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1 Introduction

In evaluating statistical properties of a large class of econometric estimators and test statistics we often come

across the problem of deriving the expectation of the product of an arbitrary number of quadratic forms in

random variables. For example, see White (1957), Nagar (1959), Theil and Nagar (1961), Kadane (1971),

Ullah, Srivastava, and Chandra (1983), Dufour (1984), Magee (1985), Hoque, Magnus, and Pesaran (1988),

Kiviet and Phillips (1993), Smith (1993), Lieberman (1994), Srivastava and Maekawa (1995), Zivot, Startz,

and Nelson (1998), and Pesaran and Yamagata (2005); also see the book by Ullah (2004). Econometric

examples of the situations where the expectation of the product of quadratic forms can arise are: obtaining

the moments of the residual variance; obtaining the moments of the statistics where the expectation of the

ratio of quadratic forms is the ratio of the expectations of the quadratic forms, for example, the moments of

the Durbin-Watson statistic; and obtaining the moments of a large class of estimators in linear and nonlinear

econometric models (see Bao and Ullah, 2007a, 2007b), among others. In view of this econometricians and

statisticians have long been interested in deriving E (
Qn
i=1Qi) ; where Qi = y0Aiy; Ai are nonstochastic

symmetric matrices of dimension m�m (for asymmetric Ai we can always put (Ai +A0i)=2 in place of Ai);

and y is an m�1 random vector with mean vector � and identity covariance matrix.1 We consider the cases

where y is distributed as normal or nonnormal.

When y is normally distributed, the results were developed by various authors, see, for example, Mishra

(1972), Kumar (1973), Srivastava and Tiwari(1976), Magnus (1978, 1979), Don (1979), Magnus and Neudecker

(1979), Mathai and Provost (1992), Ghazal (1996), and Ullah (2004), where both the derivations and econo-

metric applications were extensively studied. Loosely speaking, many of these works employed the moment

generating function (m.g.f.) approach, while the commutation matrix (Magnus and Neudecker, 1979) and a

recursive nonstochastic operator (Ullah, 2004) were also used to derive the results. When y is not normally

distributed, however, the results are quite limited and are available only for quadratic forms of low order. In

some applications (for example, see Section 4), the expectation of E
�
y
Qn�1
i=1 y

0Aiy
�
, which is the product of

linear function and quadratic forms, is also needed. (When y is a normal vector with zero mean, it is trivially

equal to zero.) Under nonnormality, a general recursive procedure does not exist for deriving E (
Qn
i=1 y

0Aiy)

or E
�
y
Qn�1
i=1 y

0Aiy
�
, though for some special nonnormal distributions, including mixtures of normal, we

may invoke some recursive algorithms (see Section 2.3 of Ullah, 2004).

The major purpose of this paper is two-fold. First, we try to derive a recursive algorithm for the

expectation of an arbitrary number of products of quadratic forms in the random vector y when it is

1For the case of a general covariance matrix 
; we can write Qi = (
�1=2y)0
1=2Ai
1=2(
�1=2y): Now 
�1=2y has mean
vector 
�1=2� and covariance matrix I: For a normal vector y with mean � and covariance matrix 
, this normalization is
innocuous for deriving the results for moments of quadratic forms in normal variables. This is also the case for the results on
the �rst two moments of quadratic forms in nonnormal variables. However such a normalization may invalidate the assumption
(see (6) in Section 3) on moments of the elements of the normalized vector. For tractability and simplicity, in Section 3 we
assume that the nonnormal elements are i.i.d., as is usually the case considered for the error vector in a standard regression
model.
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normally distributed. We are going to utilize a nonstochastic operator proposed by Ullah (2004) to facilitate

the derivation. When y has zero mean, the recursive result degenerates to the result given in Ghazal (1996).

Secondly, we try to derive analytical results for E (
Qn
i=1 y

0Aiy) and E
�
y
Qn�1
i=1 y

0Aiy
�
for n = 4 when y is

nonnormally distributed. We express the nonnormal results explicitly as functions of the cumulants of the

underlying nonnormal distribution of y:

The organization of this paper is as follows. In Section 2, we discuss the normal case and in Section 3 we

derive the nonnormal results. Section 4 presents examples of using the nonnormal results to study the e¤ects

of nonnormality on the �nite sample mean squared error (MSE) of econometric estimators in two time series

models. We consider the ordinary least squares (OLS) estimator in an AR(1) model and the quasi maximum

likelihood estimator (QMLE) in an MA(1) model. Section 5 concludes. Appendix A contains all the proofs

and Appendix B contains the expressions needed for deriving the MSE result of QMLE in the MA(1) model.

2 The Normal Case

In this section, we focus on the case of normal variables. Before we are going to derive the main results, it

would be helpful for us to discuss brie�y a nonstochastic operator �rst introduced by Ullah (1990) and later

in his monograph, Ullah (2004).

2.1 A Nonstochastic Operator

Ullah (1990, 2004) discussed an approach to deriving the moments of any analytic function involving a

normal random vector by using a nonstochastic operator. More formally, he showed that for the m � 1

vector x � N(�;
);

E[h (x)] = h (d) � 1 = h (d) and E[h (x) g (x)] = h (d)E[g (x)] (1)

for the real-valued analytic functions h (�) and g (�) ; where d = � + 
@�; @� = (@=@�1; � � � ; @=@�m)0, is

a nonstochastic m � 1 vector operator. The transpose of this operator is de�ned as d0 = �0 + @0�
; where

@0� = (@=@�1; � � � ; @=@�m) : This result essentially follows from the fact that the density of x is an exponential

function and for analytic functions, di¤erentiation under the integral sign is allowed. Note that to use the

result (1) correctly, readers must be cautious to the usual caveats, as pointed out by Ullah (2004, p. 12).

Most importantly, power of d should be interpreted as a recursive operation. For example, we can easily

derive E(x0Ax) = d0Ad � 1 = d0A� = �0A�+tr(A
) (where tr denotes the trace operator) by applying d0 to

Ad � 1 = A�. If one ignores this, d0Ad � 1 = d0A� =tr(A�d0) =tr(A�d0 � 1) = �0A�; which is incorrect. This

is so because in d0A� the operator d0 should be applied to A�; and thus d0A� 6=tr(A�d0):

Given (1), a recursive procedure E (
Qn
i=1Qi) = d

0A1d �E (
Qn
i=2Qi) immediately follows for Qi = y

0Aiy;

y � N(�; I). Apparently, we need to expand the operation d0A1d on E(
Qn
i=2Qi), which may become

demanding when n gets larger. Ullah (2004) gave the expressions for n up to 4 using this operator d: In this
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paper we take a step further to expand d0A1d �E (
Qn
i=2Qi) explicitly. As a consequence, a recursive formula

is derived for E (
Qn
i=1Qi) for any n.

2.2 A Recursive Procedure

For the starting case when n = 1; E(Q1) = �0A1�+tr(A1); as shown before.

Theorem 1: The expectation of
Qn
i=1Qi is given by the following recursion

E

 
nY
i=1

Qi

!
=

n�1X
i=0

2i
nX

j1=2

� � �
nX

ji=2

�
gj1���jiE

�
Q2 � � �Qn
Qj1 � � �Qji

��
; (2)

where for i > 0; gj1���ji = �
0(A1Aj1 � � �Aji +Aj1A1Aj2 � � �Aji + � � �+Aj1 � � �AjiA1)�+tr(A1Aj1 � � �Aji), and

for i = 0; g = �0A1�+tr(A1) = E(Q1). �

Note that in (2) an empty product in gj1���ji and
Q2���Qn

Qj1 ���Qji
is to be interpreted as one. Now applying the

theorem, we have the following results for n up to 4,

E
�Q1

i=1Qi

�
= �0A1�+tr(A1);

E
�Q2

i=1Qi

�
= E(Q1)E(Q2) + 4�

0A1A2�+ 2tr(A1A2);

E
�Q3

i=1Qi

�
= E(Q1)E(Q2Q3)+[4�

0A1A2�+2tr(A1A2)]E(Q3)+[4�0A1A3�+2tr(A1A3)]E(Q2)+8�0A1A2A3�

+8�0A1A3A2�+ 8�
0A2A1A3�+ 8tr(A1A2A3);

E
�Q4

i=1Qi

�
= E(Q1)E(Q2Q3Q4) + [4�

0A1A2�+ 2tr(A1A2)]E(Q3Q4) + [4�0A1A3�+ 2tr(A1A3)]E(Q2Q4)

+4[�0A1A4�+2tr(A1A4)]E(Q2Q3)+(8�0A1A2A3�+8�0A1A3A2�)E(Q4)+(8�0A1A2A4�+8�0A1A4A2�)E(Q3)

+(8�0A1A3A4�+8�
0A1A4A3�)E(Q2)+16�

0A1A2A3A4�+16�
0A1A2A4A3�+16�

0A1A3A2A4�+16�
0A1A3A4A2�

+16�0A1A4A2A3�+16�
0A1A4A3A2�+16�

0A2A1A3A4�+16�
0A3A1A2A4�+16�

0A2A1A4A3�+16�
0A4A1A2A3�

+16�0A3A1A4A2�+ 16�
0A4A1A3A2�+ 16tr(A1A2A3A4) + 16tr(A1A2A4A3) + 16tr(A1A3A2A4):

Upon successive substitution, the above results for n = 1; 2; 3; 4 can be simpli�ed to the expressions as

given in Ullah (2004). When A � A1 = A2 = � � � = An; the result in Theorem 1 gives the nth moment

(about zero) of the quadratic form y0Ay; as indicated in the following corollary, which obviously follows from

(2).

Corollary 1: The nth moment of y0Ay for y � N (�; I) is given by the following recursion

E[(y0Ay)
n
] =

n�1X
i=0

giE
h
(y0Ay)

n�i�1
i
; (3)

where E
h
(y0Ay)

0
i
= 1; gi =

�
n� 1
i

�
2ii![tr(Ai+1) + (i+ 1)�0Ai+1�]: �

When � = 0; the above theorem degenerates to the result of Ghazal (1996), as given in Corollary 2.
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Corollary 2: The expectation of
Qn
i=1Qi when y � N (0; I) is given by the following recursion

E

 
nY
i=1

Qi

!
= E(Q1) � E

 
nY
i=2

Qi

!
+ 2

nX
j=2

E

�
y0AjA1y �

Q2 � � �Qn
Qj

�
: � (4)

3 The Nonnormal Case

Now suppose y = (y1; � � � ; ym)0 follows a general error distribution with an identity covariance matrix. In

general, we can write

E

 
nY
i=1

Qi

!
= E(
ni=1Qi)

= trfE[
ni=1(yy0Ai)]g

= trfE[
ni=1(yy0)](
ni=1Ai)g

= trfE[(y
)(y
)0]A
g; (5)

where 
 denotes the Kronecker product symbol and y
 = y 
 y 
 � � � 
 y (n terms) and A
 = 
ni=1Ai:

Thus, under a general error distribution, the key determinant of the expectation required is the set of product

moments of the yi�s that appear in the mn�mn matrix P = (y
)(y
)0; the elements of which are products of

the type
Qm
i=1 y

�(i)
i , where the nonnegative integers satisfy

Pm
i=1 �(i) = 2n; i.e. they are a composition of 2n

with m parts. Numerically, on can always write a computer program to calculate the expectation. However,

when Ai are of high dimension, it may not be practically possible to store an mn �mn matrix P without

torturing the computer. So it may be more promising if we can work out some explicit analytical expressions.

More importantly, analytical expressions can help us understand explicitly the e¤ects of nonnormality on the

�nite sample properties of many econometric estimators, examples of which are provided in the next section.

Note that sometimes we may also be interested in the expectation of y
Qn�1
i=1 y

0Aiy; which is the product of

linear function and quadratic forms.

To facilitate our derivation, suppose now that the mean vector � = 0 and yi is i.i.d. As it turns out, as n

goes up, the work is more demanding. In the literature, results are only available for n up to 3, see Chandra

(1983), Ullah, Srivastava, and Chandra (1983), and Ullah (2004). So now we take one step further to derive

the analytical result for n = 4: From the analysis in the previous paragraph, when n = 4; the highest power

of yi in P is 8. So we assume that under a general error distribution, yi has �nite moments mj = E(y
j
i ) up

4



to the eighth order:

m1 = 0; m2 = 1; m3 = 1; m4 = 2 + 3;

m5 = 3 + 101; m6 = 4 + 152 + 10
2
1 + 15;

m7 = 5 + 213 + 3521 + 1051;

m8 = 6 + 284 + 5631 + 35
2
2 + 2102 + 280

2
1 + 105; (6)

where 1 and 2 are the Pearson�s measures of skewness and kurtosis of the distribution and these and

3; � � � ; 6 can be regarded as measures for deviation from normality. For a normal distribution, the para-

meters 1; � � � ; 6 are all zero. Note that these s can also be expressed as cumulants of yi, e.g., 1 and 2
represent the third and fourth cumulants.

Theorem 2: When y has mean zero and its elemetns are i.i.d. and have moments as speci�ed in (6), then

E

 
4Y
i=1

Qi

!
= tr(A1)tr (A2) tr (A3) tr (A4) + 2[tr (A1) tr (A2) tr (A3A4)

+tr (A1) tr (A3) tr (A2A4) + tr (A1) tr (A4) tr (A2A3)

+tr (A2) tr (A3) tr (A1A4) + tr (A2) tr (A4) tr (A1A3)

+tr (A3) tr (A4) tr (A1A2)] + 4[tr (A1A2) tr (A3A4) + tr (A1A3) tr (A2A4)

+tr (A1A4) tr (A2A3)] + 8[tr (A1) tr (A2A3A4) + tr (A2) tr (A1A3A4)

+tr (A3) tr (A1A2A4) + tr (A4) tr (A1A2A3)]

+16[tr (A1A3A4A2) + tr (A1A4A2A3) + tr (A1A4A3A2)]

+2f2 + 4f4 + 6f6 + 
2
1f21 + 

2
2f22 + 13f13 ; (7)

and

E

 
y

3Y
i=1

Qi

!
= 5h5 + 3h3 + 1h1 + 12h12 ; (8)

where f�s and h�s denote the contributions to E
�Q4

i=1Qi

�
and E

�
y
Q3
i=1Qi

�
; respetively, due to non-

normality of y and they are given in Appendix A.

Note that setting all the �s equal to zero, then (7) degenerates to the result for normal quadratic form

of order 4 as given in Ullah (2004), and trivially in (8), E(y
Q3
i=1Qi) = 0 for y � N(0; I):

4 E¤ects of Nonnormality

Now we give applications of the nonnormal results from the previous section. We study the e¤ects of

nonnormality on the �nite sample MSE of the OLS estimator in an AR(1) model and the QMLE in an
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MA(1) model. For notational convenience, in the following we suppress the subscript 0 in the true parameter

vector in a model.

4.1 AR(1) Model

Consider the following AR(1) model with exogenous regressors

yt = �yt�1 + x
0
t� + �"t; t = 1; � � � ; T; (9)

where � 2 (�1; 1) ; xt is k � 1 �xed and bounded so that X 0X = O (T ), where X = (x1; � � � ; xT )0; � is

k� 1; � > 0; and the error term "t is i.i.d. and "t=� follows some nonnormal distribution with moments (6).

Denote " = ("1; "2; � � � ; "T )0 ; y = (y1; y2; � � � ; yT )0 ; M = I � X (X 0X)
�1
X 0. Also de�ne F to be a T � 1

vector with the t-th element being �t�1; C to be a strictly lower triangular T � T matrix with the tt0-th

lower o¤-diagonal element being �t�t
0�1; A = MC; r = M (y0F + CX�) ; where we assume that the �rst

observation y0 has been observed.

For the OLS estimator �̂ of �; Bao and Ullah (2007b) found that nonnormality a¤ects its approximate

bias, up to O(T�1); through the skewness coe¢ cient 1: Consequently, for nonnormal symmetric distribution

(e.g. Student-t), the bias is robust against nonnormality. Setting 1 = 0; the result degenerates into the

bias result of Kiviet and Phillips (1993) under normality. The approximate MSE under nonnormality, up to

O(T�2); however, was not available due to the absence of the results (7) and (8) given in Section 3. Now we

are ready to study the e¤ects of nonnormality on the MSE. Following the lines of Bao and Ullah (2007b),

we can derive the following result for the approximate MSE of �̂:

M (�̂) =
6(�10000 + �02000 + 2r

0!01000)

(r0r + �00100)
2

�8[r
0r(�10000+�02000+4�01010)+�10100+�02100+2r0(rr0!01000+A!10000+A!02000+!01100)]

(r0r + �00100)
3

+
3[(r0r)2(�10000 + �02000) + 2r

0r(�10100 + 4�01010 + �02100) + 4�10001 + �10200 + 4�02001]

(r0r + �00100)
4

+
3[8�01110 + �02200 + 4r

0rr0(A!10000 +A!02000 + !01100) + 2(r
0r)2r0!01000]

(r0r + �00100)
4

+
6r0(!01200 + 4!01001 + 2A!10100 + 2A!02100)

(r0r + �00100)
4 + o(T�2); (10)

where �ijklm = �2(i+j+k+l+m)E[("0rr0")i � ("0A")j � ("0A0A")k � ("0A0rr0")l � ("0A0rr0A")m] and !ijklm =

�2(i+j+k+l+m)+1E["�("0rr0")i�("0A")j �("0A0A")k�("0A0rr0")l�("0A0rr0A")m]. Note that the result (10) holds for

both normal and nonnormal ": Under nonnormality, (7) is needed to evaluate �ijklm when i+j+k+l+m = 4

and (8) is needed for !ijklm when i + j + k + l +m = 3 (note that A and A0rr0 need to be symmetrized

in (7) and (8)). So given this new result (10), together with (7) and (8), it is possible for us to investigate

explicitly the e¤ects of nonnormality on M (�̂).
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For the special case when xt is a scalar constant, i.e., when we have the so-called intercept model, upon

simplifying (10) and ignoring terms of lower orders, we can derive the following anlytical result:2

M (�̂) =
1� �2
T

+
1

T 2

"
23�2 + 10�� 1 + �

1� �

�
�� (1� �)y0

�

�2
�
421�

�
1� �2

�2
1� �3 � 2(1� �2)

#
+ o

�
T�2

�
: (11)

Now only the skewness and kurtosis coe¢ cients matter for the approximate MSE, up to O(T�2): The O(T�1)

MSE, (1� �2)=T is nothing but the asymptotic variance of �̂ for the intercept model.

Figures 1-2 plots the true (solid line) and (feasible) approximate MSE, accommodating (short dashed

line) and ignoring (dotted and dashed line) the presence of nonnormality, of �̂ over 10,000 simulations when

the error term "t follows a standardized asymmetric power distribution (APD) of Komunjer (2007).3 It has

a closed-form density function as shown in Komunjer (2007) with two parameters, � 2 (0; 1); which controls

skewness, and � > 0; which controls the tail properties. To prevent the signal-to-noise ratio going up as

we increase �; we set � = 1 � �: We experiment with �2 = 0:5; 1; � = 0:01; 0:05; � = 0:5; 1; T = 50:4

To calculate the feasible approximate MSE under nonnormality, we put �̂; �̂2; ̂1; and ̂2 into (10). When

ignoring nonnormality, we put �̂; �̂2; and 1 = 2 = 0 into (11) to calculate the approximate MSE. We use

Fisher�s (1928) k statistics to estimate 1 and 2; see Dressel (1940) and Stuart and Ord (1987) for the

expressions of the k statistics in terms of sample moments.

As is clear from the two �gures, in the presence of nonnormality, (11) approximates the true MSE

remarkably well for di¤erent degrees of nonnormality and magnitudes of the error variance. Ignoring the

e¤ects of nonnormality produces overestimated MSE; accommodating nonnormality, (11) produces very

accurate estimate of the true MSE. Lastly, when the degree of nonnormality goes down (� goes from 0.5 to

1), the gap between the approximate results accommodating and ignoring nonnormality gets closer, as we

can expect.

4.2 MA(1) Model

For the invertible MA(1) model,

yt = "t � �"t�1; t = 1; � � � ; T; (12)

where j�j < 1; "t �i.i.d.(0; �2) and the moments of "t=� follow (6), the parameter vector � = (�; �2)0 is usually

estimated by the conditional QMLE (conditional on "0 = 0) that maximizes the likelihood function under

a normal density of "t for a sample of size T: Let C be a lower triangular T � T matrix with unit diagonal
2Note that Bao (2007) also derived (11) by working with a direct Nagar (1959) expansion of a ratio of quadratic forms for

the OLS estimator in the intercept model. In contrast, here we arrive at (11) from simplifying the general result (10).
3 In the experiment, we set y0 = 1: However, the results are not sensitive to the choice of y0: For other possible �xed or

random start-up values, we get similar patterns for the two �gures.
4When � = 0:01; as � goes from 0.5 to 1, 1 goes from 4.3124 to 1.9997, 2 from 34.5737 to 5.9988; when � = 0:05; as �

goes from 0.5 to 1, 1 goes from 4.3477 to 1.9914, 2 from 35.1736 to 5.9669.
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and its tt0-th lower o¤-diagonal element being ��0 if t � t0 = 1 and zero otherwise, B = �@C=@�; N1 =

C�1B; N2 = 2(C
�1B)2 + (C�1B)0(C�1B); N3 = 6(C

�1B)3 + 6(C�1B)0(C�1B)2; and N4 = 24(C�1B)4 +

24(C�1B)0(C�1B)3+12[(C�1B)2]0(C�1B)2: Bao and Ullah (2007b) showed that the second-order MSE (up

to O(T�2)) of the QMLE �̂ is given by

M(�̂) =
6�200

[tr(N2)]2
� 8�210
[tr(N2)]3

+
3�220 + �301 + 4tr(N3)�300

[tr(N2)]4

�4tr(N3)�310 + tr(N4)�400=3
[tr(N2)]5

+
5[tr(N3)]2�400
4[tr(N2)]6

; (13)

where �ijk = E[("0N1")i �("0N2")j �("0N3")k=�2(i+j+k)]; " = ("1; � � � ; "T )0: Note that �200; �210; and �300 could

be evaluated straightforwardly by using the results collected in Ullah (2004). But �220; �301, �310; �400 are

expectations of quadratic forms of order 4 in the nonnormal vector "; which could not be evaluated without

the analytical result (7).5 Now thanks to (7), together with help of Mathematica for symbolic calculation,

we simplify all the terms in (13) explicitly in terms of model parameters as in Appendix B.

Note that

[tr(N2)]�2 =

�
T

1� �2
� 1

(1� �2)2
+ o(T�2)

��2
=

�
T

1� �2
� 1

(1� �2)2

��2 "
1 +

o(T�2)
T

1��2 �
1

(1��2)2

#�2

=

�
T

1� �2
� 1

(1� �2)2

��2
+ o(T�3)

=

�
T

1� �2
��2 "

1�
1

(1��2)2
T

1��2

#�2
+ o(T�3)

=
(1� �2)2
T 2

� 2(1� �
2)

T 3
+ o(T�3)

by using the expansion (1 + x)�2 = 1� 2x+ 3x2 + � � � : In general, we can write

[tr(N2)]�i =
(1� �2)i
T i

� i(1� �
2)i�1

T i+1
+ o(T�i�1); i = 2; 3; 4; 5; 6: (14)

Substituting all the ��s from Appendix B and (14) into (13) yields the following analytical second-order MSE

of the QMLE �̂;

M(�̂) =
1� �2

T
+
1

T 2

"
9� �2�

�
1� �2

�
2 +

2�(1 + �)2
�
1� 2�+ �3

�
21�

1 + �+ �2
�2

#
+o(T�2): (15)

Omitting the higher-order terms, (15) immediately gives the asymptotic / �rst-order variance of �̂;

(1��2)=T; which is in fact robust to the nonnormal behavior of the error term. The e¤ects of nonnormality

come into play only through the order O(T�2) terms. Numerically, if one simply plugs (7) into (13) to

5Given this, Bao and Ullah (2007b) had to assume normailty to evaluate numerically the second-order MSE.
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calculate the second-order MSE of �̂; one might think that all of 1; 2; 3; 4; 6 will matter. But in fact

the analytical result (15) shows that only 1 and 2; i.e., the skewness and excess kurtosis of ", contribute

to the order O(T�2) terms, similar to the AR(1) model. Under normality, the asymptotic variance is always

smaller than the second-order MSE. Moreover, as the absolute value of � increases, the gap between them

goes up.

5 Conclusions

We have derived a recursive formula for evaluating the expectation of the product of an arbitrary number

of quadratic forms in normal variables and the expectations of quadratic form of order 4 in nonnormal

variables. The recursive feature of the result under normality makes it straightforward to program and in

terms of computer time, the recursive formula may have advantage over that based on the traditional moment

generating function approach when the matrices have high dimension and the order of quadratic forms is

large. For the nonnormal quadratic forms, we express the results explicitly as functions of the cumulants

of the underlying nonnormal distribution. Setting all the nonnormality parameters equal to zero gives the

results under normality as a special case. We apply the nonnormal results to study the �nite sample MSE of

the OLS estimator in an AR(1) model with exogenous regressors and the QMLE in a simple MA(1) model

when the errors are nonnormally distributed.
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Appendix A: Proofs

We �rst introduce fours lemmas. They are needed when we later try to expand d0A1d �E (
Qn
i=2Qi) : In the

following derivations, for multiple summations, the indices are not equal to each other, e.g., in Lemma 1,

j1 6= j2 6= � � � 6= ji in
Pn

j1=1
� � �
Pn

ji=1
: We also write y = �+ ":

Lemma 1: The gradient of E (
Qn
i=1Qi) with respect to � is

@E (
Qn
i=1Qi)

@�
=

nX
i=1

nX
j1=1

� � �
nX

ji=1

2iAj1 � � �Aji�E
�
Q1 � � �Qn
Qj1 � � �Qji

�
: (A.1)

Proof: Changing the order of derivative and expectation signs,

@E (
Qn
i=1Qi)

@�
= E

�
@
Qn
i=1Qi
@�

�
= E

�Qn
i=1 ("+ �)

0
Ai ("+ �)

@�

�
= 2

nX
j=1

AjE

�
y

�
Q1 � � �Qn
Qj

��

= 2

nX
j=1

Aj�E

�
Q1 � � �Qn
Qj

�
+ 2

nX
j=1

Aj
@

@�
E

�
Q1 � � �Qn
Qj

�
;

where the last equality follows from (1) by replacing y with the operator d in E
h
y
�
Q1���Qn

Qj

�i
:Upon successive

substitutions, the result follows. �

It should be noted that in (A.1), the products involved in Aj1 � � �Aji�1 and Q1���Qn

Qj1
���Qji

are assumed to

be one when i < 2 for the former or when i > n � 1 for the latter, following the standard convention

that an empty product is to be interpreted as one. For example, @E(Q1)=@� = 2A1�; @E(Q1Q2)=@� =

2[A1�E(Q2) +A2�E(Q1)] + 4(A1A2�+A2A1�):

Lemma 2: The Hessian of E (
Qn
i=1Qi) with respect to � is

@2E (
Qn
i=1Qi)

@�0@�
= 2

nX
j=1

AjE

�
Q1 � � �Qn
Qj

�
+ 4

nX
j=1

nX
k=1

E

�
Ajyy

0Ak
Q1 � � �Qn
QjQk

�
: (A.2)
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Proof: From the proof of Lemma 1, @E (
Qn
i=1Qi) =@�

0 = 2
Pn

j=1 y
0AjE

�
Q1���Qn

Qj

�
; so

@2E (
Qn
i=1Qi)

@�0@�
= 2E

0@ nX
j=1

@y0Aj
Q1���Qn

Qj

@�

1A
= 2E

0@ nX
j=1

Aj
Q1 � � �Qn
Qj

1A+ 2E
0@ nX
j=1

@Q1���Qn

Qj

@�
y0Aj

1A
= 2

nX
j=1

AjE

�
Q1 � � �Qn
Qj

�
+ 4

nX
j=1

nX
k=1

E

�
Ajyy

0Ak
Q1 � � �Qn
QjQk

�
: �

Lemma 3: Suppose b = b(�) is a scalar, A is symmetric, m�m; and does not depend on �; then @0�A�b =

btr(A) + �0A @b
@� :

Proof:

@0�A�b = (@=@�1; � � � ; @=@�m)

264
0B@
Pm

j=1A1;j�j
...Pm

j=1Am;j�j

1CA b
375

=

mX
j=1

Aj;jb+ [(@=@�1; � � � ; @=@�m) b]

0B@
Pm

j=1A1;j�j
...Pm

j=1Am;j�j

1CA
= btr(A) +

0@ mX
j=1

A1;j�j ; � � � ;
mX
j=1

Am;j�j

1A
0B@ @b=@�1

...
@b=@�m

1CA
= btr(A) + �0A

@b

@�
: �

Lemma 4: Suppose b = b(�) is a scalar, A is symmetric, m � m; and does not depend on �; then

@0�A@�b =tr
�
A @2b
@�0@�

�
:

Proof:

@0�A@�b = (@=@�1; � � � ; @=@�m)

2664
0BB@
Pm

j=1A1;j
@b
@�j

...Pm
j=1Am;j

@b
@�j

1CCA
3775

=
mX
i=1

mX
j=1

Ai;j
@2b

@�i@�j

= tr
�
A
@2b

@�0@�

�
: �
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Proof of Theorem 1: Using (1) and replacing y0A1y with d0A1d;

E

 
nY
i=1

Qi

!
= d0A1d � E

 
nY
i=2

Qi

!

= d0A1 (�+ @�)E

 
nY
i=2

Qi

!

= d0A1�E

 
nY
i=2

Qi

!
+ d0A1

@E (
Qn
i=2Qi)

@�

=
�
�0 + @0�

�
A1�E

 
nY
i=2

Qi

!
+
�
�0 + @0�

�
A1
@E (

Qn
i=2Qi)

@�

= �0A1� � E
 

nY
i=2

Qi

!
+ @0�A1�E

 
nY
i=2

Qi

!
+ �0A1

@E (
Qn
i=2Qi)

@�
+ @0�A1

@E (
Qn
i=2Qi)

@�
:

From Lemma 3,

@0�A1�E

 
nY
i=2

Qi

!
= tr(A1)E

 
nY
i=2

Qi

!
+ �0A1

@E (
Qn
i=2Qi)

@�
:

From Lemma 4,

@0�A1
@E (

Qn
i=2Qi)

@�
= tr

�
A1
@2E (

Qn
i=2Qi)

@�0@�

�
:

Thus

E

 
nY
i=1

Qi

!
= �0A1� � E

 
nY
i=2

Qi

!
+ tr(A1)E

 
nY
i=2

Qi

!
+ 2�0A1

@E (
Qn
i=2Qi)

@�
+ tr

�
A1
@2E (

Qn
i=2Qi)

@�0@�

�

= E(Q1)E

 
nY
i=2

Qi

!
+
n�1X
i=1

2i+1
nX

j1=2

� � �
nX

ji=2

�0A1Aj1 � � �Aji�E
�
Q2 � � �Qn
Qj1 � � �Qji

�

+2

nX
j=2

tr(A1Aj)E
�
Q2 � � �Qn
Qj

�
+ 4

nX
j=2

nX
k=2

E

�
y0AjA1Aky

Q2 � � �Qn
QjQk

�

= E(Q1)E

 
nY
i=2

Qi

!
+
n�1X
i=1

2i+1
nX

j1=2

� � �
nX

ji=2

�0A1Aj1 � � �Aji�E
�
Q2 � � �Qn
Qj1 � � �Qji

�

+2
nX
j=2

tr(A1
Aj)E
�
Q2 � � �Qn
Qj

�
+ 4

nX
j=2

nX
k=2

j<k

E

�
y0 (AjA1Ak +AkA1Aj) y

Q2 � � �Qn
QjQk

�
;

where the second last equality follows by substituting the results for @E (
Qn
i=2Qi) =@� and @

2E (
Qn
i=2Qi) =@�

0@�

from Lemmas 1 and 2 and noting that E(Q1) = �0A1�+tr(A1), and the last equality follows by noting that

AjA1Ak is not symmetric, and we replace it with (AjA1Ak +AkA1Aj) =2; and that the two indices j and

k have symmetric roles. Note that in the last equality there is a term E
h
y0 (AjA1Ak +AkA1Aj) y

Q2���Qn

QjQk

i
;

which is a quadratic form of order n� 2: Upon successive substitution, result (2) follows.�

Proof of Corollary 2: Comparing the proof of (2) and (4), we need to show that, when � = 0;

Wn �
nX
j=2

E

�
y0AjA1y �

Q2 � � �Qn
Qj

�
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is in fact equal to

Un �
nX
j=2

tr(A1Aj)E
�
Q2 � � �Qn
Qj

�
+ 2

nX
j=2

nX
i=2
i 6=j

E

�
y0AiA1Ajy �

�
Q2 � � �Qn
QiQj

��
:

It is enough to show that the jth summands of Wn and Un; denoted by wn;j and un;j ; respectively, are

equal. We proceed with our proof by induction. When n = 3; w3;2 = E (y0A2A1y � y0A3y), u3;2 =trA1A2 �

E(Q3) + E [y
0 (A2A1A3 +A3A1A2) y] : Obviously, w3;2 = u3;2 when � = 0: Similarly, w3;3 = u3;3. Now

suppose wk;j = uk;j ; j = 2; � � � ; k; i.e.

E

�
y0AjA1y �

Q2 � � �Qk
Qj

�
= trA1Aj � E

�
Q2 � � �Qk
Qj

�
+

kX
i=2
i 6=j

E

�
y0 (AiA1Aj +AjA1Ai) y �

�
Q2 � � �Qk
QiQj

��
: (A.3)

When n = k + 1; using (2),

wk+1;j = E

�
y0AjA1y �

Q2 � � �Qk+1
Qj

�
= trA1Aj � E

�
Q2 � � �Qk+1

Qj

�
+ 2

k+1X
i=2
i 6=j

trAjA1Ai � E
�
Q2 � � �Qk+1
QiQj

�

+2

k+1X
i=2
i 6=l 6=j

k+1X
l=2

E

�
y0 (AiAjA1Al +AlA1AjAl) y �

�
Q2 � � �Qk+1
QiQjQl

��
:

To establish the equivalence of wk+1;j and

uk+1;j = trA1Aj � E
�
Q2 � � �Qk+1

Qj

�
+
k+1X
i=2
i 6=j

E

�
y0 (AiA1Aj +AjA1Ai) y �

�
Q2 � � �Qk+1
QiQj

��

= trA1Aj � E
�
Q2 � � �Qk+1

Qj

�
+ 2

k+1X
i=2
i 6=j

E

�
y0 (AiA1Aj) y �

�
Q2 � � �Qk+1
QiQj

��
;

it is enough to show the sum of the last two terms of wk+1;j is equal to the last term of uk+1;j , which is

apparently true following (A.3). �

Proof of Theorem 2: For E
�Q4

i=1Qi

�
=trfE[(y
)(y
)0]A
g; (y
)(y
) has elements

Qm
i=1 y

�(i)
i =

y
�(1)
1 � � � y�(m)m with �(1) + � � � + �(m) = 2n = 8: We put

Qm
i=1 y

�(i)
i = yi1 � � � yi8 ; which has nonzero ex-

pectation only in the following seven situations:

1. All the eight indices i1; � � � ; i8 are equal.

2. The eight indices consist of two di¤erent groups, with two equal indices in the �rst group and six equal

indices in the second group, e.g., i1 = i2; i3 = i4 = � � � = i8; i1 6= i3:
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3. The eight indices consist of two di¤erent groups, with three equal indices in the �rst group and �ve

equal indices in the second group, e.g., i1 = i2 = i3; i4 = i5 = � � � = i8; i1 6= i4:

4. The eight indices consist of two di¤erent groups, with four equal indices in each group, e.g., i1 = i2 =

i3 = i4; i5 = j6 = i7 = i8; i1 6= i5:

5. The eight indices consist of three di¤erent groups, with two equal indices in the �rst group, two equal

indices in the second group, and four equal indices in the third group, e.g., i1 = i2; i3 = i4; i5 = i6 =

i7 = i8; i1 6= i3 6= i5:

6. The eight indices consist of three di¤erent groups, with two equal indices in the �rst group, three equal

indices in the second group, and three equal indices in the third group, e.g., i1 = i2; i3 = i4 = i5; i6 =

i7 = i8; i1 6= i3 6= i6:

7. The eight indices consist of four di¤erent groups, with two equal indices in each group, e.g., i1 =

i2; i3 = i4; i5 = i6; i7 = i8; i1 6= i3 6= i5 6= i7:

By some tedious algebra, we can write down the result for n = 4 as in (7) and the f�s are as follows

(where � denotes the Hadamard product symbol):

f2=tr(A1)tr(A2)tr(A3 �A4)+tr(A1)tr(A3)tr(A2 �A4)+tr(A1)tr(A4)tr(A2 �A3)+tr(A2)tr(A3)tr(A1 �A4)

+tr(A2)tr(A4)tr(A1�A3)+tr(A3)tr(A4)tr(A1�A2)+2[�0(A1�A2)�tr(A3�A4)+ �0(A1�A3)�tr(A2�A4)

+�0(A1�A4)�tr(A2�A3)+ �0(A2�A3)�tr(A1�A4)+ �0(A2�A4)�tr(A1�A3)+ �0(A3�A4)�tr(A1�A2)]

+4[tr(A1)tr(A2 � (A3A4))+tr(A1)tr(A3 � (A2A4))+tr(A1)tr(A4 � (A2A3))+tr(A2)tr(A1 � (A3A4))

+tr(A2)tr(A3 � (A1A4))+tr(A2)tr(A4 � (A1A3))+tr(A3)tr(A1 � (A2A4))+tr(A3)tr(A2 � (A1A4))

+tr(A3)tr(A4 � (A1A2))+tr(A4)tr(A1 � (A2A3))+tr(A4)tr(A2 � (A1A3))+tr(A4)tr(A3 � (A1A2))]

+8[tr((I�A1)A2A3A4)+tr((I�A1)A2A4A3)+tr((I�A1)A3A2A4)+tr((I�A2)A1A3A4)+tr((I�A2)A1A4A3)

+tr((I�A2)A3A1A4)+tr((I�A3)A1A2A4)+tr((I�A3)A1A4A2)+tr((I�A3)A2A1A4)+tr((I�A4)A1A2A3)

+tr((I�A4)A1A3A2)+tr((I�A4)A2A1A3)]+16[�0(I�(A1A2))(I�(A3A4))�+�0(I�(A1A3))(I�(A2A4))�

+�0(I � (A1A4))(I � (A2A3))�];

f4 =tr(A1)tr(A2 �A3 �A4)+tr(A2)tr(A1 �A3 �A4)+tr(A3)tr(A1 �A2 �A4)+tr(A4)tr(A1 �A2 �A3)

+4[tr(A1 �A2 � (A3A4))+tr(A1 �A3 � (A2A4))+tr(A1 �A4 � (A2A3))+tr(A2 �A3 � (A1A4))

+tr(A2 �A4 � (A1A3))+tr(A3 �A4 � (A1A2))];

f6 =tr(A1 �A2 �A3 �A4);

f21 = 2[�
0(I �A2)A3(I �A4)�tr(A1) + �0(I �A2)A4(I �A3)�tr(A1) + �0(I �A3)A2(I �A4)�tr(A1)

+�0(I �A1)A3(I �A4)�tr(A2) + �0(I �A1)A4(I �A3)�tr(A2) + �0(I �A3)A1(I �A4)�tr(A2)

+�0(I �A1)A2(I �A4)�tr(A3) + �0(I �A1)A4(I �A2)�tr(A3) + �0(I �A2)A1(I �A4)�tr(A3)

+�0(I �A1)A2(I �A3)�tr(A4) + �0(I �A1)A3(I �A2)�tr(A4) + �0(I �A2)A1(I �A3)�tr(A4)]

+4[�0(I �A1)A2A3(I �A4)�+ �0(I �A1)A2A4(I �A3)�+ �0(I �A1)A3A4(I �A2)�
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+�0(I �A2)A1A3(I �A4)�+ �0(I �A2)A1A4(I �A3)�+ �0(I �A2)A3A4(I �A1)�

+�0(I �A3)A1A2(I �A4)�+ �0(I �A3)A1A4(I �A2)�+ �0(I �A3)A2A4(I �A1)�

+�0(I �A4)A1A2(I �A3)�+ �0(I �A4)A1A3(I �A2)�+ �0(I �A4)A2A3(I �A1)�]

+4[�0(A2 �A3 �A4)�tr(A1) + �0(A1 �A3 �A4)�tr(A2) + �0(A1 �A2 �A4)�tr(A3)

+�0(A1 �A2 �A3)�tr(A4)] + 8[�0(A1 �A2)A3(I �A4)�+ �0(A1 �A2)A4(I �A3)�

+�0(A1 �A3)A2(I �A4)�+ �0(A1 �A3)A4(I �A2)�+ �0(A1 �A4)A2(I �A3)�

+�0(A1 �A4)A3(I �A2)�+ �0(A2 �A3)A1(I �A4)�+ �0(A2 �A3)A4(I �A1)�

+�0(A2 �A4)A1(I �A3)�+ �0(A2 �A4)A3(I �A1)�+ �0(A3 �A4)A1(I �A2)�

+�0(A3 �A4)A2(I �A1)�] + 16[tr(A1(A2 �A3)A4)+tr(A1(A2 �A4)A3)+tr(A1(A3 �A4)A2)

+tr(A2(A1 �A3)A4)+tr(A2(A1 �A4)A3)+tr(A3(A1 �A2)A4)];

f22 =tr(A1 �A2)tr(A3 �A4)+tr(A1 �A3)tr(A2 �A4)+tr(A1 �A4)tr(A2 �A3)

+4[�0(I �A1)(A2 �A3)(I �A4)�+ �0(I �A1)(A2 �A4)(I �A3)�+ �0(I �A1)(A3 �A4)(I �A2)�

+�0(I �A2)(A1 �A3)(I �A4)�+ �0(I �A2)(A1 �A4)(I �A3)�+ �0(I �A3)(A1 �A2)(I �A4)�]

+8�0(A1 �A2 �A3 �A4)�;

f13 = 2[�
0(I �A1)A2(I �A3 �A4)�+ �0(I �A1)A3(I �A2 �A4)�

+�0(I �A1)A4(I �A2 �A3)�+ �0(I �A2)A1(I �A3 �A4)�+ �0(I �A2)A3(I �A1 �A4)�

+�0(I �A2)A4(I �A1 �A3)�+ �0(I �A3)A1(I �A2 �A4)�+ �0(I �A3)A2(I �A1 �A4)�

+�0(I �A3)A4(I �A1 �A2)�+ �0(I �A4)A1(I �A2 �A3)�+ �0(I �A4)A2(I �A1 �A3)�

+�0(I �A4)A3(I �A1 �A2)�] + 8[�0(I �A1)(A2 �A3 �A4)�+ �0(I �A2)(A1 �A3 �A4)�

+�0(I �A3)(A1 �A2 �A4)�+ �0(I �A4)(A1 �A2 �A3)�]:

Similarly, E
�
y
Q3
i=1 y

0Aiy
�
have a representative element E

�
yj
Q3
i=1 y

0Aiy
�
; j = 1; � � � ;m: Then fol-

lowing (5), E
�
yj
Q3
i=1 y

0Aiy
�
=trfE[yj(y
)(y
)0]A
g; where yj(y
)(y
)0 has elements yj

Qm
i=1 y

�(i)
i =

yjy
�(1)
1 � � � y�(m)m with �(1) + � � � + �(m) = 2(n � 1) = 6: We put yj

Qm
i=1 y

�(i)
i = yjyi1 � � � yi6 ; which has

nonzero expectation only in the following four situations:

1. All the seven indices j; i1; � � � ; i6 are equal.

2. The seven indices consist of two di¤erent groups, with two equal indices in the �rst group and �ve equal

indices in the second group, e.g., j = i1; i2 = i3 = � � � = i6; j 6= i2; or i1 = i2; j = i3 = i4 = � � � = i6;

i1 6= j:

3. The seven indices consist of two di¤erent groups, with three equal indices in the �rst group and four

equal indices in the second group, e.g., j = i1 = i2; i3 = i4 = � � � = i6; j 6= i3; or i1 = i2 = i3;

j = i4 = i5 = i6; i1 6= j:

4. The seven indices consist of three di¤erent groups, with two equal indices in the �rst group, two equal

indices in the second group, and three equal indices in the third group, e.g., j = i1; i2 = i3; i4 = i5 = i6;

j 6= i2 6= i4; or i1 = i2; i3 = i4; j = i5 = i6; i1 6= i3 6= j:
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By some tedious algebra, we can write down the result as in (8) and the h�s are

h5 = (I �A1 �A2 �A3) �;

h3 = 4[I �A1 � (A2A3)]�+ 4[I �A2 � (A1A3)]�+ 4[I �A3 � (A1A2)]�+ 2A1(I �A2 �A3)�

+2A2(I �A1 �A3)�+ 2A3(I �A1 �A2)�+tr(A1)(I �A2 �A3)�+tr(A2)(I �A1 �A3)�

+tr(A3)(I �A1 �A2)�;

h1 = 4tr(A1)[I � (A2A3)]�+ 4tr(A2)[I � (A1A3)]�+ 4tr(A3)[I � (A1A2)]�+ 8A1(A2 �A3)�

+8A2(A1 �A3)�+ 8A3(A1 �A2)�+tr(A1)tr(A2) (I �A3)�+tr(A1)tr(A3) (I �A2)�

+tr(A2)tr(A3) (I �A1)�+ 2�0(A1 �A2)�(I �A3)�+ 2�0(A1 �A3)�(I �A2)�+ 2�0(A2 �A3)�(I �A1)�

+8[I � (A1A2A3)]�+ 8[I � (A1A3A2)]�+ 8[I � (A2A1A3)]�+ 4A1A2(I �A3)�+ 4A1A3(I �A2)�

+4A2A1(I �A3)�+ 4A2A3(I �A1)�+ 4A3A1(I �A2)�+ 4A3A2(I �A1)�+ 2tr(A1)A2(I �A3)�

+2tr(A1)A3(I �A2)�+ 2tr(A2)A1(I �A3)�+ 2tr(A2)A3(I �A1)�+ 2tr(A3)A1(I �A2)�

+2tr(A3)A2(I �A1)�;

h12 = 8(A1 �A2 �A3)�+ 4(A1 �A2)(I �A3)�+ 4(A1 �A3)(I �A2)�+ 4(A2 �A3)(I �A1)�

+tr(A1 �A2)(I �A3)�+tr(A1 �A3)(I �A2)�+tr(A2 �A3)(I �A1)�+ 2(I �A1)A2(I �A3)�

+2(I �A1)A3(I �A2)�+ 2(I �A2)A1(I �A3)�+ 2(I �A2)A3(I �A1)�+ 2(I �A3)A1(I �A2)�

+2(I �A3)A2(I �A1)�: �

Appendix B: Terms for M(�̂) in MA(1)

The following terms that are needed to evaluate the MSE result (13) of the QMLE �̂ can be derived using

the nonnormal order-4 quadratic form result (7) as well as those for nonnormal quadratic forms of lower

orders. A Mathematica code used to help simply the expressions is available upon request from the authors.

tr(N2) = T
1��2 �

1
(1��2)2 + o(T

�2);

tr(N3) =
6T�

(1��2)2 �
12�

(1��2)3 + o(T
�2);

tr(N4) =
12T (1+3�2)
(1��2)3 � 24(1+5�2)

(1��2)4 + o(T�2);

�200 =tr(N2) = T
1��2 �

1
(1��2)2 + o(T

�2);

�210 =
T 2

(1��2)2 + T

�
6+20�2

(1��2)3 +
2�(1+2�+2�2)21
(1+�)(1��3)2 + 22

(1��2)2

�
� 13+68�2

(1��2)4 �
2�(2+6�+9�2+5�3+�4)21

(1+�)2(1��3)3

� (3+4�2)2
(1��2)3(1+�2) + o(T

�2);

�300 = T
h

6�

(1��2)2 +
21
1��3

i
� 12�

(1��2)3 �
21

(1��3)2 + o(T
�2);

�220 =
T 3

(1��2)3+T
2

�
(19+86�2)
(1��2)4 +

4�(1+2�+2�2)21
(1��)3(1+�)2(1+�+�2)2 +

52
(1��2)3

�
+T

�
3(21+230�2+136�4)

(1��2)5 +
(60+361�2+304�4)2

(1��2)4(1+�2) + 2 4
(1��2)3

+
4(12+97�+322�2+728�3+1122�4+1312�5+1172�6+873�7+458�8+142�9)21

(1+�)3(1��3)4

+
2 (1+7�2+11�4+9�6)22

(1��4)3 +
8 �(1+2�+2�2)13

(1��)3(1+�)2(1+�+�2)2

�
� 9(27+392�2+344�4)

(1��2)6 � (141+1456�
2+3633�4+3454�6+1288�8)2
(1��2)5(1+�2)3 � (3+9�2+8�4+6�6)4

(1��2)4(1+2�2+2�4+�6)
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� 2(53+556�+2487�2+7911�3+18534�4+35375�5+55735�6+75214�7+86169�8+85487�9+72074�10+51669�11)21
(1+�)4(1+�2)2(1��3)5

� 2(30280�12+14366�13+4804�14+1038�15+64�16)21
(1+�)4(1+�2)2(1��3)5 � 2(2+16�2+37�4+46�6+11�8)22

(1��4)4

� 4�(4+21�+63�2+132�3+228�4+333�5+421�6+463�7+451�8+381�9+278�10+171�11+86�12+30�13+6�14)13
(1��)4(1+�)3(1+�2)(1+�+�2)3(1+�+�2+�3+�4)2 +o(T�2);

�301 = T
2[
18(1+5�2)
(1��2)4 +

6�21
(1��)3(1+�)2(1+�+�2) ] + T [

18(5+53�2+30�4)
(1��2)5

+
6�(57+207�+499�2+761�3+909�4+821�5+634�6+336�7+108�8)21

(1+�)3(1��3)4

+
36(2+9�2)2
(1��2)4 +

6(1+3�2+4�4+3�6)22
(1��4)3 + 12�13

(1��)3(1+�)2(1+�+�2) ]

� 36(9+129�2+112�4)
(1��2)6 � 18(9+91�2+223�4+208�6+76�8)2

(1��2)5(1+�2)3 � 6�(160+751�+2561�2+6012�3+11708�4+18480�5)21
(1+�)4(1+�2)2(1��3)5

� 6�(25218�6+28931�7+28917�8+24350�9+17530�10+10204�11+4842�12+1578�13+336�14+12�15)21
(1+�)4(1+�2)2(1��3)5

� 6(2+9�2+18�4+18�6+4�8)22
(1��4)4 � 6�(5+15�+29�2+43�3+57�4+61�5+56�6+44�7+30�8+14�9+4�10)13

(1��)4(1+�)3(1+�+�2)2(1+�+�2+�3+�4)2 + o(T�2);

�310 = T
2
h

18 �

(1��2)3 +
21

1��2��3+�5

i
+T

�
6 �(19+22�2)
(1��2)4 + 66 �2

(1��2)3 +
2 �(1+2�2)22

(1��4)2

+
(34+92�+211�2+297�3+383�4+300�5+144�6)21

(1+�)2(1��3)3 + 2 13
1��2��3+�5

�
� 12�(33+58�2)

(1��2)5 � 6�(26+55�2+33�4)2
(1��2)4(1+�2)2 �

(65+255�+816�2+1750�3+3184�4+4320�5+4719�6+3887�7+2550�8+1056�9+264�10+12�11)21
(1+�)3(1+�2)(1��3)4

� 2�(2+5�2+�4)22
(1��4)3 � (3+6�+8�2+9�3+10�4+6�5+2�6)13

(1��)3(1+�)2(1+�+�2)2(1+�+�2+�3+�4) + o(T
�2);

�400 =
3T 2

(1��2)2 + T

�
6 (2+7�2)
(1��2)3 + 12 2

(1��2)2 +
12 �(2+3�+3�2)21
(1+�)(1��3)2 +

22
1��4

�
� 9(3+16�2)

(1��2)4 � 6(3+4�2)2
(1��2)3(1+�2) �

24�(2+5�+7�2+4�3+�4)21
(1+�)2(1��3)3 � 22

(1��4)2 + o(T
�2):
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