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1 Introduction

We study bootstrap aggregation (bagging) methods to improve the out-of-sample prediction of

a simple univariate linear model (following Campbell and Thompson [CT], 2008) for the equity

premium by imposing restrictions in the regression. In imposing restrictions, such as positivity

of the regression coefficient, or positivity of the prediction, usually the coefficient or prediction is

simply set to zero if the estimated value is negative. This amounts to the application of an indicator

function. Bühlmann and Yu (2002) showed that bagging can reduce the variance of the estimator

in this situation by “smoothing” the indicator function. In this paper we show in theory, through

simulations, and in an empirical application using the same data set as CT (2008), that bagging

coefficient and forecast restrictions can improve the predictive power of a linear model.

Excess returns prediction has attracted academics and practitioners for many decades since

the early 1920s, when Dow (1920) studied the role of dividend ratios as a possible predictor for

returns. In the 1980s, a number of authors presented empirical evidence of ex-post (in-sample)

return predictability. Fama and Schwert (1977), Fama and Schwert (1981), Rozeff (1984), Keim

and Stambaugh (1986), Campbell (1987), Campbell and Shiller (1988a,b) and Fama and French

(1988, 1989) showed that excess returns could be successfully predicted based on lagged values of

variables such as dividend-price ratio and dividend yield, earnings-price ratio and dividend-earnings

ratio, interest rates and spreads, inflation rates, book-to-market ratio, volatility, investment-capital

ratio, consumption, wealth, and income ratio, and aggregate or net equity issuing activity.

Subsequent work, however, demonstrated that these results do not hold during the bull market

period of the 1990s; see Lettau and Ludvigson (2001) or Schwert (2002). For example, during

this period when stock prices soared, the dividend yield systematically drifted downwards, thus

generating negative sample correlation between returns and dividend yield, contrary to the posi-

tive historical correlation. Furthermore, since early results concerned only ex-post predictability,

they were of little practical interest. Studies of ex-ante (out-of-sample) return predictability have

found either that previous successful results were restricted to particular sub-samples (Pesaran

and Timmermann 1995) or that return predictability was a statistical illusion; see Bossaerts and

Hillion (1999). In addition, several authors pointed out that the apparent predictability of stock

returns might be spurious as many of the predictor variables were highly persistent, leading to
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possibly biased coefficients and incorrect t-tests in predictive regressions; see, for example, Nelson

and Kim (1993), Cavanagh, Elliot, and Stock (1995), and Stambaugh (1999). These problems are

exacerbated when large numbers of variables are considered and only results that are apparently

statistically significant are reported; see Foster, Smith, and Whaley (1997) and Ferson, Sarkissian,

and Simin (2003).

The inconclusive evidence has inspired the use of time-varying regression models. As pointed

out by Pesaran and Timmermann (2002) and Timmermann (2007) “forecasters of stock returns

face a moving target that is constantly changing over time. Just when a forecaster may think that

he has figured out how to predict returns, the dynamics of market prices will, in all likelihood, have

moved on, possibly as a consequence of the forecaster’s own efforts.” On the other hand, alternative

econometric methods were advocated for correcting the above mentioned bias and conducting valid

inference: for example Cavanagh, Elliot, and Stock (1995), Mark (1995), Kilian (1999), Ang and

Bekaert (2006), Jansson and Moreira (2006), Lewellen (2004), Torous, Valkanov, and Yan (2004),

Campbell and Yogo (2006), and Polk, Thompson, and Vuolteenaho (2006).

More recently, Goyal and Welch (2008) argued that none of the conventional predictor variables

proposed in the literature seems capable of systematically predicting stock returns out-of-sample.

Their empirical evidence suggests that most models were unstable or spurious, and most models

are no longer significant even in-sample. The authors show that the earlier apparent statistical

significance was especially confined to the years of the Oil Shock of 1973–1975; see also Butler,

Grullon, and Weston (2006).

Our approach is motivated by CT (2008), who show that many predictive regressions outper-

form the historical average return forecast once a restriction is imposed on the sign of the coefficient

in the regression. Imposing a constraint on the coefficient amounts to applying shrinkage estima-

tion. Shrinkage methods are designed to reduce estimator variance at the possible cost of incurring

bias. CT (2008) find out-of-sample predictive power of the common stock return predictors over

the historical average. The advantage is small (not statistically significant) but nonetheless eco-

nomically meaningful for mean-variance investors. We impose these a-priori parameter restrictions

(which we call CT restrictions) in a regression function of equity premium conditional on various

predictors, then we smooth the restrictions by bagging (Bühlmann and Yu, 2002, and Inoue and
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Kilian, 2008). The resulting bagging forecast has lower variance than the forecast using the CT

restricted estimator. Whether mean-squared forecast error (MSFE) is also reduced in the process

depends on how much bagging increases bias. We explore this question in simulations and in an

application to the same data set used in CT (2008).

After bagging an indicator-type restriction as it is imposed in CT (2008), the resulting asymp-

totic shape of the estimator follows the cumulative distribution function of a normal random variable

(Bühlmann and Yu, 2002, Proposition 2.1). That is, instead of taking one value (say, zero) on one

side of the restriction, and a positive value on the other side of the restriction, undergoing an abrupt

transition, the estimator now transitions smoothly from one side of the restriction to the other. See,

in particular, Figure 1 in Bühlmann and Yu (2002). Thereby, bagging provides another perspective

on non-linear, smoothly transitioning estimators as pioneered in, for example, Teräsvirta (1994,

2006).

The paper is organized as follows. In Section 2 we review bagging and present the bagging

approach to restricted parameter estimation. In Section 3, we present a Monte Carlo simulation.

Section 4 describes the data set and presents empirical results. Section 5 concludes.

2 Bagging restrictions on regression functions

A linear model assumes that the regression function E(y|X) is linear in the predictors X =

(x1, . . . , xk)
′. When k is small, such as k = 1, we may have good reason to believe that the

coefficient of X must be positive or must exceed some known value. In that case, we may use the

a-priori belief to shrink the parameter space. Such a-priori beliefs are less intuitive when k is large,

so we restrict the consideration to the case k = 1. A simple method is to use a hard-thresholding

indicator function to define a constrained least squared estimator β̄ = max(β̃, 0) = β̃ ·1(β̃ > 0) with

β̃ being an unconstrained least squares estimator of β. By shrinking the parameter space for the

slope coefficient of x1 in the prediction model towards zero, one reduces the variance, and possibly

the overall mean squared forecast error, at the cost of bias. While imposing such a constraint

can improve the predictive power of the linear model if the constraint is correct, the restricted

estimator β̄ involves a discontinuous hard-threshold indicator (jump) function at the boundary of

the constrained parameter space. We show that we can further improve the predictive ability of
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the constrained linear model by smoothing the indicator function using bagging. We consider two

types of restrictions as considered in CT (2008), namely positivity of the forecast, motivated by the

requirement that the mean of the equity premium should be positive, and positivity of the regres-

sion coefficient, motivated by simple insights from financial theory, for example that the dividend

yield should have a positive influence on the equity premium.

Goyal and Welch (GW 2008) show that predictive regressions cannot beat the historical average.

Campbell and Thompson (CT 2008), on the other hand, show that many predictive regressions beat

the historical average, once constraints are imposed. Consider

yt+1 = α+ βxt + ut+1, t = 1, . . . , T, (1)

where y is the excess return on the S&P500 over the 3-month T-bill interest rate. The regressor xt

stands for a predictor variable such as dividend yield, earnings yield, book-to-market ratio, return

on equity, long-term government bond yield, term spread, default spread, inflation rate, equity

share of new issues, etc. GW find that forecasts from the unrestricted model ỹn+1 = α̃n + β̃nxn

(with α̃n, β̃n unrestricted OLS) are worse than forecasts with the exclusion restriction β = 0, which

amounts to the historical average (HA) 1
n

∑n
t=1 yt. CT show that the positivity constraint β > 0

produces a better forecast than the exclusion restriction. In this paper we aim to show that bagging

can further improve the CT constrained forecast.

2.1 Bagging

Bootstrap aggregating, or bagging, means to estimate a parameter on each of a set of J subsamples

drawn from the original data set D and then average over the J estimates. As J → ∞, the bagged

estimator will differ from the estimator obtained from the entire data set D only if it is a nonlinear

or adaptive estimator (Hastie, Tibshirani, and Friedman, 2001, p. 246). An estimator is said to be

“unstable” if a small change in the training set will lead to a significant change in the estimator

(Breiman, 1996). In our application to an indicator function, the bagged predictor smoothes the

instability caused by estimation and model uncertainty and the hard threshold function.

The mechanism of bagging has been explained in various ways, for example Breiman (1996)

under squared-error loss and Lee and Yang (2006) under convex loss (e.g., a tick function for

quantiles). Bühlmann and Yu (2002) show that for a nonsmooth unstable predictor, bagging
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reduces variance of the first order term. In particular, they show that bagging can reduce the

mean-squared forecast error by averaging over the randomness of variable selection. Buja and

Stuetzle (2006) and Friedman and Hall (2007) expand a smooth unstable function into linear and

higher order terms, and show bagging reduces the variance of the higher order terms. Grandvalet

(2004) argues that bagging stabilizes prediction by equalizing the influence of training samples.

Stock and Watson (2012) show that bagging is asymptotically equivalent to Bayesian shrinkage.

Applications of bagging include inflation (Inoue and Kilian 2008), financial volatility (Hillebrand

and Medeiros 2010), equity premium (Huang and Lee 2010), short-term interest rates (Audrino

and Medeiros 2011), and employment data (Rapach and Strauss 2007).

To fix notation, let

Dt = {(Ys,Xs−1)}ts=t−R+1 (t = R, . . . , T )

be a training set at time t and let φ(Xt,Dt) be a forecast of Yt+1 or of the binary variable 1(Yt+1 ≥ 0)

using this training set Dt and the explanatory variable vector Xt. The optimal forecast φ(Xt,Dt)

for Yt+1 will be the conditional mean of Yt+1 given Xt if we have the squared error loss function, or

the conditional quantile of Yt+1 on Xt if the loss is a tick function as in Koenker and Basset (1978).

Suppose each training set Dt consists of R observations generated from the underlying prob-

ability distribution P. The forecast {φ(Xt,Dt)}Tt=R+1 can be improved if more training sets can

be generated from P and if the forecast can be formed from averaging the multiple forecasts ob-

tained from the multiple training sets. Ideally, if P were known and multiple training sets D(j)
t

(j = 1, . . . , J) could be drawn from P, an ensemble aggregating predictor φA(Xt) could be con-

structed by averaging of φ(Xt,D(j)
t ) with respect to P, i.e.,

φA(Xt) = EPφ(Xt,Dt),

where EP (·) denotes expectation with respect to P, and the subscript A in φA denotes “aggrega-

tion.”

In practice, P is not known. We may estimate P by its empirical distribution, P̂(Dt), for a given

data set Dt. Then, from the empirical distribution P̂(Dt), multiple subsamples D∗
t can be drawn by

an appropriate bootstrap method. The question which bootstrap algorithms can provide consistent

densities for moment estimators and quantile estimators in time series settings is addressed, for ex-

ample, in Hall, Horowitz, and Jing (1995) and Fitzenberger (1997). Bagging predictors, φB(Xt,D∗
t ),
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can then be computed by averaging over the subsamples. More specifically, the bagging predic-

tor φB(Xt,D∗
t ) can be obtained following the steps: (1) Given a training set of data at time t,

Dt = {(Ys,Xs−1)}ts=t−R+1, construct the jth bootstrap sample D∗(j)
t = {(Y ∗(j)

s ,X
∗(j)
s−1)}ts=t−R+1,

j = 1, . . . , J, according to the empirical distribution of P̂(Dt) of Dt. (2) Compute the bootstrap

predictor φ∗(j)(Xt,D∗(j)
t ) from the jth bootstrapped sample D∗(j)

t . (3) Compute the bagging pre-

dictor φB(Xt,D∗
t ) by averaging over J bootstrap predictors

φB(Xt,D∗
t ) =

1

J

J∑
j=1

φ∗(j)(Xt,D∗(j)
t ).

2.2 Bagging Restrictions

In the context of a simple univariate regression, we let

φ(xt,Dt) = E(yt+1|xt) = α+ βxt,

where Dt = {(ys+1, xs)}ts=t−R+1 for t = R, . . . , T .

The two types of restrictions considered in CT (2008) are positivity of the coefficient β (PC)

and positivity of the forecast φ(xt,Dt) (PF). We compare the following forecasts:

1. HA (Historical Average forecast with exclusion restriction β = 0):

yHA
T+1 =

1

T

T∑
t=T−R+1

yt.

2. UF (Unrestricted Forecast):

yUF
T+1 = α̃T + β̃TxT ,

where α̃T , β̃T are unrestricted OLS estimators. UF is used in Goyal and Welch (2008).

3. PC (forecast with Positive Coefficient restriction β > 0):

yPCT+1 = ᾱT + β̄TxT , (2)

where β̄T = max{β̃T , 0} = 1
(
β̃T > 0

)
β̃T , and ᾱT = 1

(
β̃T > 0

)
α̃T + 1

(
β̃T ≤ 0

)
yHA
T+1. PC

is used in CT (2008).
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4. PC-GH (forecast with Positive Coefficient restriction β > 0 using bagging as in Gordon and

Hall (GH), 2009):

yPC-GH
T+1,J =

1

J

J∑
j=1

(
y
PC,∗(j)
T+1

)
= α̂T,J + β̂T,JxT , (3)

where β̂T,J = 1
J

∑J
j=1 β̄

∗(j)
T and α̂T,J = 1

J

∑J
j=1 ᾱ

∗(j)
T . As J → ∞, β̂T,J converges to E∗β̄T ,

α̂T,J converges to E∗ᾱT , and yPC-GH
T+1,J converges to E∗(yPCT+1), where E∗ denotes expectation

with respect to the empirical distribution P̂(DT ).

5. PF (forecast with Positive Forecast restriction φ(xt,Dt) > 0):

yPFT+1 = 1
(
yUF
T+1 > 0

)
yUF
T+1.

6. PF-GH (forecast with Positive Forecast restriction φ(xt,Dt) > 0 using bagging as in GH

2009):

yPF-GH
T+1,J =

1

J

J∑
j=1

(
y
PF,∗(j)
T+1

)
,

where again there is convergence limJ→∞ yPF-GH
T+1,J = E∗(yPFT+1), E∗(·) being expectation with

respect to the empirical distribution P̂(DT ).

With this notation, we can rephrase the aim of this paper. Comparative statements can be

understood in the mean-square error sense, but we also consider two alternative loss functions in

the empirical exercise: GW (2008) find that unrestricted forecasts yUF
n+1 = α̃n + β̃nxn (with α̃n, β̃n

OLS estimators) are worse than HA forecasts (with exclusion restriction β = 0). CT (2008) show

that PC and PF produce better forecasts than HA. We will show that PC-GH and PF-GH further

improve PC and PF.

The reason for this improvement is the following equivalence that is motivated by the second

equality in (3).

Proposition 1. Bagging the positive coefficient forecast yPCT+1 is equivalent to computing the forecast

yPC-GH
T+1,J from the Gordon and Hall (2009) bagging estimators α̂T,J , β̂T,J . That is,

1

J

J∑
j=1

y
PC,∗(j)
T+1 = yPC-GH

T+1,J .
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Proof.

1

J

J∑
j=1

y
PC,∗(j)
T+1 =

1

J

J∑
j=1

(ᾱ
∗(j)
T + β̄

∗(j)
T xT ) =

 1

J

J∑
j=1

ᾱ
∗(j)
T

+

 1

J

J∑
j=1

β̄
∗(j)
T

xT

= α̂T + β̂TxT = yPC-GH
T+1,J . �

Even though Proposition 1 is a very simple insight, it provides a powerful reason, in view of Breiman

(1996), why bagging the coefficient estimates and obtaining yPC-GH
T+1 can improve the PC constrained

forecast yPCT+1 used in CT (2008).

2.3 AMSE Comparison

With our objective in view, we compare the asymptotic mean-square error (AMSE) of the unre-

stricted, the restricted, and the bagging estimator and forecast. Keeping the decomposition of MSE

into variance and bias in mind, we show that under certain circumstances, bagging estimators and

forecasts have a shrinkage advantage over simple constrained estimators and forecasts as used in

CT (2008). That is, their reduction in variance outweighs their increase in bias. For this purpose,

we collect some results from the literature, in particular from Bühlmann and Yu (2002) and from

Gordon and Hall (2009), and express them in a unified framework.

Let θ denote either a prediction φ(xt,Dt) from a regression or the parameter vector (α, β). The

unrestricted estimator θ̃T is, thus,

θ̃T = α̃T + β̃TxT , or θ̃T = (α̃T , β̃T ).

The restricted estimator for θ subject to a lower bound θ1 is

θ̄T = max{θ̃T , θ1}.

The Gordon and Hall (GH, 2009) bagging estimator is

θ̂T = lim
J→∞

1

J

J∑
j=1

max{θ̃∗(j)T , θ1} = lim
J→∞

1

J

J∑
j=1

θ̄
∗(j)
T = E(max{θ̃∗T , θ1}|DT )

for the situation where a lower bound θ1 is known. As before, DT is the available data set at time

T , D∗
T is a bootstrap sample, and θ̃∗T is a bootstrap replication of θ̃T from D∗

T . There are J such

bootstrap replications; expectation statements hold for J → ∞; in practice J is of course finite.

We use the moving block bootstrap method for subsampling.
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Consider the case where θ is the regression coefficient β. Let the data-generating process be

yt+1 = α0 + β0xt + ut+1,

where E(ut) = 0, V(ut) = σ2
u < ∞. Let the data-generating slope parameter be of a local-to-

threshold form

β0 = β1 + bσβT
−1/2. (4)

Here, β1 is the threshold applied in the constraint. For example, in the equity premium application

where the hypothesis of predictability is studied against a null of no predictability, β1 = 0. Note that

the term “data-generating” then refers to the choice of hypotheses and does not make a statement

about financial economics. Equation (4) does not make a statement whether or not returns are

asymptotically predictable. If a researcher wanted to study the base case of some predictability

rather than no predictability, they would specify a non-zero β1, possibly of a parametric form

derived from financial economic theory.

The estimated model is a simple linear regression of yt+1 onto xt, and the estimators under

consideration are the OLS estimator β̃T of UF, the simple PC constrained estimator

β̄T = max
{
β̃T1

(
β̃T > β1 + cσβT

−1/2
)
, β1

}
= max

{
β̃T1

(√
T (β̃T − β1)/σβ > c

)
, β1

}
,

and the bagging estimator PC-GH

β̂T =
1

J

J∑
j=1

β̄
∗(j)
T =

1

J

J∑
j=1

max
{
β̃
∗(j)
T 1

(√
T (β̃

∗(j)
T − β1)/σβ > c

)
, β1

}
.

In this setup, c is a critical value that the scaled and studentized difference between the estima-

tor and the threshold value β1 has to exceed before the estimator is adopted over the threshold

value. In Bühlmann and Yu (2002) and in Gordon and Hall (2009) one finds the following results

on the asymptotic distributions of the estimators and their dependence on the data-generating

perturbation b and on the critical decision value c.

Proposition 2. [Bühlmann and Yu (2002), Gordon and Hall (2009)]

Let Z ∼ N(0, 1), Φ(·) the cumulative distribution function and ϕ(·) the probability density function
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of the standard normal distribution. Then, as T → ∞,

√
Tσ−1

β (β̃T − β1)
d−→ Z + b. (5)

√
Tσ−1

β (β̄T − β1)
d−→ (Z + b)1 (Z + b− c > 0) . (6)

√
Tσ−1

β (β̂T − β1)
d−→ (Z + b)Φ(Z + b− c) + ϕ(Z + b− c). (7)

The positive coefficient (PC) constraint in (2) means that c = 0 and β1 = 0. For this case,

we compare the asymptotic mean-squared error (AMSE) of the limiting random variables in (5),

(6), and (7) of Proposition 2. Equation (7) also shows that the bagging estimator is a smoothly

transitioning sigmoid function.

Asymptotic bias (Abias): For all z ∈ R, note that

z + b ≤ (z + b)1(z + b > 0) < (z + b)Φ(z + b) + ϕ(z + b),

which results in the following order of the asymptotic biases:

Abias of β̃T ≤ Abias of β̄T < Abias of β̂T ,

where

Abias of β̃T = E(Z + b)− b = 0,

Abias of β̄T = E [(Z + b)1(Z + b > 0)]− b,

Abias of β̂T = E [(Z + b)Φ(Z + b) + ϕ(Z + b)]− b.

Therefore, Abias gets worse as we impose the restriction and as we add bagging. For example,

when b = 0,

Abias of β̃T = E(Z) = 0,

Abias of β̄T = E [Z1(Z > 0)] = 0.5
√
2/π ≈ 0.3989,

Abias of β̂T = E [ZΦ(Z) + ϕ(Z)] = π−1/2 ≈ 0.5642.

Asymptotic variance (Avar): While Abias increases, asymptotic variance is reduced by im-

posing a restriction and more so by bagging the restriction. For b = 0, the asymptotic distribution
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of the simple constrained estimator β̄T is a standard normal truncated to the positive half-line

and thus has asymptotic variance V(Z1(Z > 0)) = (1 − 1/π)/2) = 0.3408. The Avar of the

bagging estimator is V(ZΦ(Z) + ϕ(Z)) = 1/3 +
√
3/(2π) − 1/π = 0.2907. AMSE(β̂T ) = 0.6088

and AMSE(β̄T ) = 0.4998 are substantially smaller than AMSE(β̃T ) = 1. Note that the ratio

AMSE(β̂T )/AMSE(β̄T ) = 1.2181. The AMSE of PC-GH is worse due to much larger Abias(β̂T ).

However, the case β = 0 (i.e., b = 0) is not an interesting one. We impose the restriction β > 0 (i.e.,

b > 0). For other values of b, analytical evaluations are difficult and we use numerical evaluation.

The results for some grids of b on [−2 4] are presented in Table 1.

AMSE Comparison: Summarizing the results of Table 1, we note the following observations.

1. When β > 0 (i.e., b > 0), if we impose the correct restriction β > 0, we can improve AMSE.

For example, when b = 1 in Table 1, AMSE(β̂T )/AMSE(β̄T ) = 0.85. Hence PC-GH reduces

AMSE by 15% from PC. When b = 2, AMSE(β̂T )/AMSE(β̄T ) = 0.8943, and thus PC-GH is

about 11% better than PC.

2. When β ≫ 0 (i.e., b ≫ 0), if we impose the obvious restriction β > 0, we do not gain

much. For example, when b = 3 in Table 1, the restriction is hardly binding and the gain

is small. Bagging makes a minor contribution for AMSE(β̂T )/AMSE(β̄T ) = 0.9698. When

the restriction becomes even more obviously correct with b = 4, the gain becomes even

smaller. PC is the same as UF in AMSE. PC-GH is only slightly better than PC with

AMSE(β̂T )/AMSE(β̄T ) = 0.9955.

3. When β ≪ 0 (i.e., b ≪ 0), if we impose the wrong restriction β > 0, then the increase in Abias

dominates the reduction in Avar. AMSE substantially deteriorates by imposing the wrong

constraint and more so by bagging the constraint as can be seen from Table 1 for b = −1 or

−2.

3 Simulation

Simulation design: In order to evaluate the performance of the restricted and bagging predictors,

we construct a simulation experiment that is motivated by the stock-return prediction problem.
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First, we generate {wt}T=200
t=1 from

wt = ρwt−1 + et, et ∼ NID
(
0, σ2

e

)
, σe = 0.2,

where ρ ∈ {0, 0.5, 0.9, 0.99} setting different levels of persistence of the regressor. Next, we let

xt = exp (wt) /std(exp(wt)) so that {xt} be positive to mimic the predictor variables that we will

consider in the equity premium prediction in Section 4. The predictor x is normalized with the

standard deviation std(·). Then, we generate {yt}T=200
t=1 from

yt = 0.02 + βxt−1 + ut, ut ∼ NID
(
0, σ2

u

)
, E (utes) = 0,∀t, s,

where σu ∈ {0.1, 1} . The data-generating value of β deviates from the bound β1 by the local drift

parameter b with rate T−1/2, i.e., β = β1+b σβ T−1/2. We set the values of β1, σβ, and b as follows:

β1 = 0, σ2
β = σ2

u

(∑100
t=1 (xt − x̄)2

)−1
, and b ∈ {1, 3, 5, 10, 15, 20, 30, 50, 100} .

We use the first half of the total 200 to estimate β using the unrestricted, restricted, and

the bagging (PC-GH) estimators. The PC-GH estimator is computed over J = 200 bootstrap

samples. Using each of the above estimators at time t = 100, . . . , 199, we compute the unrestricted,

restricted, and bagging forecasts θt+1 (xt) of yt+1. The forecasts over the second half of observations

are compared with the actual value yt+1. We compute the following out-of-sample predictive ability

measure of each model

100 ·R2
OS = 100

(
1−

1
100

∑200
t=101(yt − θt (xt−1))

2

1
100

∑200
t=101(yt − θHA

t )2

)
,

where the historical average θHA
t = 1

100

∑t−1
s=t−100 ys (for t = 101, . . . , 200) is taken as a benchmark

forecast as in CT (2008). The same statistic
(
100 ·R2

OS

)
was used in CT (2008) to compare various

forecast models. We repeat the steps above over 1000 Monte Carlo replications and compute the

average of the out-of-sample
(
100 ·R2

OS

)
.

Simulation results: In this simulation, unlike in the empirical application to equity premium

prediction, the unrestricted forecast UF always dominates HA by construction of the simulation

design with b > 0. Hence, it is not interesting to compare the forecasts with HA for this simulation

section as we do it in the empirical section. Here we present the gain in 100 · R2
OS over the

unrestricted forecast UF from imposing a constraint and from bagging. Figures 1-2 report this

gain, defined as

Gain-in-R2 =
(
100 ·R2

OS

)
model

−
(
100 ·R2

OS

)
UF

, (8)
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where model = PC, PC-GH, PF, or PF-GH. Each of Figures 1-2 reports the gain in R2 for two

different values of σu. The four panels of each figure show the situation for one of the four different

values of ρ. In each panel, the abscissa shows the different values of b, and the ordinate shows

the gain as defined in (8) for that specific 3-tuple (σu, ρ, b). Summarizing, we make the following

observations.

1. For a wide range of b, the gains over UF from imposing the PC constraint and PF constraint

are positive.

2. For a wide range of b, bagging further improves the constrained forecasts. PC is further

improved by PC-GH, and PF is further improved by PF-GH.

3. The gains from the PF constraint is smaller when σu is smaller (Figure 1) than when σu is

larger (Figure 2), indicating that the PF constraint may be more useful when the market

becomes more volatile.

4. Note that high persistence (high ρ) leads to a large value of
∑100

t=1 (xt − x̄)2 and thus reduces

σβ, which reduces the local drift
(
b σβ T−1/2

)
from the bound. Therefore, for higher ρ, the

effects of the constraint or of bagging are bigger for a given value of b, and the effects are

present over a larger range of b.1

4 Let’s Do It Again: Equity Premium Prediction

4.1 Data and Constraints

Data: We use the data set of Campbell and Thompson (2008), which was kindly provided by

Sam Thompson. The data frequency is monthly; the sample period is 1871-2005. Excess returns

on the S&P 500 are calculated from the returns time series (1871M2 through 2005M12, CRSP

since 1927) and the 3-month Treasury-Bill interest rate (denoted as rft , 1920M1 through 2005M12,

1870M2 through 1919M12 calculated following Goyal and Welch (2008)). The predictor variables

are the dividend yield d/p (1872M2 through 2005M12), earnings yield e/p (1872M2 through

2005M12), smoothed earnings yield se/p following Campbell and Shiller (1988b), Campbell and

1The effect of the persistence (measured by ρ) in the predictor x of the predictive regression on the finite sample
estimation bias in β has been widely studied since the seminal paper by Stambaugh (1999). Examples are Valkanov
(2003), Lewellen (2004), Campbell and Yogo (2006), and Zhu (2013). In that context it is interesting to observe the
effect of the persistence ρ on gains from using the constraint and bagging, which is examined here from Figures 1-2.
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Shiller (1998) (1881M1 through 2005M12), book-to-market ratio b/m (1926M6 through 2005M12),

smoothed return on equity roe as described in Campbell and Thompson (2008) (1936M6 through

2005M12), the 3-month Treasury-Bill tbl (1920M1 through 2005M12), long-term government bond

yield lty (1870M1 through 2005M12), the term spread ts, i.e. the difference between long-term and

short-term treasury yields (1920M1 through 2005M12), the default spread ds, i.e. the difference

between corporate and Treasury bond yields (1919M1 through 2005M12), the lagged inflation rate

inf (1871M5 through 2005M12), and the equity share of new issues nei proposed by Baker and

Wurgler (2000). See Table 2 for a summary.

Comparing out-of-sample predictive ability: For the prediction exercise presented in this

section, we use the estimation sample periods and forecast periods as shown in Table 2, which

are the same as in Campbell and Thompson (2008). We take the “recursive scheme” that uses

expanding windows for estimating models. We move the estimation window forward by one month

to estimate the models. We keep rolling the estimation sample forward until the last one-month

ahead forecast is made for the month of 2005M12.

Constraints: We apply sign restrictions on the coefficients β depending on the predictor and

a positivity restriction on the forecast yt+1 of the risk premium, as well as a combination of these

two. The coefficient restrictions for the different predictors are listed in Table 2; they are the same

as in CT (2008). We impose the hard constraint and we apply bagging to smooth it. This results

in the following set of forecasts: UF, PC, PF, PCF (applying positivity on coefficient and forecast

jointly), PC-GH, PF-GH, and PCF-GH (bagging the joint restriction).

4.2 Empirical results

We compare the prediction performance in terms of three criteria. Table 3 compare MSFE in

100 · R2
OS proposed by CT (2008). Table 4 modifies the 100 · R2

OS with the adjustment in MSFE

of Clark and West (2006). Table 5 reports the utility function of an investor with simple mean-

variance preferences U = expected portfolio return − γ/2 portfolio variance as proposed by CT

(2008).
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4.2.1 Comparing MSFE in 100 ·R2
OS of CT (2008)

Table 3 present the results that are directly related to Goyal and Welch (2008) and Campbell and

Thompson (2008). The reported numbers are out-of-sample R2 statistics R2
OS multiplied by 100.

100 ·R2
OS = 100

(
1−

1
P

∑T
t=T−P+1(yt − θt (xt−1))

2

1
P

∑T
t=T−P+1(yt − θHA

t )2

)
, (9)

where P denotes the number of out-of-sample forecasts, θt (xt−1) is the prediction from the UF,

PC, PF, PCF, PC-GH, PF-GH, and PCF-GH model, respectively. These models are organized in

the columns of Tables 3 through 5. The rows of the tables show the different univariate predictors

that are used for x, from dividend yield d/p through new issues nei . There are 11 such predictors.

The last row reports a simple, equally weighted, combined forecast from all 11 individual forecasts.

The first reported numbers in Table 3 are out-of-sample statistics 100 ·R2
OS. The second reported

numbers in parentheses are the values of statistics to test the null hypothesis that MSFE gain is

zero.2 We note the following observations from Table 3.

1. Positive values of 100 ·R2
OS indicate that a model is better than HA. Many values of 100 ·R2

OS

in Table 3 are negative, indicating that it is not easy to beat the historical average. However,

many of these values become larger or turn positive when the PC, PF, or PCF constraints are

imposed. The values of statistics tend to get larger as well when the constraints are imposed

even if none of them are significantly positive.

2. The constraints work. Many of the eleven PC forecasts are better than the unconstrained

forecast. 10 of 11 PCs are at least as good as UF. All 11 PFs are at least as good as UFs. So

are all 11 PCFs.

3. Bagging works for 7 of 11 cases when PC is compared to PC-GH, for 7 of 11 cases when PF

is compared to PF-GH, and for 7 out of 11 when PCF is compared to PCF-GH.

2Assuming that the estimation sample is finite while we let P → ∞, we can apply Giacomini and
White (2005). Then the Diebold-Mariano statistic is asymptotically standard normal under the null that
limP→∞ P−1/2 ∑T

t=T−P+1 E
(
û2
0,t+1 − û2

1,t+1

)
= 0 where the subscript 0 denotes the HA model and the sub-

script 1 denotes any of the other models, which may nest the HA model. In this case we are not test-
ing for the null hypothesis that E

(
u2
0,t+1 − u2

1,t+1

)
= 0. Instead we are testing for the null hypothesis that

limP→∞ P−1/2 ∑T
t=T−P+1 E

(
û2
0,t+1 − û2

1,t+1

)
= 0 using the estimated forecast errors. We thank a referee for pointing

this out.
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4. In general CF produces the best forecast in each column, dominating all individual forecasts

in most of the 7 columns. This is observed in Table 3 (but not in Tables 4, 5). Bagging

works for PC and PCF constraints, as seen from pair-wise comparing the numbers in the last

row. It is interesting to note that none of the MSFE gains are significantly positive in rows

1-11, but all of the CFs in rows significantly positive with all the t statistics over 2.00. The

statistics are even larger with bagging.

In summary, it is hard to beat HA with UF, but imposing the constraints and bagging can

improve UF. Many constrained and bagged predictions outperform HA. Combined forecasts (CF)

outperform HA for all constrained models and bagging further improves the forecast power.

4.2.2 Adjusted 100 ·R2
OS of Clark and West (2006)

Campbell and Thompson write in CT (2008, p. 1515, footnote 5) that “Clark and West (2006) point

out that if the return series is truly unpredictable, then in a finite sample the predictive regression

will on average have a higher mean squared prediction error because it must estimate an additional

coefficient. Thus, the expected out-of-sample R2 under the null of unpredictability is negative, and a

zero out-of-sample R2 can be interpreted as weak evidence for predictability. We do not pursue this

point here because, like Goyal and Welch (2007), we ask whether predictive regressions or historical

average return forecasts have delivered better out-of-sample forecasts, not whether stock returns are

truly predictable.” Following these lines, we have studied (in Table 3) whether the constrained or

bagged predictive regressions can beat HA, but we have not studied whether stock returns are truly

predictable by using various predictors x.

As suggested by Campbell and Thompson (2008) we use the out-of-sample R2
OS in (9), which

compares the MSFE 1
P

∑T
t=T−P+1(yt − θt (xt−1))

2 of a predictive regression with the MSFE

1
P

∑T
t=T−P+1(yt−θHA

t )2 of HA. To compare the MSFEs, the test statistics of Diebold and Mariano

(1995) and West (1996) use the MSFE differential

1

P

T∑
t=T−P+1

[
(yt − θHA

t )2 − (yt − θt (xt−1))
2
]

(10)

to test the null hypothesis that E
[
(yt − θHA

t )2 − (yt − θt (xt−1))
2
]
= 0. Note that R2

OS in (9),

reported in Table 3, is obtained from dividing (10) by 1
P

∑T
t=T−P+1(yt − θt (xt−1))

2.
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Clark and West (CW 2006) show that when a predictive regression model (using x) is compared

with the HA, under the null hypothesis of no predictive ability of x, its MSFE is expected to be

greater than the HA’s MSFE. CW propose an adjustment to the MSFE differential in (10) in order

to account for the disadvantage of the sample MSFE of the predictive model. The CW-adjusted

MSFE differential is

1

P

T∑
t=T−P+1

[
(yt − θHA

t )2 −
{
(yt − θt (xt−1))

2 − (θHA
t − θt (xt−1))

2
}]

. (11)

We use the following “CW-adjusted-R2
OS” defined by dividing (11) by 1

P

∑T
t=T−P+1(yt−θHA

t )2 :

CW-adjusted-100 ·R2
OS = 100

(
1−

1
P

∑T
t=T−P+1

{
(yt − θt (xt−1))

2 − (θHA
t − θt (xt−1))

2
}

1
P

∑T
t=T−P+1(yt − θHA

t )2

)
.

Table 4 presents the CW-adjusted-100 · R2
OS and the test statistics in parentheses to test the

null hypothesis that the MSFE gain (11) with the Clark and West adjustment is zero.3 We note

the following observations.

1. Positive values of the CW-adjusted-100 ·R2
OS indicate that a predictive regression model using

x is better than HA. Most values in Table 4 are positive. The numbers in Table 4 are not

only larger than those in Table 3, which is by construction, but also more highly significant

according to the test statistics in parentheses.

2. The constraints work, with a few exceptions for PC and PF.

3. Bagging works well for many cases for PC-GH and PCF-GH.

4. While the combined forecast (CF) is nowhere the best, it is consistently better than HA

across all constraints. Bagging works for CF as in the previous tables. The combined forecast

with the PC constraint is further improved by bagging (PC-GH is better), the CF with PF

is further improved by bagging (PF-GH is better), and the CF with PCF is also further

improved by bagging (PCF-GH is better).

4.2.3 How much R2 is economically meaningful?

Although the gains from imposing constraints and bagging presented in Table 2 are small, they can

be economically meaningful for mean-variance investors. As Barberis (2000) points out, “. . . the

3The CW statistic of Clark and West (2006) is closely related to the ENC-T of Clark and McCracken (2001).
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evidence of predictability in asset returns affects optimal portfolio choice for investors with long

horizons [. . . ] even after incorporating parameter uncertainty, there is enough predictability in

returns to make investors allocate substantially more to stocks.” To see how gains in R2 may be

translated into economic gain, following CT (2008), we consider an investor with single-period

horizon and mean-variance preferences

U = expected portfolio return− γ

2
portfolio variance, (12)

= E
[
wyt+1 +

(
1− w)rft+1

)]
− γ

2
V
[
wyt+1 +

(
1− w)rft+1

)]
,

where γ captures relative risk aversion. The excess return on a risky asset over the riskless interest

rate is given by yt+1 = α+βxt+ut+1 as in (1). Following CT (2008), we assume xt has unconditional

mean zero and unconditional variance σ2
x, and the risk-free interest rate is constantly equal to zero.

The random shock ut+1 has unconditional mean zero and unconditional variance σ2
u > 0. As a

result, yt+1 has unconditional mean E (yt+1) = α and unconditional variance V (yt+1) = β2σ2
x+σ2

u,

assuming independence of x and u.

Without observing xt, the portfolio weight in the risky asset is

w0 =
1

γ

E (yt+1)

V (yt+1)
=

1

γ

α

β2σ2
x + σ2

u

,

and the equity premium (EP) is

EP0 = E
[
w0yt+1 +

(
1− w0)r

f
t+1

)]
=

1

γ

α2

β2σ2
x + σ2

u

=
1

γ

E (yt+1)
2

V (yt+1)
=

1

γ
S2,

where S is the Sharpe-ratio. Conditional on xt, the portfolio weight in the risky asset becomes

wt =
1

γ

E (yt+1|xt)
V (yt+1|xt)

=
1

γ

α+ βxt
σ2
u

,

with EP

EP1 = E
[
wtyt+1 +

(
1− wt)r

f
t+1

)]
=

1

γ

α2 + βσ2
x

σ2
u

=
1

γ

S2 +R2

1−R2
,

where R2 = βσ2
x

βσ2
x+σ2

u
. Note that w0 is constant while wt is time-varying. The increase in EP from

observing xt is

EP1 − EP0 =

(
1 + S2

1−R2

)
1

γ
R2 >

1

γ
R2.

The relative gain in EP is

EP1 − EP0

EP0
=

(
1 + S2

1−R2

)
R2

S2
>

R2

S2
.
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If R2 is large w.r.t. S2, then an investor can use the information in the predictive regression to

obtain a large proportional increase in return. CT (2008) report S2 = 0.0120 for the CT data set

(monthly 1871–2005).

For example, from the bagging results, the out-of-sample R2
OS for dividend yield (d/p) of PCF-

GH is 0.0016. The relative EP gain is about 13% for dividend yield as a predictor compared to the

HA forecast:

R2

S2
=

0.0016

0.0120
= 0.13 or 13%.

Similarly, the out-of-sample R2
OS for earnings yield (e/p) of PCF-GH is 0.0024 and thus the relative

EP gain is about 20% when earnings yield is used as predictor and compared to the HA forecast:

R2

S2
=

0.0024

0.0120
= 0.20 or 20%.

4.2.4 Utility function of CT (2008)

As discussed in the previous subsection CT (2008) show the economic significance of numerically

small R2’s by interpreting them relative to the squared Sharpe ratio. Rapach, Strauss and Zhou

(2010) use the investor utility value in (12) of CT (2008) to compare the economic values of different

forecasts. We adopt the same utility function (12) to compare the seven conditional predictive

regression models (UF, PC, PF, PCF, PC-GH, PF-GH, and PCF-GH) relative to HA. Table 5

reports the utility level (12) of an investor using the predictive regression over the utility level of

the HA forecast.

The historical average (HA) forecast does not use xt in forecasting yt+1. The realized average

utility level for the HA forecast over the out-of-sample period is

Û0 = Ê
[
w0yt+1 +

(
1− w0)r

f
t+1

)]
− γ

2
V̂
[
w0yt+1 +

(
1− w0)r

f
t+1

)]
where Ê (·) and V̂ (·) are the sample mean and sample variance over the out-of-sample period for

the portfolio return
[
w0yt+1 +

(
1− w0)r

f
t+1

)]
that was formed using the HA forecasts of yt+1.

The seven conditional forecasts use a predictor xt in forecasting yt+1. The realized out-of-sample

average utility level for each of these forecasts is

Û1 = Ê
[
wtyt+1 +

(
1− wt)r

f
t+1

)]
− γ

2
V̂
[
wtyt+1 +

(
1− wt)r

f
t+1

)]
,
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where Ê (·) and V̂ (·) are the out-of-sample sample-mean and sample-variance of the return[
wtyt+1 +

(
1− wt)r

f
t+1

)]
on the portfolio that was formed for each of the seven conditional forecasts

for a given predictor. Table 5 then repeats this exercise for each of the 11 predictors considered

and for the equally-weighted, combined forecast (CF) and reports the gains in utility
(
Û1 − Û0

)
from the conditional forecasts over the utility Û0 of the HA forecast. We set γ = 3; this value is

commonly employed in the literature. The results with γ = 2, 4 are qualitatively similar. We note

the following observations.

1. Positive values of the utility gain
(
Û1 − Û0

)
indicate that a model is better than HA. While

there are negative values for some predictors, the incidence of negative values is lower, how-

ever, than in Table 3. Even some unrestricted forecasts take positive values.4

2. The PC and PF constraints do not work well without bagging. Without bagging only 1 PC

out of 11 are better than UF. Without bagging the PF constraint does not work for all 11

predictors. Without bagging only one PCF out of 11 is better than UF.

3. Bagging works for the both PC and PF constraints: 10 PC-GH out of 11 are better than UF,

9 PF-GHs are better than UF, and 10 PCF-GH out of 11 are better than UF.

4. For CF in row 12, all CFs are positive, beating HA. The PC constraint seems to be more

effective than the PF constraint. Bagging improves on CF for PC and PCF forecasts but not

for PF. This is similar to Tables 3 and 4 in MSFE.

In summary, in terms of the utility level, bagging the constraints can improve the forecast.

Combined forecasts (CF) outperform HA for all constrained models and bagging further improves

their forecast power, as in Tables 3 and 4.

5 Conclusions

The vast literature on equity return prediction has considered a wide array of models and methods.

CT (2008) propose restrictions on the regression coefficient or on the return prediction. Their

4We note that recent work by McCracken and Valente (2012) can possibly be applied here to assess the statistical
significance of the utility gains. They show that the difference in mean-variance utilities can be asymptotically
normal despite the fact that the models are nested. Since the asymptotic variance that accounts for the effects of the
parameter estimation is often difficult to estimate, they use a bootstrap proposed by Calhoun (2011).
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shrinkage approach reduces MSFE by increasing the forecast bias and reducing the forecast error

variance.

In this paper, we apply bagging to reduce the forecast error variance compared to simple

constrained estimators at the potential cost of an increase in bias. We review the theory behind

bagging, in particular Breiman (1996), Bühlmann and Yu (2002), and Gordon and Hall (2009), and

explore the bias-variance trade-off and shrinkage properties of bagging in simulations. We show

that for a large variety of signal-to-noise and regressor persistence scenarios, bagging can further

improve predictive power as long as the imposed constraint is not completely obvious and far from

binding, but, loosely speaking, true enough.

In the stock return prediction problem, we find that the constraint on the sign of the regression

coefficient and/or the positivity constraint on the forecast itself improves prediction. Smoothing the

hard constraint at zero for the return forecast by bagging over a large set of bootstrap replications,

we improve this edge in predictive power, which we measure by the out-of-sample R2 as in CT

(2008), by the utility function of CT (2008) as reported in Rapach, Strauss, and Zhou (2010), and

by the adjusted out-of-sample R2 of Clark and West (2006). In particular after accounting for

the natural MSFE-disadvantage of a regressor model compared to the historical mean under the

null, the advantage of bagging constraints becomes very clear. Simple combination forecasts do

consistently well, but not always best. In our application, they could also be improved by bagging.
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Figure 1. Gains in 100 ·R2
OS from imposing constraint and bagging over UF when σu = 0.1
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Notes: The gain of a model in 100 · R2
OS over UF is

(
100 ·R2

OS

)
model

−
(
100 ·R2

OS

)
UF

for each of

model = PC (line with circles o), PC-GH (line with triangles △), PF (line with squares �), or

PF-GH (line with asterisks *).
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Figure 2. Gains in 100 ·R2
OS from imposing constraint and bagging over UF when σu = 1
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Notes: See Figure 1.
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Table 1. AMSE Comparisons

β̃T β̄T β̂T
b Abias Avar AMSE Abias Avar AMSE Abias Avar AMSE

−2.0 0.0000 1.0000 1.0000 2.0085 0.0057 4.0397 2.0502 0.0135 4.2169
−1.0 0.0000 1.0000 1.0000 1.0833 0.0684 1.2420 1.1996 0.0839 1.5231
−0.5 0.0000 1.0000 1.0000 0.6978 0.1705 0.6574 0.8491 0.1674 0.8884
0.0 0.0000 1.0000 1.0000 0.3989 0.3409 0.5001 0.5642 0.2907 0.6090
0.5 0.0000 1.0000 1.0000 0.1978 0.5535 0.5926 0.3491 0.4438 0.5657
1.0 0.0000 1.0000 1.0000 0.0833 0.7511 0.7581 0.1996 0.6045 0.6443
1.5 0.0000 1.0000 1.0000 0.0294 0.8884 0.8893 0.1049 0.7475 0.7585
2.0 0.0000 1.0000 1.0000 0.0083 0.9602 0.9602 0.0501 0.8562 0.8587
2.5 0.0000 1.0000 1.0000 0.0019 0.9886 0.9886 0.0218 0.9271 0.9276
3.0 0.0000 1.0000 1.0000 0.0003 0.9974 0.9974 0.0085 0.9672 0.9673
3.5 0.0000 1.0000 1.0000 0.0002 0.9997 0.9997 0.0032 0.9871 0.9871
4.0 0.0000 1.0000 1.0000 0.0002 0.9998 0.9998 0.0011 0.9953 0.9953
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Table 2. Data and Restrictions

x sign(β) estimation starts from forecasting starts from

d/p + dividend yield 1872M2 1927M1
e/p + earnings yield 1872M2 1927M1
se/p + smoothed earnings yield 1881M2 1927M1
b/m + book-to-market ratio 1926M6 1946M6
roe + smoothed return on equity 1936M6 1956M6
tbl − 3-month Treasury-Bill 1920M1 1940M1
lty − long-term government bond yield 1871M2 1927M1
ts + term spread 1920M1 1940M1
ds + default spread 1919M1 1939M1
inf − inflation rate 1871M5 1927M1
nei − equity share of new issues 1927M12 1947M12

Notes: We use the same data set of Campbell and Thompson (2008), which was kindly provided by

Sam Thompson. The data frequency is monthly. See subsection 4.1 for details. The PC constraints

of CT (2008) for each predictor are shown in column 2. When the sign constraint on the coefficient

β is negative, the positive constraint PC should be understood as a negative constraint. We do

not distinguish the cases in the text for better readability. The term spread (ts) is the long-term

minus the short-term Treasury yields. The default spread (ds) is the corporate bond yield minus

the Treasury bond yield.

29



Table 3. Relative Gains in MSFE over HA

UF PC PF PCF PC-GH PF-GH PCF-GH

d/p −0.65
(−0.57)

0.05
(0.12)

0.07
(0.18)

0.08
(0.21)

0.31
(0.56)

0.53
(1.13)

0.38
(0.71)

e/p 0.12
(0.51)

0.18
(0.79)

0.14
(0.57)

0.18
(0.79)

0.25
(1.00)

0.20
(0.90)

0.25
(1.00)

se/p 0.33
(0.85)

0.42
(1.11)

0.38
(1.01)

0.43
(1.16)

0.48
(1.19)

0.50
(1.35)

0.50
(1.25)

b/m −0.39
(−0.41)

−0.39
(−0.41)

0.03
(0.04)

0.03
(0.04)

−0.43
(−0.43)

0.34
(0.66)

0.02
(0.02)

roe −0.92
(−2.15)

−0.06
(−0.38)

−0.92
(−2.15)

−0.06
(−0.38)

−0.68
(−1.43)

−0.85
(−2.05)

−0.68
(−1.43)

tbl 0.49
(0.48)

0.48
(0.46)

0.54
(0.91)

0.52
(0.89)

0.53
(0.51)

0.52
(0.92)

0.56
(0.90)

lty −0.19
(−0.33)

−0.19
(−0.33)

0.20
(0.70)

0.20
(0.70)

−0.16
(−0.28)

0.23
(0.82)

0.22
(0.75)

ts 0.43
(0.58)

0.45
(0.60)

0.43
(0.59)

0.44
(0.61)

0.59
(0.78)

0.30
(0.41)

0.57
(0.76)

ds −0.24
(−0.69)

−0.24
(−0.69)

−0.24
(−0.69)

−0.24
(−0.69)

−0.50
(−1.24)

0.12
(0.35)

−0.42
(−1.07)

inf −0.22
(−0.92)

−0.21
(−0.87)

−0.18
(−0.78)

−0.17
(−0.73)

−0.16
(−0.60)

−0.08
(−0.34)

−0.11
(−0.43)

nei 0.32
(0.34)

0.32
(0.34)

0.48
(0.55)

0.48
(0.55)

0.30
(0.32)

0.39
(0.45)

0.47
(0.54)

CF 0.65
(2.10)

0.67
(2.00)

0.50
(2.40)

0.52
(2.39)

0.72
(2.19)

0.46
(2.83)

0.56
(2.61)

Notes: The reported numbers are out-of-sample statistics R2
OS multiplied by 100, following Camp-

bell and Thompson (2008), as defined in (9). This is to compare seven forecasts in seven columns

using each of the 11 predictors (in 11 rows). The last row (row 12) presents the equally-weighted

combined-forecast (CF) of the 11 forecasts in each column. R2
OS measures the relative gain of a

predictive regression over HA. The numbers in parentheses are the values of statistics to test the

null hypothesis that MSFE gain is zero.
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Table 4. Relative Gains in MSFE over HA with the Adjustment of Clark and West (2006)

UF PC PF PCF PC-GH PF-GH PCF-GH

d/p −0.11
(−0.10)

0.49
(1.23)

0.51
(1.24)

0.51
(1.30)

0.83
(1.49)

0.77
(1.64)

0.86
(1.58)

e/p 0.32
(1.34)

0.38
(1.64)

0.34
(1.41)

0.38
(1.64)

0.46
(1.85)

0.39
(1.72)

0.46
(1.85)

se/p 0.71
(1.84)

0.80
(2.12)

0.76
(2.00)

0.81
(2.16)

0.87
(2.16)

0.80
(2.17)

0.88
(2.20)

b/m 1.15
(1.20)

1.15
(1.20)

0.95
(1.30)

0.95
(1.30)

1.23
(1.24)

0.76
(1.48)

0.97
(1.30)

roe −0.62
(−1.45)

−0.03
(−0.20)

−0.62
(−1.45)

−0.03
(−0.20)

−0.28
(−0.60)

−0.57
(−1.36)

−0.28
(−0.60)

tbl 2.04
(1.97)

2.02
(1.95)

1.14
(1.95)

1.13
(1.92)

2.16
(2.04)

1.07
(1.89)

1.23
(1.98)

lty 0.81
(1.40)

0.81
(1.40)

0.53
(1.80)

0.53
(1.80)

0.84
(1.45)

0.52
(1.86)

0.56
(1.86)

ts 1.49
(2.00)

1.48
(2.00)

1.46
(1.99)

1.45
(1.99)

1.67
(2.19)

1.32
(1.81)

1.62
(2.16)

ds −0.04
(−0.11)

−0.04
(−0.11)

−0.04
(−0.11)

−0.04
(−0.11)

−0.23
(−0.56)

0.31
(0.91)

−0.16
(−0.42)

inf −0.13
(−0.55)

−0.12
(−0.50)

−0.11
(−0.45)

−0.09
(−0.40)

−0.06
(−0.21)

−0.02
(−0.08)

−0.02
(−0.09)

nei 1.93
(2.05)

1.93
(2.05)

1.90
(2.19)

1.90
(2.19)

1.91
(2.03)

1.77
(2.09)

1.89
(2.18)

CF 0.73
(2.35)

0.76
(2.28)

0.54
(2.58)

0.57
(2.58)

0.81
(2.45)

0.49
(2.96)

0.61
(2.79)

Notes: The reported numbers are out-of-sample statistics R2
OS multiplied by 100, of Campbell and

Thompson (2008), with the adjustment of Clark and West (2006), as discussed in subsection 4.2.2.

As in Table 3, we compare seven forecasts in seven columns using each of the 11 predictors (in

11 rows). The last row (row 12) presents the equally-weighted combined-forecast (CF) of the 11

forecasts in each column. The numbers in parentheses are the values of statistics to test the null

hypothesis that MSFE gain with the Clark and West adjustment is zero.
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Table 5. Utility Gains over HA

UF PC PF PCF PC-GH PF-GH PCF-GH

d/p 0.12 0.12 0.12 0.12 0.13 0.54 0.13
e/p −0.17 −0.17 −0.17 −0.17 −0.11 −0.12 −0.11
se/p −0.48 −0.48 −0.48 −0.48 −0.41 −0.16 −0.41
b/m −0.85 −0.85 −0.85 −0.85 −0.80 −0.01 −0.80
roe −0.47 −0.05 −0.47 0.05 −0.22 −0.44 −0.22
tbl 0.98 0.98 0.98 0.98 0.96 1.03 0.96
lty 0.29 0.29 0.29 0.29 0.30 0.44 0.30
ts 2.76 2.76 2.76 2.76 3.06 2.07 3.06
ds −0.06 −0.06 −0.06 −0.06 0.17 −0.02 0.17
inf 0.58 0.58 0.58 0.58 0.66 0.74 0.66
nei 3.29 3.29 3.29 3.29 3.31 2.78 3.31
CF 2.16 2.23 1.51 1.60 2.34 1.27 1.68

Notes: The reported numbers are out-of-sample statistics for the utility gain
(
Û1 − Û0

)
of an

investor with mean-variance preferences. It was discussed in CT (2008) and used by Rapach,

Strauss and Zhou (2010). See subsection 4.2.4 for details. As in Table 3, we compare seven

forecasts in seven columns using each of the 11 predictors (in 11 rows). The last row (row 12)

presents the equally-weighted combined-forecast (CF) of the 11 forecasts in each column.
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