field experiments with baseline out-

come data. First, we present identifying assumptions for counterfactual distributions in the

presence of non-response and show their sharp testable implications when baseline outcome

data is available for both completely and stratified randomized experiments. We further

examine the role of differential attrition rates in this context and discuss the implications of

our theoretical analysis for empirical practice.

3.1 Internal Validity in the Presence of Attrition

An empirical example motivates our treatment of internal validity in the presence of attri-

tion. After deriving the implications of our identifying assumptions, we demonstrate how to

test those implications in that example. We also consider the limits of testing identifying

assumptions as well as present the extension of the results to stratified randomization and

heterogeneous treatment effects.

15Approximately half the determinants of attrition tests are conducted in the same regression as a differ-
ential attrition rate test. We categorize this strategy as both types of tests since authors typically interpret
both the coefficients on treatment and the baseline covariates.
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3.1.1 Motivating Example

To illustrate the problem of attrition in field experiments, we rely on data collected for the

randomized evaluation of Progresa, a social program in Mexico that provides cash to eligible

poor households on the condition that children attend school and family members visit

health centers regularly (Skoufias, 2005). The evaluation of Progresa relied on the random

assignment of 320 localities into the treatment group and 186 localities into the control group.

These localities, which constitute the study population, were selected to be representative

of a larger population of 6396 eligible localities across seven states in Mexico.16 The surveys

conducted for the experiment include a baseline and three follow-up rounds collected 5, 13,

and 18 months after the program began.17 We examine two outcomes of the evaluation that

have been previously studied: (i) current school enrollment for children 6 to 16 years old,

and (ii) paid employment for adults in the last week.

Table 2: Summary Statistics for the Outcomes of Interest for Progresa

Full Sample Respondent Subsample at Follow-up

Round N
Control
Mean

T − C p-value
Attrition

Rate
Control
Mean

T − C p-value

Panel A. School Enrollment (6-16 years old)

Baseline 24353 0.824 0.007 0.455
Pooled 0.183 0.793 0.046 0.000
1st 0.142 0.814 0.043 0.000
2nd 0.234 0.829 0.046 0.000
3rd 0.174 0.740 0.047 0.000

Panel B. Employment Last Week (18+ years old)

Baseline 31237 0.471 -0.006 0.546
Pooled 0.161 0.464 0.014 0.002
1st 0.096 0.460 0.016 0.016
2nd 0.196 0.459 0.009 0.138
3rd 0.192 0.472 0.018 0.001

Notes: T and C refer to treatment and control group, respectively. T − C is the difference in means between the
treatment and control groups. It is estimated with a regression of outcome on treatment that clusters standard errors
at the locality level. The attrition rates reported are conditional on responding to the baseline survey. Pooled refers
to data from all three follow-ups combined.

In Table 2, we report the initial sample size for each outcome of interest as well as

summary statistics of the outcome by treatment group at baseline and follow-up. The failure

to reject the null hypothesis of the equality of means across the treatment and control

groups at baseline is suggestive evidence that the random assignment of treatment was

implemented as intended. In the absence of attrition, the difference in a mean outcome

16Localities were eligible if they ranked high on an index of deprivation, had access to schools and a clinic,
and had a population of 50 to 2500 people. See (INSP, 2005) for details about the experiment. For this
analysis, we use the evaluation panel dataset, which can be found at the official website of the evaluation.

17The baseline was collected in October 1997 and the three follow-ups were collected in October 1998,
June 1999, and November 1999.

9

https://evaluacion.prospera.gob.mx/es/eval_cuant/p_bases_cuanti.php


across the treatment and control groups at follow-up would identify the average treatment

effect of Progresa for the study population. Pooling data from the three follow-up rounds,

we would conclude that the impact of Progesa on the probability that children attend school

(adults work) is an increase of 4.6 (1.4) percentage points. The attrition rate, however, varies

from 10% to 24% depending on the outcome and the follow-up round. These attrition rates

raise the question of whether the differences in mean outcomes across treatment and control

respondents identify at least one of two objects of interest: (i) the average treatment for the

respondent subpopulation (ATE-R), or (ii) the average treatment effect for the entire study

population (ATE).

3.1.2 Internal Validity and its Testable Restrictions

In a field experiment with baseline outcome data, we observe individuals i = 1, . . . , n over

two time periods, t = 0, 1. We will refer to t = 0 as the baseline period, and t = 1 as the

follow-up period. Individuals are randomly assigned in the baseline period to the treatment

and control groups. We use Dit to denote treatment status for individual i in period t,

where Dit ∈ {0, 1}.18 Hence, the treatment and control groups can be characterized by

Di ≡ (Di0, Di1) = (0, 1) and Di = (0, 0), respectively. For notational brevity, we let an

indicator variable Ti denote the group membership. Specifically, Ti = 1 if individual i

belongs to the treatment group and Ti = 0 if individual i belongs to the control group.

For each period t = 0, 1, we observe an outcome Yit, which is determined by the treatment

status and a vector of time-invariant and time-varying unobservables, Uit,

Yit = µt(Dit, Uit). (1)

Given this structural function, we can define the potential outcomes Yit(d) = µt(d, Uit) for

d = 0, 1.19

Consider a properly designed and implemented RCT such that by random assignment

the treatment and control groups have the same distribution of unobservables. That is,

(Ui0, Ui1) ⊥ Ti, which can be expressed as (Yi0(0), Yi0(1), Yi1(0), Yi1(1)) ⊥ Ti using the poten-

tial outcomes notation. This implies that the control group provides a valid counterfactual

outcome distribution for the treatment group, i.e. Yi1(0)|Ti = 1
d
= Yi1|Ti = 0, where

d
=

denotes the equality in distribution. In this case, any difference in the outcome distribution

between the treatment and control groups in the follow-up period can be attributed to the

18The extension to the multiple treatment case is in Section C of the online appendix.
19We choose to use the structural notation here since it is more common in the panel literature. This

notation also allows us to refer to the unobservables that affect the outcome, which play an important role
in understanding internal validity questions in our problem.
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treatment. The ATE can be identified from the following difference in mean outcomes,

E[Yi1(1)− Yi1(0)]︸ ︷︷ ︸
ATE

= E[Yi1|Ti = 1]− E[Yi1|Ti = 0]. (2)

We now introduce the possibility of attrition in our setting. We assume that all individ-

uals respond in the baseline period (t = 0), but there is possibility of non-response in the

follow-up period (t = 1) as in Hirano et al. (2001). Response status in the follow-up period

is determined by the following equation,20

Ri = ξ(Ti, Vi), (3)

where Vi denotes a vector of unobservables that determine response status, and Ri = 1 if in-

dividual i responds, otherwise it is zero. We can also define potential response for individual i

asRi(τ) = ξ(τ, Vi) for τ = 0, 1. Following Lee (2009), random assignment in the context of at-

trition is given by (Ui0, Ui1, Vi) ⊥ Ti, which implies (Yi0(0), Yi0(1), Yi1(0), Yi1(1), Ri(0), Ri(1))

⊥ Ti using potential outcome and response notation as in Assumption 1 in Lee (2009).

Hence, instead of observing the outcome for all individuals in the treatment and control

groups at follow-up, we can only observe the outcome for respondents in both groups.

Two questions arise in this setting. First, do the control respondents provide an appropri-

ate counterfactual for the treatment respondents, Yi1|Ti = 0, Ri = 1
d
=Yi1(0)|Ti = 1, Ri = 1?

This would imply that we can obtain internally valid estimands for the respondent subpopu-

lation, such as the ATE-R, E[Yi1(1)−Yi1(0)|Ri = 1]. Second, do the outcome distributions of

treatment and control respondents in the follow-up period identify the potential outcome dis-

tribution of the study population with and without the treatment, Yi1|Ti = τ, Ri = 1
d
= Yi1(τ)

for τ = 0, 1? This would imply that we can obtain internally valid estimands for the study

population, such as the ATE.

The next proposition provides sufficient conditions to obtain each of the aforementioned

equalities as well as their respective sharp testable restrictions. Part a (b) of the follow-

ing proposition refers to the case where we can obtain valid estimands for the respondent

subpopulation (study population).

Proposition 1. Assume (Ui0, Ui1, Vi) ⊥ Ti.

(a) If (Ui0, Ui1) ⊥ Ti|Ri holds, then

(i) (Identification) Yi1|Ti = 0, Ri = 1
d
= Yi1(0)|Ti = 1, Ri = 1

20Since non-response is only allowed in the follow-up period, we omit time subscripts from the response
equation for notational convenience.
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(ii) (Sharp Testable Restriction) Yi0|Ti = 0, Ri = r
d
= Yi0|Ti = 1, Ri = r for r = 0, 1.

(b) If (Ui0, Ui1) ⊥ Ri|Ti holds, then

(i) (Identification) Yi1|Ti = τ, Ri = 1
d
= Yi1(τ) for τ = 0, 1.

(ii) (Sharp Testable Restriction) Yi0|Ti = τ, Ri = r
d
= Yi0 for τ = 0, 1, r = 0, 1.

The proof of the proposition is given in Section A. The assumption in (a) is random

assignment conditional on response status.21 The equality in (a.i) implies the identification

of the ATE-R, i.e. E[Yi1|Ti = 1, Ri = 1]− E[Yi1|Ti = 0, Ri = 1] = E[Yi1(1)− Yi1(0)|Ri = 1],

as well as the identification of quantile and other distributional treatment effects for the

respondent subpopulation. We will refer to this case as internal validity for the respondent

subpopulation (IV-R) and the assumption in (a) as the IV-R assumption. The restriction

in (a.ii) implies that the appropriate test of the implication of the IV-R assumption is a

joint test of the equality of the baseline outcome distribution between treatment and control

respondents as well as treatment and control attritors.

The assumption in (b) implies missing-at-random as defined in Manski (2005).22 Together

with random assignment, it implies that both treatment and response status are jointly

independent of the unobservables in the outcome equation. We will refer to this case as

internal validity for the study population (IV-P) and the assumption in (b) as the IV-P

assumption. The equality in (b.i) implies the identification of the ATE from the difference

in mean outcomes between treatment and control respondents, i.e. E[Yi1|Ti = 1, Ri =

1] − E[Yi1|Ti = 0, Ri = 1] = E[Yi1(1) − Yi1(0)], as well as the identification of quantile

and other distributional treatment effects for the study population.23 The restriction in

(b.ii) is the testable implication of the IV-P assumption under random assignment. The

resulting null hypothesis is the equality of the baseline outcome distribution regardless of

both treatment and response status.

21We state our assumptions in terms of the joint distribution of (Ui0, Ui1) to be consistent with the state-
ment of random assignment. Our results also follow if we replace the assumptions on the joint distribution
by their counterparts on the marginal distribution of Uit for t = 0, 1.

22In the cross-sectional setup, the missing-at-random assumption is given by Yi|Ti, Ri
d
= Yi|Ti. Manski

(2005) establishes that this assumption is not testable in that context. We obtain the testable implications
by exploiting the panel structure. It is important to emphasize that this definition of missing-at-random is
different from the assumption in Hirano et al. (2001) building on Rubin (1976), which would translate to
Yi1 ⊥ Ri|Yi0, Ti in our notation.

23If the linear model holds, the ATE-R equals the ATE, specifically if Yi1 = α + βDi1 + Ui1, then β =
E[Yi1(1) − Yi1(0)|Ri = 1] = E[Yi1(1) − Yi1(0)]. This relates to Proposition 1 in Angrist (1997), which
establishes that random assignment conditional on response status and missing at random are equivalent in
the context of a cross-sectional linear model if treatment is randomly assigned.
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3.1.3 Application of Tests to Motivating Example

Returning to our motivating example from the Progresa evaluation, we aim to understand

whether the differences in mean outcomes across treatment and control respondents at follow-

up reported in Table 2 are estimating an internally valid object, such as the ATE-R or the

ATE. We do so by testing the implications of the relevant identifying assumptions. Since both

outcomes in our example are binary, the restrictions in Proposition 1 simplify to restrictions

on the baseline mean for each outcome across the four treatment-response subgroups.

We first inspect the mean baseline outcome across the four subgroups presented in Table

3 and notice distinct patterns across the two outcomes of interest. The share of children

who attend school at baseline is similar across treatment and control respondents as well as

treatment and control attritors. This is consistent with the testable restriction in Proposition

1(a.ii) implied by the IV-R assumption, which is random assignment conditional on response

status. When we compare respondents and attritors, however, we find meaningful differences.

At baseline, school enrollment for the respondents in the pooled follow-up sample was around

87%, while enrollment for the attritors in the same sample was 61%. Thus, children that

are observed in the follow-up data are substantially different than those that are not. This

suggests a violation of the testable restriction of the IV-P assumption in Proposition 1(b.ii),

which requires all four treatment-response subgroups to have the same mean outcome at

baseline. In contrast, the share of employed adults at baseline is similar in all four subgroups,

which is consistent with the testable implication of the IV-P assumption.

Table 3: Internal Validity in the Presence of Attrition for Progresa

Follow-up Attrition Rate Mean Baseline Outcome by Group
Test of
IV-R

Test of
IV-P

C
Differen-

tial
TR CR TA CA p-value p-value

Panel A. School Enrollment (6-16 years old)

Pooled 0.187 -0.007 0.878 0.874 0.615 0.605 0.836 0.000
1st 0.150 -0.013 0.875 0.871 0.550 0.554 0.810 0.000
2nd 0.244 -0.017 0.901 0.897 0.590 0.595 0.824 0.000
3rd 0.168 0.009 0.859 0.856 0.697 0.663 0.217 0.000

Panel B. Employment Last Week (18+ years old)

Pooled 0.157 0.007 0.463 0.468 0.472 0.486 0.698 0.132
1st 0.100 -0.007 0.464 0.471 0.472 0.473 0.825 0.860
2nd 0.195 0.001 0.463 0.465 0.474 0.496 0.566 0.058
3rd 0.175 0.027 0.463 0.469 0.471 0.481 0.769 0.503

Notes: The mean baseline outcomes correspond to the groups of treatment respondents (TR), control respondents (CR),
treatment attritors (TA), and control attritors (CA). Pooled refers to all the three follow-ups. The tests of internal validity
were conducted using the regression tests proposed in Section B. All regression tests use clustered standard errors at the
locality level. For further details on the implementation of the tests, see Sections 4 and 6.

Table 3 also presents the p-values of the tests of the IV-R and IV-P assumptions based
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on the restrictions in Proposition 1(a.ii) and (b.ii), respectively. For school enrollment, we

cannot reject the IV-R assumption, but we do reject the IV-P assumption at the 5% signifi-

cance level.24 Thus, we do not reject the assumption that the difference in school attendance

rates across treatment and control respondents at follow-up identifies the ATE-R. We do,

however, reject the assumption that this difference could identify the ATE. In contrast, for

the outcome of employment, we do not reject either the IV-R or the IV-P assumption.25

In other words, we do not reject the assumption that the difference in employment rates

between treatment and control respondents at follow-up identifies the ATE.

Understanding treatment effects for the study population is especially relevant for large-

scale programs such as Progresa, where the study population is representative of a broader

population of interest. In this type of study, if we do reject the IV-P assumption but not

the IV-R assumption for an outcome such as school enrollment, we can still draw inferences

about an average treatment effect on a larger population. That average treatment effect,

however, is a local average treatment effect for the type of participants for which there would

be follow-up data available for a given outcome.

3.1.4 Attrition Tests as Identification Tests

Like other tests of identifying assumptions, tests of internal validity in the presence of at-

trition can only be tested by implication in general. In our problem, if we impose time

homogeneity on the structural function and the unobservable distribution (Chernozhukov

et al., 2013), specifically µ0 = µ1 and Ui0|Ti, Ri
d
= Ui1|Ti, Ri, then the testable restriction in

Proposition 1(a.ii) holds if and only if identification (a.i) holds. This equivalence relationship

does not hold in general, however. Hence, while rejection of a test of the implication in (a.ii)

allows us to refute the identifying assumption in question, it is possible not to reject the test

even when identification fails. This point is illustrated in the following example.

Example. Suppose that there are two unobservables that enter the outcome equation, Uit =

(U1
it, U

2
it)
′ for t = 0, 1, such that (U1

i0, U
1
i1) ⊥ Ti|Ri whereas (U2

i0, U
2
i1) 6⊥ Ti|Ri. Let the

outcome at baseline be a trivial function of U2
i0, whereas the outcome in the follow-up period

24It is worth noting that a multiple testing correction would not change the decisions of any of the tests in
our example. For instance, applying the Bonferroni correction for each outcome would yield a significance
level for each hypothesis of 0.63% to control a family-wise error rate of 5% across the eight tests we conduct
for each outcome.

25A natural question that arises in this example is why we find different patterns of response across two
outcomes that were collected from the same surveys. We conduct a determinants of attrition test, and
find that the probability that a household responds to the employment question for all adults and does not
respond to the school enrollment question for all children is positively correlated with household size, and
is even more closely correlated with the number of children 6-16 years old in the household. This suggests
that non-response on the school enrollment question may be driven by survey fatigue.

14



is a non-trivial function of both U1
i0 and U2

i0, e.g.

Yi0 = U1
i0

Yi1 = U1
i1 + U2

i1 + Ti(β1U
1
i1 + β2U

2
i1)

As a result, even though Yi0|Ti = 1, Ri
d
= Yi0|Ti = 0, Ri holds, Yi1(0)|Ti = 1, Ri = 1

d

6= Yi1|Ti =

0, Ri = 1. In other words, the control respondents do not provide a valid counterfactual

for the treatment respondents in the follow-up period despite the identity of the baseline

outcome distribution for treatment and control groups conditional on response status. We

can illustrate this by looking at the average treatment effect for the treatment respondents,

E[Yi1(1)− Yi1(0)|Ti = 1, Ri = 1]

=E[U1
i1 + U2

i1 + β1U
1
i1 + β2U

2
i1|Ti = 1, Ri = 1]︸ ︷︷ ︸

=E[Yi1|Ti=1,Ri=1]

−E[U1
i1 + U2

i1|Ti = 1, Ri = 1]︸ ︷︷ ︸
6=E[Yi1|Ti=0,Ri=1]

.

Hence, E[Yi1|Ti = 1, Ri = 1]−E[Yi1|Ti = 0, Ri = 1] 6= β1E[U1
i1|Ti = 1, Ri = 1]+β2E[U2

i1|Ti =

1, Ri = 1], i.e. the difference in mean outcomes between treatment and control respondents

does not identify an average treatment effect for the treatment respondents.26

The above example illustrates why we cannot test identification “directly”, since it would

require us to observe the counterfactual of the treatment respondents. As a result, it is

crucial to test identifying assumptions by using their sharp testable restrictions (i.e. their

strongest possible implications on the data).

3.1.5 Stratified Randomization and Heterogeneous Treatment Effects

In many field experiments, randomization is performed within strata or blocks for a variety of

reasons, including implementation design (i.e. the study is randomized within roll-out waves

or locations) and concerns about power. One important reason to randomize within strata

is to better identify heterogeneous treatment effects, more formally defined as conditional

average treatment effects (CATE). In this section, we extend Proposition 1 to the case of

stratified randomization. We examine the identification of the counterfactual distribution for

26We could however have a case in which the control respondents provide a valid counterfactual for the
treatment respondents even though the treatment effect for individual i depends on an unobservable that is
not independent of treatment conditional on response, i.e. U2

it. Specifically, let Yit = U1
it +Ti(β1U

1
it + β2U

2
it)

and consider the identification of an average treatment effect, E[Yi1(1) − Yi1(0)|Ti = 1, Ri = 1] = E[U1
i1 +

β1U
1
i1 + β2U

2
i1|Ti = 1, Ri = 1]− E[U1

i1|Ti = 1, Ri = 1] = E[Yi1|Ti = 1, Ri = 1]− E[Yi1|Ti = 0, Ri = 1], since
E[U1

i1|Ti = 1, Ri = 1] = E[U1
i1|Ti = 0, Ri = 1]. Note however that in this case what we identify is no longer

internally valid for the entire respondent subpopulation, but for the smaller subpopulation of treatment
respondents.
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the respondent subpopulation as well as for the study population. The results in this section

also apply to completely randomized experiments when heterogeneous treatment effects are

of interest.

In the following, let Si denote the stratum of individual i which has support S, where

|S| <∞. To exclude trivial strata, we assume that P (Si = s) > 0 for all s ∈ S throughout

the paper.

Proposition 2. Assume (Ui0, Ui1, Vi) ⊥ Ti|Si.

(a) If (Ui0, Ui1) ⊥ Ti|Si, Ri, then

(i) (Identification) Yi1|Ti = 0, Si = s, Ri = 1
d
= Yi1(0)|Ti = 1, Si = s, Ri = 1, for

s ∈ S.

(ii) (Sharp Testable Restriction) Yi0|Ti = 0, Si = s, Ri = r
d
= Yi0|Ti = 1, Si = s, Ri = r

for r = 0, 1, s ∈ S.

(b) If (Ui0, Ui1) ⊥ Ri|Ti, Si, then

(i) (Identification) Yi1|Ti = τ, Si = s, Ri = 1
d
= Yi1(τ)|Si = s, for τ = 0, 1, s ∈ S.

(ii) (Sharp Testable Restriction) Yi0|Ti = τ, Si = s, Ri = r
d
= Yi0(0)|Si = s for τ = 0, 1,

r = 0, 1, s ∈ S.

The equality in (a.i) implies that we can identify the average treatment effect conditional

on S for respondents from the difference in mean outcomes between treatment and control

respondents in each stratum,

E[Yi1(1)− Yi1(0)|Ti = 1, Si = s, Ri = 1]

=E[Yi1|Ti = 1, Si = s, Ri = 1]− E[Yi1|Ti = 0, Si = s, Ri = 1] (CATE-R). (4)

The ATE-R can then be identified by averaging over Si, i.e.
∑

s∈S P (Si = s|Ri = 1)

(E[Yi1|Ti = 1, Si = s, Ri = 1]− E[Yi1|Ti = 0, Si = s, Ri = 1]). The testable restriction in (a.ii)

is the identity of the distribution of baseline outcome for treatment and control groups con-

ditional on response status and stratum. In other words, the equality of the outcome distri-

bution for treatment and control respondents (as well as for treatment and control attritors)

conditional on stratrum is the sharp testable restriction of the IV-R assumption in the case of

block randomization. The results in part (b) of the proposition refer to IV-P in the context

of block randomization. Thus, they are also conditional versions of the results in Proposition

1(b).

16



3.2 Differential Attrition Rates and Internal Validity

When attrition rates across treatment and control groups are not equal, specifically P (Ri =

0|Ti = 1) 6= P (Ri = 0|Ti = 0), we call this a differential attrition rate as in Section 2. Since

the differential attrition rate test is widely used, we examine the relationship between equal

attrition rates and IV-R as well as IV-P.

In order to understand the role of differential attrition rates in testing IV-R, we use

potential response to characterize different response types that may differ in terms of their

distribution of unobservables. Here we adapt the terminology of never-takers, always-takers,

compliers and defiers from the LATE literature (Imbens and Angrist, 1994; Angrist, Im-

bens and Rubin, 1996) to our setting: never-responders ((Ri(0), Ri(1)) = (0, 0)), always-

responders ((Ri(0), Ri(1)) = (1, 1)), treatment-only responders ((Ri(0), Ri(1)) = (0, 1)), and

control-only responders ((Ri(0), Ri(1)) = (1, 0)). As shown in Figure 2, the treatment and

control respondents and attritors are composed of different response types (Ri(0), Ri(1)).

Figure 2: Respondent and Attritor Subgroups

Control
(Ti = 0)

Treatment
(Ti = 1)

Attritors
(Ri = 0)

(Ri(0), Ri(1)) = (0, 1)
(Ri(0), Ri(1)) = (0, 0)

(Ri(0), Ri(1)) = (1, 0)
(Ri(0), Ri(1)) = (0, 0)

Respondents
(Ri = 1)

(Ri(0), Ri(1)) = (1, 0)
(Ri(0), Ri(1)) = (1, 1)

(Ri(0), Ri(1)) = (0, 1)
(Ri(0), Ri(1)) = (1, 1)

We can now examine the difference in attrition rates and what it measures in terms of

the proportions of the aforementioned response types, which we define as:

p00 ≡ P ((Ri(0), Ri(1)) = (0, 0)), p01 ≡ P ((Ri(0), Ri(1)) = (0, 1)),

p10 ≡ P ((Ri(0), Ri(1)) = (1, 0)), p11 ≡ P ((Ri(0), Ri(1)) = (1, 1)). (5)

Note that by random assignment, (Ri(0), Ri(1)) ⊥ Ti, the attrition rates in the treatment

and control groups are given by

P (Ri = 0|Ti = 0) = p00 + p01, P (Ri = 0|Ti = 1) = p00 + p10. (6)

The difference in attrition rates across groups measures the difference between the proportion

of treatment-only and control-only responders, i.e. P (Ri = 0|Ti = 0)− P (Ri = 0|Ti = 1) =

p01 − p10. Thus, equal attrition rates occur if p01 = p10.

Next, we illustrate the relationship between differential attrition rates and the IV-R as-

sumption in Proposition 1(a), (Ui0, Ui1) ⊥ Ti|Ri. To do so, we express the distribution of
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unobservables, (Ui0, Ui1), for treatment and control respondents as a mixture of the unob-

servable distributions of the different response types (Ri(0), Ri(1)). We omit the analysis

for attritors for brevity, since it is analoguous. Under random assignment, the unobservable

distribution of treatment and control respondents is given by the following

FUi0,Ui1|Ti=1,Ri=1 =
p01FUi0,Ui1|(Ri(0),Ri(1))=(0,1) + p11FUi0,Ui1|(Ri(0),Ri(1))=(1,1)

P (Ri = 1|Ti = 1)
,

FUi0,Ui1|Ti=0,Ri=1 =
p10FUi0,Ui1|(Ri(0),Ri(1))=(1,0) + p11FUi0,Ui1|(Ri(0),Ri(1))=(1,1)

P (Ri = 1|Ti = 0)
.

When the IV-R assumption holds, the two distributions on the left hand side of the above

equations agree. This equality holds in three different cases: (i) if the distributions of

treatment-only, control-only and always-responders all agree, which is implied by (Ui0, Ui1) ⊥
(Ri(0), Ri(1)); (ii) if there were no treatment-only or control-only responders, i.e. p10 = p01 =

0, which is a special case of monotonicity as discussed in Lee (2009); (iii) if p10 = p01 and

the distribution of unobservables that affect the outcome for the treatment-only and the

control-only responders are identical. The equality of distribution for treatment-only and

control-only responders is implied by an exchangeability restriction (Altonji and Matzkin,

2005) given below. These three sets of assumptions imply the IV-R assumption as formally

stated in the following proposition.

Proposition 3. Suppose, in addition to (Ui0, Ui1, Vi) ⊥ Ti, one of the following is true,

(i) (Ui0, Ui1) ⊥ (Ri(0), Ri(1)) (Unobservables in Y ⊥ Potential Response)

(ii) Ri(0) ≤ Ri(1) (wlog), (Monotonicity)

& P (Ri = 0|Ti) = P (Ri = 0) (Equal Attrition Rates)

(iii) (Ui0, Ui1)|Ri(0), Ri(1)
d
= (Ui0, Ui1)|Ri(0) +Ri(1) (Exchangeability)

& P (Ri = 0|Ti) = P (Ri = 0) (Equal Attrition Rates)

then (Ui0, Ui1) ⊥ Ti|Ri.

The proof of the proposition is given in Section A. Note that in (i) there are no restrictions

on the attrition rates. This assumption requires that all four treatment-response subgroups

have the same unobservable distribution, which not only implies IV-R, but also IV-P, under

random assignment. In (ii), where both equal attrition rates and monotonicity are required

for IV-R to hold, the respondent subpopulation is solely composed of always-responders

((Ri(0), Ri(1)) = (1, 1)). Lee (2009) uses the monotonicity assumption to bound the average

treatment effect for the always-responders when attrition rates are not equal. The exchange-

ability restriction in (iii) merits some discussion. First, it is weaker than monotonicity, since
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it allows for both treatment-only and control-only responders, but it assumes that these

“inconsistent” types have the same distribution of (Ui0, Ui1). While strong in general, this

assumption may be more realistic in experiments with two treatments. If coupled with equal

attrition rates, exchangeability implies the IV-R assumption.

The above discussion and proposition illustrate that equal attrition rates without further

assumptions do not imply IV-R. To illustrate this point further, we present two examples.

Example 1. (Internal Validity & Differential Attrition Rates)

Assume that potential response satisfies monotonicity, i.e. p10 = 0, and the assumption in

Proposition 3(i) holds, (Ui0, Ui1) ⊥ (Ri(0), Ri(1)). Furthermore, there is a group of individ-

uals for whom it is too costly to respond if they are in the control group. This group will only

respond if assigned to the treatment group (treatment-only responders), and thereby p01 > 0.

Panel A of Figure 3 illustrates that these assumptions imply that the three response types

in this example have the same distribution of Uit. Under random assignment, (Ui0, Ui1) ⊥
(Ri(0), Ri(1)) ⇒ (Ui0, Ui1)|Ti, Ri

d
= (Ui0, Ui1), which implies IV-P. Due to the presence of

treatment-only responders, P (Ri = 0|Ti = 1) = p00, and P (Ri = 0|Ti = 0) = p00 + p01. As

a result, we have differential attrition rates across the treatment and control groups, even

though we not only have IV-R but also IV-P.

Figure 3: Distribution of Uit for Different Response Types

Panel A: Example 1

D
en

si
ty

δ00=δ01=δ11

Uit

Panel B: Example 2

D
en

si
ty

δ00 δ10 δ01 δ11

Uit

Notes: The above figure illustrates the distribution of Uit for the different subpopulations for Examples

1 and 2, where we assume Uit|(Ri(0), Ri(1)) = (r0, r1)
i.i.d.∼ N(δr0r1 , 1) for all r0, r1 ∈ {0, 1}2 for t = 0, 1.

Panel A represents Example 1 where we assume (Ui0, Ui1) ⊥ (Ri(0), Ri(1)), hence δ00 = δ01 = δ11. Panel
B represents Example 2 where δr0r1 is unrestricted for (r0, r1) ∈ {0, 1}2.

Example 2. (Equal Attrition Rates & Violation of Internal Validity)

Assume that potential response violates monotonicity, such that there are treatment-only and
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control-only responders,27 but their proportions are equal (p10 = p01 > 0), which yields equal

attrition rates across treatment and control groups.28 If (Ui0, Ui1) 6⊥ (Ri(0), Ri(1)), then the

different response types will have different distributions of unobservables, as illustrated in

Panel B of Figure 3. As a result, the distribution of (Ui0, Ui1) for treatment and control

respondents defined in (17)-(18) will be different and hence IV-R is violated.

While Example 1 shows that differential attrition rates can coincide with internal validity,

Example 2 illustrates that internal validity can be violated even though we have equal attri-

tion rates. In Section 5, we design simulation experiments that mimic the above examples

to illustrate these points numerically.

A further limitation of the focus on the differential attrition rate in empirical practice is

that we cannot use it to test whether the IV-P assumption holds, even in cases where the

differential attrition rate test is a valid test of IV-R. For instance, consider the case in which

monotonicity holds and the attrition rates are equal across groups. We can then identify

the ATE-R, since the respondent subpopulation is composed solely of always-responders as

pointed out above. If the researcher is interested in identifying the treatment effect for

the study population, however, s/he would have to test whether the always-responders are

“representative” of the study population. To do so, one would have to test the restriction of

the IV-P assumption in Proposition 1(b.ii).

3.3 Implications for Empirical Practice

Our results clarify the interpretation of attrition tests in the field experiment literature.

First, the most commonly used test, the differential attrition rate test, is not based on a

necessary condition of IV-R. The selective attrition tests used in the literature are mean

implications of the joint distributional tests, in general. The joint test of selective attrition,

which is used in 12% of the papers in our review, is based on the mean implication of the

27Violations of monotonicity are especially plausible in settings where we have two treatments. For the
classical treatment-control case, a nice example of a violation of monotonicity of response is given in Glen-
nerster and Takavarasha (2013). Suppose the treatment is a remedial program for public schools targeted
toward students that have identified deficiencies in mathematics. Response in this setting is determined by
whether students remain in the public school, which depends on their treatment status and initial mathe-
matical ability, Vi. On one side, low-achieving students would drop out of school if they are assigned to the
control group, but would remain in school if assigned the treatment. On the other side, parents of high-
achieving students in the treatment group may be induced to switch their children to private schools because
they are unhappy with the larger class sizes, while in the control group those students would remain in the
public school. Furthermore, in the context of the LATE framework, de Chaisemartin (2017) provides several
applications where monotonicity is implausible and establishes identification of a local average treatment
effect under an alternative assumption.

28In the multiple treatment case, equal attrition rates are possible without requiring any two response
types to have equal proportions in the population. See Section B in the online appendix for a derivation.
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sharp testable restriction of the IV-R assumption in Proposition 1(a.ii).29 The most common

test of selective attrition, however, is the simple test using respondents only. Thus, it does

not use all of the testable implications of the IV-R assumption. A large minority of authors

do implement a determinants of attrition test. Since it tests differences across respondents

and attritors, however, by itself it is not a test of IV-P or IV-R.

An important question that arises in empirical practice is whether covariates should

be used in testing the identifying assumption in question. Suppose that the researcher

has a priori information that establishes that there are covariates determined by the same

unobservables as the outcome Yit, specifically Wit = νt(Uit) for t = 0, 1. Then, the sharp

testable restrictions of the identifying assumptions in Proposition 1 would be imposed on

the joint distribution of Zi0 = (Yi0,W
′
i0)
′ and not solely on the marginal distribution of Yi0.

If baseline outcome data are not available, the testable restrictions on Wi0 can be used to

test the IV-R and IV-P assumptions. However, if this a priori information is false and Wit

also depends on unobservables that affect response, Vi, then the testable restrictions on Wi0

may be violated even if the identifying assumption in question holds. Thus, the choice of

covariates is an important consideration if a researcher decides to include them in testing

the IV-R or IV-P assumption.

Finally, our theoretical analysis underscores the importance of the object of interest in

determining the required identifying assumption and its testable restriction. Hence, explicitly

stating the object of interest, whether it is the ATE-R, ATE, CATE-R or CATE, is important

to determine whether an attrition test is appropriate in a given setting.

4 Randomization Tests of Internal Validity

We present randomization procedures to test the IV-R and IV-P assumptions for completely

and stratified randomized experiments. The proposed procedures approximate the exact

p-values of the proposed distributional statistics under the cross-sectional i.i.d. assumption

when the outcome distribution is continuous.30 They can also be adapted to accommodate

possibly discrete or mixed outcome distributions, which may result from rounding or cen-

soring in the data collection, by applying the procedure in Dufour (2006). While we focus

on distributional statistics in this section, the randomization procedures we propose can be

used to obtain p-values for t-tests and other statistics that test the equality of distributions.

29We note that while implementation of joint selective attrition test in practice typically falls under the IV-
R category, some of the estimation strategies used to implement it could be used to test the IV-P assumption
depending on the null hypothesis.

30We maintain the cross-sectional i.i.d. assumption to simplify the presentation. The randomization pro-
cedures proposed here remain valid under suitable exchangeability assumptions.
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We first outline a general randomization procedure that we adapt to the different settings

we consider.31 Given a dataset Z and a statistic Tn = T (Z) that tests a null hypothesis H0,

we use the following procedure to provide a stochastic approximation of the exact p-value

for the test statistic Tn exploiting invariant transformations g ∈ G0 (Lehmann and Romano,

2005, Chapter 15.2). Specifically, the transformations g ∈ G0 satisfy Z
d
= g(Z) under H0

only.

Procedure 1. (Randomization)

1. For gb, which is i.i.d. Uniform(G0), compute T̂n(gb) = T (gb(Z)),

2. Repeat Step 1 for b = 1, . . . , B times,

3. Compute the p-value, p̂n,B = 1
B+1

(
1 +

∑B
b=1 1{T̂n(gb) ≥ Tn}

)
.

A test that rejects when p̂n,B ≤ α is level α for any B (Lehmann and Romano, 2005,

Chapter 15.2). In our application, the invariant transformations in G0 consist of permuta-

tions of individuals across certain subgroups in our data set. The subgroups are defined

by the combination of response and treatment in the case of completely randomized trials,

and all the combinations of response, treatment, and stratum in the case of trials that are

randomized within strata.

4.1 Completely Randomized Trials

The testable restriction of the IV-R assumption, stated in Proposition 1(a.ii), implies that

the distribution of baseline outcome is identical for treatment and control respondents as

well as treatment and control attritors. Thus, the joint hypothesis is given by,

H1
0 : FYi0|Ti=0,Ri=r = FYi0|Ti=1,Ri=r for r = 0, 1. (7)

The general form of the distributional statistic for each of the equalities in the null hypothesis

above is,

T 1
n,r =

∥∥√n (Fn,Yi0|Ti=0,Ri=r − Fn,Yi0|Ti=1,Ri=r

)∥∥ for r = 0, 1,

where for a random variable Xi, Fn,Xi
denotes the empirical cdf, i.e. the sample analogue

of FXi
, and ‖.‖ denotes some non-random or random norm. Different choices of the norm

give rise to different statistics. We use the KS and CM statistics in the simulations since

they are the most widely known and used. The former is obtained by using the L∞ norm

31See Lehmann and Romano (2005); Canay, Romano and Shaikh (2017) for a more detailed review.
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over the sample points, i.e. ‖f‖n,∞ = maxi |f(yi)|, whereas the latter is obtained by using

an L2-type norm, i.e. ‖f‖n,2 =
∑n

i=1 f(yi)
2/n. In order to test the joint hypothesis in (7),

the two following statistics that aggregate over T 1
n,r for r = 0, 1 are standard choices in the

literature (Imbens and Rubin, 2015),32

T 1
n,m = max{T 1

n,0, T
1
n,1},

T 1
n,p = pn,0T

1
n,0 + pn,1T

1
n,1, where pn,r =

n∑
i=1

1{Ri = r}/n for r = 0, 1.

Let G10 denote the set of all permutations of individuals within respondent and attritor

subgroups, for g ∈ G10 , g(Z) = {(Yi0, Tg(i), Rg(i)) : Rg(i) = Ri, 1 ≤ i ≤ n}. Under H1
0 and the

cross-sectional i.i.d. assumption, Z
d
= g(Z) for g ∈ G10 . Hence, we can obtain p-values for

T 1
n,m and T 1

n,p under H1
0 by applying Procedure 1 using the set of permutations G10 .

We now consider testing the restriction of the IV-P assumption stated in Proposition

1(b.ii). This restriction implies that the distribution of the baseline outcome variable is

identically distributed across all four subgroups defined by treatment and response status.

Let (Ti, Ri) = (τ, r), where (τ, r) ∈ T ×R = {(0, 0), (0, 1), (1, 0), (1, 1)} and (τj, rj) denote

the jth element of T ×R. Then, the joint hypothesis is given wlog by

H2
0 : FYi0|Ti=τj ,Ri=rj = FYi0|Ti=τj+1,Ri=rj+1

for j = 1, . . . , |T × R| − 1. (8)

In this case, the two statistics that we propose to test the joint hypothesis are:

T 2
n,m = max

j=1,...,|T ×R|−1

∥∥√n (Fn,Yi0|Ti=τj ,Ri=rj − Fn,Yi0|Ti=τj+1,Ri=rj+1

)∥∥ ,
T 2
n,p =

|T ×R|−1∑
j=1

wj
∥∥√n (Fn,Yi0|Ti=τj ,Ri=rj − Fn,Yi0|Ti=τj+1,Ri=rj+1

)∥∥
for some fixed or data-dependent non-negative weights wj for j = 1, . . . , |T × R| − 1.

Under H2
0 and the cross-sectional i.i.d. assumption, any random permutation of individ-

uals across the four treatment-response subgroups will yield the same joint distribution of

the data. Specifically, for g ∈ G20 , g(Z) = {(Yi0, Tg(i), Rg(i)) : 1 ≤ i ≤ n}. We can hence apply

Procedure 1 using G20 to obtain approximately exact p-values for the statistic T 2
n,m or T 2

n,p

under H2
0 .

32There are other possible approaches to construct joint statistics. We compare the finite-sample perfor-
mance of the two joint statistics we consider numerically in Section D of the online appendix.

23



4.2 Stratified Randomized Trials

As pointed out in Section 3.1.5, the testable restrictions in the case of stratified or block

randomized trials (Proposition 2) are conditional versions of those in the case of completely

randomized trials (Proposition 1). Thus, in what follows we lay out the conditional versions of

the null hypotheses, the distributional statistics, and the invariant transformations presented

in Section 4.1.

We first consider the restriction in Proposition 2(a.ii), which yields the following null

hypothesis

H1,S
0 : FYi0|Ti=0,Si=s,Ri=r = FYi0|Ti=1,Si=s,Ri=r for r = 0, 1, s ∈ S. (9)

To obtain the test statistics for the joint hypothesis H1,S
0 , we first construct test statistics

for a given s ∈ S,

T 1,S
n,m,s = max

r=0,1

∥∥√n (Fn,Yi0|Ti=0,Si=s,Ri=r − Fn,Yi0|Ti=1,Si=s,Ri=r

)∥∥ ,
T 1,S
n,p,s =

∑
r=0,1

pr|sn
∥∥√n (Fn,Yi0|Ti=0,Si=s,Ri=r − Fn,Yi0|Ti=1,Si=s,Ri=r

)∥∥ ,
where p

r|s
n =

∑n
i=1 1{Ri = r, Si = s}/

∑n
i=1 1{Si = s}. We then aggregate over each of those

statistics to get

T 1,S
n,m = max

s∈S
T 1,S
n,m,s,

T 1,S
n,p =

∑
s∈S

psnT
1,S
n,p,s, where psn =

n∑
i=1

1{Si = s}/n for s ∈ S.

In this case, the invariant transformations under H1,S
0 are the ones where n elements are per-

muted within response-strata subgroups. Formally, for g ∈ G1,S0 , g(Z) = {(Yi0, Tg(i), Sg(i), Rg(i)) :

Sg(i) = Si, Rg(i) = Ri, 1 ≤ i ≤ n}, where Z = {(Yi0, Ti, Si, Ri) : 1 ≤ i ≤ n}. Under H1,S
0 and

the cross-sectional i.i.d. assumption within strata, Z
d
= g(Z) for g ∈ G1,S0 . Hence, using G1,S0 ,

we can obtain p-values for T 1,S
n,m and T 1,S

n,p under H1,S
0 .

We now consider testing the restriction in Proposition 2(b.ii). The resulting null hypoth-

esis is given wlog by the following

H2,S
0 : FYi0|Ti=τj ,Si=s,Ri=rj = FYi0|Ti=τj+1,Si=s,Ri=rj+1

for j = 1, . . . , |T × R| − 1, s ∈ S.
(10)
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To obtain the test statistics for the joint hypothesis H2,S
0 , we first construct test statistics

for a given s ∈ S,

T 2,S
n,m,s = max

j=1,...,|T ×R|−1

∥∥√n (Fn,Yi0|Ti=τj ,Si=s,Ri=rj − Fn,Yi0|Ti=τj+1,Si=s,Ri=rj+1

)∥∥ ,
T 2,S
n,p,s =

|T ×R|−1∑
j=1

wj,s
∥∥√n (Fn,Yi0|Ti=τj ,Si=s,Ri=rj − Fn,Yi0|Ti=τj+1,Si=s,Ri=rj+1

)∥∥ ,
given fixed or random non-negative weights wj,s for j = 1, . . . , |T × R| − 1 and s ∈ S. We

then aggregate over each of those statistics to get

T 2,S
n,m = max

s∈S
T 2,S
n,m,s,

T 2,S
n,p =

∑
s∈S

wsT
2,S
n,p,s,

given fixed or random non-negative weights ws for s ∈ S.

Under the above hypothesis and the cross-sectional i.i.d. assumption within strata, the

distribution of the data is invariant to permutations within strata, i.e. for g ∈ G2,S0 , g(Z) =

{(Yi0, Tg(i), Sg(i), Rg(i)) : Sg(i) = Si, 1 ≤ i ≤ n}. Thus, applying Procedure 1 to T 2,S
n,m or T 2,S

n,p

using G2,S0 yields approximately exact p-values for these statistics under H2,S
0 .

In practice, it may be possible that response problems could lead to violations of internal

validity in some strata but not in others. If that is the case, it may be more appropriate to

test interval validity for each stratum separately. Recall that when the goal is to test the IV-

R assumption, the stratum-specific hypothesis is H1,s
0 : FYi0|Ti=0,Si=s,Ri=r = FYi0|Ti=1,Si=s,Ri=r

for r = 0, 1. Hence, for each s ∈ S, one can use G1,S0 in the above procedure to obtain

p-values for T 1,S
n,m,s and T 1,S

n,p,s, and then perform a multiple testing correction that controls

either family-wise error rate or false discovery rate. We can follow a similar approach when

the goal is to test the IV-P assumption conditional on stratum.

The aforementioned subgroup-randomization procedures split the original sample into

either respondents and attritors or four treatment-response groups. Then, treatment or

treatment-response status is randomized at the individual level, respectively. This approach

does not directly extend to cluster randomized experiments.33 Given the widespread use of

regression-based tests in the empirical literature, we illustrate how to test the mean impli-

cations of the distributional restrictions of the IV-R and IV-P assumptions using regressions

for completely, cluster, and stratified randomized experiments in Section B.

33To test the distributional restrictions for cluster randomized experiments, the bootstrap-adjusted critical
values for the KS and CM-type statistics in Ghanem (2017) can be implemented.
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5 Simulation Study

We illustrate the theoretical results in the paper using a numerical study. The simulations

demonstrate the performance of the differential attrition rate test as well as both the mean

and distributional tests of the IV-R and IV-P assumptions.

Table 4: Simulation Design

Panel A. Data-Generating Process

Outcome:
Yit = β1Dit + β2Ditαi + αi + ηit for t = 0, 1
where β1 = β2 = 0.25.

Treatment: Ti
i.i.d.∼ Bernoulli(0.5), Di0 = 0, Di1 = Ti.

Response:
Ri = (1− Ti)Ri(0) + TiRi(1)
where pr0r1 = P ((Ri(0), Ri(1)) = (r0, r1)) for r0, r1 ∈ {0, 1}2

.

Unobservables:



Uit = (αi, ηit)
′, t = 0, 1,

αi|Ri(0), Ri(1)
i.i.d.∼


N(δ00, 1) if (Ri(0), Ri(1)) = (0, 0),
N(δ01, 1) if (Ri(0), Ri(1)) = (0, 1),
N(δ10, 1) if (Ri(0), Ri(1)) = (1, 0),
N(δ11, 1) if (Ri(0), Ri(1)) = (1, 1).

ηi1 = 0.5ηi0 + εi0, (ηi0, εi0)′
i.i.d.∼ N(0, 0.5I2)

Panel B. Variants of the Design

Design I II III IV

Monotonicity in the Response Equation
Yes

(p10 = 0)
Yes

(p10 = 0)
Yes

(p10 = 0)
No

Equal Attrition Rates No
Yes

(p01 = 0) No
Yes

(p10 = p01)

(Ui0, Ui1) ⊥ (Ri(0), Ri(1)) No No Yes No

Notes: For an integer k, Ik denotes a k × k identity matrix. In Designs I and II, we let δ00 = −0.5,
δ01 = 0.5, and δ11 = −(δ00p00 +δ01p01)/p11, such that E[αi] = 0. In Design III, δr0r1 = 0 for all (r0, r1) ∈
{0, 1}2, which implies Uit ⊥ (Ri(0), Ri(1)) for t = 0, 1. In Design IV, δ00 = −0.5, δ01 = −δ10 = 0.25, and
δ11 = −(δ00p00 + δ01p01 + δ10p10)/p11. As for the proportions of the different subpopulations, in Designs
I-III, we let p00 = P (Ri = 0|Ti = 1), p01 = P (Ri = 0|Ti = 0)−P (Ri = 0|Ti = 1), and p11 = 1−p00−p01,
whereas in Design IV, we fix p10 = p01, p00 = p10/4, and P (Ri = 0|Ti = 0) = p00 + p10.

5.1 Simulation Design

The data-generating process (DGP) is described in Panel A of Table 4. We randomly assign

individual observations into the treatment (Ti = 1) and control (Ti = 0) groups, and gener-

ate the response equation by further assigning individuals to one of the four response types

according to proportions given by pr0r1 for (r0, r1) ∈ {0, 1}2. The unobservable, Uit, has

time-varying and time-invariant components. The time-varying unobservable, ηi1, follows
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an AR(1) process and is independent of potential response in all variants of our design for

simplicity. We allow dependence between the time-invariant unobservable, αi, and potential

response by allowing the means of the conditional distributions to differ for each response

type (i.e. δr0r1 for all (r0, r1) ∈ {0, 1}2), while mainting E[αi] = 0. Conversely, when the

conditional mean is the same for all subpopulations, αi and potential response are indepen-

dent. In order to introduce treatment heterogeneity, treatment enters into two terms of the

outcome equation: β1Dit and β2Ditαi. Specifically, letting β2 be non-zero allows for the

ATE-R to differ from the ATE. The ATE always equals β1, however, since E[αi] = 0.

We conduct simulations using four variants of this simulation design, which are sum-

marized in Panel B of Table 4.34 Design I demonstrates the case in which the differential

attrition rate test would in fact detect a violation of internal validity. This case requires both

monotonicity in the response equation as well as dependence between the unobservables that

affect the outcome and the potential response ((Ui0, Ui1) 6⊥ (Ri(0), Ri(1))). We also allow

attrition rates to differ across the treatment and control groups. Design II demonstrates a

setting in which there is IV-R, but not IV-P. For that set-up, we impose monotonicity in the

response equation as well as equal attrition rates, while maintaining the dependence between

Uit and potential response.

Designs III and IV illustrate Examples 1 and 2 in Section 3.2, respectively. Design III

demonstrates a setting in which we have differential attrition rates and IV-P. Specifically,

Design III relies on the assumptions of monotonicity and differential attrition rates as in

Design I, but assumes independence between Uit and (Ri(0), Ri(1)). Finally, Design IV

follows Example 2 in demonstrating a case in which there are equal attrition rates and a

violation of internal validity. Thus, we allow for dependence between Uit and (Ri(0), Ri(1)),

and a violation of monotonicity by letting p10 and p01 be non-zero. We maintain equal

attrition rates in this design by imposing p01 = p10.

We use a sample size of n = 2, 000 as well as 2,000 simulation replications. We chose a

range of attrition rates from the results of our review of the empirical literature (see Figure

1). Specifically, we allow for attrition rates in the control group from 5% to 30%, and

differential attrition rates from zero to ten percentage points.

34We only consider these four designs to keep the presentation clear. However, it is possible to combine
different assumptions. For instance, if we assume p01 = p10 and (Ui0, Ui1) ⊥ (Ri(0), Ri(1)), then we would
have equal attrition rates and IV-P. We can also obtain a design that satisfies exchangeability by assuming
δ01 = δ10. If combined with p01 = p10, then we would have equal attrition rates and IV-R only (Proposition
3.iii).
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5.2 Differential Attrition Rates and Tests of Internal Validity

Table 5 reports simulation rejection probablilities for the differential attrition rate test as

well as the mean and distributional tests of the IV-R and IV-P assumption across Designs I-

IV using a 5% level of significance. We also report the estimated difference in mean outcome

between treatment and control respondents in the follow-up period (t = 1),

Ȳ TR
1 − Ȳ CR

1 =

∑n
i=1 Yi1Di1Ri∑n
i=1Di1Ri

−
∑n

i=1 Yi1(1−Di1)Ri∑n
i=1(1−Di1)Ri

, (11)

its standard deviation, and the rejection probability of a t-test of its significance (p̂0.05) in

columns 10 through 12 of Table 5.

First, we consider the performance of the differential attrition rate test. Columns 1

through 3 of Table 5 report the simulation mean of the attrition rates for the control (C)

and treatment (T ) groups as well as the probability of rejecting a differential attrition rate

test, which is a two-sample t-test of the equality of attrition rates between groups. The

differential attrition rate test rejects at a simulation frequency above the nominal level (5%)

in Designs I and III, whereas it rejects at approximately the nominal level in Designs II

and IV. This is not surprising, since the former designs allow for differential attrition rates,

whereas the latter impose that the attrition rates are equal. Designs I and II, which obey

monotonicity and allow for dependence between Uit and potential response, illustrate the

typical cases in which the differential attrition rate test can be viewed as a test of IV-R.

Designs III and IV, on the other hand, illustrate the concerns we raise regarding the use

of the differential attrition rate test as a test of IV-R. In Design III, the unobservables in the

outcome equation are independent of potential response. Thus, regardless of the response

equation and the attrition rates, we not only have internal validity for respondents but also

for the study population. The differential attrition rate test however rejects at a frequency

higher than the nominal level because the attrition rates are different. Design IV, however,

allows for equal attrition rates but a violation of internal validity. Thus, the differential

attrition rate test does not reject above nominal levels.

Columns 4 through 7 of Table 5 report simulation results of the tests of the IV-R as-

sumption. The first three tests are based on the following mean testable restrictions from

Proposition 1(a.ii),

H1,1
0,M : E[Yi0|Ti = 0, Ri = 1] = E[Yi0|Ti = 1, Ri = 1], (CR− TR)

H1,2
0,M : E[Yi0|Ti = 0, Ri = 0] = E[Yi0|Ti = 1, Ri = 0], (CA− TA)

H1
0,M : H1,1

0,M & H1,2
0,M, (Joint) (12)
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where the subscript M denotes the mean implication of the relevant distributional restric-

tion. H1,1
0,M (H1,2

0,M) tests the implication of the IV-R assumption for respondents (attritors)

only. We present the tests of these two hypotheses since they are conceptually similar to

widely used tests in the literature. The mean implication of the sharp testable restriction

in Proposition 1(a.ii), H1
0,M, is a joint hypothesis of H1,1

0,M and H1,2
0,M. These hypotheses

are linear restrictions on the fully saturated regression of baseline outcome on treatment

and response given in Section B, which we test using χ2 statistics.35 We also examine the

finite-sample performance of the KS statistic of the sharp testable restriction of the IV-R

assumption in (7). The reported p-values of the KS statistic defined below are obtained

using the randomization procedure to test H1
0 from Section 4,

KS1
n,m = max{KS1

n,0, KS
1
n,1},where for r = 0, 1

KS1
n,r = max

i:Ri=r

∣∣√n (Fn,Yi0(yi0|Ti = 1, Ri = r)− Fn,Yi0(yi0|Ti = 0, Ri = r))
∣∣ . (13)

The tests of the IV-R assumption behave according to our theoretical predictions. In

Designs II and III, where IV-R holds, the tests control size. In Designs I and IV, where

IV-R is violated, they reject with simulation probability above the nominal level. In general,

the relative power of the test statistics may differ depending on the DGP. In our simulation

design, however, the rejection probabilities of the attritors-only test (CA-TA) and the joint

tests (Mean and KS) are substantially higher than the test based on the difference between

the treatment and control respondents (CR-TR).36

Columns 8 and 9 of Table 5 report the simulation results of the mean and distributional

tests of the IV-P assumption given in Proposition 1(b.ii). The distributional hypothesis H2
0

is given in (8). Its mean version is defined as follows

H2
0,M : E[Yi0|Ti = τj, Ri = rj] = E[Yi0|Ti = τj+1, Ri = rj+1] for j = 1, . . . , |T × R| − 1,

(14)

where (τj, rj) denote the jth element of T ×R = {(0, 0), (0, 1), (1, 0), (1, 1)}. We test the mean

version of the hypothesis using the χ2 statistic of the linear restrictions on the regression

in Section B as in the above. To test the distributional hypothesis, we use the KS statistic

35To implement the test in R, we use the linearHypothesis command in the AER package.
36This may be because the treatment-only responders are proportionately larger in the control attritor

subgroup than in the treatment respondent subgroup.
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given below

KS2
n = max

j=1,2,3
KS2

n,j, where (15)

KS2
n,j = max

i:(Ti,Ri)∈{(τj ,rj),(τj+1,rj+1)}

∣∣√n (Fn,Yi0|Ti=τj ,Ri=rj − Fn,Yi0|Ti=τj+1,Ri=rj+1

)∣∣ .
The p-values of the KS statistic are obtained using the randomization procedure to test H2

0

in Section 4.

The test statistics of the IV-P assumption also behave according to our theoretical pre-

dictions. In Designs I, II and IV, where (Ui0, Ui1) 6⊥ (Ri(0), Ri(1)), they reject the IV-P

assumption at a simulation frequency higher than the nominal level. Design II is notable

since IV-R holds, but IV-P does not. Thus, while the mean tests of the IV-R assumption

are not rejected at a simulation frequency above the nominal level, the tests of the IV-P as-

sumption are rejected above the nominal level. In addition, the difference in mean outcomes

between treatment and control respondents is different from the ATE (0.25), even though it

is internally valid for the respondents. In Design III, which is the only design where IV-P

holds, both the mean and KS tests control size. Examining the difference in mean outcomes

between treatment and control respondents at follow-up in this design, we find that it is

unbiased for the ATE across all combinations of attrition rates.

Overall, the simulation results illustrate the limitations of the differential attrition rate

test and show that the tests of the IV-R and IV-P assumptions we propose behave according

to our theoretical predictions. For a more thorough numerical analysis of the finite-sample

behavior of the KS and CM statistics, see Section D in the online appendix.

6 Empirical Applications

To complement the simulations presented above, we apply the proposed tests to five pub-

lished field experiments. This exercise builds on the simulation results by demonstrating the

existence of a few notable regularities on a set of data generated from experiments. In this

case, the data comes from a limited selection of articles with both high attrition rates and

publicly available data that includes attritors. Thus, the exercise is not intended to draw

inference about implications of applying various attrition tests to a representative sample of

published field experiments.37

For this application, we identified 47 articles that had publicly available analysis files

from the 88 articles in our review (see Section 2). In order to select the five articles that had

37It is worth noting that, field experiments that are published in prestigious journals may not to be repre-
sentative of all field experiment data–especially if perceptions of attrition bias had an impact on publication.
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the highest attrition rates from that group, we reviewed the data files for twelve articles.

We were unable to include field experiments for a variety of reasons that would not, in the

majority of cases, affect the ability of the authors to implement our tests.38 In keeping

with our findings from Section 2, even within these five articles for which attrition bias is

likely to have received some additional scrutiny given high attrition rates, we find that there

is heterogeneity in the application of attrition tests. Two of the articles reported only a

differential attrition rate test, while three also reported some type of selective attrition test.

Across the five selected articles, we conduct attrition tests for a total of 33 outcomes. This

includes all outcomes that are reported in the abstracts as well as all other unique outcomes.39

For each outcome, the approach to implementing the tests depends on the outcome and the

type of randomization used in the article. For fully randomized experiments, we apply joint

tests of the IV-R and IV-P assumptions in Proposition 1. For stratified experiments, we

instead apply the tests of the assumptions in Proposition 2.40 For continuous outcomes

in non-clustered experiments, we report p-values of the KS distributional tests using the

appropriate randomization procedure.41 For binary outcomes and also for all outcomes from

clustered experiments, we apply regression-based mean tests (see Section B).

In addition to the tests of the restrictions in Propositions 1 and 2, we also apply a version

of the tests commonly used in the literature, including: the differential attrition rate test,

the IV-R test for respondents only and the IV-R test for attritors only. In the case of the

IV-R tests for respondents and attritors only, we apply the same approaches to handling

stratification and continuous outcomes as we do in implementing our proposed joint tests.

This ensures that the three IV-R tests are directly comparable, but it also means that this

exercise is not intended to be a replication of the attrition tests that are used in published

field experiments. For all tests, the results are presented in a way that is designed to preserve

the anonymity of the results and papers. Thus, attrition rates are presented as ranges, the

results are not linked to specific articles, and we randomize the order of the outcomes such

that they are not listed by paper.

38Of the seven experiments that were excluded: two did not provide the data sets along with the analysis
files due to confidentiality restrictions, two provided the data sets but did not include attritors, and one did
not provide sufficient information to identify the attritors. In two cases, an exceptionally high number of
missing values at baseline was the limiting factor since the attrition rate at follow-up conditional on baseline
response was lower than the attrition rate reported in the paper.

39If the article reports results separately by wave, we report attrition tests for each wave of a given
outcome. We did not, however, report results for each heterogeneous treatment effect–unless those results
were reported in the abstract.

40When the number of strata in the experiment is larger than ten, we conduct a test with strata fixed
effects only as opposed to the fully interacted regression in Section B in order to avoid high dimensional
inference issues. Under the null, this specification is an implication of the sharp testable restrictions proposed
in Proposition 2.

41We apply the Dufour (2006) randomization procedure to accommodate the possibility of ties.
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Table 6 reports the p-values of the attrition tests for the applications.42 For the differential

attrition rate test, we find p-values smaller than 5% for 9 out of 33 outcomes. This is perhaps

not surprising, given that overall attrition rates and differential attrition rates seem to be

correlated, and these outcomes have fairly high attrition rates (McKenzie, 2019).

Turning to the proposed joint IV-R test, however, all of the reported p-values are larger

than 5%. For any of the outcomes reported here, a researcher using this test at the 5%

significance level would not reject the identifying assumption that implies that differences

between treatment and control respondents are internally valid for the respondent subpop-

ulation. Similarly, the IV-R tests using only respondents or attritors have p-values larger

than 5% for all 33 outcomes. Although there is often a substantial difference in the p-values

for these two simple tests relative to the joint test for a given outcome, there is no consistent

pattern in the direction of those differences.

Finally, we consider the results of our proposed IV-P test. For 8 out of the 33 outcomes,

the differential attrition rate test has a p-value smaller than 5%, whereas the p-value of the

IV-P test is substantially larger than 5%. These empirical cases are consistent with the

testable implications of Example 1. This provides suggestive evidence that the theoretical

conditions under which the differential attrition rate test does not control size are empirically

relevant. More broadly, the p-values for the IV-P test are larger than 5% for a majority of

outcomes in this exercise, specifically 25 out of 33. This surprising result has promising

implications for randomized experiments in which the study population is intended to be

representative of a larger population.

7 Conclusion

This paper presents the problem of testing attrition bias in field experiments with baseline

outcome data as an identification problem in a panel model. The proposed tests are based on

the sharp testable restrictions of the identifying assumptions of the specific objects of interest:

either the average treatment effect for the respondents, the average treatment effect for the

study population or a heterogeneous treatment effect. This study also provides theoretical

conditions under which the differential attrition rate test, a widely used test, may not control

size as a test of internal validity. The theoretical analysis has important implications for

current empirical practice in testing attrition bias in field experiments. It highlights that the

majority of testing procedures used in the empirical literature have focused on the internal

validity of treatment effects for the respondent subpopulation. The theoretical and empirical

42Although the number of outcomes from a given field experiment varies widely, the results are not driven
by any one experiment or type of outcome.
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results however suggest that the treatment effects of the study population are important and

possibly attainable in practice.

While this paper is a step forward toward understanding current empirical practice and

establishing a standard in testing attrition bias in field experiments, it opens several questions

for future research. Despite the availability of several approaches to correct for attrition bias

(Lee, 2009; Behagel et al., 2015; Millán and Macours, 2017), alternative approaches that

exploit the information in baseline outcome data as in the framework here may require weaker

assumptions and hence constitute an important direction for future work. Furthermore,

several practical aspects of the implementation of the proposed test may lead to pre-test

bias issues. For instance, the proposed tests may be used in practice to inform whether

an attrition correction is warranted or not in the empirical analysis. Empirical researchers

may also be interested in first testing the identifying assumption for treatment effects for

the respondent subpopulation and then testing their validity for the entire study population.

Inference procedures that correct for these and other pre-test bias issues are a priority for

future work.

Finally, this paper has several policy implications. Attrition in a given study is often used

as a metric to evaluate the study’s reliability to inform policy. For instance, What Works

Clearinghouse, an initiative of the U.S. Department of Education, has specific (differential)

attrition rate standards for studies (IES, 2017). Our results indicate an alternative approach

to assessing potential attrition bias. This paper also contributes to the ongoing debate

about the value of collecting baseline data in field experiments. Furthermore, questions

regarding external validity of treatment effects measured from field experiments are especially

important from a policy perspective. This paper points to the possibility that in the presence

of response problems, the identified effect in a given field experiment may only be valid for

the respondent subpopulation, and hence may not identify the ATE for the study population.

This is an important issue to consider when synthesizing results of field experiments to inform

policy.
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Table 6: Attrition Tests Applied to Outcomes from Five Field Experiments

Outcome Attrition Rate
Differential
Attrition
Rate Test

Tests of the IV-R Assumption
Test of the

IV-P
Assumption

Control (%)
Differential
(percentage

points)
CR-TR CA-TA Joint Joint

1 [10 - 30] (10 - 20] 0.025 0.567 0.948 0.832 0.563
2 [10 - 30] (0 - 5] 0.887 0.514 0.546 0.571 0.600
3 [10 - 30] (0 - 5] 0.109 0.834 0.751 0.879 0.956
4 [10 - 30] (0 - 5] 0.486 0.351 0.701 0.576 0.000
5 [10 - 30] (0 - 5] 0.100 0.421 0.526 0.668 0.755
6 [10 - 30] (0 - 5] 0.086 0.392 0.098 0.187 0.313
7 [10 - 30] (0 - 5] 0.056 0.315 0.575 0.490 0.652
8 [10 - 30] (0 - 5] 0.027 0.359 0.381 0.537 0.679
9 [10 - 30] (0 - 5] 0.129 0.190 0.532 0.312 0.008
10 [30 - 50] (0 - 5] 0.301 0.202 0.191 0.198 0.002
11 [10 - 30] (0 - 5] 0.030 0.688 0.966 0.917 0.979
12 [10 - 30] (0 - 5] 0.955 0.120 0.114 0.250 0.000
13 [10 - 30] (10 - 20] 0.039 0.827 0.120 0.277 0.441
14 [10 - 30] (0 - 5] 0.788 0.861 0.194 0.423 0.525
15 [10 - 30] (10 - 20] 0.048 0.682 0.558 0.800 0.609
16 [10 - 30] (0 - 5] 0.798 0.802 0.180 0.404 0.590
17 [10 - 30] (10 - 20] 0.037 0.685 0.428 0.711 0.843
18 [10 - 30] (0 - 5] 0.784 0.833 0.169 0.384 0.546
19 [30 - 50] (0 - 5] 0.127 0.700 0.494 0.690 0.010
20 [30 - 50] (0 - 5] 0.241 0.605 0.476 0.720 0.697
21 [10 - 30] (0 - 5] 0.084 0.796 0.261 0.518 0.671
22 [30 - 50] (0 - 5] 0.218 0.748 0.183 0.385 0.022
23 [30 - 50] (0 - 5] 0.128 0.328 0.632 0.615 0.053
24 [30 - 50] (0 - 5] 0.134 0.133 0.976 0.337 0.528
25 [30 - 50] (0 - 5] 0.118 0.718 0.510 0.707 0.029
26 [30 - 50] (0 - 5] 0.348 0.663 0.370 0.691 0.807
27 [30 - 50] (0 - 5] 0.217 0.883 0.768 0.858 0.423
28 [10 - 30] (0 - 5] 0.061 0.218 0.986 0.518 0.609
29 [10 - 30] (5 - 10] 0.036 0.276 0.698 0.832 0.106
30 [10 - 30] (10 - 20] 0.000 0.354 0.984 0.864 0.064
31 [30 - 50] (10 - 20] 0.047 0.144 0.440 0.526 0.692
32 [10 - 30] (0 - 5] 0.867 0.580 0.509 0.798 0.720
33 [10 - 30] (5 - 10] 0.437 0.421 0.887 0.683 0.447

Notes: The table reports p-values for the differential attrition rate test as well as tests of the IV-R and IV-P assumptions.
CR − TR (CA − TA) indicates difference across treatment and control respondents (attritors). Joint tests include all four
treatment-response sub-groups. Regression tests are implemented for i) the differential attrition rate test, ii) for the IV-R and
IV-P tests with binary outcomes, and iii) for cluster-randomized trials. Standard errors are clustered (if treatment is randomized
at the cluster level) and strata fixed effects are included (if treatment is randomized within strata). For continuous outcomes in
non-clustered trials, p-values of the KS tests are implemented using the appropriate randomization procedures (B = 499). For
stratified experiments with less than ten strata, the test proposed in Proposition 2 is implemented.
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A Proofs

Proof. (Proposition 1)
(a) Under the assumptions imposed it follows that FUi0,Ui1|Ti,Ri

= FUi0,Ui1|Ri
, which implies

that for d = 0, 1, FYit(d)|Ti,Ri
=
∫

1{µt(d, u) ≤ .}dFUit|Ti,Ri
(u) =

∫
1{µt(d, u) ≤ .}dFUit|Ri

(u) =
FYit(d)|Ri

for t = 0, 1. (i) follows by letting t = 1 and d = 0, while conditioning the left-hand
side of the last equation on Ti = 0 and Ri = 1, and the testable implication in (ii) follows
by letting t = d = 0.

Following Hsu, Liu and Shi (2019), we show that the testable restriction is sharp by

showing that if (Yi0, Yi1, Ti, Ri) satisfy Yi0|Ti = 0, Ri = r
d
= Yi0|Ti = 1, Ri = r for r = 0, 1,

then there exists (Ui0, Ui1) such that Yit(d) = µt(d, Uit) for some µt(d, .) for d = 0, 1 and
t = 0, 1, and (Ui0, Ui1) ⊥ Ti|Ri that generate the observed distributions. By the arbitrariness
of Uit and µt, we can let Uit = (Yit(0), Yit(1))′ and µt(d, Uit) = dYit(1) + (1 − d)Yit(0) for
d = 0, 1, t = 0, 1. Note that Yi0 = Yi0(0) since Di0 = 0 w.p.1. Now we need to construct a
distribution of Ui = (U ′i0, U

′
i1) that satisfies

FUi|Ti,Ri
≡ FYi0(0),Yi0(1),Yi1(0),Yi1(1)|Ti,Ri

= FYi0(0),Yi0(1),Yi1(0),Yi1(1)|Ri

as well as the relevant equalities between potential and observed outcomes. We proceed by
first constructing the unobservable distribution for the respondents. By setting the appro-
priate potential outcomes to their observed counterparts, we obtain the following equalities
for the distribution of Ui for the treatment and control respondents

FUi|Ti=0,Ri=1 = FYi0(0),Yi0(1),Yi1(0),Yi1(1)|Ti=0,Ri=1 = FYi0(1),Yi1,Yi1(1)|Yi0,Ti=0,Ri=1FYi0|Ti=0,Ri=1

FUi|Ti=1,Ri=1 = FYi0(1),Yi1(0),Yi1|Yi0,Ti=1,Ri=1FYi0|Ti=1,Ri=1

By construction, FYi0|Ti,Ri=1 = FYi0|Ri=1. Now generating the two distributions above using
FYi0(1),Yi1(0),Yi1(1)|Yi0,Ti,Ri=1 which satisfies FYi0(1),Yi1,Yi1(1)|Yi0,Ti=0,Ri=1 = FYi0(1),Yi1(0),Yi1|Yi0,Ti=1,Ri=1

yields Ui ⊥ Ti|Ri = 1 and we can construct the observed outcome distribution (Yi0, Yi1)|Ri =
1 from Ui|Ri = 1.

The result for the attritor subpopulation follows trivially from the above arguments,

FUi|Ti=0,Ri=0 = FYi0(1),Yi1(0),Yi1(1)|Yi0,Ti=0,Ri=0FYi0|Ti=0,Ri=0,

FUi|Ti=1,Ri=0 = FYi0(1),Yi1(0),Yi1(1)|Yi0,Ti=1,Ri=0FYi0|Ti=1,Ri=0,

Since FYi0|Ti,Ri=0 = FYi0|Ri=0 by construction, it remains to generate the two distributions
above using the same FYi0(1),Yi1(0),Yi1(1)|Yi0,Ri=0. This leads to a distribution of Ui|Ri = 0 that
is independent of Ti and that generates the observed outcome distribution Yi0|Ri = 0.

(b) Under the given assumptions, it follows that FUi0,Ui1|Ti,Ri
= FUi0,Ui1|Ti = FUi0,Ui1

where
the last equality follows by random assignment. Similar to (a), the above implies that for d =
0, 1 and t = 0, 1, FYit(d)|Ti,Ri

=
∫

1{µt(d, u) ≤ .}dFUit|Ti,Ri
(u) =

∫
1{µt(d, u) ≤ .}dFUit

(u) =
FYit(d). (i) follows by letting t = 1, while conditioning the left-hand side of the last equation
on Ti = τ and Ri = 1 for d = τ and d = 0, 1, whereas (ii) follows by letting d = t = 0 while
conditioning on Ti = τ and Ri = r for τ = 0, 1, r = 0, 1.

To show that the testable restriction is sharp, it remains to show that if (Yi0, Yi1, Ti, Ri)
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satisfies Yi0|Ti, Ri
d
= Yi0(0), then there exists (Ui0, Ui1) such that Yit(d) = µt(d, Uit) for

some µt(d, .) for d = 0, 1 and t = 0, 1, and (Ui0, Ui1) ⊥ (Ti, Ri). Similar to (a.ii), we let
Uit = (Yit(0), Yit(1))′ and µt(d, Uit) = dYit(1) + (1 − d)Yit(0). Then Yi0 = Yi0(0) by similar
arguments as in the above. Furthermore, FYi0|Ti,Ri

= FYi0 by construction and it follows
immediately that

FUi|Ti=0,Ri=1 = FYi0(1),Yi1,Yi1(1)|Yi0Ti=0,Ri=1FYi0 ,

FUi|Ti=1,Ri=1 = FYi0(1),Yi1(0),Yi1|Yi0,Ti=1,Ri=1FYi0 ,

FUi|Ti=0,Ri=0 = FYi0(1),Yi1(0),Yi1(1)|Yi0,Ti=0,Ri=0FYi0 ,

FUi|Ti=1,Ri=0 = FYi0(1),Yi1(0),Yi1(1)|Yi0,Ti=1,Ri=0FYi0 .

Now constructing all of the above distributions using the same FYi0(1),Yi1(0),Yi1(1)|Ti,Ri
that

satisfies FYi0(1),Yi1,Yi1(1)|Yi0,Ti=0,Ri=1 = FYi0(1),Yi1(0),Yi1|Yi0,Ti=1,Ri=1 implies the result.

Proof. (Proposition 2) The proof is immediate from the proof of Proposition 1 by condition-
ing all statements on Si.

Proof. (Proposition 3) For notational brevity, let Ui = (U ′i0, U
′
i1). We first note that by

random assignment, it follows that

FUi|Ti,Ri(0),Ri(1) = FUi|Ti,ξ(0,Vi),ξ(1,Vi)=FUi|ξ(0,Vi),ξ(1,Vi) = FUi|Ri(0),Ri(1). (16)

As a result,

FUi|Ti=1,Ri=1 =
p01FUi|(Ri(0),Ri(1))=(0,1) + p11FUi|(Ri(0),Ri(1))=(1,1)

P (Ri = 1|Ti = 1)
, (17)

FUi|Ti=0,Ri=1 =
p10FUi|(Ri(0),Ri(1))=(1,0) + p11FUi|(Ri(0),Ri(1))=(1,1)

P (Ri = 1|Ti = 0)
. (18)

If (i) holds, then FUi|Ri(0),Ri(1) = FUi
, hence

FUi|Ti=1,Ri=1 =
p01FUi

+ p11FUi

P (Ri = 1|Ti = 1)
= FUi

, FUi|Ti=0,Ri=1 =
p10FUi

+ p11FUi

P (Ri = 1|Ti = 0)
= FUi

.

We can similarly show that FUi|Ti,Ri=0 = FUi
, it follows trivially that Ui|Ti, Ri

d
= Ui|Ri.

Alternatively, if we assume (ii), Ri(0) ≤ Ri(1) implies p10 = 0. As a result, P (Ri =
0|Ti = 1) = P (Ri = 0|Ti = 0) iff p01 = 0. It follows that the terms in (17) and (18)
both equal FUi|(Ri(0),Ri(1))=(1,1). Similarly, it follows that FUi|Ti=1,Ri=0 = FUi|Ti=0,Ri=0 =
FUi|(Ri(0),Ri(1))=(0,0), which implies the result.

Finally, suppose (iii) holds, then equal attrition rates imply that p01 = p10. The ex-
changeability restriction implies that FUi|(Ri(0),Ri(1))=(0,1) = FUi|(Ri(0),Ri(1))=(1,0). Hence,

FUi|Ti=1,Ri=1 =
p01FUi|(Ri(0),Ri(1))=(0,1) + p11FUi|(Ri(0),Ri(1))=(1,1)

P (Ri = 1|Ti = 1)

=
p10FUi|(Ri(0),Ri(1))=(1,0) + p11FUi|(Ri(0),Ri(1))=(1,1)

P (Ri = 1|Ti = 0)
= FUi|Ti=0,Ri=1. (19)
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Similarly, it follows that FUi|Ti=1,Ri=0 = FUi|Ti=0,Ri=0, which implies the result.

B Regression Tests of Internal Validity

In this section, we show how to implement regression-based tests of internal validity for
respondents (H1

0,M) and internal validity for the study population (H2
0,M). We follow the

same notational conventions as in the paper.

B.1 Completely and Clustered Randomized Experiments

Yi0 = γ11TiRi + γ01(1− Ti)Ri + γ10Ti(1−Ri) + γ00(1− Ti)(1−Ri) + εi

H1
0,M : γ11 = γ01 & γ10 = γ00,

H2
0,M : γ11 = γ01 = γ10 = γ00.

Both hypotheses are joint hypotheses of linear restrictions on linear regression coefficients.
Hence, they are straightforward to test using the appropriate standard errors.

B.2 Stratified Randomized Experiments

Yi0 =
∑
s∈S

[γs11TiRi + γs10Ti(1−Ri) + γs01(1− Ti)Ri + γs00(1− Ti)(1−Ri)] 1{Si = s}+ εi

Hence, for s ∈ S,

H1,s
0,M : γs11 = γs01 & γs10 = γs00,

H2,s
0,M : γs11 = γs01 = γs10 = γs00.

One could either test the above null hypotheses jointly for all s ∈ S or approach it as a
multiple testing problem for each s ∈ S and perform an appropriate correction.
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