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Abstract

For the last several years, there has been a debate in the academic literature regarding the

association between economic growth and child health in under-developed countries, with many

arguing the association is strong and robust and several new papers arguing the association

is weak or nonexistent. Focusing on child growth faltering as a process that unfolds over

the first several years of life, we provide new evidence tracing out the relationship between

macroeconomic trends and the trajectory of child growth through age 5. Using two novel

regression models that each harness different kinds of within- and between-country variation,

and data on over 600,000 children from 38 countries over more than 20 years, our estimates

of the association are relatively small but precise, and are consistent across both estimators.

We estimate that a 10% increase in GDP around the time of a child’s birth is associated with

a decrease in the rate of loss of HAZ of about 0.002 SD per month over the first two years

of life, which generates a cumulative effect of around 0.04 SD by age 3 that then persists

through age 5. Our estimates are small compared to most previously published statistically

significant estimates, more precisely estimated than previous insignificant estimates, and relate

to a broader population of children than previous estimates focused on dichotomous outcomes.

∗Cornell University
†University of California, Riverside

1



1 Introduction

Economic growth is valuable insofar as it improves human wellbeing, and long-term devel-

opment has clearly generated large improvements in the welfare of millions of people. Yet

even with steady growth in the global economy over the last several decades, child physical

growth stunting induced by chronic under-nutrition and heavy disease burden still affects

over 150 million children worldwide.1 Stunted growth in childhood leads to decreased wages

and worsened health outcomes in later life, and contributes to the inter-generational per-

sistence of poverty (Behrman et al., 2009; Hoddinott et al., 2008). It is also, by definition,

around 98% preventable by raising children in households with moderate income in safe

public health environments, making its prevalence both a disheartening fact about the world

and a useful statistical measure of the health dimensions of child welfare. Stunted growth

is both a marker of the cumulative effects of chronic nutrient deficiency and poor health on

physical development and a physical manifestation of stunted human potential.

Despite the major differences in stunting rates and mean height-for-age z-score (HAZ) be-

tween children in developed and developing countries, several recent papers have argued

that there is a surprisingly weak correlation between medium-term economic growth and

nutritional status within less-developed countries (Subramanyam et al., 2011; Vollmer et al.,

2014). These papers stand in contrast to previous cross-country work that estimated rela-

tively robust effects of macroeconomic conditions on child anthropometric outcomes (Smith

and Haddad, 2002; Haddad et al., 2003; Klasen, 2008; Harttgen et al., 2013). We argue that

the regression models used in the newer studies aggregate over important heterogeneities in

the magnitude of the correlation between GDP and HAZ that develop as children age. Cor-

relations of medium-term growth and HAZ start small but grow steadily over the first few

years of life. Aggregating the magnitude of the correlation across all ages thus reduces point

estimates relative to the magnitude that is relatively persistent from age 3 onwards. Given

1UNICEF data, Date Accessed: 07/12/2016: http://data.unicef.org/nutrition/malnutrition.html
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that stunting is generally understood as the result of the process of growth faltering, and

that this process unfolds primarily over the first two years of life (Victora et al., 2010; Rieger

and Trommlerová, 2016), the correlation between GDP and HAZ at ages 3-5 is likely more

informative than the average correlation over the first five years. Though not intrinsically bi-

ased, previous models produce estimates that are needlessly imprecise in terms of statistical

power and difficult to interpret given the biological realities of child growth faltering.

We develop two novel regression models that estimate the effects of GDP changes at various

points in a child’s development on survey-time anthropometric outcomes using both within-

and between-country variation. The two models, though conceptually and statistically quite

distinct, produce similar estimates. Using our survey-level outcome and regression model,

we estimate that exposure to a 10% increase in GDP during early childhood is associated

with a decrease in the rate of loss of HAZ relative to the World Health Organization (WHO)

reference median by 0.002 sd/month. This adds up to an effect of around 0.05 sd by the

child’s third birthday. Similarly, our age-profile fixed-effect model estimates a statistically,

biologically and economically insignificant association before a child’s first birthday, but that

by age three a 10% increase in GDP is associated with a cumulative effect of 0.03-0.04 sd

that persists through age 5.

Our models specifically address both the timing of exposure to economic growth relative to

a child’s development and the age at which a child is measured, while controlling for both

growing up to age A in country C (country-specific age profiles) and growing up between

the years of T and T+A (a child’s lifespan). We interpret the identifying variation in

both models in terms of within- and between-country variation in GDP exposure history

and the shape of the HAZ-age profile, and we relate this interpretation to previous models

employed in the literature. Like previous fixed-effects models, our coefficient estimates are

identified from relative changes in GDP and HAZ over space and time. However, unlike

previous work that estimates a level effect of economic growth on child nutritional status, we

model how changes in GDP tied to specific points in a particular cohort’s development are
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associated with changes in average child growth trajectory. Said another way, we estimate

the associations between a country’s history of economic growth and the shape of its HAZ-age

profile.

Beyond their desirable econometric properties, our models are inspired by, and clearly inter-

pretable within, the framework of dynamic health capital accumulation theory. As in classic

health capital models, households choose an optimal stream of investment in child health

inputs given their preferences and subject to a budget constraint and a health production

function. The optimal level of inputs varies with standard microeconomic forces (prices, bud-

get constraints) and public goods (including environment and infrastructure), and choosing

optimal input levels implies an optimal health level for the child. This allows us to interpret

HAZ, a measure of cumulative health inputs since birth, as carrying information on the entire

history of that optimally chosen stream of inputs up to the moment the child is measured.

We model changes in GDP as altering public goods availability and household income, thus

altering the optimal stream of investments in child health inputs, and thus affecting a child’s

physical growth trajectory (HAZ). The age-profile analyses we conduct are fully consistent

with the set of potential effect heterogeneities across child development predicted by the

abstract model. More than that, specific predictions about the heterogeneous effects of in-

put timing or effect-persistence can be tested by comparing coefficient estimates across child

ages.

Our goals in this work are two-fold. First, we argue that we provide more precise and in-

terpretable estimates of the relationship between medium-term economic growth and child

height than have previously been available. Second, we demonstrate how an econometric

framework focused on the HAZ-age profile, instead of simply mean HAZ or stunting probabil-

ity, can allow for both more precise and more nuanced estimates, regardless of the covariate of

interest. Models such as those developed here may allow researchers to better trace out how

inputs and investments at different ages differentially affect child development. Such anal-

yses, exploiting spatio-temporal variation in exposure and repeated cross-sectional or panel
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outcome data, could help generate a deeper understanding of both human development it-

self and the effectiveness of interventions and policies aimed at improving developmental

outcomes.

2 Background

2.1 Spatio-Temporal Variation: Within- v. Between-Country

Cross country studies of the effects of macroeconomic growth on child anthropometric out-

comes have estimated strong relationships between contemporary GDP and child wasting

or undernutrition. Smith and Haddad (2002) and Headey (2013) find that a 10% increase

in GDP is associated with decreases in undernutrition rates of 6.3% and 1.8pp respectively.

Haddad et al. (2003) estimates a much bigger cumulative effect, finding that a 10% increase

in GDP is associated with decreases in undernutrition of 32pp over two decades.

While multi-country studies have found robust effects when relying primarily on across-

country variation and aggregate outcome measures, within-country studies using individual-

level data have also found strong associations (or causal effects) between HAZ and changes

in household income measures and the availability of public goods. Jensen (2000) and Hod-

dinott and Kinsey (2001) show that droughts in Ivory Coast & Zimbabwe (respectively)

increased malnutrition of children. Similarly, Maluccio et al. (2005) shows that a sharp

reduction in coffee prices in Nicaragua increases malnutrition in children from households

dependent on coffee plantations for their livelihoods. Pongou et al. (2006) show that after

controlling for health seeking behavior by mothers, a reduction in socio economic status of

households in Cameroon increases malnutrition.

Despite the seeming volume of evidence, two recent papers have provided important reasons

to worry that some of those estimates may be misleading. Subramanyam et al. (2011) finds

that province level per capita GDP does not have any impact on the nutritional status
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of children in India. Vollmer et al. (2014) uses cross country height and weight scores

from 126 DHS surveys and find for the most part statistically, economically and biologically

insignificant associations.

The impact of Subramanyam et al. (2011) and Vollmer et al. (2014) on the academic debate

was large, sparking a series of both positive and less positive responses in various journals

(Singh, 2014; Alderman et al., 2014; Bershteyn et al., 2015; Joe et al., 2016; O’Connell and

Smith, 2016; Lange and Vollmer, 2017). This was not simply because their estimates were

somewhat out of line with previous research, but because these out-of-line estimates were the

first to apply spatio-temporal econometric models that could estimate the effect of within-

country economic growth while still controlling non-parametrically for secular time trends.

This methodological improvement came with an important statistical critique of previous

research similar to the arguments in favor of the so-called “difference-in-difference” type

fixed effect models widely used in applied microeconometrics.

A version of the statistical critique goes as follows: previous studies have relied almost exclu-

sively on one of two types of “identifying variation” in the variables of interest. Cross-country

studies rely on “between country” variation; the model implicitly compares the GDP levels

of countries J and K with their average HAZ. These regressions tell us how countries that

have grown differently in the past have experienced different health improvement trajecto-

ries, but they cannot tell us how growth in some particular country affects the nutritional

status of children. The model will pick up any effect of GDP on HAZ, but also any effects

of anything else that is more conducive to child physical growth in richer as compared to

poorer countries.

Exploiting “within country” variation comes with its own concerns. If we consider only

country-level macro-economic conditions, then within a country the only variation in GDP

comes from across birth cohorts - from children born in different years and thus exposed to

the stream of GDP realizations at different points in their development. The sacrifice to be
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made to estimate within-country effects is that one must choose a parametric specification

for the effects of secular improvement over time, and with only a few survey rounds this

becomes a potentially insurmountable econometric problem.

Spatio-temporal fixed-effects models, on the other hand, exploit both within- and between-

country variation in GDP growth and child growth. These models make assumptions about

the effects of place and time that allow for group/region level effects that are persistent

across time, and simultaneously allow for arbitrary secular trends that are common across

groups. Whereas within-country models compare changes in GDP to changes in HAZ, these

“difference-in-difference” type models compare how much more or less change in HAZ high

growth countries experienced relative to low growth countries. Differential changes in HAZ

that are uncorrelated with differential changes in GDP are then ascribed to the unobserved

time effect and not, as in the pure within-country model, ascribed to GDP growth itself.

2.2 Outcome Measurement: Height v. Weight; HAZ v. Stunting;

HAZ-age Profile v. HAZ

Height-for-age Z-score (HAZ) is an age- and gender-normalized measure of child height rel-

ative to the median height of a population of well-nourished and healthy children. The

anthropometric standards provided by the WHO reflect the highest potential for physical

growth and human development. The standards were derived from growth curves that were

estimated from children between the ages of 0 to 5 years olds in six countries –United States,

Oman, Norway, Brazil, Ghana and India. In order to capture the anthropometry measures

of well fed children, the WHO collected data on children from higher socio economic groups

who were breast fed up to at least 12 months after they were born by non smoking mothers

who lived within a sub set of locations in these countries.

Alongside determining the standards, a WHO expert working committee argued that height–for–age

(HAZ), weight–for–age (WAZ), weight–for–height (WHZ) z-scores best reflected the interac-
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tion between social determinants of health and the physical development of children (World

Health Organization, 1995). They determined that indicators that used weight could accu-

rately predict malnourishment within a population at a given time. However, since weight

is highly responsive to food and nutrition availability in the short-term, weight measures

should not be used predict the effect of past input streams on the current or future health

and productivity of an individual. On the other hand, HAZ scores can be interpreted as

capturing the cumulative effects of the stream of biological inputs over the course of the

child’s development. Other work has shown that HAZ predicts lower productivity in adults

(Glewwe and Miguel, 2007; Hoddinott et al., 2008) and can predict two year future mortality

risk in young children (World Health Organization, 1995). The authors of the WHO report

also cautioned that any study that used HAZ as an outcome would be confounded by its

relationship with age if this relationship was not accounted for properly.

Figure 1 shows survey-round mean HAZ from 126 Demographic and Health Surveys (DHS)

across 38 countries, comparing HAZ and GDP in year of survey. The upper panel of Figure 1

shows how mean HAZ for a country correlates with the level of GDP in the survey year.

The correlation in the raw data is statistically significant and the coefficient is of a similar

magnitude to our final estimates - a 0.1 log point change in GDP is associated with a 0.03

sd increase in HAZ. The bottom panel in the graph shows changes in HAZ against changes

in GDP, and the point estimates are similarly sized and also precisely estimated. Figure 1,

though, fails to capture the underlying biological process of child growth.

To represent the population-level association between HAZ and GDP in a manner more true

to the process of growth faltering, we present the HAZ-age profiles from our sample countries

in Figure 2, plotting mean HAZ across child age. In the top panel, we aggregate countries

based on being above or below median GDP for countries in our sample2. A very clear

pattern emerges. Children in both groups of countries start at similar HAZ at birth (just

below 0) and then grow more slowly than the children in the well nourished, healthy WHO

2We use average GDP over the study period to divide countries into the two groups
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reference group. Mean child HAZ is then essentially constant from age 2 through age 5.3

The second key insight taken from the graph is that it is the rate of loss of HAZ, and not

HAZ at birth, that drives the differences in the HAZ-age profiles across GDP levels. At

the left edge of the graph, poorer and richer countries (graded from cyan to magenta) are

intermingled, with a slight tendency for poorer countries to have a lower intercept. However,

by the age of 5, the HAZ-age profiles have essentially sorted themselves along GDP rank.

This is the result of increased severity of growth faltering in the poorer countries. Despite

the fact that children in relatively richer and poorer countries were born with similar length,

the children in the poorer countries grow much slower.

If the defining characteristic of the association between economic conditions and child height

is the process of growth faltering, then clearly the use of mean HAZ or stunting as a measure,

as compared to age-specific HAZ, is averaging across the exact effect it is hoping to capture.

The probability of stunting is non-linear and strongly increasing over the first two years of

life and any effect of GDP growth on stunting at age 2 is being averaged with much smaller

effects for an otherwise similar child measured at 4 months. Limiting the sample to younger

children (as Subramanyam et al., 2011 and Vollmer et al., 2014 both do to increase sample

size) only exacerbates the problem.

2.3 Timing of Exposure: Cohort v. Survey

While Figure 2 is a conceptual improvement over Figure 1, they both aggregate over another

important dimension of the analysis - the timing of changes in GDP relative to the devel-

opment of a child. That is, in Figure 2 countries are categorized as simply above or below

the median for the sample; and in Figure 1 they are assigned the GDP that corresponds

with the timing of the survey. This second strategy, of merging GDP level with survey-time

is common to almost all of the cross-country literature on macroeconomic conditions and

3There is some visual evidence that the gap in HAZ between richer and poorer countries may close slightly
by age 5 (so called “catch–up” growth).
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child health. Indeed, our survey-level aggregate models tie exposure to survey time, though

mostly because they use data on only the two most recent annual cohorts of children, and

so the choice of merging strategies makes little difference.

But once we concede that the age-profile representation is more accurate than the scatter-plot

representation, we are also conceding that the timing of inputs matters, and that experiencing

GDP growth as a 4 year old has different effects than being born following several years of

economic growth. Our fixed effects analyses thus merge GDP exposure to child cohort,

not to survey dates. We also vary this “age-at-exposure” to test how coefficients change

when input-timing is allowed to adjust. Though the serial correlation in GDP over time

makes separately identifying the effects of each age-at-exposure from each age-at-measure

impossible, the exercise is still valuable. We discuss the details of the empirical issues in our

discussion of the econometric models, but in the next section we show that only by tying

exposure to cohort instead of survey can we remain faithful to the underlying heath capital

accumulation theory.

3 Health Capital Accumulation

3.1 Model Structure

We begin with an abstract and stylized inter-temporal household utility optimization prob-

lem, drawing from health capital models such as Grossman (1972) and Becker (1962). House-

hold decision makers have preferences for their own consumption (C) and for their children’s

health (H).

∑
T

Ut(H
a
t , Ct) (1)

Child health is super-scripted ‘a’ to re-enforce the link between calendar time ‘t’ and child
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age once a child is born. This becomes important because while setting t=0 normalizes

the relationship between “time” and “age” for that child, exposures in the world must be

indexed in “calendar time” not “age time”.

The evolution of child height is modeled by an age-specific human capital production function

that also takes inputs from calendar-time features of the world:

Ha
t = fa(Ha−1

t−1 , It−1, Gt−1; δ
a) (2)

Household’s can purchase inputs I that increase child health (food, medicine), and children

are affected by the general public health environment and availability of public health goods

and services such as water and sanitation, health knowledge, clinic and market access (G).

Given their preferences and the nature of fa(), household’s optimally purchase consumption

and child health investments (I) to maximize Equation 1 over the course of their expected

lifetimes subject to a period-specific budget constraint:

Wt = Pt.Ct + Iat (3)

In every period households earn income Wt and they spend all of it on either personal

consumption or health investment in the child. Households gain current period utility from

private consumption and a stream of future utility if they invest in their child’s health. Given

standard parameter restrictions including decreasing marginal utility of consumption and

concavity of the human capital production function, household’s will optimally proportion

their period specific income with positive purchases of both C and I, and will trade off on the

margin if relative prices or the efficiency of human capital production change. The addition

of common modeling complications such as inter-temporal borrowing, endogenous earnings

or later life wealth transfers from children to parents do not change these basic conclusions.

However, non-concavities in the human capital production function could easily change these
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predictions, and we address that to some degree below.

3.2 Optimal Investment and Comparative Age Dynamics

Fix the initial conditions: a child is born. This child is born into a household in year t

with health status H0
t and family wealth Wt. This implies, for the first period, an optimal

I∗0t (H0
t , Gt;Wt;Pt; δ

1), and thus implies an optimal H∗1t+1(H
0
t , Gt,Wt;Pt, δ

1)

Differences across countries in GDP, and changes within a country, are likely to affect two

elements in the determinants of optimal child health investment and thus in future child

health. First, increases in GDP lead to improvements in the labor market. During times

of GDP growth, households are more likely to find employment, and conditional on finding

employment, likely to receive more income (Topel, 1999). Second, increases in GDP are

likely to increase the provision of public goods (G). Public goods, broadly construed, work

here as a sort of in-kind transfer from the government that pays in child health. If we want

to know how a change in W or G at birth affects health status at age 2, we have to trace

its effect through optimal investment decisions in period 1 and the development of G and W

over time.

Consider the effect of an increase in household wealth generated by improved economic

conditions, which a household experiences in year t when a child is born. At age 1, the

effect of this input on child height comes from an increase in I∗0t (since increased wealth goes

partially to investment) and any increase in public goods Gt made possible by increases in

governmental revenue (which directly enters the human capital production function as an

input).

The effect by age 2, though, is not the same as it was at age 1. Instead, the change in H∗1

generates changes in both I∗1 relative to what it would have been had the household not

experienced the wealth transfer in year t, and in the effectiveness of the inputs themselves

(via fa()). The effect of improvements in W and G experienced in the first period of ones
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life will have differential effects that may either fade-out or be reinforced over the child’s

life depending on all of biology, household decision-making and the future strength of the

macroeconomy.

The above discussion highlights model predictions across age-at-measure, while fixing age-

at-exposure. But the model makes predictions across as second dimension of child age as

well. For a 4 year old, the effect of an input at age 2 compared to age 3 has two different

components. First, there are the fundamental differences in the human capital production

function over child age, for instance if there are critical periods to child development where

inputs have a larger effect than in other periods. Secondly, re-optimization of household

decision making in each period means that if unexpected external forces increase child health,

households may have incentives to invest differently than they previously would have because

the child is already healthier than they anticipated it being. By focusing on age-at-exposure,

conditional on age-at-measure, researchers can investigate how the timing of inputs over the

course of a child’s lifespan (up to measurement date) differentially impact attained height

at age A.

The simple framework presented here generates two dimensions of age heterogeneities, each

with both a biological and behavioral affect on child height (either directly via the human cap-

ital production function or indirectly via behavioral choices regarding optimal investment).

Our econometric framework is designed to address and estimate, in as least restrictive a

manner as possible, both of these dimensions of age-heterogeneity.

4 Econometric Models

We develop two methods for estimating the relationship between GDP and child growth rates.

The first method uses each individual DHS survey as a single observation of an HAZ-age

profile. This provides two-parameters (intercept and slope) that summarize the relationship
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between GDP growth and how quickly children in developing countries lose height relative to

the WHO reference population of healthy, well-nourished children. The second method uses

fixed-effects models developed to specifically control for both the average HAZ-age profile for

the child’s country and the experience of growing from age 0 to age A during the years T to

T+A. This allows us to (in theory) identify the effects of all permutations of age-at-measure

and age-at-exposure.

4.1 Rate of Loss of HAZ

Recall the common defining feature of the HAZ-age profiles presented in Figure 2. The loss

of HAZ experienced by children in developing countries is rapid and relatively linear over

the first two years of life. The age profile then becomes essentially flat (or slightly positively

inclined) from ages 2 through 5. We define two parameters to characterize this empirical

regularity: a) we define α as the intercept of the HAZ-age profile on the Y-axis, that is, the

implied length-for-age Z-score (LAZ) at birth; b) we define β as the rate of loss of HAZ from

birth to age 2, that is, how much more slowly are children growing than the WHO reference

median child (in units of standard deviations of the reference population). As simple as they

are, these summary measures provide a relatively complete characterization of the HAZ-age

profile over the first two years of life in country J from calendar years Y-A to Y4.

We estimate these parameters separately for each survey round in each country as an OLS

regression of HAZ for child i measured at age A for the entire set of surveys S:

HAZs
iA = αs + βs

age ∗ AgesiA + usiA ∀s ∈ S (4)

Equation 4 allows us to estimate α̂s, a country by time period specific estimate of the LAZ at

birth and β̂s, an estimate of the rate of loss from that initial birth LAZ over the first two years

4Where Y is the Survey Year.
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of life. We then take the estimates α̂s and β̂s and turn them into α̂jy and β̂jy, observations

from country J in survey year Y for a second stage regression on the determinants of the

shape of the HAZ-age profile over the first two years of life. The second stage regressions

treat α̂jy and β̂jy as the outcomes of interest. We merge this data with a panel of (log) per

capita GDP measures from the World Bank, generating an unbalanced panel of observations

at the country-year level that include the parameter estimates of the first-stage regressions

and the GDP data from the World Bank panel5.

The second stage regression takes a form involving some or all of the elements of the fully

saturated regression model below, for country J in year Y:

P̂jy = δ.GDPjy + γj + λy + ηjy (5)

δ̂, divided by 1,0006, can be interpreted as the effect of a 10% change in GDP on HAZ.

Variants of this equation, keeping or dropping different elements, allow us to estimate the

effect of GDP growth on the parameters of the HAZ-age profile using fundamentally different

types of identifying variation. Without γj and λy, the equation reduces to the OLS estimate

of the association between economic growth and HAZ. δ̂ is the estimate of the effect of

GDP on the outcome P̂jy (either α̂ or β̂). This version of the regression model treats every

observation as independent from the others, as though an observation from Armenia in

2000 can be naively compared to an observation from Zimbabwe in 2010. In that sense,

the equation fully exploits both within- and across-country variation, but does not do so

5In this specification, we merge GDP from the survey year with the outcome data. This means that
children who are infants in our regressions are being given a measure of GDP associated with their year of
birth, but children who are two years old are being given GDPs that they experience at age 2. In the next
section we more strictly link GDP measure to year of birth for all children, but in this section we simply note
that, given both the relatively small changes in GDP across one or two years, and the high serial-correlation
in GDP over time within a country, this should make little difference to our estimates. Furthermore, this
set of estimates abstracts away from the fact that children of different ages are living through periods of
growth at different points in their development, but since we are taking each survey as a single observation
at one point in time, this seems natural to the empirical environment, and is consistent with the previous
literature.

6HAZ is measured as the WHO score*100, which is how it is provided in the DHS. The calculation above
is based on a change of 0.1 in the log of GDP .
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in ways that are not immediately interpretable relative to actual changes in macroeconomic

conditions in the world.

In order to address more carefully the question of whether medium-term economic growth

is correlated with improvements in child health, we then specify a country level fixed effects

model. By including γj and thus de-meaning the outcome variable and the GDP time-series

within a country, δ̂ estimates how changes in GDP within a country over time affect LAZ at

birth and the rate of loss of GDP over the first two years. Our identifying variation within a

country comes not from one calendar year to the next, but from one survey year to the next,

an average time difference of about 6 years. The between country identifying variation comes

from binning surveys into 3 year survey-time bins.7 Symmetrically, we might want to focus

only on the across-country differences, even if only to understand any potential differences

between the OLS results and the within-country estimates. We show this by including λy

while dropping γj. This between country model estimates δ̂ by averaging correlations across

countries at each point in time.

The single fixed-effects estimates in the preceding paragraph are regression analogues of

single-difference estimators. Exploiting both across- and within-country variation in a “difference-

in-difference” framework allows us to partially address the problems of omitted variables

(across-country) and secular trends (within-country). With the inclusion of both λy and

γj, the model now implicitly compares changes in the HAZ-age profile in a country with

low growth to changes in the profile in a country with high growth. The secular trend in

improvement is thus differenced out, and the model estimates based on how much more

improvement in the parameters of the age profile there was in the high growth countries

compared to the low growth countries.

We offer two strategies for estimation of standard errors for δ̂. First, we provide analytic

7Technically, it is possible to include individual survey year dummies into the regression. However, since
surveys for different countries occur at different times, this forces the year dummies to identify off a small
and changing set of countries in each potential survey year. We thus bin time into 3 calendar-year bins,
chosen so that no country appears in the same temporal bin twice. Results are generally robust to the use
of individual year dummies.
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standard errors clustered by country, following standard practice for spatio-temporal fixed-

effects models. These standard errors are likely biased towards 0 relative to the true sampling

distribution of δ̂, since they do not account for the uncertainty in the left-hand side variables

(Elbers et al., 2005). To account for this, we provide a second set of standard errors estimated

from a 2-stage bootstrap procedure. In that procedure, we first choose (with replacement)

38 countries, and give each observation a new ID number. We then bootstrap sample by the

interaction of primary sampling unit (PSU) and survey round within each ID number, and

jointly estimate α̂ and β̂ for each survey replacing country based fixed effects with ID based

fixed effects. We repeat the double bootstrap sampling 500 times and report the standard

deviation of the estimates as the bootstrap standard error estimate of δ̂. Empirically, the

large sample sizes from each survey seem to make this secondary source of variation rather

small, and the two standard error estimates are similar.

Unlike the age-profile estimates in the next section, each parameter in the first stage re-

gression is estimated from a regression weighted by the probability weights provided by the

DHS. These weights make the age-profile parameter estimates representative of the popula-

tion distribution of the country at the time of the survey. Since each parameter is estimated

from only one survey, applying the weights is easy and the interpretation of their function

in clear. However, the second stage regressions of the parameters on GDP are not weighted,

and each survey is given an implicit weight of 1. The age-profile fixed-effects models in the

next section, which are estimated directly on the pooled data, are also not weighted.8

8We refer primarily to (Solon et al., 2015) for justification. DHS weights are designed to generate
nationally-representative estimates of population means and proportions. Any reweighing of repeated cross-
sections of the DHS from different countries requires deeply subjective choices about the target population
of interest. After relative probability weights are applied, the sum of those weights within a survey round
could be weighted equally across all surveys, by sample size, by country population (repeated or broken up
over survey rounds), or by some optimal variance minimizing quantity. We choose instead to simply let
each observation represent one observation, and concede that we have already assumed away heterogene-
ity in impact by estimating a single parameter for each age (one that does not vary by individual type or
sub-group).
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4.2 Age-Profile Fixed-Effect Models

Our second method implements a novel fixed effects specification that isolates the effect of

inputs at various ages on the entire HAZ-age profile. The intuition for the fixed-effects models

we estimate below can be motivated by a simple thought experiment. Suppose a researcher

has a set of cross-sectional surveys with HAZ measurements from different countries covering

a number of survey rounds in each country. Collapsing this data down into country-year

observations generates a country-year panel dataset. The insight we exploit is simply that

this same procedure can apply even if we keep only the observations from any particular

round that are children of age A. The following equation represents the regression analogue

of this thought-experiment, containing observations for only children aged A:

HAZA
icj = X ′ijcβ

A + δA ∗GDPcj + µA
j + λAc + ζAicj (6)

This equation reduces to the standard “quasi-difference-in-difference” method employed us-

ing panel or repeated cross-sectional methods on mean impacts, but estimates the coefficients

only on children of age A. There is no reason this regression cannot then be repeated for

children aged A+1, A-1, A+2... etc. A two year old child in country J born in 2000 would

be compared to a two year old born in Country J in 1995. Simultaneously, the 2 year old

born in 2000 in Country J is compared to a 2 year old born in 2000 in Country K. More

than that, each age-group is identified off different (though correlated) variation because

each cohort was born into the GDP stream experienced by their country at a different point

in calendar time. If the coefficient off 2 year olds is identified off the GDP values from 1995

and 2000, the coefficient on 3 year olds is identified off GDP values from 1994 and 1999 (and

the change in the value).

We generalize the above thought experiment and regression equation into a multi-age frame-

work where we can estimate δA simultaneously for children of all ages. We generalize the
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above function by allowing µA
j and λAc to become µja and λca, that is, we interact country

and cohort with age, generating fixed-effects for the country-specific HAZ-age profiles ( λac)

and child’s lifespan ( µja).

HAZijca = X ′ijcaβ +
∑
a

δA ∗GDPjc + µja + λca + εijca (7)

This regression again has both within- and between-country comparison analogs, but these

comparisons are now made only within a particular country’s children of the same age, or

across children who have lived the same “lifespan”. Our “within” variation comes from

comparing children of age A in country J and born in cohort C, with children of the same

age A and same country J but born in cohort C’. That is, we difference out the average effect

(over the whole sample period) of growing up to age A in Country J. The remaining variation

in GDP and HAZ for a cohort in Country J then contains three components: exogenous noise

(by assumption), any effect of GDP, and the secular improvement in HAZ that would have

occurred over time even absent changes in GDP.

Since HAZ is not an instantaneous outcome, the calendar date on which one is measured

can only affect HAZ by, in combination with cohort, fixing the calendar time through which

an individual child grows; that is, by being a proxy for the time into which you were born

and through which you grew up. Our “between” variation (λca) then comes from comparing

children who were born at the same time and measured at the same age (who lived the

same “lifespan” over calendar time), but in different countries. All children who lived the

same lifespan experienced secular changes in life-improving technologies over the exact same

points in their human development. Given the remaining variation in GDP after de-meaning

by country-age, the component of the secular time trend that is common across countries

for children of that cohort measured at that age can be purged from the remaining variation

by simultaneously estimating indicator variables for each lifespan permutation (age-cohort-

period) realized in the data. Interpreted in terms of allowing for idiosyncratic time trends,
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controlling for child lifespan allows the non-parametric secular time trends to themselves

vary non-parametrically by age.9

5 Data

For the outcome variables and other covariates, we use data from 126 demographic health

surveys (DHS) from 38 countries surveyed between the years 1986 and 2013 (I C F, 2011).

The DHS are nationally representative multi stage cluster surveys that provide health, de-

mographic and socioeconomic information of women (15-49 years) and children (0-5 years).

The surveys are generally conducted every few years in a given country, and can be weighted

to be nationally representative. A two stage sampling format is used where countries are

divided into regions based on political and geographical criteria and each region is classi-

fied into urban and rural areas. Within these strata, enumeration areas called the primary

sampling units (PSU) are chosen such that the probability of being chosen is equal to the

proportion of the population in the PSU to the total population from the census data. In the

second stage, 25 households from each PSU are randomly selected for the survey. The sur-

veys include information on anthropometry, household wealth, and other health care seeking

behaviors of households. Eligible respondents are women between the ages of 15 to 49, and

information is collected on the household and on children under the age of 5.10 We use the

(2005) WHO referenced HAZ scores that are the secondary HAZ measures in the DHS. For

DHS surveys completed before the 2005 WHO references were adopted, we merge back in

the DHS-computed WHO z-scores from the auxiliary files online.

Our estimation sample includes children between the ages of 0 to 60 months with valid

HAZ scores which were referenced to the WHO 2005 values. Only countries with at least

9A graphical representation of both the within- and between-country variation in the age-profile fixed-
effects models is presented in Figure A1, which plots the HAZ and GDP time series for three countries over
several survey rounds.

10Sometimes the sampling frame includes any children under 5 and sometimes only children of the respon-
dent, but this varies from country to country and over time

20



2 surveys in which all the ages were available were used for the analysis11. Anthropometry

scores between -6 and 6 were considered valid and included in the analysis per the WHO

recommendations (World Health Organization, 2006)12. Our regressions include only those

individuals with complete information on sex, their mother’s education level & age and type

of residence (urban or rural). After following this inclusion criteria, our estimation sample

consists of a total of 685,075 children in 38 countries. The consort diagram (Figure 3) shows

the sample selection criteria and loss of sample size at each stage.

GDP per capita (adjusted for 2005 USD) time-series for individual countries were downloaded

from the World Bank Databank.13 The data for GDP is merged to individual observations

by cohort and country. However, given that survey timing within the calendar year is not

constant across survey rounds and almost never covers the entire calendar year, we make

a slight adjustment. For each age of child (0, 1,..4), we calculate the modal birth year for

children measured in that survey round and of that age, and we assign this as the“merge”

year. This has a motivation in statistical theory - it removes the possibility of identifying

effects of GDP on HAZ off of “December-January” babies. That is, if we allowed children

from one cohort (defined as combination of country, survey round, and age group) to have

multiple values of GDP, our model would then derive identifying variation off comparing

children born in December with those born in January. If a survey takes place in other

months, the children from December will be measured at an older age than the children in

January, and since GDP tends to increase over time, younger children (with higher HAZ)

will be associated with (on average) higher GDP from the next calendar year. By defining

cohort in the manner that we do (constant within round-country-age bin) our fixed-effects

models do not identify off within-cohort variation in a way that can cause the bias described

11For example, India was dropped from the analysis since 2 out of the 3 surveys did not have children
between the ages of 3 to 4.

12The DHS multiplies standard WHO scores by 100, and we maintain this convention to make coefficients
more easily interpretable, so in practice our analysis includes those that range from -600 to 600 in the DHS
surveys

13Economic Indicators from http://databank.worldbank.org/; Accessed Dec 2014
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in Cummins (2013) or that relies on spurious variation across two children born just one

month apart.

Summary information on the countries used, the survey years, characteristics of the house-

holds and children and the outcome and GDP measure can be found in Table 1. The mean

age of the children is about 29 months and is evenly split by gender. 36% of the children

live in urban areas. Mothers are on average 29 years old, 36% of them have no education

and 35% of them have at least primary education. The average GDP per capita experienced

by children in our sample is around 721 USD. The average HAZ score for all children in the

sample is -144, meaning the average child in our sample is 1.4 standard deviations below the

WHO reference for the median healthy and well-nourished child of that age and gender.

Table 1 contains the entire (small) set of covariates used in our analysis. By controlling for

the sex of the child, the maternal age and education and the type of residence, we are able

to control for some of the main determinants of the differences in HAZ scores that come

from heterogeneity within the population. We limited the number of covariates in order to

maximize the final sample size and limit the potential for bias induced by differential omission

from the analysis set14. Our analysis files make it possible to easily add or remove covariates

in order to test the robustness of the estimates, but in general we find that covariates do not

strongly influence estimated effect size conditional on the fixed-effects specification.

6 Results

6.1 Rate of Loss of HAZ

Table 2 presents results from estimating Equation 5 on the parameter estimates from Equa-

tion 4. The α columns show the coefficient estimates of GDP on the implied length-for-age

14This parsimonious set of controls that was chosen such that the information was available in all survey
rounds in the DHS and the coding of the variables was consistent across DHS questionnaires.
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z scores (LAZ) estimates, and the β columns show the coefficients on the estimates of the

rate of loss of HAZ. The first specification provides the OLS estimate (excluding both γj and

λy) of the coefficients on α̂ and β̂ (obtained from Equation 4). The “between” specification

includes γj, the “within” specification includes λy, and the “DnD” columns present estimates

when both are included.

The coefficient estimates on α are generally small, highly variable across specifications and

imprecisely estimated. Taken at face value to assess potential magnitude, the point estimate

on the OLS coefficient implies that a 10% increase in GDP is associated with an approx-

imately 0.1sd increase in length-at-birth z-score. The coefficient magnitude increases to

almost 0.4 sd for the within estimate (with a confidence interval approximately that wide),

but the preferred difference-in-difference estimate puts the magnitude around 0.02 sd (with

a similarly wide confidence interval).

The coefficient estimates on β, on the other hand, are robust across specifications and fairly

precise. A 10% increase in GDP is associated with around a 0.002 sd decrease in the rate

of loss of HAZ. In a country whose median child becomes exactly stunted on their second

birthday after being born 0.25sd below the reference children (reasonable given Figure 2),

the rate of loss would be around 0.07 sd/month, making that a 3% change off the base.

Cumulatively, a change in the rate of loss of HAZ of 0.002 sd would generate a 0.05 sd effect

by the time the child reached their 3rd birthday.

6.2 Age Profile Fixed Effects Results

6.2.1 Birth Year GDP by Age-at-Measure

Figure 4 graphs, across child age, the coefficients and confidence intervals from the regressions

outlined in Equation 6, where separate regressions are run on children at each age in years.

The coefficient estimate on children under age 1 is small and statistically indistinguishable
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from zero. However, as the child reaches age two, the effect size has grown and the confidence

interval remains of similar magnitude. By age 3, a 10% increase in birth year GDP is

associated with a 0.04 sd increase in HAZ.

Table 3 provides the regression estimates from the simultaneous estimation strategy described

in Equation 7. The specification in column 1 has only country and survey fixed effects.

Column 2 includes country-age with survey fixed effects and column 3 includes country fixed

effects with lifespan fixed effects. The specification in column 4 includes both the country-

age and lifespan fixed effects. The estimates are stable across specifications and similar in

magnitude and precision to those graphed in Figure 4.

6.3 Effect at Age A by Age at Exposure

Figure 5 presents coefficient estimates from a series of regressions that shift the timing of

GDP relative to the child’s cohort, presented separately for children measured at ages 3 and

4. Each dot represents the estimate on δ̂ from a regression where the GDP exposure is tied

to a particular point in the child’s delveopment, from three years before their birth up to

two or three years after they were measured. The strong serial correlation in GDP (and in

changes in GDP) means that many of the estimates are statistically significant. However,

estimates from merges of the GDP stream to years between the birth of the child and the

date they were measured generate the largest coefficient estimates and have lower bounds

much further above the estimates those from estimates based on years before the child was

born or after they were measured.
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6.4 Simultaneous Estimation of Age-at-Exposure Effects by Age-

at-Measure

Figure 6 presents estimates, separately for each age-at-measure, of the association between

GDP exposure at each period from a child’s birth until the age at which they were measured.

Essentially, Equation 7 is re-conceived so that δA references heterogeneous effects across age-

at-exposure while holding age-at-measure fixed.

We present the estimates for completeness, and to show two aspects of the analysis. First, the

estimates are incredibly noisy and they have overly large coefficients that tend to cancel one

another out. This is certainly due in large part to the serial-correlation in GDP over time,

but that may be less of a problem in other empirical contexts. Second, for every age group,

the contemporary, survey-time coefficient dominates the other input periods. We leave it to

future researchers to determine whether this result is meaningful or informative, or simply the

result of contemporary GDP being the only exposure-year for which each cohort experiences

it in the same calendar year. Since the regressions are run separately by age, it could

simply be an improbable “draw” on the joint HAZ/GDP distribution in that particular set of

calendar years and countries. Though we do not pool data across measurement ages and thus

estimate each of these parameters simultaneously, such specifications follow naturally, with

Equation 7 updated again to have a double summation of coefficients over both exposure and

measurement age, covering whatever subset of permutations are relevant and interpretable.

6.5 Public Health Mechanisms

As discussed in the conceptual model, economic growth can impact the health of a child

either through private investments made by households or through public health channels.

In terms of household earnings and labor supply, the DHS does not provide appropriate

measures that are comparable across surveys. In the case of the latter, though, several
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comparable measures are provide. However, since this information is only collected relative

to the moment at which the survey was conducted, we can only trace out how economic

growth is correlated with changes in the aggregate public health environment, and not relate

this association to individual children or cohorts.

We find some evidence that increases in GDP improve the overall health services (Table 4).

In Table 4. A 10% increase in GDP is associated with increased vaccination rates (Cols 1

& 2) of around 1.3pp. Point estimates on access to within house sanitation facilities (Cols

7 & 8) are positive but not statistically significant. Point estimates on traditional births,

i.e births taking place outside formal health institutions (Cols 3 & 4) and access to health

cards (Cols 5 & 6) are negative but not statistically significant. We find little evidence (in

our sample) that GDP growth is associated with improvements in the health environment.

In Table 5, our estimates imply that a 10% increase in GDP is associated with increases in

fever of about 1pp, with no clear association with frequency of coughs or diarrhea.

7 Discussion & Conclusions

Prior studies that have estimated the relationship between economic growth and child health

have often assumed away the actual process of child development, preferring instead static

measures of population average health. In this paper we set out to develop new concep-

tual and methodological tools to capture the dynamic effects of health inputs on children’s

growth trajectory. We parametrically model the HAZ-age profiles from 126 DHS surveys and

interpret our results as evidence that the relationship between economic growth and child

health is more apparent in the rate of loss of HAZ than in length at birth. In the aggregate,

richer countries, and countries that grow richer, raise children that grow faster than those in

poorer countries and those that did not experience recent growth.

We also make strides towards separately identifying differences across permutations of “age
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at measure” and “age at exposure” relevant to estimating the age-dynamic parameters of an

optimal health investment model. We introduce age-profile fixed-effects models that exploit

variation within and across countries and cohorts to capture the impact of medium term

economic growth on child growth trajectory. Similar to the magnitudes from the aggregate

regressions, we find that a 10% increase in medium term GDP is associated with an almost

0.04 sd increase in HAZ by the time a child reaches the age of 3. Though the least-squares

estimation we use in this paper may be insufficiently structured to identify all the potential

exposure-by-measurement age permutations, we believe the econometric framework we lay

out here can be greatly improved upon in terms of variance for the willingness to trade off

small amounts of bias by placing prior restrictions on the coefficient dynamics across age (at

exposure and measurement).

Finally, we hope that our demonstration convinces readers of the value of such an age-profile

perspective in empirical contexts such as this where pseudo-panel outcome data is merged to

aggregate spatio-temporal variation and an age-determined outcome of interest. Averaging

effects across age can lead to misleading estimates that are not as directly interpretable

relative to the world as they may seem, and failure to account for the age-cohort relationship

can lead to bias as seen in Cummins (2013). Such age-aggregated models also needlessly

obscure nuances in human development that are revealed in our analysis without large losses

in statistical precision. We hope that more researchers will consider making the HAZ-age

profile, and not simply mean HAZ or stunting rates, their object of investigation.
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Figure 3: CONSORT Diagram
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Table 1: Summary Statistics: Covariates

Variable Mean SD
HAZwho -143.89 168.16
Child age (months) 28.40 17.17
GDP per capita (log) 6.58 0.92
Survey Year Gap (years) 5.98 2.28
Covariates
female (%) 0.50 0.50
Maternal Age (years) 28.80 6.83
Maternal Education
No Education (%) 0.36 0.48
Primary Education (%) 0.35 0.48
Secondary Education (%) 0.24 0.42
urban (%) 0.36 0.48
N 685075
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Table 2: Results: Rate of HAZ Loss and LAZ

OLS Between Within DnD

Alpha Beta Alpha Beta Alpha Beta Alpha Beta
b/se/bse b/se/bse b/se/bse b/se/bse b/se/bse b/se/bse b/se/bse b/se/bse

GDP 9.00 1.68∗∗∗ 10.0+ 1.65∗∗∗ 36.4∗ 2.21∗ 2.08 2.34∗

(5.54) (0.33) (5.33) (0.33) (17.8) (0.93) (15.7) (0.90)
[5.60] [0.35] [5.40] [0.36] [18.4] [0.99] [20.6] [1.15]

Mean -19.7 -7.6
Survey FE X X X X
Country FE X X X X
r2 0.04 0.36 0.15 0.37 0.08 0.08 0.23 0.10
N 126 126 126 126 126 126 126 126
+ 0.10, ∗ 0.05, ∗∗ 0.01, ∗∗∗ 0.001; Robust standard errors clustered at the country level for 41 countries;
For each specification columns represent results for children under 2, the first column presents values of
the average LAZ scores (α) and the second column presents values for the rates of loss of HAZ (β) from
Equation 5; Analytic cluster standard errors in ( ), 2-stage Bootstrap SE in [ ].
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Table 3: Results: Age Specific HAZ Outcomes

(1) (2) (3) (4)
HAZ HAZ HAZ HAZ
b/se b/se b/se b/se

Age 0 8.8 3.2 12.8 14.5
(10.5) (10.4) (9.6) (9.3)

Age 1 28.8∗∗∗ 30.3∗∗ 32.5∗∗∗ 28.9∗∗

(10.5) (13.4) (10.0) (14.1)
Age 2 33.6∗∗∗ 38.8∗∗∗ 36.7∗∗∗ 36.2∗∗∗

(10.7) (13.1) (10.0) (12.6)
Age 3 31.3∗∗∗ 38.6∗∗∗ 34.2∗∗∗ 38.2∗∗∗

(10.6) (11.0) (9.9) (12.6)
Age 4 28.8∗∗∗ 24.8∗∗ 31.9∗∗∗ 25.9∗∗

(10.5) (9.5) (9.6) (10.0)
Urban 31.9∗∗∗ 32.0∗∗∗ 31.9∗∗∗ 32.0∗∗∗

(2.0) (2.1) (2.0) (2.1)
Mat. Age 0.8∗∗∗ 0.8∗∗∗ 0.8∗∗∗ 0.8∗∗∗

(0.1) (0.1) (0.1) (0.1)
Female 14.3∗∗∗ 14.3∗∗∗ 14.3∗∗∗ 14.3∗∗∗

(1.2) (1.2) (1.2) (1.2)

Sample Mean -143.91
Survey FE X X
Country FE X X
Country-Age X X
Lifespan X X
r2 0.119 0.049 0.120 0.049
Obs 685075 685075 685075 685075

Ordinary Least Squares, All Controls Included, Regressions
clustered by country, controls also include dummies for ma-
ternal education
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Table 4: Results: Access to Health Care Services

(1) (2) (3) (4) (5) (6) (7) (8)
Vax Vax Trad Trad Card Card Sani Sani
b/se b/se b/se b/se b/se b/se b/se b/se

GDP at Birth 0.13∗ 0.13 -0.13 -0.12 0.0024 -0.017 0.0058 0.0069
(0.07) (0.08) (0.08) (0.08) (0.07) (0.07) (0.06) (0.07)

Urban 0.066∗∗∗ 0.066∗∗∗ -0.15∗∗∗ -0.15∗∗∗ 0.075∗∗∗ 0.075∗∗∗ 0.20∗∗∗ 0.20∗∗∗

(0.009) (0.009) (0.02) (0.02) (0.01) (0.01) (0.04) (0.04)
Mat. Age 0.0013∗∗∗ 0.0013∗∗∗ 0.00076 0.00076 0.00065 0.00066 0.0013∗∗∗ 0.0013∗∗∗

(0.0004) (0.0004) (0.0005) (0.0005) (0.0007) (0.0007) (0.0004) (0.0004)
Female -0.0014 -0.0015 0.0048∗∗∗ 0.0048∗∗∗ -0.0017 -0.0018 0.0015∗∗ 0.0015∗∗

(0.002) (0.002) (0.001) (0.001) (0.001) (0.001) (0.0007) (0.0007)

Sample Mean .69 .29 .82 0.16
Country FE X X X X
Country-Age X X X X
Lifespan X X X X X X X X
r2 0.158 0.042 0.076 0.076 0.055 0.050 0.186 0.186
Obs 681610 681610 671787 671787 685075 685075 676084 676084

Ordinary Least Squares, All Controls Included, Regressions clustered by country, controls also
include dummies for maternal education
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Table 5: Results: Age Specific Morbidity

(1) (2) (3) (4) (5) (6)
Cough Cough Fever Fever Diarrhea Diarrhea
b/se b/se b/se b/se b/se b/se

Age 0 0.04 0.05 0.09∗ 0.1∗∗ -0.02 -0.003
(0.05) (0.06) (0.05) (0.05) (0.02) (0.03)

Age 1 0.06 0.07 0.09∗ 0.1∗ -0.02 -0.004
(0.05) (0.06) (0.05) (0.07) (0.02) (0.04)

Age 2 0.06 0.07 0.09∗ 0.09 -0.02 -0.005
(0.05) (0.06) (0.05) (0.06) (0.02) (0.02)

Age 3 0.06 0.04 0.10∗ 0.07 -0.01 -0.03
(0.05) (0.06) (0.05) (0.06) (0.02) (0.02)

Age 4 0.06 0.07 0.1∗∗ 0.08 -0.01 0.010
(0.05) (0.05) (0.05) (0.05) (0.02) (0.02)

Urban 0.008 0.008 -0.02∗∗∗ -0.02∗∗∗ -0.006∗∗ -0.006∗∗

(0.005) (0.005) (0.006) (0.006) (0.003) (0.003)
Mat. Age -0.0007∗∗∗ -0.0007∗∗∗ 0.0005∗∗∗ 0.0005∗∗∗ -0.001∗∗∗ -0.001∗∗∗

(0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002)
Female -0.007∗∗∗ -0.007∗∗∗ -0.009∗∗∗ -0.009∗∗∗ -0.01∗∗∗ -0.01∗∗∗

(0.002) (0.002) (0.0010) (0.0010) (0.001) (0.001)

Sample Mean .28 .28 .15
Country FE X X X
Country-Age X X X
Lifespan X X X X X X
r2 0.026 0.020 0.024 0.011 0.032 0.006
Obs 673599 673599 658003 658003 680641 680641

Ordinary Least Squares, All Controls Included, Regressions clustered by country, controls also
include dummies for maternal education

38



References

Alderman, H., L. Haddad, D. D. Headey, and L. Smith (2014). Association between economic
growth and early childhood nutrition. The Lancet Global Health 2 (9), e500.

Becker, G. S. (1962). Investment in human capital: A theoretical analysis. Journal of political
economy 70 (5, Part 2), 9–49.

Behrman, J. R., M. C. Calderon, S. H. Preston, J. Hoddinott, R. Martorell, and A. D.
Stein (2009). Nutritional supplementation in girls influences the growth of their children:
prospective study in guatemala. The American journal of clinical nutrition 90 (5), 1372–
1379.

Bershteyn, A., H. M. Lyons, D. Sivam, and N. P. Myhrvold (2015). Association between
economic growth and early childhood nutrition. The Lancet Global Health 3 (2), e79–e80.

Cummins, J. (2013). On the use and misuse of child height-for-age z-score in the demographic
and health surveys. Technical report.

Elbers, C., J. O. Lanjouw, and P. Lanjouw (2005). Imputed welfare estimates in regression
analysis. Journal of Economic Geography 5 (1), 101–118.

Glewwe, P. and E. A. Miguel (2007). The impact of child health and nutrition on education
in less developed countries. Handbook of development economics 4, 3561–3606.

Grossman, M. (1972). On the concept of health capital and the demand for health, 80 j.
Pol. Econ 223 (10.2307), 1830580223.

Haddad, L., H. Alderman, S. Appleton, L. Song, and Y. Yohannes (2003). Reducing child
malnutrition: How far does income growth take us? The World Bank Economic Re-
view 17 (1), 107–131.

Harttgen, K., S. Klasen, and S. Vollmer (2013). Economic growth and child undernutrition
in sub-saharan africa. Population and Development Review 39 (3), 397–412.

Headey, D. D. (2013). Developmental drivers of nutritional change: a cross-country analysis.
World Development 42, 76–88.

Hoddinott, J. and B. Kinsey (2001). Child growth in the time of drought. Oxford Bulletin
of Economics and statistics 63 (4), 409–436.

Hoddinott, J., J. A. Maluccio, J. R. Behrman, R. Flores, and R. Martorell (2008). Effect of
a nutrition intervention during early childhood on economic productivity in guatemalan
adults. The lancet 371 (9610), 411–416.

I C F, I. (1992-2011). Demographic and health surveys (various) [datasets].

Jensen, R. (2000). Agricultural volatility and investments in children. The American Eco-
nomic Review 90 (2), 399–404.

39



Joe, W., R. Rajaram, and S. Subramanian (2016). Understanding the null-to-small asso-
ciation between increased macroeconomic growth and reducing child undernutrition in
india: role of development expenditures and poverty alleviation. Maternal & child nutri-
tion 12 (S1), 196–209.

Klasen, S. (2008). Poverty, undernutrition, and child mortality: Some inter-regional puzzles
and their implications for research and policy. The Journal of Economic Inequality 6 (1),
89–115.

Lange, S. and S. Vollmer (2017). The effect of economic development on population health:
a review of the empirical evidence. British medical bulletin 121 (1), 47–60.

Maluccio, J. A. et al. (2005). Coping with the” coffee Crisis” in Central America: The Role
of the Nicaraguan Red de Protección Social. IFPRI Washington, DC.

O’Connell, S. A. and C. Smith (2016). Economic growth and child undernutrition. The
Lancet Global Health 4 (12), e901–e902.

Pongou, R., J. A. Salomon, and M. Ezzati (2006). Health impacts of macroeconomic crises
and policies: determinants of variation in childhood malnutrition trends in cameroon.
International journal of epidemiology 35 (3), 648–656.
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timing of growth faltering: revisiting implications for interventions. Pediatrics , peds–2009.

Vollmer, S., K. Harttgen, M. A. Subramanyam, J. Finlay, S. Klasen, and S. Subramanian
(2014). Association between economic growth and early childhood undernutrition: evi-
dence from 121 demographic and health surveys from 36 low-income and middle-income
countries. The lancet global health 2 (4), e225–e234.

40



World Health Organization (1995). Physical status: The use of and interpretation of anthro-
pometry, report of a who expert committee. Technical report.

World Health Organization (2006). Who child growth standards: Length/height-for-age,
weight-for-age, weight-for-length, weight-for-height and body mass index-for-age: Methods
and development. Technical report.

41



A Representation of Identifying Variation
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Figure A1: Identifying Variation
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B Summary Statistics by Country

Table A1: Summary Statistics: Asia

Country Name Survey
Years

BirthYears N HAZ Birth Year
GDP pc
(USD 2005)

1. Armenia 3 1996-2010 4,074 -73.08 1356.94
2. Bangladesh 5 1992-2011 22,391 -190.37 391.141
3. Cambodia 3 1995-2010 10,803 -181.53 420.29
4. Jordan 5 1986-2012 27,806 -67.39 2183.46
5. Pakistan 2 1986-2012 7,114 -202.13 611.84
6. Turkey 3 1989-2003 9,943 -81.47 5605.791

Table A2: Summary Statistics: South America

Country Name Survey
Years

BirthYears N HAZ Birth Year
GDP pc
(USD 2005)

7. Bolivia 3 1993-2007 23,032 -135.51 971.06
8. Brazil 2 1982-1995 5234 -80.06 4035.81
9. Colombia 5 1984-2009 38,430 -91.91 3321.21
10. DominicanRepublic 3 1987-2013 10,109 -75.47 3081.81
11. Guatemala 2 1991-1998 12,420 -232.49 3081.80
12. Haiti 3 1997-2011 9,217 -111.84 472.59
13. Peru 4 1987-2000 34,168 -148.99 2183.584
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Table A3: Summary Statistics: Africa

Country Name Survey
Years

BirthYears N HAZ Birth Year
GDP pc
(USD 2005)

14. Benin 3 1997-2011 23,748 -167.17 535.46
15. BurkinaFaso 4 1988-2010 22,319 -149.18 358.81
16. Cameroon 3 1986-2010 10,548 -127.84 963.09
17. Congo 2 2001-2011 8,368 -109.47 1746.24
18. CoteDIvoire 2 1994-2011 4,689 -123.17 1013.27
19. Egypt 5 1988-2013 53,200 -96.21 1195.76
20. Ethiopia 3 1988-2002 22,035 -181.96 138.30
21. Ghana 3 1994-2008 8,099 -130.72 463.35
22. Guinea 3 1995-2012 8,645 -121.63 292.66
23. Kenya 3 1988-2008 14,647 -141.86 529.37
24. Liberia 2 1981-2013 7,495 -140.04 207.41
25. Madagascar 3 1988-2008 13,277 -196.03 289.29
26. Malawi 4 1988-2009 25,037 -194.54 215.22
27. Mali 3 1996-2012 24,450 -150.38 420.92
28. Morocco 3 1982-2003 14,203 -111.99 1458.99
29. Mozambique 2 1999-2011 17,372 -170.48 317.04
30. Namibia 4 1988-2012 10,675 -122.68 3317.52
31. Niger 3 1987-2011 12,579 -173.03 280.13
32. Nigeria 4 1986-2012 53,293 -148.08 855.14
33. Rwanda 4 1988-2010 18,045 -184.38 254.15
34. Senegal 3 1988-2010 10,271 -114.48 731.27
35. Tanzania 5 1987-2009 27,852 -181.88 329.15
36. Uganda 5 1984-2011 17,784 -167.55 251.265
37. Zambia 4 1987-2006 20,978 -189.17 647.78
38. Zimbabwe 4 1984-2010 13,302 -134.20 539.93
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C Aggregate Regressions

This table provides the results from the aggregate regressions for 2 outcomes HAZ and
stunted growth15. Column 3 and 6 are the preferred specifications and include both country-
age and cohort-age fixed effects. Here we see that a 10% increase in GDP increases aggregate
HAZ by 0.025 SD and decreases stunting by 0.005% (not statistically significant). The
estimates on the aggregate HAZ outcome lies within the range of the individual age wise
regressions in Table A4. This reiterates our argument that other studies that estimate
changes at the aggregate level will tend to underestimate the effect of GDP on HAZ.

Table A4: Results: Aggregate Impacts of GDP on HAZ

(1) (2) (3) (4) (5) (6)
HAZ HAZ HAZ Stunted Stunted Stunted
b/se b/se b/se b/se b/se b/se

GDP at Birth 22.6 26.6∗ 25.4∗ -0.04 -0.06 -0.05
(11.7) (10.9) (11.1) (0.03) (0.03) (0.03)

Urban 32.6∗∗∗ 32.6∗∗∗ 32.6∗∗∗ -0.09∗∗∗ -0.09∗∗∗ -0.09∗∗∗

(2.3) (2.3) (2.3) (0.008) (0.008) (0.008)
Mat. Age 0.8∗∗∗ 0.8∗∗∗ 0.8∗∗∗ -0.002∗∗∗ -0.002∗∗∗ -0.002∗∗∗

(0.1) (0.1) (0.1) (0.0003) (0.0003) (0.0003)
Female 14.3∗∗∗ 14.3∗∗∗ 14.3∗∗∗ -0.04∗∗∗ -0.04∗∗∗ -0.04∗∗∗

(1.2) (1.2) (1.2) (0.003) (0.003) (0.003)

Mean -144 .36
Age X X
Survey X X
Country X X X X
Country Age X X
Lifespan X X X X
r2 0.16 0.16 0.05 0.13 0.13 0.04
N 685075 685075 685075 685075 685075 685075

In Table A5 we see how the effects on stunting play out by age. Column 4 is our preferred
specification that includes both country-age and lifespan fixed effects. In line with Figure 2
we see that, current GDP has no impact on children who are age 0 at the time of the survey.
By age 1, a 10% increase in GDP decreases stunting by 0.006%. By age 3, GDP has decreased
incidence by 0.008%. This effects then wears out by age 4.

15Stunting is defined as a condition in which a child’s HAZ score is 2 SD below the reference group’s mean.
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Table A5: Age Specific Outcomes on Stunting

(1) (2) (3) (4)
Stunted Stunted Stunted Stunted

b/se b/se b/se b/se
Age 0 0.005 0.06∗ -0.008 -0.008

(0.03) (0.03) (0.03) (0.02)
Age 1 -0.06∗ -0.06∗ -0.07∗∗ -0.06∗∗

(0.03) (0.03) (0.03) (0.03)
Age 2 -0.08∗∗ -0.10∗∗∗ -0.09∗∗∗ -0.09∗∗

(0.03) (0.03) (0.03) (0.04)
Age 3 -0.07∗∗ -0.10∗∗∗ -0.08∗∗∗ -0.08∗∗

(0.03) (0.03) (0.03) (0.04)
Age 4 -0.06∗ -0.06 -0.07∗∗∗ -0.05

(0.03) (0.04) (0.03) (0.04)
Urban -0.09∗∗∗ -0.09∗∗∗ -0.09∗∗∗ -0.09∗∗∗

(0.007) (0.007) (0.007) (0.007)
Mat. Age -0.002∗∗∗ -0.002∗∗∗ -0.002∗∗∗ -0.002∗∗∗

(0.0003) (0.0003) (0.0003) (0.0003)
Female -0.04∗∗∗ -0.04∗∗∗ -0.04∗∗∗ -0.04∗∗∗

(0.003) (0.003) (0.003) (0.003)
Sample Mean .36
Survey FE X X
Country FE X X
Country-Age X X
Lifespan X X
r2 0.081 0.040 0.082 0.041
Obs 685075 685075 685075 685075

Ordinary Least Squares, All Controls Included
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