
Chapter 3
Testing for Neglected Nonlinearity Using
Regularized Artificial Neural Networks

Tae-Hwy Lee, Zhou Xi, and Ru Zhang

Abstract The artificial neural network (ANN) test of Lee et al. (Journal of
Econometrics 56, 269–290, 1993) uses the ability of the ANN activation functions
in the hidden layer to detect neglected functional misspecification. As the estimation
of the ANN model is often quite difficult, LWG suggested activate the ANN hidden
units based on randomly drawn activation parameters. To be robust to the random
activations, a large number of activations is desirable. This leads to a situation
for which regularization of the dimensionality is needed by techniques such as
principal component analysis (PCA), Lasso, Pretest, partial least squares (PLS),
among others. However, some regularization methods can lead to selection bias in
testing if the dimensionality reduction is conducted by supervising the relationship
between the ANN hidden layer activations of inputs and the output variable. This
paper demonstrates that while these supervised regularization methods such as
Lasso, Pretest, PLS, may be useful for forecasting, they may not be used for
testing because the supervised regularization would create the post-sample inference
or post-selection inference (PoSI) problem. Our Monte Carlo simulation shows
that the PoSI problem is especially severe with PLS and Pretest while it seems
relatively mild or even negligible with Lasso. This paper also demonstrates that
the use of unsupervised regularization does not lead to the PoSI problem. Lee
et al. (Journal of Econometrics 56, 269–290, 1993) suggested a regularization by
principal components, which is a unsupervised regularization. While the supervised
regularizations may be useful in forecasting, regularization should not be supervised
in inference.
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3.1 Introduction

In this paper we explore the issues in testing for functional forms, especially for
neglected nonlinearity in parametric linear models. Many papers have appeared
in the recent literature which deal with the issues of how to carry out various
specification tests in parametric regression models. To construct the tests, various
methods are used to estimate the alternative models. For example, Fan and Li
(1996), Li and Wang (1998), Zheng (1996), and Bradley and McClelland (1996)
use local constant kernel regression; Hjellvik, Yao, and Tjøstheim (1998) and
Tjøstheim (1999) use local polynomial kernel regression; Cai, Fan, and Yao (2000)
and Matsuda (1999) use nonparametric functional coefficient models; Poggi and
Portier (1997) use a functional autoregressive model; White (1989), Lee, White,
and Granger (1993), Teräsvirta, Lin, and Granger (1993), Granger and Teräsvirta
(1993), Teräsvirta (1996), and Corradi and Swanson (2002) use neural network
models; Eubank and Spiegelman (1990) use spline regression; Hong and White
(1995) use series regression; Stengos and Sun (2001) use wavelet methods; and
Hamilton (2001) uses a parametric flexible regression model.

There are also many papers which compare different approaches in testing for
linearity. For example, Lee, White, and Granger (1993), Teräsvirta, Lin, and Granger
(1993), Teräsvirta (1996), and Lee (2001) examine the neural network test and many
other tests. Dahl (2002) and Dahl and González-Rivera (2003) study Hamilton’s
(2001) test and compare it with various tests including the neural network test.
Blake and Kapetanios (2000, 2003) extend the neural network test using a radial
basis function for the neural network activation function instead of using the typical
logistic function used in Lee, White, and Granger (1993).1 Lee and Ullah (2001,
2003) examine the tests of Li and Wang (1998), Zheng (1996), Ullah (1985), Cai,
Fan, and Yao (2000), Härdle and Mammen (1993), and Aı̈t-Sahalia, Bickel and
Stoker (2001). Fan and Li (2001) compare the tests of Li and Wang (1998), Zheng
(1996), and Bierens (1990). Whang (2000) generalizes the Kolmogorov–Smirnov
and Cramer-von Mises tests to the regression framework and compare them with
the tests of Härdle and Mammen (1993) and Bierens and Ploberger (1997). Hjellvik
and Tjøstheim (1995, 1996) propose tests based on nonparametric estimates of
conditional mean and variances and compare them with a number of tests such as
the bispectrum test and the BDS test.

This paper further investigates the artificial neural network (ANN) test. The ANN
test is a conditional moment test whose null hypothesis consists of conditional
moment conditions that hold if the linear model is correctly specified for the
conditional mean. The ANN test differs from other tests by the choice of the
‘test function’ that is chosen to be the ANN’s hidden layer activations. It can be
checked for their correlation with the residuals from the linear regression model.
The advantage to use an ANN model to test nonlinearity is that the ANN model

1For radial basis functions, see (e.g.) Campbell, Lo and Mackinlay (1997, p. 517).
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inherits the flexibility as a universal approximator of unknown functional form.
Hornik et al. (1989) show that neural network is a nonlinear flexible functional form
being capable of approximating any Borel measurable function to any desired level
of accuracy provided sufficiently many hidden units are available.

We consider an augmented single hidden layer feedforward neural network
model in which network output yt is determined given input xt as

yt D x0
t˛ C

qX

jD1
ˇj‰

�
x0
t�j

�C ut ; (3.1)

where t D 1; : : : ; T; xt D .x1;t ; : : : xN;t /
0, � D

�
˛0;ˇ0;� 0

1; : : : ;�
0
q

�0
; ˛ D .˛1; : : : ;

˛N /
0, ˇ D .ˇ1; : : : ; ˇq/

0; and �j D �
�j;1; : : : ; �j;N

�0
for j D 1; : : : ; q; and ‰.�/ is

an activation function. An example of the activation function is the logistic function
‰.z/ D .1 C exp.z//�1. ˛ is a conformable column vector of connection strength
from the input layer to the output layer; �j is a conformable column vector of
connection strength from the input layer to the hidden units, j D 1; : : : ; qI ˇj is a
(scalar) connection strength from the hidden unit j to the output unit, j D 1; : : : ; qI
and ‰ is a squashing function (e.g., the logistic squasher) or a radial basis function.
Input units x send signals to intermediate hidden units, then each of the hidden unit
produces an activation ‰ that then sends signals toward the output unit. The integer
q denotes the number of hidden units added to the affine (linear) network. When
q D 0, we have a two-layer affine network yt D x0

t˛ C ut :
It is well known that the ANN models are generally hard to estimate and suffer

from possibly large estimation errors which can adversely affect their ability as
a universal approximator. To alleviate the estimation errors of an ANN model, it
is useful to note that, for given values of �j ’s, the ANN is linear in x and the
activation function‰ and therefore

�
˛0;ˇ0� can be estimated from linear regression

once
�
� 0
1; : : : ;�

0
q

�
are estimated or given. As suggested in Lee, White and Granger

(1993), a set of �’s can be randomly generated. In this paper, we will generate
a large set of �’s such that

Pq
jD1 ˇj‰

�
x0
t�j

�
can capture the maximal nonlinear

structure. The LWG statistic is designed to detect neglected nonlinearity in the linear
model by checking for correlation between the residual from a linear model and the
additional hidden activation functions with randomly generated �’s. The additional
hidden activation functions are hidden (or phantom) because they do not exist under
the null hypothesis. The �’s are randomly generated in testing because they are not
identified under the null hypothesis. The set of randomly selected �’s should be
large enough so that it can be dense and make the ANN a universal approximator.

While the architecture of the ANN model makes a universal approximator, it
involves a very large number of parameters. Kock and Teräsvirta (2011) consider
regularizing the complexity of an ANN model and demonstrate that the regular-
ization of the large dimension is crucial in using ANN models for out-of-sample
forecasting. This motivates us to consider regularizing the ANN for testing for
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neglected nonlinearity. In fact, Lee et al. (1993) uses a (unsupervised) regularization
method, namely the principal component analysis (PCA), for the randomly activated
test functions. Kock and Teräsvirta (2011) consider two (supervised) regularization
approaches. They insightfully notice that the supervised regularizations will result in
the size distortion in inference, and they use these approaches only for forecasting.

One supervised regularization approach considered by Kock and Teräsvirta
(2011) to select a small q� from a large q number of �’s is the simple-to-general
algorithm, e.g., the QuickNet algorithm of White (2006), that adds one � and one
activation function at a time to the ANN. The QuickNet expands starting from 0

activation to q� activations until the additional hidden unit activation is not found
to improve the network capability. The second supervised regularization approach
considered by Kock and Teräsvirta (2011) is the general-to-simple approach. This
approach, from a variable-selection perspective, reduces the number of activations
from an initial large number q (say, 1,000) to a smaller number q� by penalizing
the complexity of the ANN model. The penalized regression methods include the
smoothly clipped absolute deviation penalty (SCAD) (Fan and Li 2001), adaptive
Lasso (Zou 2006), adaptive elastic net (Zou and Zhang 2009), the bridge estimator
(Huang, Horowitz and Ma 2008), among others. In the case where q is larger than
the degrees of freedom, the marginal bridge estimator (Huang, Horowitz and Ma
2008) or the sure independence screening (SIS) (Fan and Lv 2008) may be used to
reduce q below the degrees of freedom and then apply these estimation methods.

The third approach is to follow Lee et al. (1993) to compute the q� principal
components of the q additional hidden activation functions. Since the activation
functions using randomly generated �’s may be collinear with each other and with
xt , LWG used principal components of the q additional hidden activation functions.
Unlike the above two supervised approaches, the principal components are not
supervised for the output y.

The purpose of this paper is to examine the effect of various regularization on
the ANN test for neglected nonlinearity when the ANN is activated based on a
large number of random activation parameters. We learn two points. First, when
we consider the Lasso, the partial least square (PLS) method, the Pretest method,
and a method combining Lasso with principal components, these supervised
regularization methods bring size-distortion and the ANN test suffers from the
post-sample inference or post-selection inference (PoSI) problem.2 Secondly, when
we use the PCA as used in Lee et al. (1993), this unsupervised regularization of
the dimension reduction does not bring the PoSI problem, works really well for
a large q, and the asymptotic �2.q�/ distribution does well in approximating the
finite sample distribution of the ANN test statistic. To sum, while the supervised
regularizations are useful in forecasting as studied by Bai and Ng (2008), Bair,
Hastie, Paul, and Tibshirani (2006), Inoue and Kilian (2008), Huang and Lee (2010),
Hillebrand, Huang, Lee, and Li (2011), Kock and Teräsvirta (2011), and Kock
(2011), this paper shows that regularization should not be supervised in inference.

2See Pötscher and Leeb (2009) and Berk, Brown, Buja, Zhang and Zhao (2011).
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Our Monte Carlo simulation shows that the PoSI problem is especially severe with
PLS and Pretest while it seems relatively mild or even negligible with Lasso. This
paper also demonstrates that the use of unsupervised regularization by principal
components does not lead to the PoSI problem.

The plan of the paper is as follows. In Section 3.2 we review the ANN test.
Section 3.3 introduces various regularizations in two types, unsupervised and
supervised. Section 3.4 presents the simulation results which demonstrate the PoSI
problem of supervised methods. Section 3.5 concludes.

3.2 Testing for Neglected Nonlinearity Using ANN

Consider Zt D .yt x0
t /

0; where yt is a scalar and xt may contain a constant and
lagged values of yt . Consider the regression model

yt D m.xt /C "t ; (3.2)

where m.xt / � E .yt jxt / is the true but unknown regression function and "t is the
error term such that E."t jxt / D 0 by construction. To test for a parametric model
g.xt ;�/ we consider

H0 W m.xt / D g.xt ;��/ for some ��; (3.3)

H1 W m.xt / ¤ g.xt ;�/ for all � : (3.4)

In particular, if we are to test for neglected nonlinearity in the regression models,
set g.xt ;�/ D x0

t˛; ˛ � �: Then under H0; the process fyt g is linear in mean
conditional on xt ; i.e.,

H0 W m.xt / D x0
t˛

� a:e: for some ˛�: (3.5)

The alternative of interest is the negation of the null hypothesis, that is,

H1 W m.xt / ¤ x0
t˛ on a set with positive measure for all ˛: (3.6)

When the alternative is true, a linear model is said to suffer from “neglected
nonlinearity” (Lee, White, and Granger 1993).

If a linear model is capable of an exact representation of the unknown function
m.xt /, then there exists a vector ˛� such that (3.5) holds, which implies

E
�
"�
t jxt

� D 0 a:e:; (3.7)

where "�
t D yt � x0

t˛
�: By the law of iterated expectations "�

t is uncorrelated with
any measurable functions of xt , say h.xt /. That is,

E
�
h.xt /"�

t

� D 0: (3.8)
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Depending on how we choose the “test function” h.�/; various specification tests
may be obtained. The specification tests based on these moment conditions, the so-
called the conditional moment tests, have been studied by Newey (1985), Tauchen
(1985), White (1987, 1994), Bierens (1982, 1990), Lee et al. (1993), Bierens and
Ploberger (1997), and Stinchcombe and White (1998), among others. The ANN test
exploits (3.8) with the test function h.�/ being chosen as the neural network hidden
unit activation functions.

Lee et al. (1993) considered the test of “linearity in conditional mean” using the
ANN model. To test whether the process yt is linear in mean conditional on xt , they
used the following null and alternative hypothesis:

H0 W Pr
�
E.yt jxt / D x0

t˛
�� D 1 for some ˛�

H1 W Pr
�
E.yt jxt / D x0

t˛
�
< 1 for all ˛:

The procedure to construct the LWG test statistic is as follows. Under the null
hypothesis that yt is linear in conditional mean, we first estimate a linear model
of yt on xt , then if any nonlinearity is neglected in the OLS regression, it will be
captured by the residual term Out . Since the ANN model inherits the flexibility as a
universal approximator of unknown functional form, we can apply an ANN function
to approximate any possible types of nonlinearity in the residual term Out .

The neural network test is based on a test function h.xt / chosen as the activations
of “phantom” hidden units  

�
x0
t�j

�
; j D 1; : : : ; q; where �j are randomly

generated column vectors independent of xt . �j ’s are not identified under the null
hypothesis of linearity, cf. Davies (1977, 1987), Andrews and Ploberger (1994), and
Hansen (1996). That is,

E
�
 
�
x0
t�j

�
"�
t

� D 0 j D 1; : : : ; q; (3.9)

underH0, so that

E
�
‰t"

�
t

� D 0; (3.10)

where

‰t D �
 
�
x0
t�1
�
; : : : ;  

�
x0
t�q

��0
(3.11)

is a phantom hidden unit activation vector. Evidence of correlation of "�
t with ‰t

is evidenced against the null hypothesis that yt is linear in mean. If correlation
exists, augmenting the linear network by including an additional hidden unit with
activations  

�
x0
t�j

�
would permit an improvement in network performance. Thus

the tests are based on sample correlation of affine network errors with phantom
hidden unit activations,

n�1
nX

tD1
‰t O"t D n�1

nX

tD1
‰t
�
yt � x0

t Ǫ � ; (3.12)
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where O"t D yt � x0
t Ǫ are estimated by OLS. Under suitable regularity conditions

it follows from the central limit theorem that n�1=2Pn
tD1 ‰t O"t

d! N .0; W �/ as
n ! 1, and if one has a consistent estimator for its asymptotic covariance matrix,
say OWn, then an asymptotic chi-square statistic can be formed as

 
n�1=2

nX

tD1
‰t O"t

!0
OW �1
n

 
n�1=2

nX

tD1
‰t O"t

!
d! �2.q/: (3.13)

Construct the following auxiliary regression:

Out D x0
t˛ C

qX

jD1
ˇj 

�
x0
t�j

�C vt ;

where t D 1; : : : ; T , xt D .x1;t ; : : : xN;t /
0, � D

�
˛0;ˇ0;� 0

1; : : : ;�
0
q

�0
; ˛ D .˛1; : : : ;

˛N /
0, ˇ D .ˇ1; : : : ; ˇq/

0; and �j D �
�j;1; : : : ; �j;N

�0
for j D 1; : : : ; q; and  .�/ is

an activation function. LWG chose the logistic function  .z/ D .1 C exp.z//�1
as the activation function. If there is nonlinearity remained in the residual, we
expect the goodness of fit for the auxiliary regression is high. However, one
problem to estimate the auxiliary regression is that, when q is large, there may exist
multicollinearity between  

�
x0
t�j

�
and xt and among  

�
x0
t�j

�
themselves. LWG

suggested to choose q� principal components of q activation functions  
�
x0
t�j

�
,

with q� < q; and then use these q� principal components to run the auxiliary
regression. Under the null hypothesis that the sequence yt is linear conditional on
xt , the goodness of fit in the auxiliary regression will be low. Lee et al. (1993)
constructed an LM-type test statistic which has an asymptotic �2.q�/ distribution
under the null hypothesis. In their simulations, LWG chose q equal to 10 or 20 and
q� equal to 2 or 3 in different data generating processes (DGP), and the sample size
50, 100, or 200. Moreover, they dropped the first principal component of‰t to avoid
the multicollinearity problem. In this paper, we have tried the ANN test both with
and without dropping the first principal component, the results do not change much.
Thus we keep the original LWG method with dropping the first principal component
for the ANN test in this paper.

In practice, we need to generate �’s carefully so that 
�
x0
t�j

�
is within a suitable

range. If �’s are chosen to be too small, then activation functions  
�
x0
t�j

�
are

approximately linear in x:We want to avoid this situation since they cannot capture
much nonlinearity. If �’s are too large, the activation functions 

�
x0
t�j

�
take values

close to ˙1 (their maximum or minimum values), and we want to avoid this situation
as well. In our study, for different x’s we generate �’s from uniform distributions
with different supports so that the activation functions are neither too small or too
large.
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3.3 Regularizing the ANN Test

As discussed above, Lee et al. (1993) regularized the large number of the network
activation functions using principal components in order to avoid possible collinear-
ity problem. The q� < q principal components are used out of q activations. We note
that the principal components make its variance largest, yet may not necessarily
be the ones that best explain the residuals from the OLS regression, Out . In other
words, these principal components are not “supervised” for yt and thus for Out . The
regularization may be supervised so that the activations that are uncorrelated with
Out can be dropped and the activations that are correlated with Out can be selected
to increase the power of the test. Such regularization methods include the Lasso
method, the PLS method, the Pretest method, and the PCA-first-and-then-Lasso
method. We first review the PCA method in the next subsection, and then other
regularization methods in the following subsections.

3.3.1 Unsupervised Regularization of the ANN Test Using PCA

Lee et al. (1993) found that the elements of ‰t in (3.11) tend to be collinear with xt
and with themselves and computation of OWn can be tedious. Thus they conducted a
test on q� < q principal components of ‰t not collinear with xt ; denoted ‰�

t ; and
employ the equivalent test statistic (under conditional homoskedasticity) that avoids
explicit computation of OWn; denoted T PCA

n

T PCA
n � nR2

d! �2.q�/; (3.14)

where R2 is uncentered squared multiple correlation from a standard linear regres-
sion of O"t on ‰�

t and xt : This test is to determine whether or not there exists some
advantage to be gained by adding hidden units to the affine network.

It should be noted that the asymptotic equivalence of (3.13) and (3.14) holds
under the conditional homoskedasticity, E."�

t jxt / D �2: Under the presence of
conditional heteroskedasticity such as ARCH, T PCA

n will not be �2.q�/ distributed.
To resolve the problem in that case, we can either use (3.13) with OWn being estimated
robust to the conditional heteroskedasticity (White 1980, Andrews 1991) or use
(3.13) with the empirical null distribution of the statistic computed by a bootstrap
procedure that is robust to the conditional heteroskedasticity (Wu 1986, Liu 1988).

3.3.2 Supervised Regularization of the ANN Test Using Lasso

The Lasso method is a shrinkage method which can be used as a selector of the
activation functions for the ANN test. We use a penalized regression for the auxiliary



3 Testing for Neglected Nonlinearity Using Regularized Artificial Neural Networks 41

model where the coefficients of ‰
�
x0
t�j

�
are shrunken to zero if it is smaller than a

particular value. The Lasso problem can be written as

ǑLasso D arg min
ˇ

8
<̂

:̂

TX

tD1

0

@Out � x0
t˛ �

qX

jD1
ˇj‰

�
x0
t�j

�
1

A
2

C �

qX

jD1
jˇj j

9
>=

>;
:

The Lasso method uses the L1-penalty term jˇj j, and it has the sparsity property
such that some of the ˇj ’s that are small will be shrunken to zero, yet it does
not have oracle property according to Fan and Li (2001) in the sense that it will
give biased estimates of ˇj even when sample size is large. The Lasso method is
easier to implement than some other methods that has the oracle property. Since the
activation functions are selected according to its explanation power to Out , the Lasso
is a supervised regularization. The tuning parameter � determines the number of
activation functions selected. To get the test statistic using the Lasso method, we
will do the auxiliary regression of Out on the q� selected activation functions ‰�
(denoting q�-vector of Lasso-selected activations) and get T Lasso

n D nR2Lasso. We
choose � such that q� D 3. In Section 3.4, we will examine if it has the asymptotic
�2.q�/ distribution or if it is subjected to the PoSI problem due to the supervision
in regularizing the dimension from q to q�.

3.3.3 Supervised Regularization of the ANN Test Using PLS

Like PCA, the PLS method constructs variables using linear combinations of
activation functions. Yet like Lasso, it is supervised using information about Out .
The algorithm of the PLS method used in this test is described as follows:

1. Standardize each ‰
�
x0
t�j

�
to zero mean and unit variance. Set Qu.0/t D NOut�,

‰
�
x0
t�j

�.0/ D ‰
�
x0
t�j

�
, for j D 1; : : : ; q, where � D .1; :::; 1/0.

2. For m D 1; : : : ; q,

(a) Construct the linear combination, zm D Pq
jD1 !m‰

�
x0
t�j

�.m�1/
, where the

weight is equal to the covariance between ‰
�
x0
t�j

�.m�1/
and Out : !m D

cov
�
‰
�
x0
t�j

�.m�1/
; Out
�

.

(b) Regress Out on zm, and get the coefficient: O�m D cov.zm; Out /=var.zm/.
(c) Update Qu.m/t by Qu.m/t D Qu.m�1/

t C O�mzm.

(d) Update ‰
�
x0
t�j

�.m/
by orthogonalizing each ‰

�
x0
t�j

�.m�1/
with respect to

zm: ‰
�
x0
t�j

�.m/ D ‰
�
x0
t�j

�.m�1/ �
h
cov.‰

�
x0
t�j

�.m�1/
; zm/=var.zm/

i
zm,

j D 1; : : : ; q.

3. The fitted value of residual terms by PLS is given by Qu.m/t and the selected linear
combinations of activation functions are given by zm.



42 T.-H. Lee et al.

In this test, we select the first q� largest zm and then do auxiliary regression of
Out on zm to get the test statistic T PLS

n D nR2PLS. In Section 3.4, we will examine if it
has the asymptotic �2.q�/ distribution or if it is subjected to the PoSI problem due
to the supervision in regularizing the dimension from q to q�.

3.3.4 Supervised Regularization of the ANN Test
Using Pretests

The PCA shrinkage includes all the information of the activation vector ‰t ,
including those that are irrelevant to explain the residuals from the linear regression.
We may consider to make further shrinkage from the principal components. In
this section, we consider the Pretest method on the principal components, as
implemented by Inoue and Kilian (2008). We first get k D 20 principal components
from the q activation vector ‰t and then regress the residual from the OLS
regression on these k principal components. Then we choose q� D 3 principal
components corresponding to the coefficients with the highest absolute t-values.
Then the test statistic for this Pretest method is equal to T Pretest

n D nR2Pretest.
Similarly, we will examine if it has the asymptotic �2.q�/ distribution or if it is
subjected to the PoSI problem due to the supervision in regularizing the dimension
from q to q�, in Section 3.4.

The Pretest method described here is essentially the “PCA-first-and-then-
Pretest.” In the next subsection, we will consider the “PCA-first-and-then-Lasso.”

3.3.5 Supervised Regularization of the ANN Test
Using PCA-First-and-Then-Lasso

Instead of using Pretest to supervise the original ANN test, we also use the Lasso
method to supervise the principal components. In this subsection, we combine the
PCA and the Lasso method. We first get a relatively larger number of k (e.g., 100,
50, 10 or 5) principal components from the q-vector ‰t of activation functions
and then use the Lasso method to shrink them except for the q� D 3 principal
components. In this way, we can select the principal components that best fits the
residuals from the OLS regression and increase the power of the test. We then do
the auxiliary regression using the selected q� principal components and get the test
statistic T PCA � lasso

n D nR2PCA � lasso. In Section 3.4, we will examine if the ANN
test using this method of “PCA-first-and-then-Lasso” can still follow the asymptotic
�2.q�/ distribution or if it is subjected to the PoSI problem due to the supervision
in regularizing the dimension from q to q�.
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3.3.6 The PoSI Problem

Regularized methods of estimation have been developed intensively in the past
20 years. Examples includes the Bridge estimator of Frank and Friedman (1993),
the least absolute selection and shrinkage (Lasso) estimator of Tibshirani (1996),
the least angle regression (LARS) of Efron, Hastie, Johnstone, Tibshirani (2004),
the SCAD estimator of Fan and Li (2001), and the traditional hard-thresholding
Pretest methods. It is tempting to use these supervised regularization in reducing
the large number of randomized ANN activations. However, as noted in Leeb and
Pötscher (2003, 2005, 2006, 2008), Pötscher and Leeb (2009), Berk et al. (2011),
and others, subset-searches like the Lasso shrinkage method suffer from the post
sample inference (PoSI) problem. See also Hoover (2012) on a related issue of size
distortion resulted from model-search. In Section 3.4, we show that PLS, Pretest,
PCA-first-and-then-Lasso will cause the PoSI problem that the distribution under
the null hypothesis is different from the �2.q�/ distribution cf. Leeb and Pötscher
(2008).

To illustrate the PoSI problem, we take the Lasso supervision as an example.
When using the Lasso method to select the activation functions, we are actually
making selection between the following two models:

M0 W Y D X0
0ˇ0 C �1

versus

M1 W Y D X0
0ˇ0 C X0

1ˇ1 C �2;

where Y is the residual term Out , ˇ0 and ˇ1 are vectors of parameters, X0 and X1

are partitions of the activation function ‰t and �1, �2 are the error terms. If the
Lasso method shrinks ˇ1 to 0, then we use model M0 to test the null hypothesis
H0 W ˇ0 D 0, and we denote the corresponding LM test statistic by Tn;M0 ; if the
Lasso method does not shrink ˇ1 to 0, we pick up model M1 and obtain the test
statistic Tn;M1 . Let M be the model selected, therefore the test statistic accounting
for model selection is:

T D Tn;M0 � 1.MDM0/ C Tn;M1 � 1.MDM1/;

where 1.�/ is the indicator function.
If M0 is the true model, we know Tn;M0 follows a �2.q0/ distribution with

q0 equal to dim ˇ0; on the other hand, if M1 is the true model, Tn;M1 has a
�2.q1/ distribution with q1 equal to dim ˇ0 C dim ˇ1. In both cases, we know
the exact distribution and can find the critical value. However, since we randomly
draw �j ’s and randomly activate  

�
x0
t�j

�
, j D 1; : : : ; q; many elements in the

activation vector ‰t can be highly collinear and as a result the Lasso method may
not distinguish the two models. Hence, even if M0 is the true model the Lasso
supervision may include some incorrect activation functions, and the distribution
of the test statistic can be a mixture of two �2 distributions with different degrees
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of freedom. To make things worse, as every time we randomly generate different
sets of ‰t , we cannot compute the probability of choosing M0 or M1 as the true
model. This means that we cannot obtain the exact distribution of the test statistic
and the usual �2q� critical value is invalid. This will be shown via simulation in the
next section. As will be shown, the PoSI problem is especially severe with PLS and
Pretest while it seems relatively mild or even negligible with Lasso.

3.4 Monte Carlo

3.4.1 DGPs and Simulation Design

To generate data we use the following DGPs, all of which have been used in
the related literature. There are two blocks. All the error terms "t below are i.i.d.
N.0; 22/. Two blocks of DGP are considered. The first block has DGPs using the
univariate series of yt ; and the second block introduces two external variables x1t
and x2t which follow a bivariate normal distribution. All DGPs below fulfil the
conditions for the investigated testing procedures. For those regularity conditions
and moment conditions, see White (1994, Chapter 9) for the ANN tests.

Block 1 (Time-series data generating processes)

1. Autoregressive (AR)

yt D 0:6yt�1 C "t

2. Threshold autoregressive (TAR)

yt D
(
0:9yt�1 C "t if jyt�1j � 1

�0:3yt�1 C "t otherwise

3. Sign autoregressive (SGN)

yt D sgn.yt�1/C "t

where

sgn.yt�1/ D

8
ˆ̂<

ˆ̂:

1 if yt�1 > 0
0 if yt�1 D 0

�1 otherwise

4. Nonlinear autoregressive (NAR)

yt D 0:7jyt�1j
jyt�1j C 2

C "t
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5. Markov regime-switching (MRS)

yt D
(
0:6yt�1 C "t if St D 0

�0:5yt�1 C "t if St D 1

where St follows a two-state Markov chain with transition probabilities Pr.St D
1jSt�1 D 0/ D Pr.St D 0jSt�1 D 1/ D 0:3.

Block 2 (Cross-sectional data generating processes)
This block includes DGPs similar to those in Zheng (1996). Assume x1t , x2t

follow a bivariate normal distribution ofN.0; 0; 1; 1; �/where the correlation � D 0

or 0:7. We have the following three cases:

1. Linear

yt D 1C x1t C x2t C "t

2. Cross-Product

yt D 1C x1t C x2t C 0:2x1tx2t C "t

3. Squared

yt D 1C x1t C x2t C 0:2x22t C "t

For the simulations, the information set are xt D yt�1 for Block 1 and xt D .xt1
xt2/

0 for Block 2. The logistic squasher  D Œ1 C exp .�x0�/��1 is used with �

being generated randomly from a uniform distribution on an interval depending on
the data range. The number of additional hidden units to the affine network q D 200

is used. We set q� D 3 for all regularization methods for simplicity.

3.4.2 Results

Tables 3.1 and 3.2 report the size and power for ANN test with q D 200

using various regularization methods (PCA, Lasso, PLS, Pretest, “PCA-first-and-
then-Lasso”). The numbers in the tables are the rejection frequencies of the null
hypothesis at 5% and 10% levels. The sample size n is equal to 200. We use 1,000
Monte Carlo replications. As demonstrated in Lee et al. (1993) and Lee, Xi and
Zhang (2012), the ANN test with PCA, that is an unsupervised regularization,
exhibits good size under null hypothesis from observing the rows for AR, Linear
.� D 0/ ; Linear .� D 0:7/ : It also exhibits good power against a variety of
nonlinear structures. In Figure 3.1 we plot the histograms of the test statistic
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Table 3.1 Size and power of LWG, Lasso, PLS, and Pretest (with q D 200)

PCA Lasso PLS Pretest

5% 10% 5% 10% 5% 10% 5% 10%

AR 0.047 0.102 0.054 0.098 0.064 0.127 0.733 0.869
TAR 0.243 0.373 0.248 0.354 0.375 0.510 0.930 0.976
SGN 0.841 0.914 0.735 0.829 0.849 0.917 0.991 0.998
NAR 0.104 0.183 0.086 0.238 0.135 0.243 0.764 0.892
MRS 0.167 0.259 0.164 0.344 0.181 0.283 0.926 0.974

Linear .� D 0/ 0.043 0.088 0.052 0.112 0.192 0.341 0.726 0.880
Linear .� D 0:7/ 0.043 0.091 0.057 0.129 0.113 0.190 0.728 0.878
Cross product .� D 0/ 0.075 0.126 0.216 0.364 0.370 0.517 0.806 0.919
Cross product .� D 0:7/ 0.240 0.362 0.320 0.456 0.288 0.434 0.839 0.936
Squared .� D 0/ 0.178 0.277 0.219 0.303 0.503 0.675 0.856 0.937
Squared .� D 0:7/ 0.220 0.341 0.267 0.384 0.344 0.496 0.854 0.938

Notes: Sample size n D 200: q D 200. “Pretest” denotes “PCA-first-and-then-Pretest.” k D 20 is
used for the Pretest method

Table 3.2 Size and power of PCA-first-and-then-Lasso with k D 100; 50; 10; 5

k D 100 k D 50 k D 10 k D 5

5% 10% 5% 10% 5% 10% 5% 10%

AR 0.085 0.158 0.078 0.142 0.048 0.087 0.041 0.080
TAR 0.126 0.204 0.125 0.206 0.146 0.222 0.135 0.212
SGN 0.204 0.262 0.226 0.287 0.352 0.401 0.628 0.700
NAR 0.089 0.161 0.096 0.165 0.064 0.110 0.124 0.226
MRS 0.190 0.267 0.186 0.280 0.136 0.215 0.135 0.203

Linear .� D 0/ 0.096 0.183 0.067 0.121 0.052 0.086 0.047 0.108
Linear .� D 0:7/ 0.097 0.178 0.065 0.117 0.045 0.080 0.046 0.094
Cross product .� D 0/ 0.109 0.183 0.096 0.154 0.089 0.160 0.163 0.251
Cross product .� D 0:7/ 0.114 0.199 0.100 0.172 0.092 0.161 0.216 0.328
Squared .� D 0/ 0.108 0.187 0.078 0.168 0.148 0.227 0.203 0.309
Squared .� D 0:7/ 0.110 0.196 0.082 0.139 0.134 0.204 0.227 0.352

Notes: Sample size is n D 200: q D 200

under the null hypothesis. The solid line is the probability density function of
�23 distribution. In all three cases of AR and Linear, the finite sample distribution
(histogram) of the test statistic is very close to its asymptotic �23 distribution, which
means the unsupervised ANN test with PCA has good size not only in 5% and
10% levels but also across the entire distribution. This demonstrates that use of
unsupervised regularization for the ANN test does not lead to the PoSI problem.

In contrast, it seems that the use of supervised regularization for the ANN test
does lead to the PoSI problem to some different extent depending on different
method. Looking at the size in Table 3.1, we may see only slight over-rejections
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at 10% level for Linear .� D 0:7/.3 While the power of the supervised ANN test
using Lasso is quite similar to those of the unsupervised ANN test with PCA in
Block 1, it is higher in Block 2. Because Table 3.1 presents only the 5% and 10%
quantiles in the right tail (i.e., 95% and 90% quantiles) of the null distribution of
the statistic, the results of the tables do not show the difference between PCA and
Lasso. However, comparing Figures 3.1 and 3.2 for the entire distribution can tell
some apparent difference especially in the left tail and to some lesser degree in
the middle of the null distribution (but not in the right tail as shown in the tables).
From Figure 3.2, we can see that the Lasso method suffers from the PoSI problem
in the sense that the distributions of the test statistic diverge from the theoretical
asymptotic �23 distribution. This can be more clearly seen in the AR case in Block
1. But for the cross-sectional cases in Block 2, the histograms of the test statistics
are still close to the �23 distribution, although they are not as good as the ones in
Figure 3.1. Hence, it seems that the PoSI problem is relative mild or even negligible
with Lasso.

For the size of the supervised ANN test using PLS, we observe from Table 3.1
typical over-rejections at 5% and 10% levels in all three linear cases. This clearly
shows that the PoSI problem is severe for the PLS supervision, which leads to power
much higher than those of the unsupervised ANN test with PCA. In Figure 3.3, we
can see the histograms of test statistics shift out of the �23 distribution, which again
implies the PoSI problem.

For the PCA-first-and-then-Pretest method (in short, the Pretest method), the
PoSI problem is most obvious. Table 3.1 shows the test results for k D 20, we can
see that even the size under 5% and 10% is close to 1. We also tried different values
of k, and the results are similar, so we do not report them in the table. Figure 3.4
shows the distribution of test statistic for Pretest method with k D 20, which
diverge heavily from the �23 distribution. Finally, to show how different degrees of
supervised regularization lead to different degrees of PoSI problem, we experiment
the supervised ANN test using the PCA-first-and-then-Lasso with different values
of k; the number of the principal components selected by PCA in the first step of
the method. The PCA-first-and-then-Lasso method has two steps. The first step is to
compute principal components of the q D 200 randomly activated neural network
hidden units. Among them we select the first k principal components. Then in
the second step we select q� D 3 of the k principal components. We consider
k D 3; 5; 10; 20; 50; 100; 200: When k D q D 200; this method is the same as
Lasso (as presented in Figure 3.2), for which there is no role of the first-step in the
PCA-first-and-then-Lasso as no principal components are used. When k D q� D 3;

this method is the same as PCA (as presented in Figure 3.1), for which there is no

3At 5% level, since the p-value is Bernoulli distributed with success probability of 0.05, the
standard error of the p-value from the 1,000 Monte Carlo replication is

p
.0:05 � 0:95/ =1000 �

0:0069. The 95% confidence interval is 0:05˙1:96�0:0069 D .0:0365; 0:0635/. At 10% level, the
standard error of the p-value is

p
.0:1� 0:9/ =1000 D 0:0095, and the 95% confidence interval is

0:10˙ 1:96 � 0:0095 D .0:0814; 0:1186/.
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role of the second-step in the PCA-first-and-then-Lasso as no Lasso is used. If k
is very small, for example k D 5 (as presented in Figure 3.5a, b), this method is
similar to the unsupervised ANN test with PCA. In the other extreme, if k is very
large, say k D 100 (as presented in Figure 3.5e, f), then the LASSO will play a
very important role but PCA will have little effect on the test. Table 3.2 shows the
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size and power of this method using different values of k D 5; 10; 20; 100. Let
us first look at the size. The test behaves reasonably good when k is equal to 5
because when k is small, this test is close to the unsupervised ANN test with PCA
and therefore suffers little from the PoSI problem. But when k increases to 50 and
100, we can see the over-rejection from the PoSI problem becomes more severe.
The PoSI problem can be found in Figure 3.5, where we draw the histograms of
test statistics for different k. For k D 5, the histograms are very close to the �23
distribution. But as k increases to 50 and 100, the histograms gradually shift to the
right which indicates over-rejection.

When it comes to the power, the supervised ANN test using the PCA-first-and-
then-Lasso method does very badly especially when k is large. Table 3.2 shows
that the power for k D 50 and k D 100 are substantially lower than the power
for k D 5 in all cases except for MRS. When comparing with the unsupervised
ANN test with PCA, this test shows inferior power in most cases. The reason for
this lowered power is ascribe to how the Lasso works. In the LWG test, we choose
the second to the fourth principal components which account for a large fraction
of the variance of ‰t , so that they contain a lot of information and therefore can
help detect the nonlinearity. But the Lasso will keep principal components with
larger coefficients in the regression. Hence those principal components with large
coefficients but maybe with less information can be kept; those ones with small
coefficients but maybe with more information are dropped. That may be why the
PCA-first-and-then-Lasso method performs poorly in power. When we increase k,
it is more likely that the Lasso may pick up unimportant principal components and
will reduce the power even more. On the other hand, if we set k D q�, the Lasso to
PCA test is essentially the LWG’s original ANN test, and this explains the increasing
power when k is very small.

3.5 Conclusions

In this paper, we applied the ANN model to test neglected nonlinearity in conditional
mean. The ANN test uses the residuals from a linear model and check for their
correlation with the ANN’s hidden unit activation functions. We generated a large
number of activation functions based on the randomly drawn activation parameters.
The large number of the activation functions is necessary to get good approximation
of an unknown nonlinear functional form. Then in order to avoid the collinearity
problem, we apply different regularization methods to select a moderate number
of activation functions. One regularization method suggested by Lee et al. (1993)
is the PCA, which is unsupervised. In this paper, we consider four supervised
regularization methods to select a subset of many activation functions. We show
that the use of supervised regularization such as Lasso, PLS, Pretest would lead to
the PoSI problem, while the PCA does not lead to such problem.
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A way of avoiding the PoSI problem is to conduct the simultaneous inference
for all possible submodels under consideration which will make the resulting PoSI
valid but conservative, by using a Bonferroni-type bound as used by Lee et al.
(1993) for PCA. As Leeb and Pötscher (2008) noted, finding the distribution of
post-selection estimates is hard and perhaps impossible. Pötscher and Leeb (2009)
show that the distribution of regularized estimators by Lasso, SCAD, and Pretest is
highly non-normal (non chi-squared in our testing setup of this paper). Nevertheless,
a valid PoSI is possible via simultaneous inference as studied by Berk, Brown, Buja,
Zhang and Zhao (2011). Whether/how the simultaneous inference may be applied
for Lasso, Pretest, PLS requires further research.

We note that the PoSI “problem” (for inference) is not necessarily a problem
(for forecasting). Knowing the PoSI problem could provide valuable information.
The question is what for. The answer is that the PoSI problem can be a measure
of the possible gain by supervision, and therefore it will be useful information for
forecasting. The over-rejection in inference due to the PoSI problem of the various
supervised regularization methods shows that the null distribution of the test statistic
based on the regularized (selected) randomized ANN activations can be shifted
towards the right tail, especially when the Pretest method is in use. While it is
a serious problem in inference, it may be a valuable information for forecasting.
The degree of the PoSI problem can be translated into a measure of supervision
in the regularization, i.e., a measure of the information contents for the forecast
target from the variables (predictors) selected through the supervision. However,
the results from Table 3.2 for the PCA-first-and-then-Lasso method indicates that
this may not be a straightforward matter because it is shown that more supervision
does not necessarily increase the power of the ANN test. It remains to be studied
that it might be possible that the more supervised regularization can lead to poor
forecasting performance of the ANN model. Hence, it will be interesting to examine
whether the different degrees of the PoSI problem among the different regularization
methods may be carried over to different degrees of improvement in forecasting
ability of the ANN model. We leave this in our research agenda.
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