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Abstract 

Despite its sequence variability and structural flexibility, the V3 loop of the HIV-1 envelope 

glycoprotein gp120 is capable of recognizing cell-bound co-receptors CCR5 and CXCR4 and 

infecting cells. Viral selection of CCR5 is associated with the early stages of infection, and 

transition to selection of CXCR4 indicates disease progression. We have developed a predictive 

statistical model for co-receptor selectivity that uses the discrete property of net charge and the 

binary co-receptor preference markers of the N6X7[T/S]8X9 glycosylation motif and 11/24/25 

positive amino acid rule. The model is based on analysis of 2,054 V3 loop sequences from 

patient data and allows us to infer the most likely state of the disease from physicochemical 

characteristics of the sequences. The performance of the model is comparable to established 

sequence-based predictive methods, and may be used in combination with other methods as a 

supportive diagnostic for co-receptor selection. This model may be used for personalized 

medical decisions in administering co-receptor-specific therapies. 
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Introduction 

The V3 loop of the HIV-1 glycoprotein 120 (gp120) is implicated in HIV-1 entry into host 

cells by interacting with co-receptors CCR5 or CXCR4, while the remainder of gp120 is 

anchored to receptor CD4 and viral surface glycoprotein 41 (gp41).1-5 Given the sequence 

variability6 and structural flexibility7-9 of the V3 loop, persistent sequence, structural, and 

physicochemical patterns have been sought to describe the mechanism of viral recognition and 

entry at molecular level. Charge and electrostatic potential have been proposed to be dominant 

factors in the recognition between the positive V3 loop and the negative N-terminal domain of 

CCR5.10,11 Long-range electrostatic potential interactions are non-specific, but capable of 

steering the V3 loop towards CCR5. Clustering analysis of electrostatic potentials of V3 loop 

consensus sequences has revealed persistent electrostatic potential characteristics, which are 

more pronounced in the subtypes of Group M, despite sequence variability.11 A further 

complication for understanding the molecular role of the V3 loop in viral entry arises from the 

fact that HIV-1 changes co-receptor as the disease progresses, with preference for CCR5 at the 

initial stages of infection and preference for CXCR4 as the patient’s health deteriorates. ,2-5,10-21. 

The absence of the N6X7[T/S]8X9 glycosylation sequence motif has been proposed to favor 

binding to CXCR4,22,23 and the presence of one or more positive amino acids at sequence 

positions 11, 24, or 25 has been proposed to also favor binding to CXCR4 (the 11/24/25 positive 

amino acid rule).24 Glycosylation is also related to charge because of the presence of sialic acids, 

which carry negative charge, and affect the overall charge of the V3 loop, as discussed.11 The 

presence of the glycosylation motif (and the charge glycosylation carries) can contribute to the 

evolutionary pressure for charge adjustments at other sites of the V3 loop sequence. 

In this study we have analyzed V3 loop sequences with known co-receptor preference from 

patient samples, available at the Los Alamos HIV Databases.25 Our analysis utilizes 

physicochemical information included in the sequences, such as net charge, the N6X7[T/S]8X9 

glycosylation sequence motif, and the 11/24/25 positive amino acid rule, to develop a predictive 

statistical model for HIV-1 co-receptor selectivity. 

 

Methods 

We first retrieved 5,309 V3 loop sequences deposited at the Los Alamos HIV Databases25 at 

the beginning of the study (June 27, 2011). The deposited sequences are derived from patient 
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data and are associated with known co-receptor selection from experimental studies (e.g. see 

Refs. 5, 16, 17). The sequence sample was reduced to 2,054 by filtering duplicate sequences 

belonging to same patient and keeping only unique sequences per patient. Sequence analysis was 

performed using the amino acids within and including the disulfide bridge located at the base of 

the V3 loop. The sequences were 33-37 amino acids in length, with those associated with CCR5 

having length of 34-35 and those associated with CXCR4 or CCR5/CXCR4 (meaning dual or 

mixed co-receptor) showing larger length variability. Net charge was determined by counting the 

unit charges of positively and negatively charged amino acids. Arginines and lysines have charge 

+1, whereas aspartic and glutamic acids have charge -1. Given the high conformational 

variability (owed to lack of specific structure and solvent exposure of the V3 loop9), we consider 

that histidines have pKa close to that of free amino acids in solution (in the range of 6-6.5), and 

therefore they are neutral at physiological pH (at the range of 7-7.5). The presence or absence of 

the glycosylation motif and the 11/24/25 rule were determined as binary variables.  

We used an ordered probit statistical model for quantitative estimation of co-receptor 

selectivity. Our underlying assumptions are: (i) disease progression follows the co-receptor 

selection pattern in the order of CCR5 ! CCR5/CXCR4 ! CXCR4, and (ii) that co-receptor 

selectivity can be inferred by the information found in the sequence of the V3 loop. The probit 

model depicts the co-receptor transition order, and can be used to predict probabilities for co-

receptor selection given the properties of glycosylation motif, positive amino rule, and net 

charge. The model accounts for a discrete net charge integer variable and binary variables of 1 

and 0 for the presence and absence, respectively, of the glycosylation motif and the 11/24/25 

positive amino acid rule. These variables are not independent from each other, and they are all 

related to charge, as mentioned above. Let us call yi
*  the co-receptor state embedded in 

experimentally derived V3 loop sequence i, which is a latent continuous variable. Then, we 

define an ordered variable yi  such that 

yi =

1 yi
* < µ1

2 µ1 ≤ yi
* < µ2

3 yi
* ≥ µ2

#

$
%%

&
%
%

                 (1) 

where 1, 2, and 3 refer to progression in co-receptor state (CCR5, CCR5/CXCR4, and CXCR4, 

respectively), and µ1  and µ2  are unknown thresholds. We model the co-receptor selection as a 
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function of a set of the following physicochemical characteristics of the V3 loop sequence: (i) 

the N6X7[T/S]8X9 glycosylation motif (denoted as Motif); (ii) the 11/24/25 positive amino acid 

rule (denoted as Rule); and (iii) net charge (denoted as Charge). For each individual sequence i  

yi
* = β1Motifi +β2Rulei +β3Chargei +εi = β ' xi +εi            (2) 

where εi  is a normal error term, independent and identically distributed (mean zero and variance 

1). Under these assumptions, we obtain the probabilities of being in co-receptor state 1, 2 or 3, as 

follows 

P(yi =1) = P(yi
* < µ1) = P(εi < µ1 −β ' xi ) =Φ(µ1 −β ' xi )

P(yi = 2) = P(µ1 ≤ yi
* < µ2 ) = P(εi < µ2 −β ' xi )−P(εi < µ1 −β ' xi ) =Φ(µ2 −β ' xi )−Φ(µ1 −β ' xi )

P(yi = 3) = P(yi
* ≥ µ2 ) = P(εi ≥ µ2 −β ' xi ) =1−Φ(µ2 −β ' xi )

    (3) 

where Φ is the cumulative standard normal distribution function. 

The aforementioned model considers three co-receptor states, namely CCR5, CCR5/CXCR4, 

and CXCR4. But, it can be argued that only two co-receptors physically exist, and therefore we 

can define an ordered variable yi  such that 

yi =
1 yi

* < µ

2 yi
* ≥ µ

"
#
$

%$
                  (4). 

The variable yi
*
 is defined as in Eq. (2), and the probabilities for co-receptor state 1 or 2 (CCR5 

or CXCR4, respectively) are given by 

P(yi =1) = P(yi
* < µ) = P(εi < µ ! β ' xi ) = " (µ ! β ' xi )

P(yi = 2) = P(yi
* # µ) = P(εi # µ ! β ' xi ) =1! " (µ ! β ' xi )

          (5). 

The profile of our dataset of 2,054 sequences is shown in Table 1. The (Motif, Rule)=(1, 0) 

combination is most abundant (79.1% of total sum of sequences), with 87.5% of these sequences 

showing preference for CCR5. The (Motif, Rule)=(1, 1) combination is the second most 

abundant (11.5% of total sum of sequences), with 43.9% of these sequences showing preference 

for CCR5/CXCR4. The (Motif, Rule)=(0, 1) combination is the third most abundant (5.6% of 

total sum of sequences), with 61.4% of these sequences showing preference for CXCR4.  

The analysis for the three co-receptor model was performed using the dataset of Table 1, 

whereas the analysis for the two co-receptor model was performed using a reduced subset of the 

dataset, by excluding the 322 CCR5/CXCR4 entries. 
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In order to test the accuracy and robustness of the probit predictions, a second model was 

produced using the 1,368 sequences (of the 2,054 total sequences) that do not have an 

experimentally determined CD4 count assigned. The remaining 686 sequences with assigned 

CD4 counts, were used as a test set for side-by-side comparisons with established methods, 

specifically geno2pheno[coreceptor]
27 and webPSSM.28 The webPSSM predictions were performed 

using the subtype B x4r5 matrix, while the geno2pheno[coreceptor] predictions were performed 

using the original g2p co-receptor model with optimized cutoffs based on clinical data. ROC 

curve analysis based on the probit co-receptor probabilities was performed using the CD4 count 

dataset. A ROC curve for webPSSM CXCR4 preference was generated using the assigned score, 

while r5.pct was used to produce a ROC curve for CCR5 selection. Similarly, a ROC curve for 

CXCR4 selection was also produced for the geno2pheno[coreceptor] predictions using the assigned 

percentile;  however, no CCR5 ROC curve was produced since the geno2pheno[coreceptor] server 

does not readily provide CCR5 analysis. 

A final subset of the complete dataset, consisting of 317 sequences with assigned CD4 count 

and patient health status, was also identified. According to the Los Alamos HIV Databases, the 

following disease states can be assigned to each sequence: 1) acute infection, 2) asymptomatic, 

3) symptomatic, 4) AIDS, and 5) death; however, only states 1-4 are relevant for our analysis 

since sequences with a patient health status of death were excluded from this aspect of our 

results. The patient health subset was selected to allow comparisons between disease state and 

predictions for co-receptor selectivity. Three degrees of disease advancement have been assigned 

based on the patient health status: passed acute infection (patients in the asymptomatic, 

symptomatic, or AIDS states), passed asymptomatic phase (patients in the symptomatic or AIDS 

states), and AIDS. 

 

Results and Discussion 

Net charge is a significant factor in showing preference for CCR5, CXCR4, or 

CCR5/CXCR4, as shown by the statistical distributions of Fig. 1. The distribution that peaks at 

net charge of ~3 denotes preference for CCR5 whereas the distribution that peaks at net charge 

of ~5.5 denotes preference for CXCR4. An intermediate distribution denotes CCR5/CXCR4 

preference, and marks the transition from CCR5 to CXCR4.  
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We pursued further analysis that incorporates all known markers embedded in V3 loop 

sequences in order to develop a quantitative estimation model for co-receptor selectivity. We 

used the ordered probit statistical model to account for the discrete net charge data of Fig. 1, and 

co-receptor selectivity binary markers of the glycosylation motif and the 11/24/25 positive amino 

acid rule.  

We consider that the preference for co-receptor selection is implicit in the observed V3 loop 

sequence. Our goal is to infer the most likely co-receptor selection from the physicochemical 

characteristics of the observed sequence. We constructed the predictive model based on the 

2,054 V3 loop unique patient sequences with known co-receptor selections from experimental 

data deposited at the Los Alamos HIV Databases.25  

The estimated parameters of the ordered probit model described by Eqs. (1)-(3) are 

summarized in Table 2. Interpretation of the β coefficients of Eq. (2) suggests that the binary 

markers Motif and Rule have opposite effects of about similar magnitudes, denoted by the 

opposite sign and similar absolute values. This means that when Motif and Rule are both present, 

(1, 1), charge is the defining parameter in co-receptor selection. Similarly, when both Motif and 

Rule are absent, (0, 0) in Fig. 1, charge is the only parameter that determines co-receptor 

selection. 

Based on the analysis described above, the estimated model is 

ŷi
* = −0.887Motifi +1.081Rulei + 0.356Chargei             (6) 

and the probabilities of being in co-receptor state 1, 2 or 3 are calculated as follows 

P(yi =1) = ! (1.474 " ŷi
*)

P(yi = 2) = ! (2.513" ŷi
*) " ! (1.474 " ŷi

*)
P(yi = 3) =1" ! (2.513" ŷi

*)
              (7) 

where Φ is the cumulative standard normal distribution function. Table 3 shows the comparisons 

of the sample and predicted data. The count of Column 3 corresponds to assigning the value of 1 

for the co-receptor state (CCR5, CCR5/CXCR4, or CXCR4), predicted by the ordered probit 

model, and 0 for the other two states. The data show that the prediction accuracy for CCR5 co-

receptor selection is higher than that for CXCR4 (98.2% versus 56%). Prediction for 

CCR5/CXCR4 selection is much lower (11.5%), as the model re-classifies 285 (out of 322) 

entries as showing preference for co-receptor CCR5 or CXCR4. This observation may reflect the 

fact that under the CCR5/CXCR4 category are placed both dual and mixed co-receptor 
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selections. Use of the term “dual” implies capability to bind to either CCR5 or CXCR4 co-

receptors, whereas term “mixed” implies a viral population that may contain combinations of 

CCR5-, CXCR4-, and/or dual-binding viral strains. Because of the physicochemical basis of our 

V3 loop analysis, it is likely that our predictive model can discriminate between dual and mixed 

co-receptor selection. This argument suggests that the predicted count for co-receptor state 2 (37 

counts in Table 3) refers to dual CCR5/CXCR4 co-receptor selection. 

Comparison of the predicted co-receptor assignments to the database assignments is shown in 

Table 4. Significant portion of the CCR5/CXCR4 and CXCR4 database assignments are re-

assigned (more frequently to CCR5), as discussed above. The origin of the re-assignments is not 

understood at the moment, and possibly reflects the use of physicochemical properties (probit 

model) compared to the use of a variety of experimental methods by several different researchers 

in populating the database. This issue may be resolved in future work using self-consistent 

datasets derived from identical experimental methodologies, as well as time dependent data from 

individual patients. Perhaps the most accurate experimental method to determine co-receptor 

selection depends on the use of cells that express CCR5 or CXCR4 only.  

Equations (6) and (7) can be used in predicting probabilities for co-receptor selectivity for a 

patient’s experimentally derived V3 loop sequence, by simply assessing the presence or absence 

of the N6X7[T/S]8X9 glycosylation motif and 11/24/25 positive amino acid rule and by 

determining the net charge of the sequence (derived by summing the number of positively and 

negatively charged amino acids).  

Figure 2 shows graphically the calculated probabilities as a function of net charge, 

glycosylation motif, and 11/24/25 positive amino acid rule. The calculated probabilities show 

that for (Motif, Rule)=(1, 0) there is preference for CCR5 as charge decreases (Fig. 2A), whereas 

the opposite happens for (Motif, Rule)=(0, 1) for which there is preference for CXCR4 as charge 

increases (Fig. 2C). For (Motif, Rule)=(1, 1) charge is the dominant factor, and for (Motif, 

Rule)=(0, 0) charge is the only factor, in both cases favoring CCR5 as charge decreases and 

CXCR4 as charge increases (Fig. 2, A and C). Probabilities for CCR5/CXCR4 preferences, 

marking the transition from CCR5 to CXCR4, are shown in Fig. 2B, and include the overlapping 

region between the probabilities for CCR5 and CXCR4 preferences.  

The data of Fig. 2 suggest that the CCR5 preference when the glycosylation motif is present 

[case of (Motif, Rule)=(1, 0)], switches to CCR5/CXCR4 preference upon incorporation of a 



Page 8 of 15 

positive amino acid according to 11/24/25 rule [and concurrent net charge increase, case of 

(Motif, Rule)=(1, 1)], and subsequently switches to CXCR4 preference upon loss of 

glycosylation capacity and concurrent net charge increase [case of (Motif, Rule)=(0, 1)]. 

Simultaneous loss of glycosylation capacity and positive charge at the 11/24/25 positions [least 

abundant combination of (Motif, Rule)=(0, 0)] shows no apparent preference for any of the co-

receptor selections.  

We have also performed the probit analysis using only two co-receptors, CCR5 and CXCR4, 

using Eqs. (4) and (5). The resulting estimated model is 

öyi
* = ! 1.294Motifi +1.276Rulei +0.621Chargei             (8) 

and the probabilities of being in co-receptor state 1 or 2 are  

P(yi =1) = ! (2.961" öyi
* )

P(yi = 3) =1" ! (2.961" öyi
* )

                 (9) 

The probit results are summarized in Fig. 3 and Supplemental Tables S1 and S2, and they are in 

par with the results of the three co-receptor model. This is evidenced by the opposite sign, and 

about equal magnitude of the !  coefficients, showing that the binary markers Motif and Rule 

have opposite effects of about similar magnitudes. It is also evidenced in Fig. 3, which shows 

that that the graphs for cases of (Motif, Rule) = (1, 1) or (0, 0) are overlapping. The critical role 

of charge for co-receptor selection in the cases of (Motif, Rule) = (1, 1) or (0, 0) is demonstrated 

in both, the three and two co-receptor models. Indeed, charge is almost twice as strong 

determining factor in the two co-receptor model compared to the three co-receptor model, given 

the magnitudes of the !  coefficients. Supplemental Table S2 also shows that prediction of correct 

CXCR4 assignments has increased, given the absence of the CCR5/CXCR4 state. In comparison, 

we consider the three co-receptor model more general than the two co-receptor model, because 

the CCR5/CXCR4 state is supported by experimental data, and it incorporates a transition state 

between viral selection of CCR5 and CXCR4. 

The two phenotypic classes of HIV-1 strains are syncitia-inducing  (SI) strains (infecting 

CD4+ T cells), and non-syncitia-inducing (NSI) strains (infecting macrophages and CD4+ T 

cells). The latter strains show preference for use of CCR5 for cell entry and are associated with 

the primary infection, whereas the former show preference for use CCR5/CXCR4 or CXCR4 for 

cell entry and are associated with rapid reduction in CD4 count and disease progression. Current 

lab tests to diagnose AIDS are CD4 counts, viral loads, and genotypic or phenotypic resistance 
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tests.26 With CD4 counts being a deposited parameter for a subset of the Los Alamos dataset, we 

have split the dataset of 2,054 sequences into a subset with associated experimental CD4 counts 

(686 entries) and a subset without available CD4 counts (1,368 entries). We used the subset 

without CD4 counts to test the robustness of the probit model and to train a model that could be 

used in blind prediction of the subset with CD4 counts.  

The probit results for the three co-receptor model using the reduced dataset without CD4 

counts are summarized in Supplemental Tables S3-S5, and they are similar to those with the 

complete dataset of 2,054 entries (Tables 2-4). Figure 5 shows ROC curves for prediction of co-

receptor selection for the CD4 count dataset, demonstrating rather high predictive values for 

CCR5 and CXCR4, but lower predictive value for CCR5/CXCR4. The poor prediction for 

CCR5/CXCR4 is potentially due to vagueness in the experimental methods used in determining 

a dual tropic virus, as is suggested by the fact that the probit model re-classified most of the 

CCR5/CXCR4 sequences. We also used the probit model trained with the subset without CD4 

counts to evaluate the probit performance in comparison to predictions from existing popular 

servers, geno2pheno[coreceptor]
18,27 and webPSSM.19,28 Figure 6A shows ROC curves for 

predictions of CXCR4 co-receptor selection for the CD4 count dataset, using probit, webPSSM, 

and geno2pheno[coreceptor]. Probit and geno2pheno[coreceptor] perform comparably, whereas 

webPSSM performs slightly better for this dataset. Figure 6B shows a similar analysis of 

predictions of CCR5 co-receptor selection for the CD4 count dataset, using probit and 

webPSSM, while the geno2pheno[coreceptor] web server does not directly predict CCR5. Both 

methods perform equally well for CCR5 prediction. 

Although it is known that as the infection/disease progresses a switch for co-receptor 

preference occurs, starting with selection of CCR5 and continuing with selection of 

CCR5/CXCR4 and CXCR4,2-5,10-21 it is debatable if co-receptor selection may be predictive of 

disease state. To this end, we have analyzed the relationship between co-receptor selectivity and 

disease state, based on the probit predictions using the “patient health status” subset described in 

Methods. Figure 7 contains ROC curves illustrating the prediction of the AIDS patient health 

status based on preference for CXCR4, as assigned by probit, webPSSM, and 

geno2pheno[coreceptor]. CXCR4 preferences calculated by all three methods perform comparably 

well at predicting the AIDS status, with areas under the curve (AUC) of ~0.7. Additionally, 

Figure 7 also contains a ROC curve for AIDS status prediction based on experimentally assigned 
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CD4 count, as a comparison. Surprisingly, the computationally predicted CXCR4 preferences 

perform similarly to CD4 count in assigning the AIDS status at high specificity values (> 0.8). 

We have also performed analysis of the utility of probit predicted co-receptor preference in 

assigning degree of disease advancement. Supplemental Fig. S1 contains ROC curves for 

prediction of disease progression based on probit co-receptor preference, as well as, CD4 count. 

CCR5 probability shows some predictive value for advancement passed the asymptomatic phase, 

and inversely predictive of the AIDS state. CCR5/CXCR4 probability has some predictive value 

for all three degrees of advancement, while CXCR4 probability shows highest AUC for the 

prediction of the AIDS state. These results provide some evidence supporting the hypothesis that 

co-receptor selection may be indicative, but not a quantitative predictor, of disease state. 

Interestingly, despite these observed relationships between co-receptor selectivity and disease 

state, there is only weak correlation between CD4 count and co-receptor selection. Supplemental 

Fig. S2 shows a graph of CD4 counts per co-receptor assignment (provided by the Los Alamos 

HIV Databases) for the CD4 count dataset of our sample, and Supplemental Table S6 shows the 

sample statistics. Although there is a trend in decreasing mean and median as we transition from 

selecting co-receptor CCR5 to CCR5/CXCR4 to CXCR4, there are many entries below the 

medically accepted threshold for AIDS diagnosis (200 counts) associated with CCR5 selection. 

The observations discussed above provide insight into the relationship between disease 

progression and co-receptor selection, and can serve as the foundation for the development of 

predictive models for HIV disease state progression. 

The probit predictive model contributes to the available tools for the analysis of HIV 

sequence data and for the prediction of co-receptor selectivity (e.g. see Refs. 18, 19, 29-40), 

including web server tools geno2pheno[coreceptor]
27 and webPSSM28. What distinguishes probit 

from other methods is its simplicity. The probit model uses only 3 physicochemical 

characteristics that are embedded in the V3 loop genetic code, without dependencies of multiple 

adjustable parameters or heuristic arguments, and without the necessity for prior sequence 

alignments, nor a reliance on sequence templates. 

Knowledge of co-receptor assignment provides information on the first contact point for viral 

entry, and therefore may be useful in determining medication targeting CCR5 or CXCR4 and at 

what ratio. Currently, there is one CCR5 entry drug clinically available and several CCR5 and 

CXCR4 entry drugs are in the pipeline.41-43 The need for CXCR4 entry drugs is evident, 
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considering that development of drug resistance against CCR5 entry drugs is manifested as co-

receptor switch from CCR5 to CXCR4.42 The use of probit and other methods will be beneficial 

once the option of having both CCR5 and CXCR4 entry drug becomes clinically available. 

 

Conclusions 

In practical terms, the predictive use of our model is demonstrated in Table 5, and the 

graphical presentation of the predictions is shown in Fig. 4. The predicted probabilities for 

selecting co-receptor CCR5, CCR5/CXCR4, and CXCR4, calculated using Equations (6) and 

(7), are shown in the net charge range of 0-10, and at the four (Motif, Rule) binary combinations 

described above. Table 5 can be used for quick and efficient assessment of co-receptor selection, 

and associated HIV-1 tropism, for an unknown V3 loop sequence.  

Although charge alone is a strong marker for co-receptor preference at extreme charge 

values, it is a less definitive marker at intermediate charge values, where combinations of 

N6X7[T/S]8X9 glycosylation motif and 11/24/25 positive amino acid rule become discriminating 

factors (Figs. 2 and 4). The ordered probit model is useful to predict probabilities for CCR5, 

CCR5/CXCR4, and CXCR4 selection, using information for co-receptor preference that is found 

in the V3 loop sequence. Given the nature of viral infection and the fact that numerous viral 

strains with different co-receptor preferences may be present in a patient, a probabilistic model is 

suitable to assign percent co-receptor preference based on observed V3 loop sequences. The 

sequence-based analysis presented here can be used to predict co-receptor selection may 

potentially be used to make personalized medical decisions, in addition to existing tools, for 

administration of drugs or combinations of HIV-1 entry drugs targeting CCR5 and/or CXCR4. 

Additional validation work with different experimental datasets, preferably using cells that 

express only one co-receptor, as well as predictive model refinement, will be necessary in 

reaching clinical applications.  
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Tables 
 
 
Table 1. Dataset profile with regard to (Motif, Rule) binary combinations and co-receptor 
selection. Number of counts (percent values) for co-receptor selection and (Motif, Rule) 
binary combination.  
 

(Motif, Rule)  CCR5 CCR5/CXCR4 CXCR4 Suma 

0, 0 
35 

(44.3%)b 
16  

(20.3%)b 
28  

(35.4%)b 
79 

(3.8%) 

0, 1 
4 

(3.5%)b 
40  

(35.1%)b 
70  

(61.4%)b 
114  

(5.6%) 

1, 0 
1,421 

(87.5%)b 
162  

(10.0%)b 
41  

(2.5%)b 
1,624  

(79.1%) 

1, 1 
63 

(26.6%)b 
104 

(43.9%)b 
70 

(29.5%)b 
237 

(11.5%) 

Totalc 
1,523 

(74.1%) 
322  

(15.7%) 
209  

(10.2%) 
2,054 

(100%) 
aRefers to the sum of the three co-receptor selections for a given (Motif, Rule) combination. The 
percent value in parentheses refers to the specific (Motif, Rule) count with respect to the total 
count of 2,054. 
bThe percent value in parentheses refers to the specific (Motif, Rule)/Co-receptor count with 
respect to the sum of the three co-receptor selections for the specific (Motif, Rule) given in the 
last column. 
cRefers to the total number of sequences showing preference for a given co-receptor selection. 
The percent value in parentheses refers to the specific co-receptor count with respect to the total 
count of 2,054. 
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Table 2. Ordered probit model estimated parametersa for the three co-receptor model 
(2,054 observations). 

 
xi !  ! !  Z-stat (! ! ! ! ! ) P-value 

Motif  -0.887 0.094 -9.463 0.000 

Rule 1.081 0.083 13.062 0.000 

Charge 0.356 0.035 10.198 0.000 

Limit Points  

 
!  ! !  Z-stat (! ! ! ! ! ) P-value 

µ1 1.474 0.173 8.498 0.000 

µ2 2.513 0.185 13.551 0.000 

aThe ordered probit analysis was performed using the program EViews (Quantitative Micro 

Software, Irvine CA; www.eviews.com). 
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Table 3. Prediction of ordered dependent variable for the three co-receptor model. 
 

yi 

Dataset 

Sample 

Count  

Correct  

Count of 

Observations 

Incorrect 

Count of 

Observations 

% Correct  % Incorrect  

1 1,523 1,496 27 98.227 1.773 

2 322 37 285 11.491 88.509 

3 209 117 92 55.981 44.019 

Total 2,054 1,650 404 80.331 19.669 
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Table 4. Predictive performance of the probit model for HIV -1 co-receptor selection. Count 
refers to predicted co-receptor assignments (re-assignments) compared to the database 
assignments.a 
 
 

Count 
% Total  
% Row 

Predicted co-receptor  

CCR5 CCR5/CXCR4 CXCR4 
Total  

(Database 
assignment) 

CCR5 
1,496 
72.83 
98.23 

18 
0.88 
1.18 

9 
0.44 
0.59 

1,523 
74.15 
100.00 

CCR5/CXCR4 
197 
9.59 
61.18 

37 
1.80 
11.49 

88 
4.28 
27.33 

322 
15.68 
100.00 

CXCR4 
49 

2.39 
23.44 

43 
2.09 
20.57 

117 
5.70 
55.98 

209 
10.18 
100.00 

Total 
(Probit  

re-assignment) 

1,742 
84.81 
84.81 

98 
4.77 
4.77 

214 
10.42 
10.42 

2,054 
100.00 
100.00 

aItalicized entries correspond to correct predictions. Boldfaced entries correspond to totals from 
the database assignment and probit re-assignment. The rest of the entries correspond to lost 
(columns)/gained (rows) assignments.  
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Table 5. Predictive value of the probit model for HIV-1 co-receptor selection. Probabilities 
for co-receptor selection, accounting for net charge in the range of 0-10 and the four 
(Motif, Rule) binary combinations. 
 
Net charge 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 

(Motif, Rule)=(0, 0) 
CCR5 0.93 0.87 0.78 0.66 0.52 0.38 0.25 0.15 0.08 0.04 0.02 
CCR5/CXCR4 0.06 0.12 0.19 0.27 0.34 0.39 0.39 0.35 0.28 0.20 0.13 
CXCR4 0.01 0.02 0.04 0.07 0.14 0.23 0.35 0.49 0.63 0.76 0.85 
(Motif, Rule)=(0, 1) 
CCR5 0.65 0.51 0.37 0.25 0.15 0.08 0.04 0.02 0.01 0.00 0.00 
CCR5/CXCR4 0.27 0.34 0.39 0.39 0.35 0.28 0.20 0.13 0.07 0.04 0.02 
CXCR4 0.08 0.14 0.24 0.36 0.50 0.64 0.76 0.86 0.92 0.96 0.98 
(Motif, Rule)=(1, 0) 
CCR5 0.99 0.98 0.95 0.90 0.83 0.72 0.59 0.45 0.31 0.20 0.11 
CCR5/CXCR4 0.01 0.02 0.05 0.09 0.15 0.23 0.31 0.37 0.40 0.38 0.32 
CXCR4 0.00 0.00 0.00 0.01 0.02 0.05 0.10 0.18 0.29 0.42 0.57 
(Motif, Rule)=(1,1) 
CCR5 0.90 0.82 0.71 0.58 0.44 0.31 0.20 0.11 0.06 0.03 0.01 
CCR5/CXCR4 0.09 0.15 0.23 0.31 0.37 0.40 0.38 0.32 0.24 0.16 0.10 
CXCR4 0.01 0.02 0.05 0.11 0.19 0.30 0.43 0.57 0.70 0.81 0.89 
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Figure 1. 

 

FIG. 1. Charge distributions of V3 loop sequences with known coreceptor preference (data from 
Koning et al.17). Color images available online at www.liebertpub.com/aid 
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Figure 2. 
 

 FIG. 2. Probit analysis of V3 

loop sequences using the three 

coreceptor disease model. 

Probabilities for coreceptor 

preference taking into account 

the property of net charge in the 

range 0Ð9 and the binary (1 for 

presence and 0 for absence) 

coreceptor markers of the 

N6X7[T/S]8X9 glycosylation 

motif (Motif ) and the 11/24/25 

positive amino acid rule (Rule), 

marked as (Motif, Rule) pairs. 

(A) CCR5. (B) CCR5/CXCR4. 

(C) CXCR4. Combinations of 

(Motif, Rule) = (0, 0), (0, 1), (1, 

0), (1, 1) are shown in orange, 

red, green, and blue, 

respectively. Color images 

available online at 

www.liebertpub.com/aid 
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Figure 3. 

 

 
FIG. 3. Probit analysis of V3 loop sequences using the two coreceptor model. The presentation 
of the data is similar to the presentation of Fig. 2. (A) CCR5. (B) CXCR4. Color images 
available online at www.liebertpub.com/aid 
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Figure 4.  

 
 
 
FIG. 4. Accuracy of probit coreceptor preference predictions. Receiver operating characteristic 
(ROC) curve analysis for the three coreceptor preferences [color, area under the curve (AUC)]: 
CCR5 (magenta, 0.833); CCR5/CXCR4 (blue, 0.571); CXCR4 (black, 0.900). Color images 
available online at www.liebertpub.com/aid 
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Figure 5.  

 
 
 
 
FIG. 5. Comparison of probit predictions with established methods. (A) ROC curve analysis for 
prediction of CXCR4 preference by (color, AUC) probit (black, 0.900); webPSSM (red, 0.943); 
geno2pheno[coreceptor] (green, 0.918). (B) ROC curve analysis for prediction of CCR5 
preference by (color, AUC) probit (black, 0.833); webPSSM (red, 0.848). Color images available 
online at www.liebertpub.com/aid 
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Figure 6. 
 

 
 
FIG. 6. Prediction of AIDS patient health status based on CXCR4 preference. ROC curve 
analysis for the prediction of AIDS patient health status based on CXCR4 preference, as 
predicted by (color, AUC) probit (black, 0.706);

 
webPSSM (green, 0.620); gen- 

o2pheno[coreceptor] (blue, 0.708). For comparison a ROC curve for the prediction of the AIDS 
disease state based on CD4 count (red, 0.881) is also presented. Color images available online at 
www.liebertpub.com/aid 
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Figure 7. 
 
 
 
 
FIG. 7.!

 
The predictive use of the probit model. 

Graphic representation of predicted data 
corresponding to Table 5. (A) (Motif, Rule)=(0, 0). 
(B) (Motif, Rule)=(0, 1). (C) (Motif, Rule) = (1, 0). 
(D) (Motif, Rule) = (1, 1). Data for coreceptors 
CXCR5, CCR5/CXCR4, and CXCR4 are shown in 
blue, green, and red, respectively. These graphs can 
be used to predict probabilities for each coreceptor 
selection for a new sequence, taking into account the 
net charge of the sequence, and the presence or 
absence (1 or 0) of the N6X7[T/S]8X9 glycosylation 
motif and the 11/24/25 positive amino acid rule in 
the sequence. Color images available online at 
www.liebertpub.com/aid 

 
 


