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Generations to come

. . . intergenerational solidarity is not optional, but rather a basic ques-
tion of justice, since the world we have received also belongs to those
who will follow us. (Pope Francis [22])

As we peer into society’s future, we — you and I, and our govern-
ment — must avoid the impulse to live only for today, plundering for
our own ease and convenience the precious resources of tomorrow.
We cannot mortgage the material assets of our grandchildren with-
out risking the loss also of their political and spiritual heritage. We
want democracy to survive for all generations to come . . . . (Eisen-
hower, 1953)

Timescales and choices

With 500 million years left of acceptable habitat for humans on Earth,
population being stable at 10 billion with an average length of life
equal to 73 years, the ratio of people who will potentially live in the
future to people living now is approximately 10 million to 1. (Asheim
[5])

If you are planning for a year, sow rice; if you are planning for a
decade, plant trees; if you are planning for a lifetime, educate people.
(Attributed to Confucius, 500 B.C.)

1. INTRODUCTION

Choices we make today may have enormous impacts on future generations and
the world they will live in. Analyses of intergenerational allocations of costs and
benefits have a long history. In that tradition, we are interested in societal choices
that involve a combination of the following: choice of actions that can have con-
sequences that far outlast the lifespan of decision makers, ethical questions about
intergenerational equity, and elements of irreversibility. Our aim is to put forward
an approach that, while grappling with the substantive analytical issues, is nonethe-
less tractable and applicable in optimization settings. We take as our starting point,
and generalize upon, a series of earlier attempts to reason about these issues. Our
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generalized approach is consonant with the values commonly expressed in analy-
ses of equity, and meets the more pragmatic criteria of tractability and applicability.
We begin with an example to provide some context to the issues involved.

1.1. Present Threats and an Old Analysis. The looming possibility of drastic change
to the climate equilibrium and the associated easy access resources from oceans and
forests may be a threat to civilization as we know it. We still believe, or hope, that
the expected duration of human society is much longer than the timescale of the
decisions that affect this possibility. In the presence of decisions with extremely
long-lasting effects and the associated mis-match of timescales, notions of patient
preferences for long-run optimality become attractive criteria for decision problems
that affect society, society being conceived of as an aggregate of the generations that
make it up.

The analysis of intergenerational allocations and welfare has a long history, from
which we take, as starting point, Sèbastien Le Prestre de Vauban’s Traité de la Culture
des Forêts (in e.g. [42] or [43]), written in the late 1600’s. Vauban, Louis XIV’s defense
minister, noted, during his wide travels, that several aspects of the economics and
ecology of forests complicate the analysis of good societal practices for foresty: first,
forests, being a free or easy access resource, were systematically over-exploited;
second, after replanting, forests start being productive in slightly less than 100 years
but don’t become fully productive for 200 years; and third, no private enterprise
can have so long and multigenerational a time horizon. From these observations,
Vauban concluded that the only institutions that could, and should, undertake such
projects in society’s interest were the government, in the form of the monarchy at
the time, and the church.1 The calculations behind his conclusion assumed that
society would be around for at least the next 200 years to enjoy the net undiscounted
benefits.

From Vauban’s summing of undiscounted costs and benefits as a way of express-
ing concern for the welfare of future generations, we take the following: if τ repre-
sents the random time until the end of society and u = (u0,u1,u2, . . .) is a sequence
of numerical measures of different generations, then

Lτ(u) := E
1
τ+1

∑τ
t=0 ut (1)

1As well as the government and the church, Vauban also argued for the possibility that, in some
settings, a market-like solution to the various incentives problem might be found by making large
enough stakes in a forest inheritable but not divisible.
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is a measure of society’s welfare that, conditional on τ = t, treats all generations
equally. If Prob(τ 6 M) is small for large M, then Lτ(·) is a measure of welfare for
a patient society, one confident in its longevity. To capture the 107 : 1 ratio between
people in the present generation and people who may live in future generations
cited above, we take limits of the Lτ(·)’s in (1) as Prob(τ 6M) goes to 0 for allM.

This class of limits have representations as integrals against a subclass of strongly
translation invariant, purely finitely additive measures, and this property will be
crucial for our work. Having positive multiples of these limits as tangents is one
of two characterizations we offer for the concave social welfare functions studied
here. This tangent characterization is the most useful for applications. The second
characterization of societal preferences arises from a a set of axioms suitable for
studying optimality while maintaining a concern for intergenerational equity. As
such, the second characterization provides the axiomatics behind the first one.

In appliction to models involving intergenerational externalities, the class of pref-
erences under consideration gives rise to an issue of underselectiveness in optimization—
there are many optima, some of them ethically objectionable. We solve this problem
by invoking a conditional equal treatment property that selects a subset of the op-
tima. This can be seen as a form of ‘perfectness’, that is, as a limit of optima of
perturbed versions of the model. The solution takes a recursive form that can be
seen as a vanishing discount limit of the usual Bellman equations.

1.2. Intergenerational Ethics. There is a long-held view that it is not acceptable
to slight future generations (e.g. [38], [35]), and by considering a ‘patient’ soci-
ety in the limit, we follow Ramsey [36] in that, “we do not discount later enjoy-
ments in comparison with earlier ones, a practice which is ethically indefensible
and arises merely from the weakness of the imagination.” Ramsey’s theory posited
a “Bliss” point, reachable in finite time, and examined the optimality equations for
this point. These optimality equations are less generally applicable than one might
hope; Chakravarty [14] showed that, in quite simple examples, the divergence of
infinite horizon integrals/sums can lead to the Ramsey optimality equations being
satisfied by feasible plans with minimal long-run utility.

To overcome such problems, Weiszäcker [46] formulated the notion of overtaking
optimality — a path is overtaking optimal if its accumulated benefits are eventually
weakly higher than any other feasible path (see Brock [12] for an axiomatization of
these preferences). The overtaking criterion captures a notion of patience and has
been extensively used in studies of growth theory, especially the ‘turnpike’ prop-
erties of deterministic optimal paths. This literature was surveyed, extended and
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unified in McKenzie [32], and the first general existence result for overtaking opti-
mality in convex problems was given by Brock and Haurie [11].

We are primarily interested in intergenerational choice problems where uncer-
tainty is central. The concavity of the social welfare functions we study has two
roles: applied to distributions over streams of utility, it captures risk aversion; ap-
plied to deterministic streams of utility, it captures a preference for smoothing. The
property of having tangents in the class described above can be formulated in terms
of a variant of the overtaking criterion studied by Denardo and Miller [16]: over-
taking of the intergenerational average of accumulated benefits.

Our main axiom for these preferences is the following: for any two paths, u and
v, of measures of generational utilities, if the long-run average of the difference
u − v is above and strictly bounded away from 0, then u is strictly prefered to
v. Unlike the classical overtaking criterion, the average overtaking criterion is im-
mune to bounded (and more) permutations of the “names” of the generations.2

In the study of intergenerational allocations, indifference between permuted se-
quences of measures of generational well-being is called, varyingly, “equity,” or
“weak anonymity,” or “intergenerational neutrality.”

There is a set of results demonstrating “incompatibility” between this equity re-
quirement and the Pareto principle. We briefly discuss them here and propose a
way forward.

1.3. On the Pareto Criterion. Diamond [17] showed that there is no continuous
function on the space of sequences of utilities that is indifferent to uniformly bounded
permutations and also satisfies a version of the Pareto principle. Basu and Mitra
[7] and Fleurbaey and Michel [21] showed that this incompatibility extends to all
real-valued social welfare functions, continuous or not, and Asheim [5] provides an
extensive review of this literature. From the perspective of criteria based on aver-
age overtaking, this conflict arises from treating utility improvements accruing to
null coalitions as being strict improvements in social welfare.

We normalize sequences of generational measures of well-being to be non-negative,
suppose that they are bounded, and denote by W the result class of sequences.3

An intergenerational allocation u in W strictly average overtakes an allocation v

2If u = (5, 8, 0, 8, 0, . . .) and v = (0, 8, 0, 8, 0, . . .), then
∑
t6T (ut− vt) ≡ 5 so that u overtakes v, but by

permuting v to vπ = (8, 0, 8, 0, 8, 0, . . .),
∑
t6T (ut − v

π
t ) is equal to −3 for T = 0, 2, 4, . . . and is equal

to +5 for T = 1, 3, 5, . . .. By contrast, u, v, and vπ all have the same long-run average, 4.
3See Blackorby et al. [10] for a discussion of this normalization.
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if lim infT 1
T+1

∑T
t=0(ut − vt) > 0 and average overtakes it if this lim inf is non-

negative. The allocation 0 = (0, 0, 0, . . .) can never strictly average overtake any
element of W, but there is an important subclass of allocations that it does weakly
overtake, those with benefits accruing to a null coalition.

For a coalition of generations B and a stream of measures of well-being u, u+r1B
represents giving a utility bump of r to every member of B. A coalition B is a
null coalition if 0 average overtakes r1B, equivalently, if u average overtakes u +

r1B, and it is a non-null coalition if the allocation r1B strictly average overtakes
0. There is an intimate connection between this view of coalitions of generations
and Hildenbrand’s [24] foundational treatment of Pareto optimality with measure
spaces of agents — there, as here, the appropriate Pareto criterion involves ignoring
null coalitions and recognizing non-null coalitions. Our main axiom — if u strictly
overtakes v on average, then intergenerational preferences strictly prefer u to v —
delivers Pareto responsiveness for our social welfare functions: for any non-null
coalition B and any utility bump r > 0, u + r1B strictly average-overtakes u, hence
u+r1B is strictly prefered; for any null coalition, u+r1B average-overtakes u which
in turn average-overtakes u+ r1B, hence u and u+ r1B are indifferent.

1.4. Methodology. Our methodological point of view is that one cannot fully un-
derstand a class of preferences without knowing their implications in the analysis
of problems of interest.4 For this reason, we study the implications of our social
welfare functions in three classes of applications: general equilibrium models with
infinite time horizons; Markovian decision problems; irreversible decisions with
long-run implications. These applications are chosen for their usefulness in high-
lighting key aspects of the overall problem we set out to solve.

In general equilibrium models with an infinite time horizon, one typically makes
assumptions — on preferences in exchange economy models and on preferences
and technologies in production economy models — to guarantee that equilibria
have prices that can be represented as integrals against countably additive prob-
abilities. Bewley [9] identifies the requisite assumptions as “an asymptotic form
of impatience,” Brown and Lewis [13] gave a characterization of the form of “my-
opia.” Araujo [2, Thm. 3] sharpened this result, showing that the combination of

4The motivation for Asheim [3] and [4] is to examine the implications of equitable intergenerational
preferences by examining their behavior in well-understood models. See also [6, p. 206], “By apply-
ing ethical criteria to concrete economic models, we learn about their consequences, and this may
change our views about their attractiveness.”
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countably additive and purely finitely additive properties in the tangents to a pref-
erence relation can lead to the non-existence of Pareto optima in these models.

We Work with preferences having tangents in the subclass of purely finitely ad-
ditive measures identified above. This yields an existence result as well as strong
variants of the First and Second Welfare Theorems. In terms of dynasty interpre-
tations of infinitely-lived economic agents, the different weights assigned to coali-
tions of future generations by our tangents give the tradeoffs between the welfare
of different non-null subsets of the future generations within the dynasties. Bewley
[8] shows that in such dynastic economies, the less patient dynasties end up trad-
ing away their long-run utilities and in equilibrium, achieve a stationary utility of
zero. Our results with patient dynasties can have the same results if the different
dynasties weight different parts of the future differently.

General equilibrium theory is rarely focused on the analysis of externalities, our
primary interest. To capture the one-way flow of externalities, both positive and
negative, from earlier to later generations, we turn to a class of problems known
as Markovian decision problems (MDPs). In these models: the utility at any given
time is a function of the state of the system and the choice of present action; exter-
nalities are encoded as states of a system; and the present state and present choice
of actions determine the distribution of future states. There is a vast literature on
the existence and characterization of stationary solutions to MDPs that maximize
the long-run average reward (see, for e.g., [1], [27], [19], [45]).

We will see that the patient welfare functions studied here are particularly well-
behaved on the class of ergodic sequences, those that arise from the stationary poli-
cies that maximize the long run average payoff. Therefore, the set of utility func-
tionals to which the long-run average MDP existence and characterization results
apply include the concave, patients ones that we study. Further, the concavity of
the social welfare functions allows for a more complete treatment of Markovian de-
cision problems with irreversibilities, and this yields a variant of the precautionary
principle.

The insistence on social indifference to boons given to null subsets of a patient
society has implications with the general name of underselectiveness. This arises
because the translation invariant, purely finitely additive measures that represent
the tangents to our social welfare functions are indifferent to, inter alia, ignoring
the misbehavior or the mistreatment of any finite number of generations so long
as the effects are not irreversible. Present profligacy arises if the early generations
squander resources, leaving a barely recoverable mess for the future. Following
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Chichilnisky [15], a “dictatorship of the future” arises if the early generations sac-
rifice nearly all of their own consumption for the purposes of arriving at a richer
future more quickly. Chichilnisky’s proposal to alleviate this problem is to use the
class of nonstationary preferences that Araujo [2, Thm. 3] used to show the non-
existence of Pareto optimal allocations in general equilibrium models. We give an
alternate, ethically sound method to circumvent both the profligacy and the dicta-
torship, one that has a conditional equal treatment property.

A solution demonstrates conditional equal treatment if it treats all states as pos-
sible and then solves for actions on the assumption that different generations have
equal weight. For us, the existence of patient optima with the conditional equal
treatment properties outweighs the existence of alternative, non-stationary, ethi-
cally suspect optima.

1.5. Outline. §2 provides two complementary treatments of our class of social pref-
erences, as those satisfying a set of Postulates, as those with a special class of tan-
gents. §3 treats the recursive solvability of a wide class of MDPs using our patient
preferences. The subsequent section gives four applications, one fits into the recur-
sively solvable class of MDPs, the others demonstrate further the range of implica-
tions of the preferences. The final section discusses and concludes.

Throughout, Theorems are about our class of preferences. Corollaries and Propo-
sitions concern applications of our preferences.

2. PATIENT, INEQUALITY AVERSE SOCIAL WELFARE FUNCTIONALS

The inequality averse intergenerational social welfare functions that we work
with satisfy a strong form of patience/anonymity. One can develop this class of
functions axiomatically or one can specify that the tangents have desirable proper-
ties. We begin with the axiomatics, but one could as easily start with the class of
tangents.

2.1. Notation and Setting. Realizations of intergenerational streams of well-being
belong to W, the non-negative elements of `∞. By assumption, `∞ is equipped with
the sup norm, ‖u‖ := supt∈N0

|ut| where u = (u0,u1, . . .) = (ut)t∈N0 where N0 :=

{0, 1, 2, . . .}. The sup norm distance is d(u, v) := ‖u−v‖. The interior of W is denoted
int(W), and u ∈ int(W) if and only if inft ut > r for some strictly positive r.

To allow for the study of stochastic dynamic intergenerational problems, the do-
main for preferences is the mixture set, M, of countably additive Borel probabilities
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on W having bounded support, (∃B)[p({u ∈ W : ‖u‖ 6 B}) = 1]. By assumption,
the set M is given the weak∗ topology.

2.1.1. Resultants. We study ‘risk averse expected utility’ preferences on M. These
are the preferences that can be represented by p � q if and only if

∫
W S(u)dp(u) >∫

W S(u)dq(u) for a continuous, concave intergenerational welfare function S(·). To
give the axiomatic form of the inequality aversion contained in concavity, we will
use the resultant or expectation of a p ∈ M is denoted r(p). This is the infinite
dimensional version of the expectation of a vector in Rk, and it is defined as the
unique point r(p) ∈W satisfying

∫
〈v,y〉dp(v) = 〈r(p),y〉 for all y ∈ `1.

2.1.2. Tangents. A concave function S : W→ [0,∞) has a non-empty set of tangents,
denoted DS(u), at any interior u. The set of tangents determine properties of S(·)
— if L ∈ DS(u), then concavity implies that for any v ∈W, S(u) + L(v− u) > S(v).
Knowing the class of differences, v − u, for which each L(·) is non-negative gives
general property of S(·).

Tangents are continuous linear functionals on `∞, and as such, each has an inte-
gral representation, L(u) =

∫
N0
ut dγ(t), denoted 〈u,γ〉, where γ is a signed, finitely

additive measure on N0 having finite (variation) norm, ‖γ‖ := sup‖u‖61 |L(u)| <∞.
A net (generalized sequence) γα of measures N0 converges in the weak∗-topology
to γ if 〈u,γα〉 → 〈u,γ〉 for all u ∈ `∞. By Alaoglu’s theorem, the weak∗ closure of a
norm-bounded set of measures on N0 is weak∗ compact.

2.1.3. Permutations. We will define the patience of a social welfare functional us-
ing indifference to a class of permutations. The set of integers, negative and non-
negative is denoted Z and defined as {. . . ,−2,−1, 0, 1, 2, . . .}. A permutation is a
1-to-1 function π : N0 → Z that is onto N0. Given u = (u0,u1,u2, . . .) ∈ `∞ and a
permutation π, define uπ as (uπ−1(0),uπ−1(1),uπ−1(2), . . .). A permutation is finite if
π(T) = T for all but finitely many generations, it is bounded if |π(T) − T | is uni-
formly bounded, and it is an O(T)-permutation if lim supT

|π(T)−T |
T+1 = 0. This last

class of permutations are closely related to a variant of the overtaking criterion.

2.1.4. Overtaking. For u, v ∈ `∞, u O(T)-overtakes v, written u%O(T) v, if

lim infT→∞ 1
T+1

∑T
t=0(ut − vt) > 0, (2)

and u strictly O(T)-overtakes v, written u�O(T) v, if

lim infT→∞ 1
T+1

∑T
t=0(ut − vt) > 0. (3)
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The classical definition of u overtaking v requires the stronger, unaveraged con-
dition lim infT→∞ ∑T

t=0(ut − vt) > 0, but the classical strict overtaking criterion,∑T
t=0(ut − vt) > ε for some strictly positive ε and for all sufficiently large T is not

sufficient for O(T)-strict overtaking.5 The O(T)-overtaking criterion is, for obvious
reasons, called “average overtaking” in the literature. Lemma 1 (below) gives our
reason for using the name “O(T)-overtaking.”

2.1.5. Ergodicity. The ergodic subclass of `∞ is denoted Erg and defined as the set
of u ∈ `∞ for which the long run average, lra(u) := limT→∞ 1

T+1

∑T
t=0 ut, exists.

The O(T)-permutations, overtaking and the ergodic class are tightly related.

Lemma 1. If π is an O(T)-permutation, then for all u ∈ `∞, u%O(T) u
π%O(T) u, and for

all u ∈ Erg, lra(u) = lra(uπ).

Thus, O(T)-overtaking is preserved under O(T)-permutations, a class than strictly
includes the finite and the bounded permutations.

2.2. Formulation by Postulates. Our assumptions on social preferences are given
in terms of a binary relation� on the set of probabilities M. We always assume that
� is asymmetric, that is, if p � q, then it is not the case that q � p. Define ∼ and %
on M by p ∼ q if neither p � q nor q � p, and p % q by p � q or p ∼ q. As usual, �
is negatively transitive if for all p,q, r ∈ M, [p � r] ⇒ [ [p � q] ∨ [q � r] ], and we
call a negatively transitive � an asymmetric weak order.

2.2.1. Desiderata. We have two desiderata for our intergenerational preferences: they
should be patient, defined as indifference to O(T)-permutations; and they should be
exactly Pareto, increases in the utility of null coalitions has no effect on intergener-
ational preferences while uniform increases accruing to non-null coalitions have a
strictly positive effect.

For u ∈ W and q ∈ M, we write “u � q” for p � q where p({u}) = 1, with the
same convention for “%” and “∼.” In particular, we write u � (resp. %, resp. ∼)v

for p � (resp. %, resp. ∼)q where p({u}) = 1 and q({v}) = 1. In this fashion, we
restrict� to W by identifying points u in W with the associated point masses/Dirac
measures, δu, in M.

Definition 2.1. A preference relation� on W is patient if for all O(T) permutations π and
all u ∈W, u ∼ uπ.
5See McKenzie [32] for a survey of models of long-run optimal economic growth using the overtak-
ing criterion, Marinacci [31] and Fleurbaey [21] for axiomatic treatments of patience, Asheim [5] for
a survey.
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The vector 0 = (0, 0, 0, . . .) can never strictly overtake any element of W, but there
is an important subclass that 0 does overtake. We say that B ⊂ N0 is a null coali-
tion if 0%O(T) 1B and it is a non-null coalition if 1B�O(T) 0. The appropriate Pareto
criterion for patient preferences involves ignoring null coalitions and recognizing
non-null coalitions.

Definition 2.2. A preference relation � on W is exactly Pareto if

(a) for all u ∈W, all null coalitions B and all r > 0, u+ r1B ∼ u, and
(b) for all u ∈W, all non-null coalitions B and all r > 0, u+ r1B � u.

2.2.2. Postulates. We will invoke the following postulates on �.

Postulate I. Weak Order. � is an asymmetric weak order.
Postulate II. Independence. For all p,q, r ∈ M and all α ∈ (0, 1), if p � q, then

αp+ (1 − α)r � αq+ (1 − α)r.
Postulate III. Continuity. For all q ∈M, the sets {p ∈M : p � q} and {p ∈M : p ≺

q} are open.
Postulate IV. Risk and Inequality aversion. For any p ∈M, r(p) % p.
Postulate V. Respect for overtaking. [u�O(T) v]⇒ [u � v].

Discussion. The first three axioms are standard in the expected utility theory of
choice under uncertainty: Postulate I is the usual ordering assumption for pref-
erence relations; Postulate II is the “linearity in probabilities” assumption for the
existence of an expected utility representation for �; and Postulate III guarantees
that the representation is continuous. For expected utility theory, Postulate IV guar-
antees risk aversion in the form of concavity of the expected utility function, here
the concavity of the social expected utility function implies that social preferences
are inequality averse on W and risk averse on M. As noted, Postulate V loosens
the classical overtaking criterion. It also directly implies that indifference sets can
have no interior: for any u ∈W and ε > 0, v := u + ε · 1N0 strictly overtakes u and
d(u, v) = ε.

2.2.3. Representation. The next result gives the representation theorem for prefer-
ences satisfying the postulates.

Theorem A. The asymmetric weak order � satisfies Postulates I-V if and only if there
exists a continuous, concave S : W → [0,∞) such that [p � q] ⇔ [

∫
S(u)dp(u) >∫

S(u)dq(u)] with S(·) satisfying the following properties,

(1) it is patient, for all u ∈W and all O(T)-permutations, S(u) = S(uπ), and
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(2) it is exactly Pareto, for all u ∈ W and all r > 0, if B is a null coalition, then S(u +

r1B) = S(u), and if B is a non-null coalition, then S(u+ r1B) > S(u).

This result stands in stark contrast to the long history of “impossibility” results
for combining patience and the Pareto criterion in inter-generational social welfare
analyses. To see what is involved, fix a concave S(·) representing a social ordering
satisfying Postulates I-V. For any u ∈ W, any O(T)-permutation π, and any α ∈
[0, 1], Lemma 1 tells us that u%O(T) (αu + (1 − α)uπ)%O(T) u

π%O(T) u. Continuity
and respect for overtaking yield the following indifference condition,

S(u) = S(αu+ (1 − α)uπ) = S(uπ). (4)

Constancy of S(·) on the line joining an interior u and uπ implies that any L ∈
DS(u) must satisfy L(u − uπ) = 0, i.e. L(u) = L(uπ). Positive continuous linear
functionals on `∞ that are invariant for finite permutations have representations as
integrals against purely finitely additive positive measures on N0. A measure η on
N0 is purely finitely additive if and only if for each v with vt → 0,

∫
vt dη(t) = 0. The

connection with the classical Pareto criterion comes from taking a strictly positive
v with vt → 0 and comparing u and u + v. Purely finitely additive measures put
mass one “far to the right” of N0, and for this measure space of agents, v is an
almost everywhere null endowment — it is non-negative but integrates to 0. The
impossibility results arise because they insist on assigning a strictly positive utility
to the addition of each such null endowment.

2.3. Formulation by Tangents. Let τ be a random variable with
∑
T∈N0

P(τ = T) =

1. If we interpret τ as the random time at which society ends and P(τ < M) < ε for
largeM and small ε, then the mapping u 7→ Lτ(u) := E

1
τ+1

∑τ
t=0 ut is a measure of

welfare for a patient society, one confident in its longevity. The mappings Lτ(·) are
also continuous, linear, positive, and have norm 1. Therefore, for each distribution
of τ, there exists a unique probability ητ such that Lτ(u) = 〈u,ητ〉 for all u.

2.3.1. The Class V. We denote by pV the set of weak∗ accumulation points of the
linear functionals Lτ as P(τ < M)→ 0 for allM,

pV =
⋂
{cl ({ητ : Prob(τ 6M) 6 ε}) :M ∈ N0, ε > 0}. (5)

The class pV is non-empty (by the finite intersection property of the class of sets in
equation (5)), as well as compact and convex.

A concave function on W has a non-empty set of tangents at every interior point
of W. Our tangents will belong to the following class.

12



Definition 2.3. The class V is the closed convex cone generated by pV.

2.3.2. Interior Points and V-Concavity. Continuous concave functions may fail to
have tangent functions at the boundary points of their domain. The Cobb-Douglas
functions f(x1, x2) = x

α
1 x

(1−α)
2 for 0 < α < 1 and x1, x2 > 0 are a case in point. These

considerations indicate the need for care in formulating a subset of the concave
functions on W in terms of the existence of tangents.

Definition 2.4. A function S : W → [0,∞) is V-concave on int(W) if it is continuous
and for all u ∈ int(W), the set of tangent functions at u is a closed, non-empty, norm
bounded set of strictly positive elements of V. A function is V-concave if the same condition
holds for all u ∈W.

The following V-concave function on W,

SpV(u) := minη∈pV〈u,η〉, (6)

has a more familiar expression SpV(u) = lim infT→∞ 1
T+1

∑T
t=0 ut. Because SpV(·) is

the minimum of a collection of linear (not merely affine) functionals, it is homoge-
nous of degree 1.

It is the strict positivity in Definition 2.4 that rules out indifference sets having an
interior. To see this take u ∈ W and the interior point v := u + ε · 1N0 . Because v

is interior, DS(v) 6= ∅. For any L ∈ DS(v), we have S(v) + L(u − v) > S(u), and
L(u− v) = −εL(1N0) < 0. Combining, we have d(u, v) = ε and S(v) > S(u).

2.3.3. The Tangents Characterization. The following relates V-concave functions and
preferences satisfying our Postulates.

Theorem B. If S : W → [0,∞) is V-concave, then the expected utility preferences it
represents satisfy Postulates I-V, and if a continuous concave S : W → [0,∞) represents
preferences satisfying Postulates I-V, then it is V-concave on int(W).

For u, v ∈ Erg, we have seen that u�O(T) v if and only if lra(u) > lra(v). This
implies that the social welfare functions under study have a particularly simple
structure when restricted to the class Erg ⊂ W and to probabilities that put mass 1
on Erg.

Corollary B.1. If a social ordering � satisfies Postulates I-V, then

(1) for all u, v ∈ Erg, u � v if and only if lra(u) > lra(v), and
(2) there exists a strictly increasing, concave ϕ : [0,∞)→ [0,∞) such that for all p,q ∈

M satisfying p(Erg) = q(Erg) = 1, p � q if and only if
∫
ϕ(lra(v))dp(v) >∫

ϕ(lra(v))dq(v).

13



This will play a large role in our analysis of optimization problems with ergodic
solutions. In strongly ergodic models, it is a probability 1 event under the optimal
policy that all paths yield the same long run average. In such models, Corollary B.1
implies that one can simultaneously maximize the expected value of S(·) for every
social welfare function satisfying Postulates I-V by maximizing the long run aver-
age. By contrast, in models with irreversibilities, models where optimal policies
give a distribution over the long run average, the concavity of ϕ(·) determines how
the social welfare function trades off different risky long run prospects.

3. THE CONDITIONAL EQUAL TREATMENT PROPERTY

We now turn to the existence of patient optima satisfying a conditional equal
treatment property in models where intergenerational externalities are transmitted
by a state variable having a future distribution that depends on the present state
and present actions. The conditional equal treatment property is defined by any
state x being possible, and that action chosen at that state, a(x), is determined by
maximizing a social welfare function that weights the generations equally. This
provides an ethically sound solution to the underselectiveness problem of the long-
run average.6

There are two reasons one should expect there to be many optima when maxi-
mizing patient social welfare functions in economic models. The first reason is geo-
metric: there can be no strictly concave functions on W because it is non-separable;
maximizing a concave function with flat spots over a convex set determined by in-
equalities defined by concave functions will therefore often have multiple optima.
The second reason concerns the particular form of the flat spots in dynamic models,
invariance of the tangents to O(T)-permutations: changing the utility of the early
generations up or down need have no effect on the long run; patient preferences
only pay attention to the long run.

The average reward optimality equations (AROEs) and their conditional equal
treatment implications provide a solution to the underselectiveness problem. We
first develop the AROEs in a well-known, single sector growth model by perturbing
the patient utility functions in a way that becomes more and more egalitarian as we
go to the patient limit. We then give more general versions of the AROEs and an
alternative, stochastic perturbation interpretation, one that captures the conditional

6An alternate approach to underselectiveness is to change the optimality criteria for infinite streams
so as to increase the selectiveness/shrink the solution set. The most systematic treatment is in
Hernández-Lerma and Vega-Amaya [23], who study seven variants of patient preferences and their
relations within a broad class of strongly ergodic MDPs.
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equal treatment property from a direction reminiscent of perfection in equilibrium
refinement.

3.1. Patience in Growth Models. The initial period’s endowment is x0 > 0, initial
period consumption of c0 6 x0 yields utility u(c0), u(·) concave and increasing, and
leaves s0 = (x0 − c0) to be invested for next period. The next period’s endowment
is x1 = f(s0), f(·) concave, above the diagonal, i.e. f(s) > s, on an interval (0, s),
and eventually below the diagonal, i.e. f(s) 6 s on [s,∞). At x1, the process be-
gins again, consumption is c1 6 x1, investment is s1 = x1 − c1. The next period’s
endowment is x2 = f(s1), and so on.

We analyze the optima for this model with three social welfare functions: the
normalized discounted sum Lβ(u) := (1 − β)

∑T
t=0 utβ

t, β < 1; the V-concave
functional SpV(u) := lim infT→∞ 1

T+1

∑T
t=0 ut; and an arbitrary V-concave function

patient u 7→ S(u). The last two have identical, and large, sets of optimal strategies.
However, as β ↑ 1, the Bellman equation for the Lβ(·) has a limiting form that
treats each x as possible and treats the generations equally. The optimal policy for
this limit Bellman equation is an optimal policy for the second and third welfare
functions, and this policy has the conditional equal treatment property.

There are two intuitions for this result. First, for β < 1, the value functions for
Lβ(·) treat each initial state x as possible, and as β ↑ 1, the relative weights given
to generations T and T ′, i.e. ( βT

βT+βT
′ , βT

′

βT+βT
′ ), converge to ( 1

2 , 1
2) for each T , T ′ pair.

Second, u ∈ Erg if and only if Lβ(u) ' lim inf 1
T+1

∑T
t=0 ut for all β ' 1, with a

similar result for the tangents to any V-concave S(·).

3.1.1. Optimal Paths with Discounting. For 0 < β < 1, the normalized discounted
value for starting at x0 is

V(β, x0) = maxc0,c1,...(1 − β)
∑∞
t=0 u(ct)β

t s.t. ct ∈ [0, xt], xt+1 = f(xt − ct). (7)

The value function V(·, ·) is the unique solution to the functional Bellman equation

V(β, x) = maxc∈[0,x] [(1 − β)u(c) + βV(β, f(x− c))] . (8)

Let c∗t be an optimal path starting from x0 with the associated investment levels,
s∗t = x∗t − c

∗
t , and production levels, x∗t = f(s∗t−1). The first order conditions from

the Bellman equation yield the following recursive relation that is satisfied along
the optimal path,

u ′(c∗t+1)

u ′(c∗t)
=

1
βf ′(s∗t)

. (9)
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To analyze or of optimal discounted paths, let s∗(β) solve maxs>0 [βf(s) − s], de-
fine x∗(β) = f(s∗(β)) and c∗(β) = f(s∗(β)) − s∗(β) = x∗(β) − s∗(β). Note that c∗(·),
s∗(·) and x∗(·) are all increasing in β, 0 < β 6 1. The stationary solution to the
recursive relation in (9) has c∗t+1 ≡ c∗t , which yields f ′(s) = 1/β, i.e. optimal in-
vestment is s∗(β), optimal consumption is c∗(β) and each period begins with stock
x∗(β). The nonstationary solutions can be divided in two cases: if x0 < x

∗(β), then
c∗t ↑ c∗(β), x∗t ↑ x∗(β), and s∗t ↑ s∗(β); if x0 > x

∗(β), then c∗t ↓ c∗(β), x∗t ↓ x∗(β), and
s∗t ↓ s∗(β).

3.1.2. Underselectiveness for Patient Preferences. With u = (u(c0),u(c1),u(c2), . . .),
there are many optimal paths for the utility function SpV(·) or S(·), a phenomenom
called underselectiveness. One class of solutions involve extreme forms of “present
profligacy,” the generations t = 0, 1, . . . , T feast on the capital stock, operating only
under the constraint that xT+1 = ε > 0, and then society consumes along a path
that has limt xT+t = x∗(1). Following Chichilnisky [15], another class of solu-
tions involve a “dictatorship of the (far) future:” set ct = 0 for t = 0, 1, . . . , T until
some large T with xT+1 > x∗(1), and then start consuming along some path with
cT+t ↓ c∗(1).

The average reward optimality equations (AROEs), in the form of a limiting
version of the Bellman equation (8) as the discount factor approaches 1 provide a
conditional equal treatment method to avoid such ethically objectionable optima.7

3.1.3. AROEs. Let ρ∗ denote u(c∗(1)), the so-called Golden Rule level of utility. As
β ↑ 1, V(β, x) → ρ∗ for all x. Letting V1(·, ·) be the partial derivative of V with re-
spect to its first argument, a first order Taylor expansion tells us that for β infinites-
imally close to 1, V(β, x) is infinitesimally close to ρ∗ − (1 − β)V1(β, x)|β=1. Letting
V1(1, x) denote V1(β, x)|β=1 in the the Bellman equation and rearranging yields

V(β, x) ' maxc∈[0,x] [(1 − β)u(c) + β (ρ∗ + (1 − β) · (−V1(1, x)))] , or (10)

V(β, x) − βρ∗ ' (1 − β) max
c∈[0,x]

[u(c) + β · (−V1(1, x))] . (11)

The left-hand term, V(β, x) − βρ∗ = V(β, x) − βV(1, x), can be expanded,

V(β, x) − V(1, x) + V(1, x) − βV(1, x) ' (1 − β) · (−V1(1, x)) + (1 − β)V(1, x). (12)

7For general treatments of this vanishing discount factor approach to the AROEs, see Feinberg et al.
[19] and the simplifications of their arguments in Vega-Amaya [45].
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Substitute (12) into (11), divide both sides by (1 − β), then take β ' 1. This yields
what is called the average reward optimality equation,

ρ∗ + (−V(1, x)) = max
c∈[0,x]

[u(c) + (−V1(1, f(x− c)))] , or (13)

ρ∗ + h∗(x) = max
c∈[0,x]

[u(c) + h∗(f(x− c))] (14)

with h∗(x) = (−V1(1, x)). In this simple model, it can be directly verified that if
ρ∗ and h∗(·) satisfy (14) and c∗(x) is an argmax, then ρ∗ is the maximal long-run
average payoff and the argmax policy c∗(·) delivers a long-run average of ρ∗.

3.1.4. Conditional Equal Treatment. The function h(·) = −V1(1, ·) gives society’s limit
sensitivity to discounting as a function of the initial capital stock, the limit being
taken as discounting disappears. It is strictly increasing in x and satisfies h(x∗(1)) =
0, and we will see why this should be true from an alternate perspective in the
more general treatment of the AROEs below. In a direct parallel with the Bellman
equations, if a generation starts at x0 6= x∗(1) and follows the argmax c∗(·) rule, then
the path will satisfy

u ′(c∗t+1)

u ′(c∗t)
=

1
f ′(s∗t)

rather than
u ′(c∗t+1)

u ′(c∗t)
=

1
βf ′(s∗t)

, (15)

and capital will move slowly to the Golden Rule level x∗(1), increasing if x0 < x
∗(1)

and decreasing if x0 > x
∗(1).

In moving to the limit along a set of utility functions with increasingly equal
weight given to each generation, we have arrived at optimal consumption and in-
vestment paths that arise from giving exactly equal weight to each generation. One
sees this by comparison of the laws of motion for the discounted case, (9), and the
limit case (15). In the discounted case, the β < 1 arises because the relative weights
of generations t and t+ 1 in the social welfare function are ( 1

1+β , β
1+β), and 1

1+β >
1
2 .

In the AROEs, the relative weights are ( 1
2 , 1

2).

3.1.5. AROEs and Optimality for all Patient Preferences. We now show that solving
the AROEs in this class of growth models simultaneously yields S-optimality for
any V-concave social welfare functionals S(·). There is a strong intuition for this re-
sult: by the concavity of u(·) in consumption, randomization in the savings rate can
never be optimal; by concavity of S(·) on W, randomized non-stationary policies are
dominated; for the same reason, among the stationary deterministic policies, any
strategy that demonstrates long-run cyclical behavior must be dominated; among
the remaining strategies, all outcomes belong to Erg, that is, all outcomes have a
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long-run average utility; finally, by Corollary B.1(1), applied to elements of Erg, all
of the social welfare functions rank paths by their long-run average, and solving
the AROEs maximizes the long-run average. The dependence of this argument on
the concavity of u(·) is needlessly limiting.

The tangents to our social welfare functions are positive rescaling of elements of
pV, and this set is defined as the weak∗ accumulation points of the linear functionals
Lτ(u) = E 1

1+τ

∑τ
t=0 ut as P(τ < M) → 0 for all M. The extreme points of pV are

the accumulation points of the Lτ when τ is a point mass on larger and larger T .
Equivalently, the extreme points are accumulation points of the linear functionals
u 7→ 〈u,ηT 〉where ηT is the uniform distribution on {0, 1, . . . , T }.

A continuous linear functional, L(·), on the set of bounded sequences of utilities
is called a Banach-Mazur limit if L(u) > 0 for every u > 0, L((1, 1, 1, . . .)) = 1
and L(u) = L(uπ) for every bounded permutation π. Our class of tangents, the
cone generated by pV, is the strict subset of Banach-Mazur limits characterized
by indifference to the wider class of O(T)-permutations. All Banach-Mazur limits
can be represented as integrals, L(u) =

∫
ut dη(t), where η is a non-atomic, purely

finitely additive probability measure on N0 (e.g. Jerison [28] or Robinson [37].)
It is easy to show that a policy maximizes the long-run average if and only if it

maximizes 〈u,η〉 for all η’s that are accumulation points of the uniform distribu-
tions ηT . If the same choice is optimal for every extreme point in the set of possible
tangents, then it is optimal for every convex combination of the extreme points. As
a result, one maximizes the long-run average if and only if one maximizes S(·) for
every V-concave utility function.

3.2. General Markovian Decision Problems. In discrete time Markovian decision
problems, at each point in time, a state is observed, a feasible action is chosen,
the state and chosen action deliver an in-period reward and determine the distri-
bution of the next period’s state. The growth model just covered is a Markovian
decision problem with deterministic rather than probabilistic transitions. We as-
sume throughout that in-period rewards are non-negative and uniformly bounded
above.

Notationally, the state is a point x in a space X, the chosen action is a point a
belonging to the feasible set of actions denoted A(x), A(x) is a subset of a larger set
A, and K = {(x,a) : a ∈ A(x)} denotes the graph of the action correspondence. The
in-period utility is given by a bounded u : K→ R+, and the next period’s distribution
is given by a transition probability (x,a) 7→ Q(·|x,a) from K to ∆(X), the set of
distributions on X. At a minimum, one assumes that the sets X and A are Polish
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(or measurably isomorphic to a Borel measurable subset of a Polish space), that the
correspondence x 7→ A(x) is non-empty valued, that K is measurable and allows
measurable selections, and that both (x,a) 7→ u(x,a) and (x,a) 7→ Q(·|x,a) are
measurable.

Histories at t > 0 are of the form ht = (x0,a0, x1, · · · , xt−1,at−1, xt) with ak ∈
A(xk) for k = 0, 1, . . . , t − 1. Randomized policies, π = (πt)

∞
t=0, are sequences of

measurable functions ht 7→ πt(ht) ∈ ∆(A(xt)) where ∆(A(xt)) denotes the set of
distributions on A that put mass 1 on A(xt). Deterministic policies are randomized
policies assigning mass 1 to a single point ft(ht) ∈ A(xt). Stationary deterministic
policies are the main focus, these are deterministic policies with the property that
ft(ht) = f(xt) for some fixed measurable function f : X→ A with f(x) ∈ A(x).

For any stationary deterministic policy, the transition probability for the system
is denoted x 7→ Qf(·|x) and defined by Qf(B|x) = Q(B|x, f(x)), and for a station-
ary policy π, it is Qπ(B|x) =

∫
Q(B|x,a)dπ(a|x). Under any stationary policy, the

system becomes a Markov chain and the n-step transition probabilities are denoted
Qnf andQnπ . Starting from any initial state x0, under the minimal assumptions men-
tioned above, a policy π gives rise to a unique distribution on X×(A×X)N. Expecta-
tions with respect to this distribution are denoted Eπ(·|x0) for policies π, stationary
or not, and denoted Ef(·|x0) for stationary deterministic policies f.

3.3. Long-Run Average Optimality for MDPs. Assumptions on (X,A,K,u,Q) suf-
ficient to guarantee the existence of policies delivering maximal long-run average
payoffs have been extensively studied (Arapostathis et al. [1] is a slightly dated
survey, Jaśkiewicz and Nowak [27] and Feinberg et al. [19] are recent extensions of
these results that contain short overviews of more recent work). For the payoffs, one
typically invokes continuity or upper semi-continuity assumptions on each u(x, ·)
and complementary assumptions about each A(x) that guarantee that each u(x, ·)
achieves a maximum onA(x). One also invokes two classes of joint assumptions on
the payoffs and the stochastic structure: one class of assumptions guarantee that,
if there are actions that could drive the distribution of the states “off to ∞,” then
these actions are not utility maximizing; the second class of assumptions guaran-
tee that when taking the actions with higher utilities, the process “stays finite” in
a Markovian fashion having a unique ergodic distribution.8 When each stationary
policy gives to a unique ergodic distribution, the so-called Poisson equation holds,
and maximization along sojourn versions of this equation yields the AROEs.

8See Meyn and Tweedie’s [34] comprehensive study of the stochastic stability of Markov chains.
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3.3.1. The Poisson Equation. Fix a stationary deterministic policy f and suppose that
Qf(·|x) gives rise to a positive Harris chain (a ψ-recurrent chain with a unique sta-
tionary distribution [34, §10.1.1, p. 231]) with ρf being associated long-run average
payoff, ρf = limT→∞ Ef( 1

T+1

∑T
t=0 u(xt, f(xt))|x0), and that ρf is independent of x0.9

The Poisson equation is a functional equation for an hf : X→ R,

(∀x ∈ X)[ρf + hf(x) = u(x, f(x)) +
∫
hf(y)dQf(y|x)]. (16)

Note that solutions to the Poisson equation are only identified up to the addition of
a constant — if hf(x) is a solution, then so is hf(x) + 7. The solution to the Poisson
equation that is most informative for optimization theory is the deviation of payoffs
from ρf along sojourns,

hf(x0) = E
f
(∑τα−1

t=0 [u(xt, f(xt)) − ρf] |x0

)
(17)

where α is a recurrent atom for the chain (x0, x1, x2, . . .) that starts in x0 and has
transition probabilities Qf(·|·) and τα = min{t > 1 : xt ∈ α} is the next hitting time
for the set α.

The positive Harris chains that arise from the MDPs under study can always be
“split” so as to introduce a recurrent atom (see [34, Ch. 5] for this construction).
Keeping the same notation, Qf(·|·), for the split chain’s transition probability, the
atom is a measurable α ⊂ X with the property that for all x, x ′ ∈ α, Qf(·|x) =

Qf(·|x ′). Letting τα be the random time until the next visit toα, the atom is recurrent
— for all x0 ∈ X, the expected time until the next visit to α, Ef(τα|x0), is finite.

A sojourn from α is a path that starts at an x ∈ α and spends τα − 1 periods
away from α. For example, a length 2 sojourn from α is the last two elements of a
path (x,y, x ′), x, x ′ ∈ α, y 6∈ α. The distribution of the length 2 sojourns are given
by Qf((x1 ∈ B1) ∩ (x2 ∈ B2)|x0) where x0 ∈ α, B1 ∩ α = ∅ and B2 ⊂ α. Because
Qf(·|x) = Qf(·|x ′) for all x, x ′ ∈ α, a chain with a recurrent atom can be analyzed
as a path from the initial state to the atom α followed by a sequence of iid sojourns
from α.

9See Meyn [33, §4, Theorems 4.1 and 4.2] for weak conditions guaranteeing that this probability 1
ergodicity result holds for all starting points x0 with general state and action spaces. Here we assume
that the utility function u : K→ R is non-negative and bounded, which makes some of the issues in
the existence theory easier.
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3.3.2. Maximization Along Sojourns and the AROEs. One of the most fruitful approaches
to maximizing long-run average payoffs has been to look for conditions guarantee-
ing the existence of solutions to the AROEs,

ρ∗ + h∗(x) = maxa∈A(x)

[
u(x,a) +

∫
h∗(y)dQ(y|x,a)

]
. (18)

This is because, if we have a solution to this equation and a∗(x) is an argmax, then,
under one additional condition,10 then a∗(·) is a deterministic policy delivering ρ∗

and ρ∗ is the highest possible long-run average payoff starting from any x ∈ X.
In terms of the solution to the Poisson equation given in (17), the optimal policy

specified by the AROEs treat every initial state as being part of a possible sojourn
going to the atom α and then maximizes the (equally weighted) sum of generational
utilities along the path back to α. The first aspect of this, every state being a possible
state for any generation to face, is much like Simon and Stinchcombe’s [39] perfec-
tion for infinite games. The second aspect of this, equal weighting of generations,
captures the egalitarian aspect of patient preferences.

Returning to the deterministic growth model MDP above, h(x0) < 0 for x0 below
the golden rule x∗(1) measures the generations’ shortfall from ρ∗ until they reach
the capital level x∗(1); conversely, starting at x0 > x∗(1), h(x0) > 0 measures the
generations’ surplus until they reach x∗(1).

We have already indicated the reasoning behind the following result, and we
record it here more formally.

Corollary B.2. Suppose that for an MDP (X,A,K,u,Q), (ρ∗,h∗,a∗) satisfy, for all x ∈ X,

ρ∗ + h∗(x) = maxa∈A(x)

[
u(x,a) +

∫
h∗(y)Q(dy|x,a)

]
, (19)

that a∗(x) is an argmax for this problem, and that for any stationary policy π and any x ∈ X,
1
n

∫
h∗(y)dQnπ(y|x)→ 0. Then a∗(·) is a deterministic policy that solves maxπ Eπ(S(u)|x0)

for any x0 ∈ X and any V-concave social welfare function S(·).

4. FOUR APPLICATIONS

Unlike the growth model analyzed in the previous section, our first application
is a dynamic economy model with no externalities. Our second application has
externalities of the kind discussed in the previous section, every policy yields a

10The condition is that for any stationary policy π and any x ∈ X, 1
n

∫
h(y)dQnπ(y|x) → 0. As part

of his examination of the policy iteration approach to solving the AROEs, Meyn gives this result
[33, Theorem 2.1] as well as several textbook references for the proof. For an alternative, contrac-
tion mapping approach to solving the AROEs and arriving at optimal policies under compactness-
continuity and stochastic Lyapunov assumptions, see Vega-Amaya [44].
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unique, in this case non-trivial, ergodic distribution on the state space. The differ-
ence between this and the growth model is that here the externalities are stochastic.
Our last two examples have externalities of the more extreme and long-lasting sort,
those that capture irreversible decisions.

The first irreversible example involves the possibility of species extinction, a pos-
sibility that can be avoided at a cost. In this case, all policies that are optimal for a
discounted factor β < 1 minimize the payoff for patient preferences. The second ir-
reversible example explores the implications of our preferences in a learning model
and arrives at a variant of the precautionary principle.

4.1. Overview and Comparison of the Applications. Our first application treats
patient preferences in general equilibrium exchange models with sequence com-
modity spaces. We show that with our preferences, competitive equilibria exist and
the First and Second Welfare Theorems hold. The contrast between this result and
the results on the need for “myopic” preferences for the existence of Pareto optima
clarifies some aspects of the structure of patient preferences.

Because general equilibrium theory has a difficult time with our major focus, ex-
ternalities, we turn to three models in which externalities operate through changes
in a state variable. In the first of these models, the state cycles stochastically across
the set of possible states with a long-run distribution determined by actions. The
model is solvable using the average reward optimality equations and Corollary B.2
applies directly. We also contrast these results with the results of applying other
classes of patient preferences.

Irreversible decisions are the ne plus ultra of externalities in intergenerational dy-
namic problems. Decision processes with irreversibilities do not fit into the class
for which average reward optimality equations can be applied because they are
not strongly ergodic — the long-run value depends on the initial state and/or the
early realizations of the stochastics. In our first irreversible model, we show that
for V-concave preferences, optimal policies are very cautious when the irreversible
event is unambiguously bad, e.g. extinction of a valuable species. The disctinction
between the long-run behavior of the system under discount optimal policies and
under patient optimal policies is as sharp as possible: all discount optimal policies
deliver minimal payoffs for all patient preferences.

In our second model, the irreversible decision has long-run benefits that may or
may not outweigh the long-run costs. Here the optimal decisions depends on the
risk aversion encoded in the curvature of the social welfare function, and they em-
body a version of the precautionary principle. More specifically, we examine the
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possibility that, at a cost of both resources and delay, it is possible to learn more
about the distribution of a once and for all shock to payoffs that will come from,
say, the adoption of a new technology. The utility value of the shock may be pos-
itive, it may be negative, and this makes information valuable even when it is not
definitive. The precautionary principle that results from maximizing patient pref-
erences calls for learning until further learning will have no value, then adopting
the technology if it still looks like a good idea, and abandoning it otherwise. Be-
cause the initial state and initial stochastic realizations can matter to the long-run
payoffs, the curvature of S(·) enters into the expected utility calculations as given
in Corollary B.1(2).

4.2. Patience and Myopia in General Equilibrium Theory. Bewley [9] studies gen-
eral equilibrium models with commodity spaces that are uniformly bounded se-
quences of non-negative consumption vectors in Rk. Bewley’s Theorem 1 gives
sufficient conditions for the existence of a competitive equilibrium with prices that
positive, finitely additive Rk-valued measures, while his Theorems 2 and 3 study
conditions for the existence of equilibria with prices in the set of summable Rk-
valued sequences. Brown and Lewis [13] and Araujo [2] study the same class of
general equilibrium models and give results, respectively, on the role of/need for
myopia in preferences for the existence of Pareto optima.

4.2.1. Notation and Assumptions. Let `k∞ denote the set of x ∈ (Rk)N0 with supt∈N0
‖xt‖ <∞. Feasible consumptions and endowments belong to Wk := {x ∈ `k∞ : x > 0}. Each

agent/dynasty i in a finite set I, has an endowment ωi ∈Wk. We give Wk the sup
norm.

Assumption A. Each ωi is an interior point of Wk.

This implies that ω :=
∑
iωi is also an interior point of Wk.

Feasible consumption streams are vectors (xi)i∈I with each xi ∈Wk, and
∑
i xi 6

ω. The preferences of i are given by a utility function x 7→ Ui(x). We say that a V-
concave S : W → R is V-concave at the boundary if DS(u) 6= ∅ for all u ∈ W (not
just all u ∈ int(W)).

Assumption B. Ui(x) = Si(ui(x)) where: ui = (ui,0(x0),ui,1(x1), . . .); Si(·) is V-
concave at the boundary; and the ui,t, t ∈ N0 are uniformly bounded, continuous, con-
cave, strictly increasing period utility functions on [0,ωt] ⊂ Rk+ with ui,t(0) = 0 and
lim inft{maxui,t(ωi,t)} > 0.
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It is the aggregation of period utilities by a V-concave utility function that makes
the preferences patient. The assumption that the range of the utilities ui,t does not
disappear guarantees that the agents are non-trivial parts of the economy.

Definition 4.1. An equilibrium for an exchange economy model E = (ωi,Ui)i∈I is a
feasible consumption stream, (xi)i∈I and a price π in the topological dual of `k∞ such that
for all i ∈ I and all y ∈Wk,

[Ui(y) > Ui(x)]⇒ [〈y,π〉 > 〈ω,π〉]. (20)

4.2.2. Equilibrium Existence and the Welfare Theorems. The following equilibrium ex-
istence result follows directly from Bewley [9, Theorem 1] and does not require
V-concavity at the boundary.

Proposition 1. Under Assumptions A and B, an equilibrium exists.

For finite dimensional production and exchange economies without externalities,
the First Welfare Theorem states that competitive equilibria are Pareto optimal, and
the Second Welfare Theorem states that all Pareto optima are competitive equilibria
after appropriate re-arrangement of the initial endowments. Using preferences with
tangents that are integrals against convex combinations of countably and purely
finitely additive measures Araujo [2, Theorem 3] shows that Pareto optimal alloca-
tions may not exist. Such preferences are not in the class of patient preferences we
are using here, and this difference leads to very different results.

Because the tangents of V-concave functions have representations as integrals
against purely finitely measures, the price vector in Proposition 1 must be purely
finitely additive. Our next result shows that, for such preferences, we have the First
and Second Welfare Theorems. To complete the analysis, we present two examples.
The first, due to Araujo [2], shows that for preferences with tangents that are a
mix of countably and purely finitely additive measures, ε-Pareto optimal equilibria
may not exist. The second example draws a parallel with optimal allocations of
uncertainty: in the allocation of risk, if (say) agents i and j assign probability 1 and
probability 0 to an event E, then the optimal allocations give i all of the consumption
in the event E and give agent j all of the consumption in the event Ec; if dynasties i
and j put mass 1 and mass 0 on the coalition E, we have the same pattern.

Proposition 2. Under Assumptions A and B, every equilibrium is Pareto optimal, and
every Pareto optimal allocation is an equilibrium for an appropriate re-arrangement of the
initial endowments.
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The tangents to V-concave preferences have representations as integrals against
purely finitely measures. This is crucial to the existence of Pareto optimal points as
the following example demonstrates.

Example 4.1 (Araujo). For I = {1, 2}, let ω1 = ω2 = 1 be the constant endowment
of one unit of the single good. For an allocation x, let U1(x) = x1 + 〈x,η〉 where η is a
non-negative, purely finitely additive measure (not a probability) that satisfies 〈ω1,η〉 > 1.
Let U2(y) = 〈y,γ〉 + 〈y,η〉 where γ is countably additive and strictly positive, say γt =
(1 − β)βt so that 〈y,γ〉 = (1 − β)

∑∞
t=0 ytβ

t.
Suppose now that (x,y) is an individually rational Pareto optimal allocation. Because

γt > 0 for all t, Pareto optimality implies that x1,t = 0 and y2,t = 2 for all t > 2.
Feasibility implies that x1 6 2. However, U1(ω1) = 1 + 〈ω1,η) > 2 which contradicts
U1(x) 6 2 + 0.

Continuous linear preferences on Wk can be decomposed into a countably addi-
tive part and a purely finitely additive part. For any ε > 0, the value of the count-
ably additive parts are determined on {0, 1, . . . , T } for sufficiently large T , while the
value of the purely finitely additive part is entirely determined on {T + 1, T + 2, . . .}.
For linear preferences, this implies that ε-individually rational and Pareto optimal
allocations exist. We conjecture that the same is true for concave utility functions.

The next example demonstrates how the Pareto optimal allocations for dynasties
with different V-concave can be extreme. The essential intuition is the same as that
of optimal risk-sharing between two people, one of whom assigns mass 1 to an
event Ewhile the other assigns mass 1 to it.

Example 4.2. Let the agents and their endowments be as in the previous example. Suppose
that Ui(y) = 〈y,γi〉 where (γ1,γ2) is an accumulation point of the set

{(Unif0,T ! ,Unif0,(T !)2) : T ∈ N0}.

It is possible to demonstrate a set of generations, E, such that 〈1E,γ1〉 = 1 and 〈1E,γ2〉 = 0.
All Pareto optimal allocations must assign dynasty 1 the entire economy’s endowment in E
and must assign dynasty 2 the entire economy’s endowment in Ec.

4.3. A Stark Model of Climate Change. Suppose that the world’s ecosystem can
be in one of two states, damaged or undamaged: in the damaged state, the seas,
forests and the biota that survive are unable to produce oxygen and resources in
the amounts humans have become accustomed to: in the undamaged state, the seas
and forests are able to produce oxygen concentrations and resources supporting
life as we currently know it. Payoffs and actions capture the following tradeoffs: a
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generation in a good state can sacrifice some present utility in order to lower the
future probability of disastrous climate changes; a generation in a bad state must
sacrifice some of their present utility in order to raise the the future probability of a
return to a better world.

◦ In the undamaged state, x = G, society chooses the transition probability, r ∈ [r, r]
to the damaged state, x = B, 0 < r and r < 1. The expected utility of choosing r is
u(G, r), and higher choices of r lead to a higher expected utility for a generation in
the good state, ∂u(G, r)/∂r > 0.
◦ In a parallel fashion, in the damaged state, x = B, society chooses the transition
probability, s ∈ [s, s] to the good state, x = G, 0 < s and s < 1. The expected utility
of choosing s is u(B, s), and higher choices of s lead to lower expected utility for a
generation in the bad state, ∂u(B, s)/∂s < 0.

4.3.1. Optimal Patient Policies. Starting from the present, t = 0, a policy, f, chooses
an r and a s as a function of the present state. This choice gives rise to a Markov
process, xf = (xft)t∈N0 , taking either the value G or B and the associated stochastic
stream of utilities u = (u(x0, f(x0)),u(x1, f(x1)),u(x2, f(x2)), . . .). A policy f is S-
optimal if it maximizes Ef(S(u)|x0) for x0 = G and x0 = B.

Because the probabilities r and s are interior, any policy f = (r, s) leads to the pro-
cess xf having a well-defined long-run average, ρ = ρf := E limT→∞ 1

T+1u(xt, f(xt))
that is independent of the starting point. The AROEs are

ρ+ h(G) = max
r∈[r,r]

[
u(G, r) + Ef(h(x1)|x0 = G)

]
, and (21)

ρ+ h(B) = max
s∈[s,s]

[
u(B, s) + Ef(h(x1)|x0 = B)

]
. (22)

As discussed above, the difference between these equations and the discounted
Bellman equations is the equal weights given to generations along sojourns.

In this model, Ef(h(x1)|x0 = G) = (1 − r)h(G) + rh(B) and Ef(h(x1)|x0 = B) =

sh(G)+ (1− s)h(B). The first order equations (FOCs) for an interior solution to (21)
and (22) are

∂u(G, r)/∂r = [h(G) − h(B)] and ∂u(B, s)/∂s = [h(B) − h(G)] . (23)

Using the sojourn-based solution from (17), h(G) = (uG(r) − ρ) · EτB, EτB = (1 −

r)/r, h(B) = (uB(s) − ρ) · EτG, EτG = (1 − s)/s because the waiting times till
transitions, τB and τG, are geometric distributions.

We assume that the payoffs in the good state are higher than those in the bad
state, which leads to uG(r) − ρ > 0 > uB(s) − ρ. When the expected values of the
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times until transitions between states are large, we expect [h(G)−h(B)] to be a large
positive number. From this, one expects the right-hand sides of the FOCs to be too
large (in absolute value) for interior solutions. This would imply that the optimal
policy is as careful as possible in the good state and works as hard as possible to
return to the good states when in the bad state, that is, f∗ = (r, s).

4.3.2. Optimal Discounted Policies. In this class of models, the strongly ergodic ones,
policies that are optimal for the patient preferences are nearly optimal for the dis-
counted preferences when the discount factor, β, is close to 1. Specifically, as β ↑ 1,
the optimal discounted policies converge to the optimal patient policies, the nor-
malized discounted values, V(β,G) and V(β,B) converge to ρ∗, and the long-run
distribution associated with using the optimal discounted policies converges to the
long-run patient distribution.

We can see why this is true by examining the Bellman equations for the normal-
ized discounted values,

V(β,G) = max
r∈[r,r]

[(1 − β)u(G, r) + β(rV(β,B) + (1 − r)V(β,G)] (24)

V(β,B) = max
s∈[s,s]

[(1 − β)u(B, s) + β(sV(β,G) + (1 − s)V(β,B)] . (25)

The FOCs for interior r and s reduce to

∂u(G,r)
∂r

= β
(1−β) [V(β,B) − V(β,G)] and ∂u(B,s)

∂s
= β

(1−β) [V(β,G) − V(β,B)] . (26)

These are similar to the FOCs in (23), and the similarity becomes more pro-
nounced after dividing [V(β,B) − V(β,G)] by (1 − β) and using the Taylor approx-
imations. With these, the FOCs are approximated by

∂u(G,r)
∂r

=
β

(1 − β)
(1 − β) [(−V1(β,G)) − (−V1(β,B))] and (27)

∂u(B,s)
∂s

= β
(1−β)(1 − β) [(−V1(β,B)) − (−V1(β,G))] , (28)

which, as β ↑ 1, reduce to

∂u(G, r)
∂r

= β [h(G) − h(B)] and
∂u(B, s)
∂s

= β [h(B) − h(G)] (29)

as calculated above. A slightly finer-scaled analysis shows that as β ↑ 1, the sac-
rifice of each generation for the good of future generations increases, reducing the
optimal r in the good state and increasing the optimal s is the bad state.

4.3.3. Other Intergenerationally Equitable Preferences. In his examination of intergen-
erational equity issues in growth models with exhaustible resources, Solow [40]
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noted Rawls’s unwillingness to extend maximin preferences from situations of un-
certainty to intergenerational settings because of the fundamental asymmetry that
time’s arrow is one-directional — early generations actions affect later generations
but not the reverse. Solow then proceeded to flesh out other objections. The most
important of these was a ‘poverty trap,’ and the argument had three parts: if the
initial stock of capital in a growth model is low, then the initial generation has the
lowest well-being; if one maximizes the utility of the worst off, then the first gener-
ation cannot be called on to make sacrifices; inductively, no generation will save for
future well-being and the economy will stay at the initial low level.

We have seen, in the growth model of §3.1, that optimal paths for the patient and
equitable preferences Slim inf(u) = lim infT 1

T+1

∑T
t=0 ut leads, slowly, to the Golden

Rule, maximal possible long-run consumption. The SpV(·) preferences are invariant
with respect to all O(T)-permutations, but there is a patient preference relation be-
tween the Rawlsian R(u) := inft ut and SpV, namely the un-averaged lim inf prefer-
ences, L(u) := lim inft ut. These preferences are invariant with respect to all permu-
tations, arguably a more egalitarian approach, and the optimal paths in the growth
model also converge to the Golden Rule consumption. However, the good behavior
of the L(·) preferences can disappear in the presence of uncertainty.

Consider the policies in this climate model that myopically maximize utility in
the damaged state. These are policies of the form (r, s). Any such policy maximizes
the expected value of the L(u) because L(u) = u(B, s) with probability 1 for any
policy. It is the failure of this ordering to respect improvements in the welfare of
non-null coalitions that is at work here — with probability 1, along any path, there
is a non-negligible portion of the generations in the good state, their utility does not
enter in the L(·) ordering, and this precludes making tradeoffs between the welfare
of different proportions of the generations that make up society.

4.4. Patience and Extinction. We analyze a simple model of a fishery where species
extinction is possible, but avoidable at a cost. In this model, despite the short run
behavior being very similar, there is a stark difference between the long-run, er-
godic distributions implied by discount optimal policies and the optimal policies
for patient preferences.

Suppose that there are two states, f and e, corresponding to the fishery being vi-
able and the fish being extinct. We suppose further that the sets of available actions
are A(f) = [0, 1], A(e) = {0}, that utilities are u(e, 0) = 0, that using a higher ac-
tion in the viable state f is more profitable, ∂u(f,a)/∂a > 0, but that higher actions
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make it more likely that the fish will become extinct, and extinction is absorbing
pe,e(1) = 1. Specifically, assume

• u(f,a) = 10(1 +
√
a),

• pf,e(a) =

0 if a 6 a◦

1
2(a− a◦)2 if a > a◦

One can think of the bound a◦ as the minimal size of a marine reserve necessary
to guarantee that the fish do not go extinct. While this model has a very simple, two
state dynamic structure to the fish population, hence it applies more to shrimp than
to tuna, the essential lessons will remain valid with a more complicated population
dynamic.11

4.4.1. The Patient Solution. Any policy that repeatedly runs any uniformly positive
risk of extinction has lra(u) = 0. Therefore, from Corollary B.1, for any V-concave
S(·), the S-optimal strategy has aP = a◦ and lra(u) = 10(1+

√
a◦). Here, the optimal

long-run distribution has fish and a positive value for all of the patient preferences.

4.4.2. The Discounted Solution. Define qf,e(a) = 1 − pf,e(a). The Bellman equation
for discount factor β has V(β, e) ≡ 0, and

V(β, f) = max
a∈[0,1]

10(1 +
√
a) + β [qf,e(a)Vβ(1) + pf,e(a)0] .

The FOCs are
5√
a
= βv · (a− a◦)

where v = V(β, f).
We now argue that

(‡) (a∗ − a◦) ∝ (1 − β)

10(1 +
√
a∗)

,

which means that as β ↑ 1, the optimal action converges downwards to a◦. The
policy a∗(β) decreases continuously to a◦ as β ↑ 1. However, the long-run ergodic
distribution for the policy a∗(β), β < 1, always puts mass 1 on exinction, and it
is here that we see the important distinction between discounted preferences and
patient preferences.

The discounted optimal policy for any β < 1 minimizes the payoffs
for any patient preferences satisfying Postulates I-V.

11See Huang and Smith [25, §1] for the bioeconomic appropriateness of modeling shrimp as an
annual industry with simpler dynamics.
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One sees this simply by noting that putting mass 1 on long-run extinction means
that the long-run average payoff is always 0.

To see why (‡) holds, note that if a∗ = a∗(β) is the solution, then

V(β, f) = u(a∗)/(1 − β · qf,e(a∗))

where u(a∗) = 10(1 +
√
a∗). Substituting into the FOCs yields

β · 10(1 +
√
a∗)(a∗ − a◦) = 1 − β(1 −

1
2
(a∗ − a◦)) = 1 − β+

1
2
β(a∗ − a◦).

Dividing both sides by (a∗ − a◦) yields

β · 10(1 +
√
a∗) =

(
1 − β

a∗ − a◦

)
+

1
2
β(a∗ − a◦).

As β ↑ 1, the only way to arrange this to stay true is to have (a∗ − a◦) ∝ (1−β)
10(1+

√
a∗)

.

4.5. Irreversibility and the Precautionary Principle. Species loss/extinction rep-
resents an irreversible negative shock to the well-being of future generations. We
now consider problems in which the irreversible decision will deliver a risky shock
to well-being, one that may be either positive or negative. The question we analyze
is the amount of research that should be done before making the decision. Again,
to highlight the role of patience, we work in a simplified model.

We assume that the present stochastic path of utilities, u, has a long-run average,
lra(u). There is a hidden state X with Prob(X < 0) > 0 and Prob(X > 0) > 0.
When the action a = 1 is taken, generational well-being will go up/down by X
forever thereafter and no further actions are available. When the action a = 0 is
taken, the possibility of taking the decision is closed off, and utility will be u, no
further actions are available. Until either a = 0 or a = 1 is chosen, the action
s is available. When a = s is chosen, a signal that is stochastically related to X
will be observed. The action s corresponds to researching into the consequences of
the irreversible decision. We assume that there is a random, unknown number of
informative signals available, and when they are exhausted, this is observed and
any further signals are stochastically independent of X. Further, every attempt to
observe an informative signal costs c.

If M, the number of informative signals is known to be 0, then the decision for a
society with preferences represented by S(·) is given by the comparison of S(u) and
ES(u+ X1N0). By Corollary B.1, this reduces to the comparison

ϕ(lra(u)) ≶ Eϕ(lra(u) + X). (30)
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Here the curvature of S(·) encoded in ϕ(·) determines the attitude toward risk, and
one might expect more risk tolerance for higher values of lra(u).

More generally, if is the posterior distribution after beliefs have converged, e.g.
after it is known that there are no more informative signals, then the comparison is
ϕ(lra(u)) ≶ Eϕ(lra(u)+X). Let B− denote the set of beliefs for which Eϕ(lra(u)+
X) 6 ϕ(lra(u)) and B+ the set for which Eϕ(lra(u) + X) > ϕ(lra(u)). The optimal
policy takes the following form.

Research until posterior beliefs either converged to B+ or to B−. If
they have converged to B+, take the irreversible decision, otherwise
close it off.

◦ Convergence to either the set B+ or B− entails knowing that future information
will not move beliefs out of the set.
◦ A definite decision is made.
◦ The costs do not enter the analysis.

Thus, we have a precautionary principle, but one with some subtleties. It asks
that irreversible decisions be delayed until uncertainty is reduced, not to nothing
as in Sunstein’s [41] ‘straw man’ version of the precautionary principle, but until
society is as sure as possible that the expected benefits, X > 0, outweigh the ex-
pected costs, X < 0. Even if it is not definitive, information that can change the
optimal action is worth waiting for in general, and patience magnifies that effect.
One form that this convergence may take is that the research may reveal ways to
mitigate negative consequences, lowering Prob(X < 0).

To have the costs enter the analysis more sensibly, one should consider a version
of this model in which each generation is faced with their own irreversible deci-
sion(s). In such an analysis, costs become a permanent component of generational
well-being, and society optimally trades off between this component and the future
additions/subtractions to the utility path.

5. SUMMARY AND CONCLUSIONS

This paper has studied the lengthening of the horizon for optimization, the equal
treatment of generations inhabiting that longer horizon, and how these interact
with dynamic externalities, up to and including externalities in their strongest form,
irreversibilities. Viewing society as an aggregate of present and future generations,
intergenerational equity captures societal patience. We have offered a resolution to
the conflict between intergenerationally equitable preferences and Pareto respon-
siveness by specifying a class of social welfare functions that have both a tangent

31



formulation and an axiomatic foundation. Further, we have used the ideas behind
perfect equilibrium to show that there are conditional equal treatment solutions,
and these provide an ethical resolution to the underselectiveness problems that
have plagued previous attempts to solve long-run optimization problems.

Application to general equilibrium theory allows us to understand one set of
properties of the tangents, the relative weights that can be given to different parts
of the future by different dynasties. Applications to two general classes of Mar-
kovian decision problems afford further insights. A Markovian decision problem
is strongly ergodic if every choice of a stationary policy π leads to a unique long-run
distribution µπ for which equal long-run average payoffs is a probability 1 event.
By contrast, the problem is pathwise ergodic if, with probability 1, each path has a
long-run average, but the average can be different on different paths. Pathwise
ergodicity captures the possibility that early events and responses to them have
influence the long run path of the system.12

5.1. Tangents and Postulates. Our main postulate on preferences is that if u strictly
average overtakes v, then u � v. For an r > 0 and B a set of generations, u :=

v + r · 1B > v. When 0 average overtakes r · 1B, we not only have u average
overtaking v, we also have v average overtaking u, in which case our preferences
judge v+r ·1B and v as indifferent. It is only when r ·1B strictly average overtakes 0
that our preferences judge v+r ·1B as strictly better than v. The tangent formulation
provides further understanding of and justification for this pattern of indifference
and strict preference.

Our class of tangents is a subset of Banach-Mazur limits, that can be represented
by integrals against non-atomic, purely finitely additive measure on N0. Hence
our patient preferences evaluate utility allocations to the non-atomic measure space
that models society by integrating utility allocations against the non-atomic, finitely
additive measure η. Non-atomic measures come with rich classes of null sets, and

12Some decisions clearly set history on different paths. For example, in 1953, after Stalin’s death,
Dwight D. Eisenhower argued that the world found itself at “. . . one of those times in the affairs of
nations when the gravest choices must be made, if there is to be a turning toward a just and lasting
peace.” He talked of the long-run consequences of present choices, “Every gun that is made, every
warship launched, every rocket fired signifies, in the final sense, a theft from those who hunger and
are not fed, those who are cold and are not clothed. This world in arms is not spending money alone.
It is spending the sweat of its laborers, the genius of its scientists, the hopes of its children. . . . This,
I repeat, is the best way of life to be found on the road the world has been taking. This is not a way
of life at all, in any true sense. Under the cloud of threatening war, it is humanity hanging from a
cross of iron.”

32



the essential intuition behind our resolution is that we only pay attention to non-
null subsets of society.

The cumulative distribution function for a random variable, τ, having a purely
finitely additive distribution η must satisfy Prob(τ 6 M) = Fη(M) = 0 for every
integer M. This indicates that the probability η on puts all of its mass “to the right
of N0.” Future generations are captured in the mass to the right and this is our ideal-
ization of the 10 million to 1 “ratio of people who will potentially live to the people
living now.” The purely finitely additive aspect of this idealization leads to what
has been, in the past, identified as an incompatibility result for intergenerational
equity and respect for the Pareto ordering.

A probability on N0 is purely finitely additive if and only if all v with vt → 0
integrate to 0. These integrals are the tangents to the preferences under study. If
v > 0 and vt → 0 with vt > 0 for infinitely many t, then for any u, we have
ut + vt > ut for infinitely many generations. From the point of view suggested by
our tangents, for any ε > 0, no matter how small, the subset of society that is doing
ε better in u + v has mass 0. By contrast, the tangents require that S(u + v) > S(u)

when (and only when) a v > 0 delivers a strictly positive amount of extra utility to
a non-negligible subset of society.

5.2. Strongly Ergodic Problems. The classical growth model and the stark climate
change model are examples of problems in which every policy leads to a single
limit distribution. For this class of models our theoretical contribution is to show
how broad a class of preferences are simultaneously covered by maximization of
the long-run average. Our analysis depends on the tangent formulation: one maxi-
mizes the long-run average if and only if one maximizes each affine function in the
class V; if an action maximizes each tangent to a concave function, then it maxi-
mizes the concave function itself.

From the observation that a single choice can be optimal for so many utility func-
tions, one can get a sense of how underselectiveness arises. Our solution to un-
derselectiveness can be most clearly seen in the growth model: a limit form of the
discounted Bellman equation provides the average reward optimality equations;
these equations treat every state as possible; and on stochastic paths to the long-run
states, treats the welfare of generations equally.

In the optimal policies for these examples, we see the tradeoffs between two as-
pects of the preferences we study. The concern for future generations pushes for
investment in the growth model, while the concern for equal treatment of present
generations pushes for equality of marginal utilities hence equality of consumption
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across generations, hence pushes for present consumption. In the climate change
model, optimal policies cannot call for equalization of marginal utilities. Instead,
they call for sacrifices by the well-off in the interests of making it less likely that fu-
ture generations will be less well-off, and they also call for sacrificies by those who
are less well-off to make it more likely that future generations are well-off.

5.3. Pathwise Ergodicity, (Pre)Caution and Option Values. When different long
run paths have different long run utilities and these are stochastic, the concavity of
S(·) induces risk aversion over the choice of paths. Risk aversion and equal treat-
ment of generations does not lead to the “paralysis” as suggested in Sunstein’s [41]
straw man version of the precautionary principle. Rather, with the weight of future
generations’ well-being on the scale, optimal policies pursue progress while be-
ing very cautious about shutting off future options. The first effect, a preference for
knowledge because of its capacity to expand options, comes from the magnification
of those enjoying option value to improvements in the set of possibilities. The sec-
ond effect comes through the similar magnification of the damages of irreversible
losses.

As society puts more and more weight on the future, policies that avoid bad ab-
sorbing states and make possible better outcomes for future generations become
more and more attractive, ceteris paribus. This is a precautionary approach that is
conservative in the sense that it conserves a larger set of options for future genera-
tions. To put it another way, optimal policies pursue progress, but not at the cost of
irreversibly losing what we have.

From the traditional viewpoint of optimality with discount factors that reduce
the weight given to long-run welfare of future generations effectively to 0, the cau-
tionary aspects of waiting for information can seem disconcerting. To us, this seems
to be at the heart of the arguments about sustainability. Our emphasis on the im-
portance of long horizon thinking leads a society to trade off the speed and scale of
present developments for long-run flexibility.

Other versions of the precautionary principle prescribe allocating the expense
of the research to those proposing the potentially irreversible action. Our analysis
suggests that such a policy that may be optimal if potential benefits are privately
appropriable while potential costs are public, but not otherwise.
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APPENDIX A. PROOFS

For the proofs using nonstandard analysis, we work in a κ-saturated, nonstan-
dard enlargement of a superstructure V(Z) where the base set, Z, contains R and `∞,
and κ is a cardinal greater than the cardinality of V(Z). For nearstandard r ∈ ∗Rk,
◦r ∈ Rk denotes the standard part of r [26, §II.1 and II.8] or [30, Ch. 3]. The es-
sential result that we use is [29, Theorem 3.1]: if η is an extreme point in the set of
Banach-Mazur limits, then there exists in interval subset of ∗N0, {T ′, T ′ + 1, . . . , T }
with (T − T ′) ' ∞ such that for all u ∈ `∞, 〈u,η〉 = ◦〈∗u,ηT ′,T 〉 where ηT ′,T is the
∗-uniform distribution on {T ′, . . . , T }.

For bounded sequences, the Hardy-Littlewood Tauberian theorem tells us that
limT→∞ 1

T+1

∑T
t=0 ut = c if and only if limβ↑1(1 − β)

∑∞
t=0 utβ

t = c. We record the
nonstandard formulation of this and include a proof for completeness.

Lemma 2. The following are equivalent:

(1) u ∈ Erg;
(2) for all η,η ′ ∈ pV, 〈u,η〉 = 〈u,η ′〉; and
(3) for all β,γ ' 1, β,γ < 1, (1 − β)

∑∞
t=0 utβ

t ' (1 − γ)
∑∞
t=0 utγ

t.

Proof. (1) ⇔ (2). For T ∈ ∗N0, let ηT denote the uniform distribution on {0, 1, . . . , T }
so that 〈u,ηT 〉 = 1

T+1

∑T
t=0 ut =: AveT (u).

By definition, u ∈ Erg iff limTn AveTn(u) exists and is equal along all sequences
Tn → ∞ in N0. The existence of this limit is equivalent to the statement that for
all infinite T , T ′, AveT (u) ' AveT ′(u). From [29, Theorem 3.1], the extreme points
of V have an expression as L(u) = ◦〈∗u,ηT 〉 where ηT is the uniform distribution
on {0, 1, . . . , T }, T infinite. Integrating a linear functional to the same value on all
extreme points of its domain implies integrating to the same value on all points.
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(2) ⇒ (3) Suppose, without loss, that for all infinite t, 〈u,ηt〉 ' 1 where ηt is the
uniform distribution on {0, 1, . . . , t}. The following calculation shows that for β ' 1,
the density yt = (1 − β)βt is, to within an infinitesimal, a convex combination of
uniform distributions on infinite intervals {0, 1, . . . , t},

R := (1 − β)
∑∞
t=0 utβ

t = (1 − β)2 ∑∞
t=0 β

t(t+ 1)〈u,ηt〉. (31)

There exists infinite τ < τ ′ such that
∑τ
t=0 β

t(t + 1) '
∑∞
t=τ ′ β

t(t + 1) ' 0.
Therefore, because ‖u‖ is finite,

R ' (1 − β)2 ∑τ ′

t=τ β
t(t+ 1)〈u,ηt〉. (32)

For each infinite t, 〈u,ηt〉 ' 1, and the sum of the weights (1 − β)2βt(t + 1), t ∈
{τ, τ+ 1, . . . , τ ′} is infinitesimally close to 1. Therefore, R ' 1.

(2) ⇐ (3) Now suppose that for all β ∈ ∗(0, 1), β ' 1, ◦(1 − β)
∑∞
t=0 utβ

t =

1, where the “1” is a harmless normalization. Let G denote the set of standard
functions, g : [0, 1]→ R such that for all β < 1,β ' 1,

◦(1 − β)
∑∞
t=0 utβ

t∗g(βt) =
∫1

0 g(x)dx. (33)

We detour to develop properties of the class of “good” functions G.
It is clear that G is a vector space of functions containing the constants. Therefore,

to show that G contains the polynomials, it is sufficient to show that it contains the
monomials, g(x) = xk. For g(x) = xk, we have

∫1
0 g(x)dx =

1
k+1 . We now show that

for g(x) = xk, (1 − β)
∑∞
t=0 utβ

tg(βt) ' 1
k+1 . For β ' 1,β < 1, we have βk+1 ' 1

and βk+1 < 1. By assumption, ◦(1 − βk+1)
∑∞
t=0 ut(β

k+1)t = 1. Therefore,

(1 − β)

∞∑
t=0

utβ
tg(βt) = (1 − β)

∞∑
t=0

ut(β
k+1)t (34)

=
(1 − β)

(1 − βk+1)
(1 − βk+1)

∑∞
t=0 ut(β

k+1)t (35)

' (1 − β)

(1 − βk+1)
' 1
k+ 1

(36)

where the last “'” follows from l’Hôpital’s rule.
Therefore, G contains all of the polynomials. It is also closed under uniform con-

vergence, so by the (Stone-)Weierstrass theorem, it contains all of the continuous
functions. Consider the function

g(x) =

0 if x < 1/e

1/x if 1/e 6 x 6 1.
(37)
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Note that
∫1

0 g(x) = 1, and that, if g ∈ G, then taking β = e1/N for infinite N,
(1 − β)

∑∞
t=0 utβ

tg(βt) = 1
N

∑N
t=0 ut ' 1.

The function g is not continuous, but for every ε > 0, it is sandwiched between
continuous functions that are within ε of g outside of the interval (1/e−ε, 1/e+ε),
and that integrate to within ε of the integral of g on the interval (1− ε, 1+ ε). Since
ε is arbitrary and the continuous functions belong to G, for any β ' 1, β < 1,
(1 − β)

∑∞
t=0 utβ

t ' 1. �

Proof of Lemma 1. Suppose that π is O(T) and fix u ∈ `∞. For any infinite T ∈ ∗N0,
let t† be the largest t ∈ {0, 1, . . . , T } such that π(t) < 0 and let t‡ be the minimum
t ∈ {0, 1, . . . , T } such that π(t) > T . We show that t†/(T + 1) ' 0 and t‡/(T + 1) ' 1.
If ◦t†/T = α > 0, then t† is infinite and |π(t†) − t†|/t† = 1, contradicting π being
O(T). Note that t‡ is infinite, and if ◦t‡/T = (1 − ε) < 1, then ◦|π(t†) − t†|/t† > ε,
contradicting π being O(T). This is sufficient to show that u%O(T) u

π because, letting
T ′ = {t ∈ {0, 1, . . . , T } : 0 6 π(t) 6 T },∣∣∣∣∣ 1

T + 1

T∑
t=0

(ut − u
π
t )

∣∣∣∣∣ =
∣∣∣∣∣ 1
T + 1

T∑
t=0

(ut − uπ−1(t))

∣∣∣∣∣
6

∣∣∣∣∣ 1
T + 1

∑
t∈T ′

(ut − ut)

∣∣∣∣∣+ 1
T + 1

∑
t 6∈T ′,t6T

|ut − u
π
t |

6 0 + 2‖u‖ · #{t 6∈ T ′}
T + 1

' 0

The arguments for uπ%O(T) u are essentially identical.
For second part of the claim, note that the arguments just given show that for any

infinite T and u ∈ Erg, AveT (u) = AveT (uπ). �

Proof of Theorem A. Suppose that � satisfies Postulates I-V. We draw heavily on
Theorem 4, Ch. 3 in [20] which characterizes expected utility preference relations
�. Our Postulates I and II are Fishburn’s A1 and A2, our Postulate III is a strong
form of his A3 and it directly implies his A4∗ and A5∗.

Our mixture set, M, the set of measures with bounded support is closed under
finite convex combinations. As we work with the Borel σ-field on W, our Postulate
III implies that the domain for our probabilities contains all preference intervals,
which then implies that M is closed under taking conditional measures on prefer-
ence intervals, completing the verification of Fishburn’s A0.2.

Having verified A1-A5 and A0.2, Fishburn’s result shows that there exists an
integrable S : W → R such that p � q iff

∫
S(v)dp(v) >

∫
S(v)dq(v). Restricted
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to the closed set of point masses, {δu : u ∈ W}, Postulate III implies that S(·) is
continuous. By considering measures with two point supports and their resultants,
Postulate IV implies that S(·) is concave. For the normalization that S : W→ [0,∞),
note that there is no loss in setting S(0) = 0 — for all u ∈ W, u%O(T) 0 so that
Postulate V implies S(u) > S(0).

We now show that S(·) is exactly Pareto. IfB is a null coalition, then for any u ∈W
and any r > 0, u%O(T) (u + r1B)%O(T) u so that Postulate V implies S(u) = S(u +

r1B). If B is a non-null coaltion, then for any u ∈W and any r > 0, (u+ r1B)�O(T) u

so that Postulate V implies S(u+ r1B) > S(u+ r1B).
We now show that S(·) is patient. From Lemma 1, if π is an O(T)-permutation,

then for all u ∈ `∞, u%O(T) u
π%O(T) u so that Postulate V implies S(u) > S(uπ) >

S(u).
Now suppose that there exists a continuous, concave S : W → [0,∞) such that

[p � q] ⇔ [
∫
S(u)dp(u) >

∫
S(u)dq(u)] with S(·) satisfying the properties (1) and

(2). Verification of Postulates I through IV is routine. To verify Postulate V, suppose
that u�O(T) v and let r ′ = lim infT→∞ 1

T+1

∑T
t=0(ut − vt). By definition, r ′ > 0. Set

r = r ′/2 and note that u�O(T) (v + r1N0)�O(T) v and that N0 is a non-null coaltion.
By property (2), S(u) > S(v+ r1N0) > S(v). �

Proof of Theorem B. We first show that any V-concave S(·) is perfectly Pareto. Pick an
arbitrary u ∈W.

• If B is a null coalition, we must show that S(u + r1B) > S(u) > S(u + r1B)
for all r > 0. For all η ∈ pV, 〈1B,η〉 = 0. Because V is the closed cone
containing pV, for all L ∈ V and all r ∈ R, L(r1B) = 0. For any L ∈ DS(u),
S(u) + L((u + r1B) − u) > S(u + r1B) so that S(u) > S(u + r1B). Similarly,
for any L ′ ∈ DS(u + r1B), S(u + r1B) + L ′(u − (u + r1B)) > S(u) so that
S(u+ r1B) > S(u).
• If B is a non-null coalition, we must show that S(u+r1B) > S(u) for all r > 0.

For all η ∈ pV, 〈1B,η〉 > 0. Because V is the closed cone containing pV and
any L ′ ∈ DS(u + r1B) is a strictly positive element of V, L ′(r1B) > 0. Since
S(u+ r1B) + L ′(u− (u+ r1B)) > S(u), we have S(u+ r1B) > S(u) + L ′(r1B)
so that S(u+ r1B) > S(u).

We now show that any V-concave S(·) is patient. Pick an arbitrary u ∈W and an
arbitrary O(T)-permutation. We must show that S(u) = S(uπ). From Lemma 1, we
know that u%O(T) u

π%O(T) u and that for every η ∈ V and every z ∈ N, 〈z,η〉 = 0.
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Therefore, for any L ∈ DS(u) and any L ′ ∈ DS(uπ), L(u − uπ) = L ′(u − uπ) = 0.
Therefore S(u) + 0 > S(uπ) and S(uπ) + 0 > S(u).

For the second part, assume that � satisfies Postulates I-V and that integrals
against S(·) represent the preferences on M. We must show that S(·) is V-concave
on int(W). Pick an arbitrary u ∈ int(W) and L ∈ DS(u). If L 6∈ V, then there exist
v1, v2 ∈ Erg with lra(v1) = lra(v2) and L(v1−v2) 6= 0. Reversing the role of v1 and v2

if necessary, L(v1 − v2) < 0. Because u is interior, for some r > 0, v := u+ r(v1 − v2)

is interior.
We first prove the intermediate claim that u%O(T) v%O(T) u. For any infinite T ,

1
T+1

∑T
t=0 vt =

1
T+1

∑T
t=0 ut + r

1
T+1

∑T
t=0(v1,t − v2,t) =

1
T+1

∑T
t=0 ut + 0. Therefore,

lim infT 1
T+1

∑T
t=0 vt = lim infT 1

T+1

∑T
t=0 ut.

Returning to the argument, by Postulates V and continuity, S(u) = S(v). How-
ever, by the properties of tangents for concave functions, S(u) + L(v − u) > S(v).
However, L(v− u) = rL(v1 − v2) < 0, a contradiction. �

Proof of Proposition 1. As this is an exchange economy model, we need only ver-
ify (i)-(iv) in Bewley’s Theorem 1. (i) is the assumption that the consumption sets
are convex and Mackey closed, which is immediate. (ii) is the assumption that
the preference relations are transitive, reflexive and complete, which is satisfied
because the preferences are given by utility functions. (iii) is the assumption that
for all i ∈ I and all consumption vectors, x, the set {z ∈ Wk : Ui(z) > Ui(x)}

is convex and Mackey closed. Convexity follows from the concavity of Ui(·), and
a convex subset of the dual of a Banach space is closed for all the topologies be-
tween the weak∗-topology and the norm topology if and only if it is norm closed
[18, Cor. V.2.14]. Therefore, norm continuity of the Ui(·) delivers the necessary clo-
sure. (iv) is the the assumption that for all i ∈ I and all consumption vectors, x, the
set {z ∈ Wk : Ui(z) 6 Ui(x)} is norm closed, which follows directly from the norm
continuity of Ui(·). �

Proof of Proposition 2. For convex sets, weak∗ and norm closure are equivalent. �
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