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Abstract
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mance compared to using just low frequency daily information.
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1 Introduction

Due to increasing fragility in �nancial markets and the extensive use of derivative products, e¤ective

management of �nancial risks has become ever more important. A risk measurement, namely

�Value-at-Risk�(VaR), has received great attention from both regulatory and academic world due

to its simplicity despite the defective property that it lacks the coherency in the sense of Artzner et

al (1999). Numerous papers have studied various aspects of VaR methodology. Typically the VaR

is computed in daily frequency, such as for the 1 to 10-day ahead forecasts of the tail quantiles. In

this paper, we discuss how we can improve the accuracy of daily out-of-sample VaR forecasts by

using high frequency intra-day information.

Consider a �nancial return series frtgTt=1; generated by the probability law Pr (rt � rjFt�1) �

Ft(r) conditional on the information set Ft�1 (�-�eld) at time t � 1: Suppose frtg admits the

stochastic process

rt = �t + "t = �t + �tzt; (1)

where �t = E (rtjFt�1) ; �2t = E
�
"2t jFt�1

�
, and fztg � f"t=�tg has the conditional distribution

function Gt(z) � Pr (zt � zjFt�1). The VaR with a given tail probability � 2 (0; 1) is de�ned as

the negative of conditional quantile (denoted qt(�))

Pr (rt � qt(�)jFt�1) = Ft(qt(�)) = �: (2)

The quantile can be estimated either from inverting the distribution function

qt (�) = F
�1
t (�) = �t + �tG

�1
t (�); (3)

where the second equality holds if Ft(r) belongs to location-scale family, or from the quantile

regression. A quantile model involves the speci�cation of the conditional distribution Ft(�) or the

quantile regression function qt(�): The former can also be estimated by its components, namely,

�t; �
2
t ; Gt(�). For instance, Clements, Galvao and Kim (2008) make distributional assumptions

for future daily returns coupled with forecasts of realized volatility to get quantile forecasts. In

this paper we focus on the latter, the quantile regression with incorporating the high frequency

information.

The rich dynamics in ultra-high-frequency �nancial data has extensively been used in estimation

of quadratic variation (integrated variance) in so called realized volatility literature, and also used

in high frequency duration models. There is considerable amount of literature addressing the use of
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high frequency data for realized volatility and duration models, whereas little work has been done

for quantiles which is practically more relevant and central to �nancial risk management. This

paper contributes to the literature by examining whether it pays to incorporate the intraday data

and, more importantly, how to incorporate them to achieve better performance for forecasting daily

quantiles (VaR is simply the negative of it).

The existing literature on high-frequency data is mainly devoted to volatility issue of estimat-

ing quadratic variation, mixed data sampling (MIDAS) approach of Ghysels et al (2006), and the

autoregressive conditional duration models of Engle and Russell (1998). In this paper we use the

high-frequency data for a di¤erent purpose. Motivated by the bagging (bootstrap aggregating)

approach of Breiman (1996), which replicates the true distribution by bootstrap distribution in

computing the ensemble average, we consider returns computed from high frequency intraday ob-

servations as multiple replications of the true distribution of daily returns. Suppose there are hourly

time series available while we are interested in generating daily forecasts (e.g., 1 day ahead or 10

day ahead). Assuming that each of hourly information are generated from identical distribution

(without intraday pattern or diurnal cycles), we may consider the high frequency (hourly) series as

multiple replications of lower frequency (daily) series. In that context, we regard the high frequency

data as subsamples of daily series in di¤erent time within a day.

Viewing the high frequency information in this manner leads us to consider the subsample

averaging idea from the realized volatility (RV) literature and use it for forecasting quantiles in-

stead. The original subsampling idea can be traced back to Zhou (1996) and further studied by

Zhang, Mykland and Aït-Sahalia (ZMA, 2005) and Barndor¤-Nielsen, Hansen, Lunde and Shephard

(BNHLS, 2011). Andersen, Bollerslev, Diebold, and Labys (ABDL, 2001) and Barndor¤-Nielsen

and Shephard (2002) establish that RV, de�ned as the sum of squared intraday returns of small

intervals, is an asymptotically unbiased estimator of the unobserved quadratic variation as the

interval length approaches zero. However, in the presence of market microstructure noise, such

nice property of RV is contaminated. Recent innovative works investigating this issue include Aït-

Sahalia, Mykland and Zhang (AMZ, 2005), Bandi and Russell (2005), Hansen and Lunde (2006),

ZMA (2005), and BNHLS (2008, 2011). When the observed price process is the true underlying

price process plus microstructure noise, it is shown that RV will be overwhelmed by the noise and

explodes when the sampling frequency approaches in�nity. Therefore, it may be optimal to sample

less frequently than the case in the absence of noise. Zhou (1996) proposes for the �rst time an
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unbiased data-driven estimator of volatility and a subsample averaging volatility estimator. ZMA

(2005) and BNHLS (2011) establish improved estimators for quadratic variation through subsam-

pling. The bias-adjusted estimator of ZMA (2005) based on the subsample averaging method is

able to eventually push the estimation bias to zero. BNHLS (2011) show that subsampling is highly

advantageous for RV estimators based on discontinuous kernels.

Motivated by this subsampling approach that is shown to outperform ones using directly the

highest frequency series and to avoid arbitrariness in choosing sampling frequencies, we propose

a subsample averaging quantile forecast in construction similar to the bagging approach and to

the simple average combination of forecasts. We also compare this approach with other forecasts

utilizing the highest frequency information directly. There are vast amount of literature on predict-

ing daily market returns using daily close data only. We deem that proper use of high-frequency

intraday data should not only be helpful for achieving more accurate estimation of volatility, but

also be bene�cial for forecasting daily VaR/quantiles. The question is how to incorporate the vast

amount of intraday high frequency information for daily low frequency modeling or forecasting of

VaR/quantiles.

In Huang and Lee (2010), the relative advantages of combination of forecasts (CF) over com-

bination of information (CI) are discussed. Under circumstances of highly correlated predictors,

important predictors omitted, and/or low signal-to-noise ratio, CF is more likely to win over CI.

In this paper, we proceed by considering these two alternate approaches of using intraday informa-

tion and compare the CF approaches (combination of individual forecasts obtained from using one

5-min intraday information at a time) with the CI approaches (combination of all 5-min intraday

information into one model) for their forecasting ability for daily market return VaR/quantiles

prediction. It is well-known that the mean of market daily return is very hard to predict whereas

its quantiles may be predictable, particularly in tails. See Lee and Yang (2006) for some evidence

from using bagging. Practically, quantile forecasts are very important for risk management pur-

pose. See for example Chernozhukov and Umantsev (2001). Therefore, we implement the quantile

forecasts using high-frequency data through various CF and CI methods. To avoid being overly pa-

rameterized, we consider subsample averaging, some CF methods, and factor models with principal

component approach. We compare their prediction errors and �nd that in daily S&P 500 return

quantile forecasts, generally CF with simple weighting schemes, subsample averaging in particular,

are found to be superior to others.
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The rest of the paper is organized as follows. Section 2 describes the data and its organizations.

Section 3 discusses the quantile forecasting methods we consider, and Section 4 presents out-of-

sample VaR/quantile forecasting results. Section 5 concludes.

2 Data

The data we use consists of S&P 500 index values at 5-minute intervals recorded in between 9:35 a.m.

and 4:00 p.m. from June 9, 1997 to May 30, 2003, a total of 1,501 days and 117,078 observations.1

In cleaning the data, those periods of market closings are treated as no variation in index values,

thus there exists 78 ticks each trading day. From this pool of 5-minute index data, we construct 78

�daily�returns, each having a time span of twenty-four hours but pointing at di¤erent times in a

day.

Speci�cally, let us denote the daily close return by r(0)t = p4:00pmt �p4:00pmt�1 , where p4:00pmt denotes

the logarithm of the S&P 500 index value at 4:00 p.m. on day t. fp4:00pmt gTt=1 is one sub-sample

of the entire S&P 500 5-minute index data, obtained by systematic sampling at time 4:00 p.m. on

each day hence it represents one 78th of the entire 5-minute high-frequency information. Therefore,

r
(0)
t is the daily return based on this particular sub-sample, which is also the conventional daily

close return.

We de�ne a sub-sample daily return, r(1)t = p9:35amt � p9:35amt�1 ; and similarly other sub-sample

daily returns r(j)t for j = 2; : : : ;m = 77, and we have r(m=77)t = p3:55pmt � p3:55pmt�1 .

3 Forecasting Quantiles Using High Frequency Information

In this section we describe various methods of using high frequency information in quantile fore-

casting. These includes Daily-Close quantile forecasts, Bagging-Daily-Close quantile forecast,

Subsample-Averaging (SA) quantile forecast, Combining-Forecast (CF) quantile forecast, Combining-

Information (CI) quantile forecast, and some variations of SA, CF, CI methods, as presented in

Table 1.

3.1 Daily Close Quantile Forecasts

Suppose our objective is to predict the �-quantile of daily close return r(0)T+h conditioning on the

information up to time T : Q�(r
(0)
T+hjXT ), where h denotes the forecast horizon. Typically, XT � FT

1We are grateful to George Jiang who generously shared this high-frequency intraday data with us. The data are
extracted from the contemporaneous index levels recorded with the quotes of SPX options from the CBOE.
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is the vector of past values of daily returns in the same daily frequency as fr(0)t gTt=1. As in Lee and

Yang (2006) we use a quantile regression model

Q�

�
r
(0)
t+hjXt

�
= X

(0)0
t �(0)(�) + "t+h; (4)

to predict the quantiles of daily S&P 500 return with h = 1; using Chernozhukov and Umantsev�s

(2001) linear polynomial model (with the quadratic term capturing the volatility clustering e¤ect

on quantiles) such that

X
(0)
t =

�
1 r

(0)
t r

(0)2

t

�0
: (5)

The quantile forecast Q̂�
�
r
(0)
T+hjXT

�
= X

(0)0
T �̂

(0)
(�) from this quantile regression model is denoted

�Daily-Close�in Table 1, which is estimated by minimizing the �tick�(or check) function of Koenker

and Basset (1978)

�� (") = [�� 1 (" < 0)] ": (6)

To examine whether it pays to incorporate the intraday data, we use this Daily-Close as the

benchmark model to be compared with other models incorporating intraday information in our

empirical analysis in Section 4.

3.2 CI Quantile Forecasts

Besides the past realization of daily close return r(0)t , now we have other sub-samples r(j)t , j =

1; : : : ;m, constructed from the high-frequency intraday data. For the purpose of accommodating

more information, it is natural to expand Xt to include the rich dynamics in all other intraday

sub-samples
�
r
(0)
t r

(1)
t : : : r

(m)
t

�
. As an example, for the linear polynomial model, to utilize high

frequency information, the new regressors will be

Xm
t =

�
1 r

(0)
t r

(0)
t

2
r
(1)
t r

(1)
t

2
: : : r

(m)
t r

(m)
t

2
�0
: (7)

By doing this, one follows the CI scheme. That is, combining all the high-frequency information

into one model altogether and generate an ultimate forecast:

Q̂m�

�
r
(0)
T+hjX

m
T

�
= Xm0

T �̂m(�); (8)

where the coe¢ cient �̂m(�) is estimated by running the quantile regression of r
(0)
t on Xm

t�h. Denote

this quantile forecast �CI-Unrestricted�in Table 1.

Now re-de�ne Xm
t =

�
r
(0)
t r

(0)
t

2
r
(1)
t r

(1)
t

2
: : : r

(m)
t r

(m)
t

2
�0
excluding the constant term. We

note that this is a fairly large vector with dimension 156 (m = 77 in our empirical study). Moreover,
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consecutive subsample returns, r(j)t and r(j+1)t , may be highly correlated. Therefore methods that

can mitigate high dimension and multicollinearity problems are desirable in order to improve out-

of-sample forecast performance. We consider factor model with principal component approach (see

Stock and Watson 2002, 2011). The procedure here starts by assuming that
�
Xm
t ; r

(0)
t+h

�
admits a

factor model representation with k common latent factors ft

Xm
t = �ft + et; (9)

Q�(r
(0)
t+hjX

m
t ) =

�
1 f 0t

�
�̂f (�) + "t+h; (10)

and �̂f (�) is obtained by running quantile regression of r
(0)
t on

�
1 f̂ 0t�h

�0
: This quantile forecast is

denoted as �CI-PC�in Table 1.2

If k is unknown, it can be estimated by some conventional information criteria (IC) or ones

tailored to quantile forecasting models. Machado (1993) provides variants of the Schwarz Informa-

tion Criterion for model selection in M-estimation which include quantile regression as a special

case. According to Koenker (2005), for median regression, the criterion SIC = ln
�
�̂T

�
+ 1

2p lnT;

where �̂T � 1
T�h

PT�h
t=1 �� ("t+h) ; � = 0:5; ��(�) is the tick loss function in (6), and p is the di-

mension of the model, yields a consistent model selection procedure under certain assumptions.

To our knowledge, however, a consistent model selection procedure and corresponding informa-

tion criterion for factor quantile regressions have not been established yet. We leave the theo-

retical study of this procedure for our future research. In our empirical study, we consider con-

ventional information criteria such as AIC and BIC where the estimated number of factors k

is selected by min 1�k�kmaxICk = ln(SSR(k)=T ) + g(T )k, where kmax is the hypothesized upper

limit for the true number of factors and SSR is the sum of squared residuals. Here we sim-

ply extend the formulas for AIC (with g(T ) = 2=T ) and BIC (with g(T ) = lnT=T ) straightly

into the quantile case, but substituting �residual� in the above-mentioned term SSR by tick lossh
�� 1

�
r
(0)
t+h < Q̂�

�
r
(0)
t+hjXm

t

��i�
r
(0)
t+h � Q̂�

�
r
(0)
t+hjXm

t

��
, for t = 1; : : : ; T � h. Alternatively, we

can �x k ex-ante at some small values such as 1, 2, or 3.

2To better comprehend this factor representation, if we think stock market as a pool of vast amount of information
and price is determined by aggregate behavior of market participants, there may exist a few fundamental shocks to
the market in the day that ultimately determine daily return at close. This small set of shocks (main forces) may
be captured by the latent factors in the factor model (9), or technically, by a few principal components of the big
explanatory variable set Xm

t , which contains as large as 156 variables capturing levels and volatilities of the market
throughout the trading day.
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3.3 CF Quantile Forecasts

The conventional CF methodology with one �xed forecast target, i.e., the �-quantile of r(0)T+h, is

implemented as follows.

1. CF Step 1: Compute quantile forecasts from regressing r(0)t on each individual sub-sample,

Q̂(j)�

�
r
(0)
T+hjX

(j)
T

�
= X

(j)0

T �̂
(j)
(�); (11)

where X(j)
t =

�
1 r

(j)
t r

(j)
t

2
�0
, and �̂

(j)
(�) is obtained by estimating the quantile regression of

r
(0)
t on X(j)

t�h, for j = 0; 1; : : : ;m:

2. CF Step 2: Combine the quantile forecasts from Step 1 by some weighting methods for forecast

combination. A simplest example of the combination methodology is the simple average:

�QCF-Mean�

�
r
(0)
T+hjX

m
T

�
=

1

m+ 1

mX
j=0

Q̂(j)�

�
r
(0)
T+hjX

(j)
T

�
; (12)

i.e., taking the mean of all the individual quantile forecasts (denoted �CF-Mean� in Table

1). One can also use the median of the individual quantile forecasts as a combined forecast

(denoted �CF-Median�in Table 1).

In Step 1, given the high-frequency 5-minute data we have, there are in total 78 individual

quantile forecasts to be combined. Besides the simple methods such as combining these 78 fore-

casts by simple average or median without estimating any weighting parameters, we also use the

regression approach forecast combination (Granger and Ramanathan, 1984) to explore more of the

cross-sectional information contained in these 78 individual forecasts. Obviously, this regression

approach is not working well because of the high dimensionality. Therefore, we consider the princi-

pal component methodology for combining the quantile forecasts generated in Step 1 and form the

VaR forecast (denoted �CF-PC�in Table 1) by the following factor model of the quantile forecasts

Q̂m�

�
r
(0)
t jXm

t�h

�
= �F̂t + vt; (13)

where

Q̂m�

�
r
(0)
t jXm

t�h

�
=
h
Q̂(0)�

�
r
(0)
t jX

(0)
t�h

�
; Q̂(1)�

�
r
(0)
t jX

(1)
t�h

�
; : : : ; Q̂(m)�

�
r
(0)
t jX

(m)
t�h

�i0
: (14)
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Then we estimate �̂F (�) from

QCF-PC�

�
r
(0)
t+hjX

m
t

�
=
�
1 F̂ 0t+h

�
�F (�) + �t+h; (15)

to obtain the �nal CF-PC quantile forecast

Q̂CF-PC�

�
r
(0)
T+hjX

m
T

�
=
�
1 F̂ 0T+h

�
�̂F (�): (16)

The size of the common factor set F̂t, i.e., the number of principal components of Q̂m�
�
r
(0)
t jXm

t�h

�
,

can be determined again by information criteria AIC or BIC as discussed in Section 3.2, or �xed

ex-ante at some small values such as 1, 2, or 3.

3.4 Subsample-Averaging Quantile Forecasts

Inspired from the RV literature and as discussed in Section 1, here we propose a new methodology

that extends the subsample idea for RV estimation (using intraday high-frequency information)

to daily quantile forecasting. We call it subsample average (SA), which is unique to forecasting

using high-frequency data. This approach is similar to the CF-Mean procedure discussed in 3.3

but it di¤ers from CF-Mean in Step 1: instead of �xing left-hand-side (LHS) variable in (11) as

the 4 p.m. daily close return r(0)t , we modify (11) by setting LHS variable as the corresponding

subsample return r(j)t for each j = 0; 1; : : : ;m.

1. SA Step 1:

~Q(j)�

�
r
(j)
t+hjX

(j)
t

�
= X

(j)0

t
~�
(j)
(�); (17)

which give the SA quantile forecasts: ~Q(j)�
�
r
(j)
T+hjR

(j)
T

�
= X

(j)0

T
~�
(j)
(�) for j = 0; 1; : : : ;m.

2. SA Step 2: Taking simple average, we get the quantile forecast

�QSA-Mean�;T+h

�
r
(j)
T+hjX

m
T

�
=

1

m+ 1

mX
j=0

~Q(j)�

�
r
(j)
T+hjX

(j)
T

�
; (18)

which is denoted �SA-Mean� in Table 1. Similarly, �SA-Median� is to take median instead

of average.

We compare the out-of-sample tick loss of SA-Mean and SA-Median against r(0)T+h, i.e., " =

r
(0)
T+h � �QSA�;T+h

�
r
(j)
T+hjXm

T

�
in Equation (6). Although the benchmark Daily-Close, CF, and CI

quantile forecasts are all computed for r(0)T+h by design, we consider returns computed from high
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frequency intraday subsample observations as multiple replications of the true distribution of daily

returns (even if it is at a di¤erent time of a day). This is motivated by the bagging approach which

replicates the true distribution by bootstrap distribution in computing the ensemble average. In this

sense, we consider the high frequency subsamples just like the bootstrap samples, which both permit

us to estimate the ensemble average in daily frequency. Thus we treat the subsample-averaging

VaR/quantile forecasts as daily-close VaR/quantile forecasts.

3.5 Bagging Daily Close Quantile Forecasts

Bootstrap-averaging (bagging) replicates the true distribution by bootstrap distribution in com-

puting the ensemble average of a stochastic process. This paper is also motivated from the idea

of bootstrap-averaging, and we extend it to subsample-averaging. Subsample-averaging may repli-

cate the true distribution by using returns computed from high frequency data in computing the

ensemble average of a stochastic process.

We assume that each of 5-minute intraday information are generated from identical stationary

distribution (ignoring intraday pattern or diurnal cycles). Then we may consider the high frequency

series as multiple replications of lower frequency (daily) series. Under the assumption of the strict

stationarity we use the high frequency data to generate subsamples of daily series in di¤erent time

within a day. In Section 3.4, we consider high frequency observations as multiple replications of

the true distribution of daily returns. The subsample returns, r(j)t (j = 0; 1; : : : ;m); are considered

as (m+ 1) replications (draws) of the daily return series.

In this section, we consider bagging. Bagging predictor is a combined predictor formed over

a set of training sets to smooth out the �instability�caused by parameter estimation uncertainty

and model uncertainty. A predictor is said to be �unstable� if a small change in the training set

will lead to a signi�cant change in the predictor (Breiman, 1996). The mechanism of bagging

has been explained in various ways. Breiman (1996) uses the Cauchy-Schwarz inequality for a

squared error loss. Lee and Yang (2006) extend it to a convex loss (e.g., a tick function for

quantiles) using the Jensen�s inequality. Bühlmann and Yu (2002) show that, for a nonsmooth

unstable predictor, bagging reduces variance of the �rst order term. In particular, they show

that bagging can reduce the mean squared error of forecasts by averaging over the randomness

of variable selection. Buja and Stuetzle (2006) and Friedman and Hall (2007) expand a smooth

unstable function into linear and higher order terms, and show bagging reduces the variance of

the higher order terms. Bagging also stabilizes prediction by equalizing the in�uence of outlying
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training observations. Stock and Watson (2011) show that bagging is asymptotically Bayesian

shrinkage. Applications of bagging include in�ation (Inoue and Kilian 2008), �nancial volatility

(Hillebrand and Medeiros 2010), equity premium (Huang and Lee 2010), short-term interest rates

(Audrino and Medeiros 2011), and employment data (Rapach and Strauss 2010).

Bagging for the �-quantile of daily close return r(0)t is implemented as follows.

1. Bagging Step 1: Construct a bootstrap sample fr(0)�t g according to the empirical distribution

of daily close returns. Run the quantile regression in (4) by regressing r(0)�t on X(0)�
t�h =�

1 r
(0)�
t�h r

(0)�
t�h

2
�0
, obtain �̂

(0)�
(�); and compute the bootstrap Daily Close quantile forecast

Q̂(0)��

�
r
(0)�
T+hjX

(0)�
T

�
= X

(0)�0
T �̂

(0)�
(�): (19)

Repeat this B times.

2. Bagging Step 2: Combine the quantile forecasts from Step 1 by some weighting methods for

forecast combination. A simplest example of the combination is the simple average:

�QBagging�

�
r
(0)
T+hjX

(0)
T

�
=
1

B

BX
b=1

Q̂(0)�(b)�

�
r
(0)�(b)
T+h jX(0)�(b)

T

�
; (20)

i.e., taking the simple mean of all the bootstrap Daily Close quantile forecasts (denoted

�Bagging-Mean�). One can also use the median of the individual quantile forecasts as a

combined forecast (denoted �Bagging-Median�). As they are very similar, we only report the

former in Table 1, denoted as �Bagging Daily-Close�.

A concern of applying bagging to time series is whether a bootstrap can provide a sound

simulation sample for dependent data, for which the bootstrap is required to be consistent. It has

been shown that some bootstrap procedure (such as moving block bootstrap) can provide consistent

densities for moment estimators and quantile estimators. See Hall, Horowitz, and Jing (1995) and

Fitzenberger (1997). Therefore we use block bootstrapping in our empirical study as stock market

returns are likely to exhibit time dependence. In the next section, we use the number of bootstrap

samples B = 50 and the bootstrap block size �xed at 4.

4 Out-of-sample Quantile Forecasting Results

Table 1 presents the performance of each forecasting method for predicting one-day ahead (h = 1)

daily close S&P 500 return quantiles. The 78 daily returns introduced in Section 2 are calculated by
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logarithm di¤erence of corresponding index values and multiplied by 100. The size of out-of-sample

period is P = 500 days from May 29th, 2001 to May 30th, 2003. The in-sample size is R = 1000

days, from June 10th, 1997 to May 25th, 2001. We use the rolling window scheme to estimate the

parameters and set the size of estimation window at R = 1000. Quantile regressions are estimated

using the interior-point algorithm by Portnoy and Koenker (1997). We report the out-of-sample

mean tick loss ratios of each chosen forecasting scheme over Daily Close benchmark for the left-tail

probability parameter � = 0:01; 0:05; : : : ; 0:99; as de�ned in (2).

The results in Table 1 show that, except for CI-Unrestricted which obviously does not work well

due to its dimensionality problem, in general we indeed gain by incorporating high-frequency intra-

day information into predicting daily close return quantiles. Evidently, we observe that generally

the �averaging�methods (SA-Mean, SA-Median, CF-Mean, CF-Median, and Bagging) work better

than various CI methods, for most values of �. All SA and CF methods with simple weighting

schemes improve upon Daily-Close benchmark (less than 1 in loss ratios), sometimes quite substan-

tial. This indicates the stableness of the averaging methods with simple weighting schemes (mean

or median).

For those with factor model approaches, the maximum hypothesized number of factors, kmax,

is set at 15, so number of factors k is chosen within interval [1; 15] for AIC and BIC or �xed at 1,

2, or 3. We see that generally BIC performs better than AIC but usually worse than �xing factor

numbers (at 1, 2 or 3). Therefore, the simple rule-of-thumb of �xing k at a small number, that

is, using a few �xed number of factors to summarize the entire high-frequency information, works

considerably better than estimating k by AIC or BIC.

We also �nd that CF is more robust than CI. This highlights the merits of CF that are illustrated

in Huang and Lee (2010), and consistent with what is often found in the literature about CF.

The percentage loss reductions at tails, especially at the left tails, are much larger than those of

middle quantiles. It shows that there are more rooms for the various forecasting schemes to improve

upon Daily-Close model at tails by incorporating the high frequency information to forecast daily

quantiles. Zoom in on the results for the left tail with � = 0:01 which the �nancial risk management

usually concerns with. Relative to the benchmark quantile forecast using Daily-Close returns,

Bagging Daily-Close quantile forecast reduces the relative out-of-sample mean forecast tick loss

ratio to 91.39% (improving by 8.61%). CF-Mean quantile forecast and CF-Median quantile forecast

reduce the loss ratio to 92.26% and 93.39% respectively, which are slightly worse than Bagging
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Daily-Close quantile Forecast. The subsample averaging methods (SA-Mean and SA-Median) are

generating the best daily quantile forecasts with the out-of-sample mean tick loss ratios at 88% and

89%. That is an astounding 11-12% reduction of tick loss for daily VaR forecasting with � = 0:01,

which is achieved by incorporating the intraday 5-minute high-frequency information into modeling

the lower-frequency daily series.

5 Conclusions

In this paper, we present and propose several methods of incorporating high frequency information

in forecasting daily quantiles, which are shown to be particularly useful for lower tail daily Value-

at-Risk forecasting. These methods are based on �averaging�. Unlike a typical method of model-

averaging whose average is taken over di¤erent models, our averaging involves only one model but

is taken over multiple forecasts that are generated from using multiple lower (daily) frequency

datasets constructed from higher (intraday) frequency data. Hence, it is not model averaging,

but high-frequency data averaging or combining. We suggest three such data averaging/combining

methods �combining forecast (CF), subsample averaging (SA), and bootstrap averaging (Bagging)

�as explained in Section 3. All of these three averaging methods are designed to incorporate high

frequency (intraday) information into lower frequency (daily) modelling/forecasting.

As demonstrated in Section 4 in forecasting VaR/quantiles of the S&P 500 index return, us-

ing high-frequency information is bene�cial, often substantially and particularly so in forecasting

downside risk. For daily S&P 500 return lower tail out-of-sample VaR forecasts, our empirical

results show that the averaging methods via SA, Bagging, and CF (which serve as di¤erent ways

of forming the ensemble average) from using high frequency intraday information have excellent

forecasting performance when compared to just using low frequency daily-close information.
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Table 1. Forecasting Quantiles Using High Frequency Information 
This table presents the relative performance of each forecasting scheme for one-day ahead daily close S&P 500 return quantile prediction. We use 5-
minute high frequency S&P 500 index data from June 9th, 1997 to May 30th, 2003, a total of 117,078 observations on 1,501 days. There are 78 5-minute 
price index observations during a day. We generate the 78 subsample “daily” return series from a time in a day to the same time in the following trading 
day. Each of the daily returns is with length 1,500 days. The daily returns are calculated by log difference of corresponding index values and multiplied by 
100. Out-of-sample size P is 500 days, from May 29th, 2001 to May 30th, 2003, in-sample size R is 1,000 days, from June 10th, 1997 to May 25th, 2001. We 
use rolling window scheme to estimate the parameters and set the size of estimation window at R=1000. Here we report the out-of-sample mean forecast 
tick loss ratios of each chosen forecasting scheme relative to the Daily Close benchmark model. We report for different values of the left-tail probability 
parameter α, including α=0.5 for the median. A less-than-one number indicates that the chosen model outperforms the benchmark Daily Close, and 
bolded number indicates the smallest average tick loss ratio of a model among all methods for each α in each column. For CF-PC and CI-PC, the 
information criteria AIC and BIC in selecting number of factors are modified for the mean tick forecast errors instead of the mean squared errors. In all 
factor model approaches, the maximum hypothesized number of factors, kmax, is set at 15, and so the number of factors ‘k’ is chosen within interval [1,15]. 
In Bagging the number of bootstrap samples is 50 and bootstrap block size is fixed at 4. 
 

 α=0.01 α=0.05 α=0.1 α=0.3 α=0.5 α=0.7 α=0.9 α=0.95 α=0.99 
Daily-Close (mean tick loss×100) 4.5816 15.1202 24.7583 48.3697 54.5713 48.6378 26.7932 16.5165 5.0059 
          
Bagging Daily-Close 0.9139 0.9826 0.9976 0.9935 0.9971 0.9980 0.9934 0.9938 0.9131 
SA-Mean 0.8803 0.9723 0.9877 0.9873 0.9990 0.9967 0.9882 0.9764 0.9513 
SA-Median 0.8903 0.9731 0.9916 0.9885 0.9994 0.9954 0.9905 0.9818 0.9699 
CF-Mean 0.9226 0.9718 0.9928 0.9938 0.9992 0.9943 0.9912 0.9750 0.9403 
CF-Median 0.9339 0.9746 0.9952 0.9939 0.9997 0.9952 0.9940 0.9805 0.9445 
CF-PC (AIC) 1.1006 1.0221 1.0273 1.0025 1.0097 1.0047 1.0224 0.9772 2.2536 
CF-PC (BIC) 1.0746 1.0103 0.9982 0.9948 0.9985 0.9944 1.0064 0.9938 2.0761 
CF-PC (k=1) 0.9253 0.9726 0.9892 0.9962 0.9985 0.9982 0.9993 0.9832 0.9562 
CF-PC (k=2) 0.9356 0.9792 0.9894 0.9973 0.9985 0.9983 0.9916 1.0034 0.9896 
CF-PC (k=3) 0.9853 0.9823 1.0012 0.9983 0.9992 1.0008 0.9884 0.9985 0.9607 
CI-Unrestricted 5.8885 2.0387 1.5619 1.1643 1.1971 1.2420 1.4362 1.8454 4.8916 
CI-PC (AIC) 1.0956 1.0340 1.0337 0.9914 1.0006 0.9980 0.9888 1.0278 0.9905 
CI-PC (BIC) 1.0456 1.0291 1.0284 0.9951 1.0004 0.9871 0.9891 0.9945 0.9967 

CI-PC (k=1) 0.9471 0.9675 1.0121 0.9983 1.0004 1.0018 1.0030 0.9952 0.9167 

CI-PC (k=2) 0.9589 0.9817 1.0132 0.9977 1.0033 1.0040 1.0095 0.9966 0.8947 
CI-PC (k=3) 0.9974 0.9752 1.0014 0.9984 1.0025 0.9955 1.0018 0.9879 1.0224 
 


